Exchangeable Equilibria

N. D. Stein A. Ozdaglar P. A. Parrilo

Laboratory for Information and Decision Systems Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

International Conference on Game Theory @ Stony Brook, July 15, 2011

イロト イポト イヨト イヨト

3

Dramatis Ludorum Personae

N. D. Stein, A. Ozdaglar, P. A. Parrilo

Exchangeable Equilibria

・ロト ・回 ト ・ヨト ・ヨト

æ

Apology

- Major error in last year's talk remains
- Thanks to Sergiu Hart and Eran Shmaya for finding it

Outline

- Correlated equilibria in finite games
- Correlation schemes
- Symmetric games
- Exchangeable equilibria
- Examples
- Properties

ヘロト ヘアト ヘビト ヘ

.≣⇒

Finite games

- Finite number of players
- Each player has a finite set of actions
- Each player has a utility function mapping action profiles to reals

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Chicken – Nash equilibria

The game of chicken

(u_1, u_2)	Wimpy	Macho
Wimpy	(4, 4)	(1,5)
Macho	(5,1)	(0,0)

Nash equilibria (NE)

• All three equilibria in three notations

Tuple
$$(M, W)$$
 (W, M) $(\frac{1}{2}W + \frac{1}{2}M, \frac{1}{2}W + \frac{1}{2}M)$ Product $\begin{bmatrix} 0\\1 \end{bmatrix} \begin{bmatrix} 1&0 \end{bmatrix}$ $\begin{bmatrix} 1\\0 \end{bmatrix} \begin{bmatrix} 0&1 \end{bmatrix}$ $\begin{bmatrix} \frac{1}{2}\\\frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ Joint law $\begin{bmatrix} 0&0\\1&0 \end{bmatrix}$ $\begin{bmatrix} 0&1\\0&0 \end{bmatrix}$ $\begin{bmatrix} 1&1\\\frac{1}{4}&\frac{1}{4}\\\frac{1}{4}&\frac{1}{4} \end{bmatrix}$

N. D. Stein, A. Ozdaglar, P. A. Parrilo

Exchangeable Equilibria

The game of chicken

(u_1, u_2)	Wimpy	Macho
Wimpy	(4,4)	(1,5)
Macho	(5,1)	(0,0)

(Internal) correlated equilibria (CE)

• Example correlated equilibria (joint laws)

$$\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$
$$\begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & 0 \end{bmatrix} \begin{bmatrix} 0 & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

ヘロト 人間 ト ヘヨト ヘヨト

э

How does correlation arise?

- Assumptions on information available to players have implications for how their actions are jointly distributed
- Private randomization \rightarrow independent
- Trusted mediator \rightarrow arbitrary distributions
- Noisy observations of environment (sunspots, etc.) \rightarrow ?

Plan

- Investigate this final assumption (in a symmetric setting)
- Need a way to talk about such information assumptions

イロト イポト イヨト イヨト

• Various essentially equivalent choices of formalism

Correlation schemes

イロト 不得 とくほと くほとう

æ

External viewpoint

- Model generation of distribution of actions
- Players' information is independent given hidden state
- Players choose *f_i*: action as a function of information
- Def.: external correlated equilibrium ⇔ f₁,..., f_n are a pure Nash equilibrium of induced game
 - Corollary: induced distribution of actions is an internal correlated equilibrium

Examples in this framework

- Nash equilibria: fixed state, private randomization only
- Internal correlated equilibria: state is random action profile, noise is forgetting others' strategies

イロト イポト イヨト イヨト

Symmetric games

- Finite number of players
- Each player has the same finite set of actions
- Permuting players permutes utilities in the same way
 - Doesn't matter how players are labeled
- e.g. symmetric bimatrix games: $B = A^T$
- From now on, all games are symmetric

・ 回 ト ・ ヨ ト ・ ヨ ト

Clone assumption

- View players as independent instances of identical decision-making agents
- Each faces the same situation
- Each makes noisy measurements of the same aspects of the environment
- Under same information, each chooses same action

Definition

• A symmetric external correlated equilibrium is an external correlated equilibrium such that information is i.i.d. conditioned on state and $f_1 = \cdots = f_n$.

ヘロト ヘワト ヘビト ヘビト

The main question

 Which internal correlated equilibria correspond to action distributions of symmetric external correlated equilibria?

