Exchangeable Equilibria

Noah D. Stein

Advisors: Asuman Ozdaglar Pablo A. Parrilo Committee: Michel X. Goemans Muhamet Yildiz

Laboratory for Information and Decision Systems Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

March 16, 2011

Introduction

Outline

- Games
- Nash and correlated equilibria
- Symmetric games and equilibria
- Definition and interpretation of exchangeable equilibria
- Complete positivity and double nonnegativity
- Another interpretation of exchangeable equilibria
- Exchangeability and de Finetti's theorem
- Properties and examples of exchangeable equilibria
- Computation
- Extensions

What's new

• Everything about exchangeable equilibria

Games

Data

- $n < \infty$ players
- Strategy (or action) set C_i for each player i
- $|C_i| = m$ strategies per player
- Outcomes (or strategy profiles): $C_1 \times \cdots \times C_n$
- Utility (or payoff) function $u_i : C_1 \times \cdots \times C_n \to \mathbb{R}$ for each i

Interpretation

- The data is common knowledge: each player knows it, knows his opponents know it, etc.
- Simultaneously, each player *i* chooses action $s_i \in C_i$
- Each player wants to maximize his expected utility given his knowledge of others' actions

Image: A image: A

The game of chicken

(u_1, u_2)	Wimpy	Macho
Wimpy	(4,4)	(1, 5)
Macho	(5,1)	(0, 0)

Fitting into the framework

- *n* = 2 players
- Player 1 chooses rows
- Player 2 chooses columns
- *m* = 2 strategies per player
- $C_1 = C_2 = \{Wimpy, Macho\}$
- Cell (s_1, s_2) contains utility pair $(u_1(s_1, s_2), u_2(s_1, s_2))$

Solution concepts

- (How) can we describe or prescribe how to play?
- Many existing notions of "reasonable" behavior in games
- Each makes assumptions about players
- Stronger assumptions \Rightarrow stronger predictions
- Sad truth: no single "best" / "right" solution concept

Equilibria

- Of these, only Nash (NE) and correlated equilibria (CE) today
- CE: Outcome distributions stable under unilateral deviations
- NE: CE in which players choose strategies independently
- XE: ? (wait a few slides)

The game of c	hicken	
---------------	--------	--

(u_1, u_2)	Wimpy	Macho
Wimpy	(4, 4)	(1, 5)
Macho	(5,1)	(0,0)

Nash equilibria

• All three equilibria in three notations

Tuple	(M, W)	(W, M)	$(\frac{1}{2}W + \frac{1}{2}M, \frac{1}{2}W + \frac{1}{2}M)$
Product	$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix}$	$\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix}$
Joint law	$\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix}$

The game of chicken

(u_1, u_2)	Wimpy	Macho
Wimpy	(4,4)	(1, 5)
Macho	(5,1)	(0, 0)

Correlated equilibria

• Example correlated equilibria (joint laws)

$$\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$
$$\begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & 0 \end{bmatrix} \begin{bmatrix} 0 & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

Chicken - correlated equilibrium conditions

The game of chicken

(u_1, u_2)	Wimpy	Macho	
Wimpy	(4, 4)	(1, 5)	
Macho	(5, 1)	(0, 0)	

$$(X,Y) \sim D = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Incentive constraints

- For example if the row player receives recommendation X = M he cannot expect to improve by playing W instead: $\mathbb{E}(u_1(M, Y) \mid X = M) \ge \mathbb{E}(u_1(W, Y) \mid X = M)$ $5\frac{c}{c+d} + 0\frac{d}{c+d} \ge 4\frac{c}{c+d} + 1\frac{d}{c+d}$ (c+d>0) $5c+0d \ge 4c+1d$
- Linear inequalities: $b, c \ge a, d$

Properties of equilibria

Correlated equilibria (CE) [Aumann]

- Polytope: m^n nonnegative vars, $\mathcal{O}(nm^2)$ linear inequalities
- Rational utilities \Rightarrow rational extreme points (vertices)
- Existence via minimax / duality / separating hyperplanes [HS]
- Easy to compute (solve a linear program)
 - Even without fixing *n* [Papadimitriou]

