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Goals

• Characterize equilibria of infinite games

• Compute equilibria of infinite games

Outline

• What is a polynomial game?

• Computing Nash eq. of zero-sum polynomial games

• Correlated equilibria in finite games

• Defining correlated equilibria in polynomial games

• Computing correlated eq. of polynomial games
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Polynomial games

• Definition [Drescher, Karlin, Shapley 1950s]

– n players, strategic form

– Set of strategies Si = [−1, 1] ⊂ R for each player

– Utilities ui : [−1, 1]n → R are polynomials

• Properties

– Finitely supported equilibria

– Can compute Nash equilibria in zero-sum case
[Parrilo 2006]

– Can compute correlated equilibria in general
case [SPO 2007]
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How can we solve zero-sum
polynomial games?

Finite Games Poly. Games

Nash eq. (zero-sum) LP ??

Correlated equilibria LP ??
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Equilibria of zero-sum poly. games

• ux(x, y) =
∑
j,k

ajkx
jyk = −uy(x, y)

• A minimax strategy τ for player y solves

min β

s.t. τ is a prob. measure on [−1, 1]

τk =
∫ 1

−1
ykdτ for k ≤ [y-degree of ux]∑

j,k ajkx
jτk ≤ β for all x ∈ [−1, 1]

• Must describe polynomials nonnegative on [−1, 1] as
well as moments of measures on [−1, 1]
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Sums of squares + SDP

• A polynomial p(x) is ≥ 0 for all x ∈ R iff it is a sum
of squares of polynomials qk (SOS)

p(x) =
∑

q2k(x) for all x ∈ R

• A polynomial p(x) is ≥ 0 for all x ∈ [−1, 1] iff there
are SOS polynomials s(x), t(x) such that

p(x) = s(x) + (1− x2)t(x)

• Coefficients of SOS polynomials can be described in
a semidefinite program (SDP)
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Moments of measures + SDP

• For all polynomials p, must have∫
p2(x)dτ(x) ≥ 0 and

∫
(1− x2)p2(x)dτ(x) ≥ 0

• τ0, . . . , τ2m are the moments of a measure τ on
[−1, 1] (i.e. τk =

∫
ykdτ) iff

τ0 τ1 τ2

τ1 τ2 τ3

τ2 τ3 τ4

 � 0,

τ0 − τ2 τ1 − τ3
τ1 − τ3 τ2 − τ4

 � 0 (m = 2 case)

• Moments of measures on [−1, 1] can be described in
a semidefinite program

MIT Laboratory for Information and Decision Systems 6



Example

Payoffs:

ux(x, y) = −uy(x, y)

= 5xy − 2x2 − 2xy2 − y

Value: −0.48
Optimal mixed strategies:

• P1 always picks x = 0.2

• P2 plays y = 1 with
probability 0.78, and
y = −1 with probability
0.22.
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Chicken and correlated equilibria
(u1, u2) Wimpy Macho

Wimpy (4, 4) (1, 5)

Macho (5, 1) (0, 0)

• Nash equilibria (self-enforcing independent distrib.)

– (M,W ) yields utilities (5, 1); (W,M) yields (1, 5)

–
(

1
2W + 1

2M, 1
2W + 1

2M
)

yields expected utility
(2 1

2 , 2
1
2 )

• Correlated equilibria (self-enforcing joint distrib.)

– e.g. 1
2 (W,M) + 1

2 (M,W ) yields (31
2 , 3

1
2 )

– 1
3 (W,W ) + 1

3 (W,M) + 1
3 (M,W ) yields (3 2

3 , 3
2
3 )
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Correlated equilibria in finite
games

• ui(ti, s−i)− ui(s) is change in player i’s utility when
strategy ti replaces si in s = (s1, . . . , sn)

• A prob. distribution π is a correlated
equilibrium if∑

{s: si=ri}

[ui(ti, s−i)− ui(s)]π(s) ≤ 0

for all players i and all strategies ri, ti ∈ Si

• Linear ineq. in variables π(s)⇒ linear program
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How can we compute correlated
equilibria in polynomial games?

Finite Games Poly. Games

Nash eq. (zero-sum) LP SDP

Correlated equilibria LP ??
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Computing CE in poly. games:
Naive attempt (LP)

• Intended as a benchmark to judge other techniques

• Ignore polynomial structure

• Restrict strategies to finite sets S̃i ⊂ Si

• Compute exact correlated eq. of approximate game

• This is a sequence of LPs which converges (slowly!)
to the set of correlated equilibria as the
discretization gets finer.

MIT Laboratory for Information and Decision Systems 11



Defining CE in infinite games

• Definition in literature:∫
[ui(ζi(si), s−i)− ui(s)]dπ ≤ 0

for all i and all (measurable) departure functions ζi

• Equivalent to above def. if strategy sets are finite

• Quantifier ranging over large set of functions

• Is there a characterization which looks more like the
finite case and doesn’t have this problem?
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An instructive failed attempt

• The following “characterization” fails:∫
{s: si=ri}

[ui(ti, s−i)− ui(s)]π(s) ≤ 0

for all players i and all strategies ri, ti ∈ Si

• Holds for any continuous probability distribution π

• This condition is much weaker than correlated
equilibrium
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New equivalent definitions of CE

• These conditions are equivalent to the departure
function definition

• For all i, all ti ∈ Si, and all −1 ≤ ai ≤ bi ≤ 1,∫
{ai≤si≤bi}

[ui(ti, s−i)− ui(s)]dπ ≤ 0

• For all i, all ti ∈ Si, and all polynomials p,∫
[ui(ti, s−i)− ui(s)]p2(si)dπ ≤ 0
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Computing CE in poly. games
(SDP)

• No discretization

• Sequence of SDP constraints to describe moments
of measures π on [−1, 1]n

• For fixed d, use SDP to express∫
[ui(ti, s−i)− ui(s)]p2(si)dπ ≤ 0

for all i, ti ∈ [−1, 1], and polys. p of degree ≤ d

• Get a nested sequence of SDPs converging to the set
of correlated equilibria!
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Static Discretization
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Conclusions

• New characterizations of correlated equilibria in
infinite games

• First algorithms for computing correlated equilibria
in any class of infinite games
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