Exchangeable Equilibria

Noah D. Stein

Advisors: Asuman Ozdaglar Pablo A. Parrilo Committee: Michel X. Goemans Muhamet Yildiz

Laboratory for Information and Decision Systems Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

March 16, 2011

Introduction

Outline

- Games
- Nash and correlated equilibria
- Symmetric games and equilibria
- Definition and interpretation of exchangeable equilibria
- Complete positivity and double nonnegativity
- Another interpretation of exchangeable equilibria
- **•** Exchangeability and de Finetti's theorem
- Properties and examples of exchangeable equilibria
- **•** Computation
- **•** Extensions

What's new

• Everything about exchangeable equilibria

Games

Data

- $n < \infty$ players
- Strategy (or action) set C_i for each player i
- $\left| \mathcal{C}_{i}\right|=m$ strategies per player
- \bullet Outcomes (or strategy profiles): $C_1 \times \cdots \times C_n$
- Utility (or payoff) function $u_i: C_1 \times \cdots \times C_n \to \mathbb{R}$ for each i

Interpretation

- The data is common knowledge: each player knows it, knows his opponents know it, etc.
- Simultaneously, each player *i* chooses action $s_i \in C_i$
- Each player wants to maximize his expected utility given his knowledge of others' actions

イロメ イ母メ イヨメ イ

 QQ

The game of chicken

Fitting into the framework

- $n = 2$ players
- Player 1 chooses rows
- Player 2 chooses columns
- $m = 2$ strategies per player
- $C_1 = C_2 = \{W$ impy, Macho $\}$
- Cell (s_1, s_2) contains utility pair $(u_1(s_1, s_2), u_2(s_1, s_2))$

Solution concepts

- (How) can we *describe* or *prescribe* how to play?
- Many existing notions of "reasonable" behavior in games
- Each makes assumptions about players
- Stronger assumptions \Rightarrow stronger predictions
- Sad truth: no single "best" / "right" solution concept

Equilibria

- Of these, only Nash (NE) and correlated equilibria (CE) today
- CE: Outcome distributions stable under unilateral deviations
- NE: CE in which players choose strategies independently
- XE: ? (wait a few slides)

Chicken – Nash equilibria

The game of chicken

Nash equilibria

• All three equilibria in three notations

The game of chicken

Correlated equilibria

Example correlated equilibria (joint laws)

$$
\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix}
$$

$$
\begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix} \quad \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix}
$$

つくへ

Chicken – correlated equilibrium conditions

The game of chicken

Incentive constraints

• For example if the row player receives recommendation $X = M$ he cannot expect to improve by playing W instead: $\mathbb{E}(u_1(M, Y) | X = M) \geq \mathbb{E}(u_1(W, Y) | X = M)$ $5-\frac{c}{i}$ $\frac{c}{c+d}+0 \frac{d}{c+d} \geq 4 \frac{c}{c+d}$ $\frac{c}{c+d} + 1 \frac{d}{c+d}$ $(c + d > 0)$ $5c + 0d > 4c + 1d$

• Linear inequalities: $b, c \ge a, d$

Properties of equilibria

Correlated equilibria (CE) [Aumann]

- Polytope: m^n nonnegative vars, $\mathcal{O}(nm^2)$ linear inequalities
- Rational utilities \Rightarrow rational extreme points (vertices)
- Existence via minimax / duality / separating hyperplanes [HS]
- Easy to compute (solve a linear program)
	- Even without fixing n [Papadimitriou]

Nash equilibria (NE)

- Correlated equilibria which are independent distributions
- Generically finitely many (odd number) [Wilson]
- Two players: rational, lie at extreme points of CE [ER,C]
- More players: may be irrational [Nash]
- Existence via fixed point theorems [Nash]
- Hard to compute ("PPAD-complete") [DGP,CDT]

Symmetric games

Definition

- For this talk a symmetric game will be a game satisfying
	- Common strategy space $C_1 = \ldots = C_n$
	- Permuting actions permutes utilities in the same way
- (Many results hold with a more general definition)

The idea

- Labels of players don't matter
- *n* booths each has *m* buttons labeled by C_1 , output slot
	- Each player assigned booth
	- Selects action, receives payoff from the slot
- **It doesn't matter who uses which booth**
- Two-player case: utility matrices satisfy $B=A^{\mathcal{T}}$
	- e.g. chicken
- From now on, all games symmetric

