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Previous work

e Debreu - “Smooth Preferences” (1972)

e Ekeland - “Topologie Différentielle et Théorie des
Jeux” (1974)

e Thom - “L’Optimisation Simultanée et la Théorie
des Jeux en Topologie Différentielle” (1974)

e Monderer and Shapley - “Potential Games” (1996)
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Smooth manifolds

e Topological spaces which look locally like R"™
o Examples: R®, S, T? = S! x §!
e Non-examples: Q, [-1,1] C R, {(z,y) € R?|zy = 0}

o (M) = set of smooth functions M — R

— i.e., functions which look locally like smooth

functions on R"

MIT Laboratory for Information and Decision Systems



Differentiation

e The first-order behavior of a function on R" at a

point is given by an element of R"

e The same is true in a manifold, but there is no
natural way to “compare” derivatives at different

points x,y € M

e We view these as living in different cotangent
spaces called T (M) = R" =T (M)

e These glue together to form the cotangent bundle

T*(M), a 2n-dimensional manifold
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Differentiation 11

o If f € C°°(M) then its derivative df is a smooth
map of points z € M to elements df (z) € T.X(M)

o We write df € Q*(M) (“1-forms”)

o Elements of Q'(M) which are of the form df for
f e C>®(M) are called exact

o If w € QM) looks locally like df for some f

(depending on where we look) then we write dw = 0

and say w is closed

o Example: M = S, w = “d®” € Q' (M) is closed but
not exact since 6 is not a well-defined function
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Our setup

e Strategic form game
e T'wo players for simplicity

e Pure strategy sets are smooth, compact, connected
manifolds M, N

e Utility functions are u,v € C*°(M x N)
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Game forms

o T

(m,n)

(M x N)=T*(M)®T!(N)

o Y,y € C®(T*(M x N), T*(M x N)) are the
smooth bundle maps which kill the second and first

component of this direct sum, resp.
e Define a game form w = ¥, (du) + ¥y (dv)

e This encapsulates all strategically relevant

information about the game

e That is, w = w iff u — u is a function of n alone and

v — v 1s a function of m alone
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Potential games

e A game is an (exact) potential game if it is
equivalent under the above def. to a game with
u = v |Monderer + Shapley]

e Potential games have (pure) Nash equilibria

e The above shows that a game is an exact potential

game if and only if the game form w is exact

e The Poincaré lemma states that a 1-form on a

convex subset of R” is exact if and only if it is closed

e .. For games with convex strategy sets being a

potential game is a local condition dw = 0 [M+S]
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Potential games 11

e As mentioned above, in general w = df implies

dw = 0 but not conversely

e However, one can show that for game forms the

converse 1s true

e Theorem: For any M and N a game is a potential
game iff w is closed

e Proof: Define a candidate potential function as in
Thm. 4.5 of [M+S]. Most of the work is in using
technical tools (e.g., Kiinneth formula, de Rham
thm.) to show that this is well-defined.
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Solution concepts

e (Pure) Nash equilibrium: no player can improve

by deviating
Y

e Local (Nash) equilibrium: no player can improve
by deviating within a neighborhood of his strategy

4

e First order (Nash) equilibrium: w(m,n) =0
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Existence of first order equilibria

e Theorem [Ekeland]: If the Euler characteristics
x(M) and x(IN) are nonzero then there exists a
first-order Nash equilibrium.

e Proof: If not, fix a Riemannian metric on M x N

and use it to map w to a nonvanishing vector field
X on M x N. By the Poincaré-Hopf theorem

0= Z index(,, »)(X) = index(X)

(m,n):

X (m,n)=0
= X(M x N) = x(M)x(N).
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Nonexistence of local equilibria

e Theorem: For any strategy manifolds M and N

there exists a game with no local equilibria

e Proof: The game with strategy sets [—1, 1] for both
players and utilities w(z,y) = —v(z,y) = (v — y)?
has no local equilibria. Using Morse functions we
can construct smooth open maps f: M — |—1,1]
and g : N — |[—1,1]. Then u(f(m),g(n)) and
v(f(m),g(n)) are smooth utilities on M x N which
admit no local equilibria by def. of an open map.
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Generalizations of games

For mg € M define i,,,(n) = (mg,n) and similarly
define j,, for ng € N.

Theorem: A 1-form w is a game form if and only if
i, (w) € QY(N) and j;; (w) € Q' (M) are exact for
all mg € M and ng € N

i.e., a game form is one in which each player’s

preferences come from utility functions

Define a local game to mean the players’ utilities

look locally like they come from utility functions.

i.e., replace exact with closed above
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Open questions

e Examples of local games

e The games constructed above with no local
equilibria are highly degenerate in a well-defined
sense. Is there a construction which avoids this or
might nondegenerate games on certain manifolds

always admit local equilibria?

e Extensions from smooth utilities to C? utilities and

to manifolds with boundary
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