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Previous work

• Debreu - “Smooth Preferences” (1972)

• Ekeland - “Topologie Différentielle et Théorie des
Jeux” (1974)

• Thom - “L’Optimisation Simultanée et la Théorie
des Jeux en Topologie Différentielle” (1974)

• Monderer and Shapley - “Potential Games” (1996)
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Smooth manifolds

• Topological spaces which look locally like Rn

• Examples: Rn, Sn, T 2 = S1 × S1

• Non-examples: Q, [−1, 1] ⊂ R, {(x, y) ∈ R2|xy = 0}

• C∞(M) = set of smooth functions M → R

– i.e., functions which look locally like smooth
functions on Rn
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Differentiation

• The first-order behavior of a function on Rn at a
point is given by an element of Rn

• The same is true in a manifold, but there is no
natural way to “compare” derivatives at different
points x, y ∈M

• We view these as living in different cotangent
spaces called T ∗x (M) ∼= Rn ∼= T ∗y (M)

• These glue together to form the cotangent bundle
T ∗(M), a 2n-dimensional manifold
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Differentiation II

• If f ∈ C∞(M) then its derivative df is a smooth
map of points x ∈M to elements df(x) ∈ T ∗x (M)

• We write df ∈ Ω1(M) (“1-forms”)

• Elements of Ω1(M) which are of the form df for
f ∈ C∞(M) are called exact

• If ω ∈ Ω1(M) looks locally like df for some f
(depending on where we look) then we write dω = 0
and say ω is closed

• Example: M = S1, ω = “dθ” ∈ Ω1(M) is closed but
not exact since θ is not a well-defined function
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Our setup

• Strategic form game

• Two players for simplicity

• Pure strategy sets are smooth, compact, connected
manifolds M,N

• Utility functions are u, v ∈ C∞(M ×N)
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Game forms

• T ∗(m,n)(M ×N) ∼= T ∗m(M)⊕ T ∗n(N)

• ψM , ψN ∈ C∞(T ∗(M ×N), T ∗(M ×N)) are the
smooth bundle maps which kill the second and first
component of this direct sum, resp.

• Define a game form ω = ψM (du) + ψN (dv)

• This encapsulates all strategically relevant
information about the game

• That is, ω = ω̃ iff u− ũ is a function of n alone and
v − ṽ is a function of m alone
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Potential games

• A game is an (exact) potential game if it is
equivalent under the above def. to a game with
u = v [Monderer + Shapley]

• Potential games have (pure) Nash equilibria

• The above shows that a game is an exact potential
game if and only if the game form ω is exact

• The Poincaré lemma states that a 1-form on a
convex subset of Rk is exact if and only if it is closed

• ∴ For games with convex strategy sets being a
potential game is a local condition dω = 0 [M+S]
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Potential games II

• As mentioned above, in general ω = df implies
dω = 0 but not conversely

• However, one can show that for game forms the
converse is true

• Theorem: For any M and N a game is a potential
game iff ω is closed

• Proof: Define a candidate potential function as in
Thm. 4.5 of [M+S]. Most of the work is in using
technical tools (e.g., Künneth formula, de Rham
thm.) to show that this is well-defined.
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Solution concepts

• (Pure) Nash equilibrium: no player can improve
by deviating

⇓

• Local (Nash) equilibrium: no player can improve
by deviating within a neighborhood of his strategy

⇓

• First order (Nash) equilibrium: ω(m,n) = 0
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Existence of first order equilibria

• Theorem [Ekeland]: If the Euler characteristics
χ(M) and χ(N) are nonzero then there exists a
first-order Nash equilibrium.

• Proof: If not, fix a Riemannian metric on M ×N
and use it to map ω to a nonvanishing vector field
X on M ×N . By the Poincaré-Hopf theorem

0 =
∑

(m,n):
X(m,n)=0

index(m,n)(X) = index(X)

= χ(M ×N) = χ(M)χ(N).

�
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Nonexistence of local equilibria

• Theorem: For any strategy manifolds M and N

there exists a game with no local equilibria

• Proof: The game with strategy sets [−1, 1] for both
players and utilities u(x, y) = −v(x, y) = (x− y)2

has no local equilibria. Using Morse functions we
can construct smooth open maps f : M → [−1, 1]
and g : N → [−1, 1]. Then u(f(m), g(n)) and
v(f(m), g(n)) are smooth utilities on M ×N which
admit no local equilibria by def. of an open map.
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Generalizations of games

• For m0 ∈M define im0(n) = (m0, n) and similarly
define jn0 for n0 ∈ N .

• Theorem: A 1-form ω is a game form if and only if
i∗m0

(ω) ∈ Ω1(N) and j∗n0
(ω) ∈ Ω1(M) are exact for

all m0 ∈M and n0 ∈ N

• i.e., a game form is one in which each player’s
preferences come from utility functions

• Define a local game to mean the players’ utilities
look locally like they come from utility functions.

• i.e., replace exact with closed above

MIT Laboratory for Information and Decision Systems 13



Open questions

• Examples of local games

• The games constructed above with no local
equilibria are highly degenerate in a well-defined
sense. Is there a construction which avoids this or
might nondegenerate games on certain manifolds
always admit local equilibria?

• Extensions from smooth utilities to C2 utilities and
to manifolds with boundary
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