Nash equilibria (NE)

- Correlated equilibria which are independent distributions
- Generically finitely many (odd number) [Wilson]
- Two players: rational, lie at extreme points of CE [ER,C]
- More players: may be irrational [Nash]
- Existence via fixed point theorems [Nash]
- Hard to compute ("PPAD-complete") [DGP,CDT]

Symmetric games

Definition

- For this talk a symmetric game will be a game satisfying
 - Common strategy space $C_1 = \ldots = C_n$
 - Permuting actions permutes utilities in the same way
- (Many results hold with a more general definition)

The idea

- Labels of players don't matter
- n booths each has m buttons labeled by C_1 , output slot
 - Each player assigned booth
 - Selects action, receives payoff from the slot
- It doesn't matter who uses which booth
- Two-player case: utility matrices satisfy $B = A^T$
 - e.g. chicken
- From now on, all games symmetric

Symmetric equilibria

Symmetric correlated equilibria

• If (X_1, \ldots, X_n) are distributed according to a CE, so are $(X_{\sigma(1)}, \ldots, X_{\sigma(n)})$ for any permutation σ

• Two-player case: $W \in CE \Rightarrow W^T \in CE$

- Symmetric correlated equilibria (CE_{Sym}): fixed by all σ
 - Two-player case: $W = W^T$
- Existence: take any CE, average over all permutations

Symmetric Nash equilibria

- Independent symmetric correlated equilibria
- i.i.d. correlated equilibria

Properties

• Basically same as asymmetric equilibria

(日)

э

Symmetric players

Interpretation of symmetric games

- Restricting to symmetric games is a strong condition
- All players have the same preferences
- It is hard to imagine this happening "by accident"
- If assuming this, we might as well add:

Clone assumption

- Players are "clones": identical decision-making agents
- Same information \Rightarrow same decision

Discussion

- Natural symmetry assumption- why go halfway?
- Weaker-sounding Bayesian equivalent later

Implication of clone assumption

- Suppose there is no explicit correlating device
- Players base actions on knowledge of state of the world
- Clone assumption: players make independent measurements of the state, interpret these in the same way
- Conclusion: actions i.i.d. conditioned on state of the world
- Otherwise symmetry would implicitly be broken

Definition

• A correlated equilibrium of a symmetric game which is i.i.d. conditioned on some hidden parameter is called an **exchangeable equilibrium** (XE).

Complete positivity

Definition

• The set of $m \times m$ completely positive matrices is

 $\operatorname{CP}_m^n = \operatorname{cone}(i. i. d.).$

• For two players:
$$\mathsf{CP}_m^2 = \mathsf{conv}\{xx^T \mid x \in \mathbb{R}_{\geq 0}^m\}$$

Properties

- Random variables are i.i.d. conditioned on a parameter if and only if their joint distribution is completely positive
- So $XE = CE \cap CP_m^n$
- CP_m^n is a closed convex cone, i.i.d. distributions extreme
- $X \in CP_m^2$ and $X_{ij} > 0$ implies $X_{ii}, X_{jj} > 0$
 - Proof: one of the terms xx^T has $x_i, x_j > 0$

• So e.g.
$$\begin{bmatrix} 0 & 1/2 \\ 1/2 & 0 \end{bmatrix} \notin CP_2^2$$

Double nonnegativity

Observation

• $x \in \mathbb{R}^m_{\geq 0} \Rightarrow xx^T$ symmetric, elementwise nonnegative

•
$$y \in \mathbb{R}^m \Rightarrow y^T x \in \mathbb{R}$$
 and $y^T x x^T y = (y^T x)^2 \ge 0$

Definition

- A matrix is **doubly nonnegative** (DNN²_m) if it is symmetric, elementwise nonnegative, and positive semidefinite
- (More complicated definition for DNNⁿ_m)

Properties

- DNN_m^n is convex so $\mathsf{CP}_m^n \subseteq \mathsf{DNN}_m^n$
- Equality if and only if n = 2 and $m \le 4$ or m = 2
- Semidefinite representable

Chicken – exchangeable equilibria

Computation

- $XE = CE \cap CP_2^2 = CE \cap DNN_2^2$
- An exchangeable equilibrium looks like $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with

(nonnegativity)	$a,b,c,d \geq 0$
(normalization)	a+b+c+d=1
(incentives)	$b,c \geq a,d$
(symmetry)	b = c
(semidefiniteness)	$ad \geq bc$

 If any incentive constraint were not tight then b = c > 0 and bc > ad, contradicting semidefiniteness

• So
$$a = b = c = d = \frac{1}{2}$$

• Unique exchangeable equilibrium: the symmetric Nash equil.

