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Main ideas

“Bonus” symmetry
e.g. n player game invariant under cyclic shifting of players
Invariant mixed Nash equilibrium (π1, . . . , πn)

π1 = π2, π2 = π3, . . . , πn−1 = πn, πn = π1

(π1, . . . , πn) invariant under arbitrary permutations

Elementary existence proofs
Structure of game structure of Nash equilibria (NE)
e.g. for games in some class, NE∩Σ 6= ∅
Set CE of correlated equilibria is convex, NE ⊂ CE
NE∩Σ ⊂ conv(NE∩Σ) ⊂ CE∩ conv(Σ)

Elementary proof that last set is nonempty
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Outline

Background

Games
Nash and correlated equilibria
Symmetries
Hart and Schmeidler’s proof of existence of CE

The proof
Carefully choose classes of games and sets Σ

Mimic HS proof to show nonemptiness of CE∩ conv(Σ)

Repeat
Limiting argument gives Nash existence
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Games

Definition
A finite game (in strategic form) consists of n players, each
with a finite pure strategy set Ci and a utility function
ui : C → R where C := C1 × · · · × Cn.

Notation
Γ := a game
∆(Ci) := probability distributions on Ci = mixed strategies
∆ := ∆(C) = correlated strategies
∆Π := ∆(C1)× · · · ×∆(Cn) = strategy profiles ⊂ ∆
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Equilibria

Definition
An ε-Nash equilibrium is a mixed strategy profile
(π1, . . . , πn) ∈ ∆Π such that ui(si , π−i) ≤ ui(π) + ε for all i and
si ∈ Ci . The set of such is εNE. The case ε = 0 defines the set
NE of Nash equilibria.

Definition
A correlated equilibrium is a joint distribution π ∈ ∆ such that
if (X1, . . . ,Xn) are jointly distributed according to π then Xi is
almost surely a best response to the random conditional
distribution P(X−i | Xi). The set of such is CE.
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Symmetries

Definition
A symmetry σ of a game has two pieces:

Permutation of the set of players and
Permutation of the disjoint union of the strategy sets,

which are compatible with each other:
Image σ(Ci) = Cσ(i)

and leave the utilities invariant.
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Groups

Groups of symmetries
Composition and inverse of symmetries are symmetries
We usually speak of a (finite) group G of symmetries
This is merely language; no group theory used

Notation
Sn := symmetric group on n letters = permutations of
{0, . . . ,n − 1}
Zn := cyclic group of order n = permutations of the form
m 7→ m + r mod n
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Examples of symmetric games

Symmetric bimatrix games

A and B payoff to row and column players
Symmetry under player swap: A,B square, B = A′

e.g., chicken, prisoner’s dilemma, stag hunt, etc.
Symmetry group Z2

An n-player anti-coordination game

C1 = C2 = . . . = Cn

ui(s) =

{
1, si 6= si+1 subscripts interpreted mod n
0, else

Invariant under cyclic group Zn permuting players
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Symmetric distributions

Properties

Symmetry σ maps distribution π ∈ ∆ to σ∗(π) ∈ ∆

σ∗ preserves structure: ∆Π, NE, CE
We say π is symmetric if σ∗(π) = π for all σ ∈ G
Sets of symmetric distributions: CEG ⊆ ∆G, NEG ⊆ ∆Π

G

Example: n-player anti-coordination game

π ∈ ∆Π
Zn
⇒ π i.i.d. ⇒ π invariant under all permutations

∆Π
Zn

= ∆Π
Sn

( ∆Sn ( ∆Zn

∆Π
Zn

is “more symmetric” than ∆Zn
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Our goal

Nash’s Theorem
For any game with symmetry group G, NEG 6= ∅.

Goal
Prove this
Without using fixed point theorems
We would settle for the nonsymmetric version NE 6= ∅
The proof gives the symmetric version automatically

N. D. Stein, P. A. Parrilo, A. Ozdaglar A Fixed Point Free Proof of Nash’s Theorem



Symmetric correlated equilibria

Theorem (Hart and Schmeidler, Nau and McCardle)

For any game, CE 6= ∅.

Proof.
Wait a few slides.

Corollary

For any game with symmetry group G, CEG 6= ∅.

Proof.
Let π ∈ CE =⇒ σ∗(π) ∈ CE for all σ ∈ G

Average 1
|G|

∑
σ∈G

σ∗(π) ∈ ∆G ∩ CE by convexity
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Exchangeable distributions

Natural question
Nash’s theorem gives us equilibria with “bonus” symmetry
Proof there are correlated equilibria with such symmetry?

Averaging fails

Definition

The exchangable distributions are ∆X
G := conv(∆Π

G).

Example: n-player anti-coordination game

∆Π
Zn
⊂ ∆Sn

∆X
Zn

= conv(∆Π
Zn

) ⊆ ∆Sn ( ∆Zn
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Exchangeable distributions, continued

Example: symmetric bimatrix games

∆ = {m ×m probability matrices}
∆Z2 = {m ×m symmetric probability matrices}
∆Π = {xy ′ | x , y probability column vectors}
∆Π

Z2
= {xx ′ | x a probability column vector}

∆X
Z2

= conv(∆Π
Z2

) = completely positive prob. mat.