Symmetric equilibria

Symmetric correlated equilibria

If (X_1, \ldots, X_n) are distributed according to a CE, so are $(X_{\sigma(1)},\ldots,X_{\sigma(n)})$ for any permutation σ

• Two-player case: $W \in \mathsf{CE} \Rightarrow W^T \in \mathsf{CE}$

- Symmetric correlated equilibria (CE_{Svm}): fixed by all σ
	- Two-player case: $W = W^T$
- Existence: take any CE, average over all permutations

Symmetric Nash equilibria

- Independent symmetric correlated equilibria
- i.i.d. correlated equilibria

Properties

Basically same as asymmetric equilibria

イロト イ母 トイヨ トイ

э

Symmetric players

Interpretation of symmetric games

- Restricting to symmetric games is a strong condition
- All players have the same preferences
- It is hard to imagine this happening "by accident"
- If assuming this, we might as well add:

Clone assumption

- Players are "clones": identical decision-making agents
- \bullet Same information \Rightarrow same decision

Discussion

- Natural symmetry assumption– why go halfway?
- Weaker-sounding Bayesian equivalent later

Implication of clone assumption

- Suppose there is no explicit correlating device
- Players base actions on knowledge of state of the world
- Clone assumption: players make independent measurements of the state, interpret these in the same way
- Conclusion: actions i.i.d. conditioned on state of the world
- Otherwise symmetry would implicitly be broken

Definition

A correlated equilibrium of a symmetric game which is i.i.d. conditioned on some hidden parameter is called an exchangeable equilibrium (XE).

Complete positivity

Definition

• The set of $m \times m$ completely positive matrices is

$$
\mathsf{CP}_{m}^{n} = \mathsf{cone}(\mathsf{i}.\mathsf{i}.\mathsf{d}.).
$$

• For two players:
$$
CP_m^2 = \text{conv}\{xx^T \mid x \in \mathbb{R}_{\geq 0}^m\}
$$

Properties

- Random variables are i.i.d. conditioned on a parameter if and only if their joint distribution is completely positive
- So $XE = CE \cap CP_m^n$
- CP^n_m is a closed convex cone, i.i.d. distributions extreme
- $X \in \mathsf{CP}^2_{\mathsf{m}}$ and $X_{ij} > 0$ implies $X_{ii}, X_{jj} > 0$

Proof: one of the terms xx^T has $x_i, x_j > 0$

$$
\bullet\ So\ e.g.\ \left[\begin{smallmatrix} 0&1/2\\ 1/2&0 \end{smallmatrix}\right]\not\in CP^2_2
$$

റ പ

Double nonnegativity

Observation

 $\mathsf{x} \in \mathbb{R}^{\textit{m}}_{\geq 0} \Rightarrow \mathsf{x}\mathsf{x}^{\textit{T}}$ symmetric, elementwise nonnegative

•
$$
y \in \mathbb{R}^m \Rightarrow y^T x \in \mathbb{R}
$$
 and $y^T xx^T y = (y^T x)^2 \ge 0$

• So xx^T is positive semidefinite

Definition

- A matrix is **doubly nonnegative** (DNN_m^2) if it is symmetric, elementwise nonnegative, and positive semidefinite
- (More complicated definition for \textsf{DNN}^n_m)

Properties

- \textsf{DNN}_m^n is convex so $\textsf{CP}_m^n \subseteq \textsf{DNN}_m^n$
- **•** Equality if and only if $n = 2$ and $m \leq 4$ or $m = 2$
- **•** Semidefinite representable

Chicken – exchangeable equilibria

Computation

- $XE = CE \cap CP_2^2 = CE \cap DNN_2^2$
- An exchangeable equilibrium looks like $\left[\begin{smallmatrix} a & b \ c & d \end{smallmatrix} \right]$ with

If any incentive constraint were not tight then $b = c > 0$ and $bc > ad$, contradicting semidefiniteness

• So
$$
a = b = c = d = \frac{1}{4}
$$

Unique exchangeable equilibrium: the symmetric Nash equil.