First steps

Example: symmetric Nash equilibria

• In Chicken:
$$\begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$$

• Not all correlated equilibria are of this form: must be symmetric (invariant to relabeling players)

• Rules out e.g.
$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 in Chicken

• What about
$$\begin{vmatrix} 0 & 1/2 \\ 1/2 & 0 \end{vmatrix}$$
?

▲ (目) ▶ (● (目) ▶

Exchangeable equilibria

Definition

 An exchangeable equilibrium (XE_{Sym}) is the action distribution of a symmetric external correlated equilibrium.

The main question, rephrased

• Which symmetric (internal) correlated equilibria are exchangeable?

Properties

- Exchangeable equilibria are the internal correlated equilibria which are i.i.d. conditioned on a hidden state
- Without loss of generality state takes finitely many values

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

• $\mathsf{conv}(\mathsf{NE}_{\mathsf{Sym}}) \subseteq \mathsf{XE}_{\mathsf{Sym}} \subseteq \mathsf{CE}_{\mathsf{Sym}}$

Exchangeability

- Def.: random variables X₁, X₂,... are exchangeable = distribution invariant under permuting variables
- X₁,..., X_n conditionally i.i.d. ⇔ extendable to an exchangeable sequence X₁, X₂,... (De Finetti's Theorem)
- Leads to other interpretations of exchangeable equilibria
- Will not discuss these today

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Special properties

- Exchangeable equilibria are the internal correlated equilibria of the form $W = \sum_{j=1}^{k} \lambda_j x_j x_j^T$
 - λ , x_j are probability column vectors
- e.g., weather is good ('☆') or bad ('☺') with equal probability. Players' independent atmospheric measurements yield true state or '?' with equal probability.

$$\begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = \overset{\diamond}{\odot} \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}, \qquad x_1 = \overset{\diamond}{?} \begin{bmatrix} 1/2 \\ 1/2 \\ 0 \end{bmatrix}, \qquad x_2 = \overset{\diamond}{?} \begin{bmatrix} 0 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$$
$$\overset{\diamond}{\odot} \begin{bmatrix} 1/8 & 1/8 & 0 \\ 1/8 & 1/4 & 1/8 \\ 0 & 1/8 & 1/8 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1/2 \\ 1/2 \\ 0 \end{bmatrix} \begin{bmatrix} 1/2 \\ 1/2 \\ 0 \end{bmatrix}^T + \frac{1}{2} \begin{bmatrix} 0 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix} \begin{bmatrix} 0 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}^T$$

ヘロマ ヘビマ ヘビマ

Necessary conditions for $W = \sum_{j=1}^{k} \lambda_j x_j x_j^T$

• Tr(W) =
$$\sum_{j=1}^{k} \lambda_j \|x_j\|_2^2 > 0$$

• Rules out $\begin{vmatrix} 0 & 1/2 \\ 1/2 & 0 \end{vmatrix}$ in Chicken

• Can have
$$\lambda E_{Sym} \subsetneq CE_{Sym}$$

• Symmetric, nonnegative elements, positive semidefinite

 These necessary conditions are sufficient in bimatrix games with at most 4 strategies per player [corollary of Maxfield and Minc]

<ロ> <四> <四> <四> <三</td>

Chicken

- Utilities $A = B^T = \begin{bmatrix} 4 & 1 \\ 5 & 0 \end{bmatrix}$
- Exchangeable equilibria are symmetric matrices $\begin{vmatrix} p & q \\ q & r \end{vmatrix}$

•
$$p, q, r \ge 0, p + 2q + r = 1$$

- Incentive constraints: $q \ge p, r$
- Semidefiniteness: $pr \ge q^2$

• Algebra ...
$$p = q = r = 1/4$$

•
$$XE_{Sym} = NE_{Sym} = \left\{ \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix} \right\}$$

• $\mathsf{conv}(\mathsf{NE}_{\mathsf{Sym}}) = \mathsf{XE}_{\mathsf{Sym}} \subsetneq \mathsf{CE}_{\mathsf{Sym}}$

ヘロン 人間 とくほ とくほ とう

3

Game with $conv(NE_{Sym}) \subsetneq XE_{Sym} \subsetneq CE_{Sym}$

(u_1, u_2)	а	b	С
а	(5,5)	(5,4)	(0,0)
b	(4,5)	(4,4)	(4,5)
С	(0,0)	(5,4)	(5,5)