Elements of ∆Π
Z2

, hence ∆X
Z2

are positive semidefinite
Those in ∆Z2 need not be

e.g. det
[

0 0.5
0.5 0

]
= −0.25

∆X
Z2

( ∆Z2
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Exchangeable equilibria

Definition

The set of (G-)exchangeable equilibria is XEG := CE∩∆X
G.

Remarks
Exchangeable equilibria are correlated equilibria having all
the “bonus” symmetry of the symmetric Nash equilibria
XEG is convex and compact.
conv(NEG) ⊂ XEG ⊂ CEG

Inclusions can be strict (even in symmetric bimatrix case)
Proving XEG 6= ∅ does not prove NEG 6= ∅
It is an important step, can be done by tweaking HS proof
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Hart and Schmeidler’s proof

Theorem (HS 1989, NM 1990 is similar)

For any game, CE 6= ∅.

Proof.

Given Γ construct zero-sum game Γ0:
Maximizer plays all roles in Γ (i.e., CM := C, ∆(CM) = ∆)
Minimizer wants a profitable deviation (Cm :=

⊔
i Ci × Ci )

π ∈ CE(Γ)⇐⇒ u0
M(π, y) ≥ 0 for all minimizer strategies y

Minimax: such a π exists⇐⇒ for all mixed minimizer
strategies y there is a πy ∈ ∆(Γ) such that u0

M(πy , y) ≥ 0
Minimax again: For any y , there is such a πy ∈ ∆Π(Γ)

In fact π ∈ CE(Γ) ∩ conv{πy}
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Exchangeable equilibrium existence

Theorem
For any game with symmetry group G, XEG 6= ∅.

Proof.
Hart and Schmeidler argument with symmetries added
G is also a symmetry group of Γ0

For each y we can find πy ∈ ∆Π
G(Γ) s.t. u0

M(πy , y) ≥ 0
Minimax theorem gives CE in conv{πy} ⊆ ∆X

G(Γ)
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Adding symmetries

Γ ΠmΓ ΞmΓ

s2

s1

s1
2 s2

2 · · · sm
2

s1
1 s2

1 · · · sm
1

s1
2 s2

2 · · · sm
2

s1
1 s2

1 · · · sm
1

Game Symbol # players Symmetries
Original Γ n G

mth power ΠmΓ mn G × Sm (G o Sm)
contracted mth power ΞmΓ n G × Sm

Powers of games

ΞmΓ has stronger incentive constraints
CE(ΞmΓ) ( CE(ΠmΓ)

ΠmΓ has stronger independence constraints
∆Π

G×Sm
(ΠmΓ) ( ∆Π

G×Sm
(ΞmΓ) (resp. with X in place of Π)
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Higher order exchangeable equilibria

Observations
XEG×Sm (ΠmΓ) and XEG×Sm (ΞmΓ) are incomparable
There is a natural map

NEG(Γ)→ XEG×Sm (ΠmΓ) ∩ XEG×Sm (ΞmΓ)

so we still expect this intersection to be nonempty

Definition
The order m exchangeable equilibria are

XEm
G(Γ) := XEG×Sm (ΠmΓ) ∩ XEG×Sm (ΞmΓ)
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Higher order exchangeable equilibrium existence

Theorem
For any game with symmetry group G and m ∈ N, XEm

G 6= ∅.

Proof.
Similar to XE existence proof

Theorem
For any game with symmetry group G and ε > 0, εNEG 6= ∅.

Proof.
We will do the symmetric bimatrix case (next slide)
General case is the same if there is “enough symmetry”
Otherwise (e.g. arbitrary bimatrix games): symmetrize
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Towards Nash equilibria
ΠmΓ ΞmΓ

X 1
2 X 2

2 · · · X m
2

X 1
1 X 2

1 · · · X m
1

X 1
2 X 2

2 · · · X m
2

X 1
1 X 2

1 · · · X m
1

Symmetric bimatrix case (to simplify notation)

(X j
i ) ∼ π ∈ XEm

Z2
, m large

X 1
1 is a best reply to P(X 1

2 | X 1
1 , . . . ,X

m
1 ), as is X j

1

Random empirical distribution Y := 1
m
∑m

j=1 δX j
1

with values
in ∆(C1)

Y is a best reply to P(X 1
2 | X 1

1 , . . . ,X
m
1 )

Exchangeability of X j
i : Y ≈ P(X 1

2 | X 1
1 , . . . ,X

m
1 )

Y is approximately a best reply to Y with high probability
(Y ,Y ) ∈ εNEZ2 with high probability, ε→ 0 as m→∞
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Nash’s Theorem

Nash’s Theorem
For any game Γ and symmetry group G, NEG 6= ∅.

Proof.
Sets εNEG are nonempty, compact, Hausdorff, nested

NEG =
⋂
ε>0

εNEG 6= ∅
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Concluding remarks

Symmetry

Theorem still applies for trivial G, so NE 6= ∅ for all games
Nonetheless symmetry is fundamental to the argument
No obvious direct path to NE 6= ∅ without symmetries

Exchangeable equilibria
Natural mathematical objects interesting in their own right
Game theoretic interpretations
Computable in polynomial time
To hear more, come to my talk in Brazil!
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