 QQ

医间距的间距

Thought experiment

- Pick $N \gg n$ people, ask each how he would play the game
- Result: a sequence (X_1, \ldots, X_N) of elements of C_1

Bayesian observer's prior for (X_1, \ldots, X_N)

- Bayesian ignorance: distribution of (X_1, \ldots, X_N) is the same as that of $(X_{\sigma(1)},\ldots,X_{\sigma(N)})$ for any permutation σ
- Observer believes players are rational
- Distribution of (X_1, \ldots, X_n) must be in CE [Aumann]

Consequences

- Distribution of (X_1, \ldots, X_n) is in CE_{Sym}
- Can we say more?

∢ ロ ▶ (伊) (ミ) (ミ

Definition

• The distribution of a random sequence $(X_1, X_2, ...)$ is ${\sf exchange}$ if invariant under permuting finitely many $X_i.$

Properties

- i.j.d. sequences obviously exchangeable
- \bullet Convexity: conditionally i.i.d. \Rightarrow exchangeable

De Finetti's Theorem

 \bullet Exchangeable \Rightarrow conditionally i.i.d. on some parameter

Conclusion

• Acceptable priors as $N \rightarrow \infty$ are the exchangeable equilibria

 $\left\langle \left\langle \left\langle \left\langle \left\langle \mathcal{H} \right\rangle \right\rangle \right\rangle \right\rangle \right\rangle +\left\langle \left\langle \left\langle \left\langle \mathcal{H} \right\rangle \right\rangle \right\rangle \right\rangle +\left\langle \left\langle \left\langle \left\langle \mathcal{H} \right\rangle \right\rangle \right\rangle \right\rangle \right)$

Properties

- XE is compact, convex, semialgebraic, not generally polyhedral
- Existence: add symmetry to [HS] minimax argument
- Sandwiched between symmetric Nash and correlated equilibria

 $conv(NE_{Sym}) = conv(CE \cap i.i.d.)$ \subseteq CE \cap CP $_m^n = \mathsf{XE} \subseteq \mathsf{CE}_{\mathsf{Sym}}$

- conv(NE_{Sym}) = XE if $m = n = 2$, can be strict otherwise
- \bullet NE_{Svm} contained in extreme points of XE
- NE_{Sym} \subseteq NE \Rightarrow XE \subseteq CE_{Sym}

Separation example

Example game

 W

(u1, u2) a b c a (5, 5) (5, 4) (0, 0) b (4, 5) (4, 4) (4, 5) c (0, 0) (5, 4) (5, 5)

• Symmetric Nash equilibria:

$$
\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1/5 & 3/5 & 1/5 \end{bmatrix}
$$

- Non-exchangeable correlated equilibrium: $W^1 =$
- Exchangeable equilibrium not in conv (NE_{Sym}) :

$$
P = \begin{bmatrix} \frac{1}{8} & \frac{1}{8} & 0\\ \frac{1}{8} & \frac{1}{4} & \frac{1}{8} \\ 0 & \frac{1}{8} & \frac{1}{8} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{bmatrix}^T + \frac{1}{2} \begin{bmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}^T
$$

 $\sqrt{ }$ $\overline{1}$

 $\overline{1}$ $\frac{1}{4}$ 0 $\frac{1}{4}$ $\begin{matrix} 4 & 0 & 4 \\ 0 & \frac{1}{4} & 0 \end{matrix}$ $rac{1}{4}$ 0

0 $\frac{1}{4}$ $\frac{1}{4}$ 0

1 $\overline{1}$

Separation example, plotted

Three player example

Don't be greedy

•
$$
C_1 = C_2 = C_3 = \{0, 1\}
$$

$$
u_i(s_1, s_2, s_3) = \begin{cases} 0 & \text{when } s_1 = s_2 = s_3 = 1\\ s_1 + s_2 + s_3 & \text{otherwise} \end{cases}
$$

- Symmetric Nash equilibria are Bernoulli(p) for some p
- Algebra: only solution is $p^* = \frac{1}{\sqrt{2}}$ 3
- $\mathsf{XE} = \mathsf{CE} \cap \mathsf{CP}^3_2 = \mathsf{CE} \cap \mathsf{DNN}^3_2$
- More algebra: $XE = NE_{Sym}$
- Unique exchangeable equilibrium, irrational probabilities

Obstacles

- Can we compute exchangeable equilibria efficiently?
- With rational arithmetic, we must accept some error
- Can we approximate exchangeable equilibria efficiently (say in polynomial time in the input size and desired precision)?
- Can replace CP^n_m with DNN^n_m to get SDP relaxation
	- Exact if $m = 2$ or $n = 2$ and $m \le 4$
	- Otherwise, no performance guarantee
- Checking if there exists a completely positive matrix approximately satisfying one given linear inequality is NP-hard
- Perhaps the correlated equilibrium constraints are easy?