Symmetric Nash equilibria:
[1 0 0], [0 0 1], [1/5 3/5 1/5]

• Non-exchangeable correlated equil.: $W^1 = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ \frac{1}{4} & 0 & \frac{1}{4} \\ 0 & 1 & 0 \end{bmatrix}$

• Exchangeable equilibrium not in conv(NE_{Sym}):

$$\mathcal{N}^{2} = \begin{bmatrix} \frac{1}{8} & \frac{1}{8} & 0\\ \frac{1}{8} & \frac{1}{4} & \frac{1}{8}\\ 0 & \frac{1}{8} & \frac{1}{8} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \frac{1}{2}\\ \frac{1}{2}\\ 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2}\\ \frac{1}{2}\\ 0 \end{bmatrix}^{T} + \frac{1}{2} \begin{bmatrix} 0\\ \frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0\\ \frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2} \end{bmatrix}$$

N. D. Stein, A. Ozdaglar, P. A. Parrilo

Example #2, plotted

Don't be greedy

- $C_1 = C_2 = C_3 = \{0, 1\}$
- Common utility function

$$u(s_1,s_2,s_3) = egin{cases} 0, & ext{when } s_1 = s_2 = s_3 = 1 \ s_1 + s_2 + s_3, & ext{otherwise} \end{cases}$$

- Symmetric Nash equilibria are i.i.d. Bernoulli(p) for some p
- Algebra: only solution is $p = \frac{1}{\sqrt{3}}$
- Semidefiniteness characterization of exchangeability as in bimatrix case
- More algebra: XE_{Sym} = NE_{Sym}
- Unique exchangeable equilibrium, irrational probabilities

イロト イポト イヨト イヨト 三日

Three-player coordination game

- $C_1 = C_2 = C_3 = \{0, 1\}$
- Common utility function

$$u(s_1, s_2, s_3) = egin{cases} 1, & ext{when } s_1 = s_2 = s_3 \ 0, & ext{otherwise} \end{cases}$$

- NE_{Sym} = {i.i.d. Bernoulli(p) | $p = 0, \frac{1}{2}, 1$ }
- Let $\pi_{\lambda} = i.i.d.$ Bernoulli $(\frac{1}{3})$ with probability λ , else i.i.d. Bernoulli $(\frac{2}{3})$
- conv(NE_{Sym}) $\ni \pi_{\lambda}$ if and only if $\lambda = \frac{1}{2}$
- $XE_{Sym} \setminus conv(NE_{Sym}) \ni \pi_{\lambda}$ for $\frac{1}{3} \le \lambda < \frac{1}{2}$ and $\frac{1}{2} < \lambda \le \frac{2}{3}$
- $CE_{Sym} \setminus XE_{Sym} \ni$ uniform distribution over $\{s \mid \sum_i s_i \neq 2\}$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Example #4, plotted

$$\begin{split} NE_{Sym} &= circles \\ XE_{Sym} &= convex \ hull \ of \ arcs \ joining \ circles \ (not \ polyhedral) \\ CE_{Sym} &= polyhedron \ containing \ XE_{Sym} \ (omitted) \end{split}$$

э

Geometric properties of XE_{Sym}

- Compact, convex
- Semialgebraic, not necessarily polyhedral
- Contains convex hull of symmetric Nash equilibria
 - Equal in 2 × 2 case
 - Can be distinct with more strategies or players
- Contained in symmetric correlated equilibria
 - Strict containment if asymmetric Nash equilibrium exists
- Nonempty
 - Proof: symmetric version of Nash's theorem
 - Fixed-point-free proof: symmetrize Hart & Schmeidler 1989

ヘロト ヘアト ヘヨト ヘ

- Bimatrix case only: contains a rational element
 - Proof: look at symmetric Nash equilibria
 - Can fail in multiplayer case

Wrap-up

Summary

- Main contribution: exchangeable equilibria (XE_{Sym})
- Various game-theoretic interpretations
- Sandwiched between symmetric Nash and corr. equil.

Not discussed

- Computable to within ϵ in time poly(input size, log $\frac{1}{\epsilon}$)
- Generalizations "closer to" conv(NE_{Sym})
- Broader notions of symmetry
- Exchangeable equilibria in asymmetric games

Open questions

- Convexity-based proof of Nash's theorem
- Computational complexity of exact exchangeable equilibria