Thought experiment

- Pick $N \gg n$ people, ask each how he would play the game
- Result: a sequence (X_1, \ldots, X_N) of elements of C_1

Bayesian observer's prior for (X_1, \ldots, X_N)

- Bayesian ignorance: distribution of (X₁,...,X_N) is the same as that of (X_{σ(1)},...,X_{σ(N)}) for any permutation σ
- Observer believes players are rational
- Distribution of (X_1, \ldots, X_n) must be in CE [Aumann]

Consequences

- Distribution of (X_1, \ldots, X_n) is in CE_{Sym}
- Can we say more?

- 4 同 🕨 - 4 目 🕨 - 4 目

Definition

• The distribution of a random sequence $(X_1, X_2, ...)$ is **exchangeable** if invariant under permuting finitely many X_i .

Properties

- i.i.d. sequences obviously exchangeable
- Convexity: conditionally i.i.d. \Rightarrow exchangeable

De Finetti's Theorem

Exchangeable ⇒ conditionally i.i.d. on some parameter

Conclusion

• Acceptable priors as $N o \infty$ are the exchangeable equilibria

Properties

- XE is compact, convex, semialgebraic, not generally polyhedral
- Existence: add symmetry to [HS] minimax argument
- Sandwiched between symmetric Nash and correlated equilibria

 $\mathsf{conv}(\mathsf{NE}_{\mathsf{Sym}}) = \mathsf{conv}(\mathsf{CE} \cap \mathsf{i}, \mathsf{i}, \mathsf{d}.)$ $\subseteq \mathsf{CE} \cap \mathsf{CP}_m^n = \mathsf{XE} \subseteq \mathsf{CE}_{\mathsf{Sym}}$

- $conv(NE_{Sym}) = XE$ if m = n = 2, can be strict otherwise
- $\bullet~\text{NE}_{\text{Sym}}$ contained in extreme points of XE
- $\mathsf{NE}_{\mathsf{Sym}} \subsetneq \mathsf{NE} \Rightarrow \mathsf{XE} \subsetneq \mathsf{CE}_{\mathsf{Sym}}$

Separation example

Example game

 W^2

$$\begin{array}{c|cccc} (u_1, u_2) & a & b & c \\ \hline a & (5,5) & (5,4) & (0,0) \\ \hline b & (4,5) & (4,4) & (4,5) \\ \hline c & (0,0) & (5,4) & (5,5) \end{array}$$

• Symmetric Nash equilibria: $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1/5 & 3/5 & 1/5 \end{bmatrix}$

- Non-exchangeable correlated equilibrium: $W^1 = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ \frac{1}{4} & 0 & \frac{1}{4} \\ 0 & \frac{1}{2} & 0 \end{bmatrix}$
- Exchangeable equilibrium not in conv(NE_{Sym}):

$$P = \begin{bmatrix} \frac{1}{8} & \frac{1}{8} & 0\\ \frac{1}{8} & \frac{1}{4} & \frac{1}{8}\\ 0 & \frac{1}{8} & \frac{1}{8} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \frac{1}{2}\\ \frac{1}{2}\\ 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2}\\ \frac{1}{2}\\ 0 \end{bmatrix}^{T} + \frac{1}{2} \begin{bmatrix} 0\\ \frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0\\ \frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2} \end{bmatrix}^{T}$$

Separation example, plotted

Three player example

Don't be greedy

•
$$C_1 = C_2 = C_3 = \{0, 1\}$$

$$u_i(s_1, s_2, s_3) = egin{cases} 0 & ext{when } s_1 = s_2 = s_3 = 1 \ s_1 + s_2 + s_3 & ext{otherwise} \end{cases}$$