Solution

- [PR] cleverly apply ellipsoid method to implement [HS] existence proof; intended for large games
- Idea: symmetrize algorithm in same way as proof?
- Paradox: output should be exact XE, but is rational
- Resolution: gap in arithmetic precision analysis in [PR]
- Fix gap: approximate exchangeable equilibrium algorithm polynomial in input and $#$ bits of precision
- Later, [JLB] show how to break symmetry, get exact CE

[PR] algorithm sketch

Dual problems

$$
(P) \quad \max \sum x_s \qquad \text{min } 0 \quad (D)
$$
\n
$$
m^n \text{ vars } x_s \ge 0 \ (s \in \prod_i C_i) \qquad \qquad m^n \text{ constraints}
$$
\n
$$
\mathcal{O}(nm^2) \text{ incentive constraints} \qquad \mathcal{O}(nm^2) \text{ vars } y_i^{s_i, t_i} \ge 0
$$

The idea

- Existence of CE \Leftrightarrow (P) unbounded \Leftrightarrow (D) infeasible
- Use ellipsoid method on (D) to show infeasibility
- For any y, need a cut: mixture of constraints violated at y
- [HS] oracle gives cut in product form $x_s = x_{s_1} \cdots x_{s_n}$
- **•** After enough cuts we know dual is infeasible
- Some mixture of these cuts is nonzero, primal feasible

 QQ

Changes to compute XE

- Symmetric game ⇒ i.i.d. cut
- Any mixture of cuts is completely positive

The problem

- Any finite $#$ of (rational) such cuts is jointly feasible
- Finitely many iterations only show solutions of (D) are large

The solution

- This means some mixture of cuts is almost feasible for (P)
- Can compute approximate exchangeable equilibria efficiently

つくへ

Illustration of feasibility

Noah D. Stein [Exchangeable Equilibria](#page-0-0)

4 0 8

K 母 ▶ → 手

目

 $\,$ \prec **D** Ε

Observation

- Exchangeable equilibria have a simple implementation
- Infinite sequence of exchangeable envelopes
- Each player picks one
- It must be in his best interests to play its contents

Order k exchangeable equilibria

- What if no one could do better even looking at k envelopes?
- Tighter convex relaxation of symmetric Nash equilibria
- \bullet Converges to mixtures of symmetric Nash as $k\to\infty$
- No direct existence proof yet

Exchangeable equilibria for asymmetric games

- Obvious generalization turns out to be trivial
	- Replace "conditionally i.i.d." with "conditionally independent"
	- conv $\{xy^T \mid x, y \ge 0\} = \{X \mid X \ge 0\}$
	- Any distribution is a mixture of independent distributions
- Can do better generalizing above implementation
- Infinite exchangeable sequence of envelopes for each player
- Each player is allowed to choose one
- Best off if he chooses one of his own, plays its contents

つくへ

Summary

- Exchangeable equilibria: new solution concept for sym. games
- Various natural interpretations
- **•** Between symmetric Nash and symmetric correlated equilibria
- For small games, described by a semidefinite program
- Can be approximated efficiently in general
- **•** Generalizations give tighter relaxations, asymmetric version

Open questions

- Avoid ellipsoid method?
- • Direct existence of order k exchangeable equilibria?

A final thought

 $N \in S_{sym}$ \subseteq XE \subseteq CE_{Sym}
John Nash Noah Stein Robert Au Robert Aumann (Nobel 1994) ? [\(N](#page-29-0)[ob](#page-30-0)[e](#page-29-0)[l 2](#page-30-0)[00](#page-0-0)[5\)](#page-30-0)

Noah D. Stein [Exchangeable Equilibria](#page-0-0)

つくへ