- Symmetric Nash equilibria are Bernoulli(p) for some p
- Algebra: only solution is $p^* = \frac{1}{\sqrt{3}}$
- XE = CE \cap CP_2^3 = CE \cap DNN_2^3
- More algebra: $XE = NE_{Sym}$
- Unique exchangeable equilibrium, irrational probabilities

Obstacles

- Can we compute exchangeable equilibria efficiently?
- With rational arithmetic, we must accept some error
- Can we approximate exchangeable equilibria efficiently (say in polynomial time in the input size and desired precision)?
- Can replace CP_m^n with DNN_m^n to get SDP relaxation
 - Exact if m = 2 or n = 2 and $m \le 4$
 - Otherwise, no performance guarantee
- Checking if there exists a completely positive matrix approximately satisfying *one* given linear inequality is NP-hard
- Perhaps the correlated equilibrium constraints are easy?

Solution

- [PR] cleverly apply ellipsoid method to implement [HS] existence proof; intended for large games
- Idea: symmetrize algorithm in same way as proof?
- Paradox: output should be exact XE, but is rational
- Resolution: gap in arithmetic precision analysis in [PR]
- Fix gap: approximate exchangeable equilibrium algorithm polynomial in input and # bits of precision
- Later, [JLB] show how to break symmetry, get exact CE

[PR] algorithm sketch

Dual problems

$$\begin{array}{ll} (P) & \max \sum x_s & \min 0 & (D) \\ & m^n \text{ vars } x_s \geq 0 \ (s \in \prod_i C_i) & m^n \text{ constraints} \\ & \mathcal{O}(nm^2) \text{ incentive constraints} & \mathcal{O}(nm^2) \text{ vars } y_i^{s_i,t_i} \geq 0 \end{array}$$

The idea

- Existence of $CE \Leftrightarrow (P)$ unbounded $\Leftrightarrow (D)$ infeasible
- Use ellipsoid method on (D) to show infeasibility
- For any y, need a cut: mixture of constraints violated at y
- [HS] oracle gives cut in product form $x_s = x_{s_1} \cdots x_{s_n}$
- After enough cuts we know dual is infeasible
- Some mixture of these cuts is nonzero, primal feasible

Changes to compute XE

- Symmetric game \Rightarrow i.i.d. cut
- Any mixture of cuts is completely positive

The problem

- Any finite # of (rational) such cuts is jointly feasible
- Finitely many iterations only show solutions of (D) are large

The solution

- This means some mixture of cuts is almost feasible for (P)
- Can compute approximate exchangeable equilibria efficiently

Illustration of feasibility

Noah D. Stein Exchangeable Equilibria

э

▲ 同 ▶ → ● 三

æ

Observation

- Exchangeable equilibria have a simple implementation
- Infinite sequence of exchangeable envelopes
- Each player picks one
- It must be in his best interests to play its contents

Order k exchangeable equilibria

- What if no one could do better even looking at k envelopes?
- Tighter convex relaxation of symmetric Nash equilibria
- Converges to mixtures of symmetric Nash as $k o \infty$
- No direct existence proof yet

Exchangeable equilibria for asymmetric games

- Obvious generalization turns out to be trivial
 - Replace "conditionally i.i.d." with "conditionally independent"
 - $\operatorname{conv}\{xy^T \mid x, y \ge 0\} = \{X \mid X \ge 0\}$
 - Any distribution is a mixture of independent distributions
- Can do better generalizing above implementation
- Infinite exchangeable sequence of envelopes for each player
- Each player is allowed to choose one
- Best off if he chooses one of his own, plays its contents

Summary

- Exchangeable equilibria: new solution concept for sym. games
- Various natural interpretations
- Between symmetric Nash and symmetric correlated equilibria
- For small games, described by a semidefinite program
- Can be approximated efficiently in general
- Generalizations give tighter relaxations, asymmetric version

Open questions

- Avoid ellipsoid method?
- Direct existence of order k exchangeable equilibria?

A final thought

Noah D. Stein

Exchangeable Equilibria