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Goals

e Characterize equilibria of infinite games

e Compute equilibria of infinite games

Outline

e What is a polynomial game?

e Computing Nash eq. of zero-sum polynomial games
e Correlated equilibria in finite games

e Defining correlated equilibria in polynomial games

e Computing correlated eq. of polynomial games
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Polynomial games

e Definition [Drescher, Karlin, Shapley 1950s]
— n players, strategic form
— Set of strategies S; = |—1,1] C R for each player
— Utilities u; : [—1,1]™ — R are polynomials
e Properties
— Finitely supported equilibria

— (Can compute Nash equilibria in zero-sum case

[Parrilo 2006]

— Can compute correlated equilibria in general
case [SPO 2007]
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How can we solve zero-sum
polynomial games?

Finite Games Poly. Games

Nash eq. (zero-sum) LP 77
Correlated equilibria LP 77
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Equilibria of zero-sum poly. games

o up(z,y) =) ajpr’y’ = —uy(z,y)
ik

e A minimax strategy 7 for player y solves

min 15}
S.t. T is a prob. measure on [—1, 1]
T = f_ll yFdr for k < [y-degree of u,]
> ik @Rt T <0 for all x € [—1,1]

e Must describe polynomials nonnegative on [—1, 1] as
well as moments of measures on [—1, 1]
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Sums of squares + SDP

e A polynomial p(x) is > 0 for all x € R iff it is a sum
of squares of polynomials g, (SOS)

p(x) = Z ¢i(z) for all x € R

e A polynomial p(z) is > 0 for all z € |—1, 1] iff there
are SOS polynomials s(x),t(x) such that

p(z) = s(z) + (1 — 2”)t(x)

e Coefficients of SOS polynomials can be described in
a semidefinite program (SDP)
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Moments of measures + SDP

e For all polynomials p, must have

/pz(x)dT(a:) >0 and /(1 — 2?)p*(x)dr(x) > 0

® 7o,...,To, are the moments of a measure 7 on

[—1,1] (i.e. 7 = [yFdr) iff

0O T1
T T2
T2 T3

T2

T4

T0 — T2

1 — T3

T — 73

T2 — T4

=~ 0 (m =2 case)

e Moments of measures on [—1, 1] can be described in

a semidefinite program
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Example

5xy-2 x2-2 x yz—y

Payofts:

uaﬁ(xvy) — _uy(xay)
= Sy — 22° — 2xy? — y

Value: —0.48

Optimal mixed strategies:

e P1 always picks x = 0.2

e P2 plays y = 1 with
probability 0.78, and
y = —1 with probability
0.22.
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Chicken and correlated equilibria

(u1,u2) | Wimpy Macho
Wimpy | (4,4)  (1,5)
Macho | (5,1) (0,0)

e Nash equilibria (self-enforcing independent distrib.)
— (M, W) yields utilities (5,1); (W, M) yields (1,5)
— (%W + %M, %W + %M) yields expected utility
(25:23)
e Correlated equilibria (self-enforcing joint distrib.)
—eg. s(W, M)+ (M, W) yields (33,33)
— (W, W)+ (W, M) + 1(M,W) yields (3%,3%)
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Correlated equilibria in finite
games

o u;(t;,s_;) —u;i(s) is change in player i’s utility when
strategy t; replaces s; in s = (S1,...,5p)

e A prob. distribution 7 is a correlated

equilibrium if

Y it s—i) —wi(s)]m(s) <0

{s: s;=r;}
for all players ¢ and all strategies r;,t; € 5;

e Linear ineq. in variables 7(s) = linear program
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How can we compute correlated
equilibria in polynomial games?

Finite Games Poly. Games

Nash eq. (zero-sum) LP SDP
Correlated equilibria LP 77
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Computing CE in poly. games:
Naive attempt (LP)

Intended as a benchmark to judge other techniques
Ignore polynomial structure

Restrict strategies to finite sets g@ C S,

Compute exact correlated eq. of approximate game

This is a sequence of LPs which converges (slowly!)
to the set of correlated equilibria as the
discretization gets finer.
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Defining CE in infinite games

e Definition in literature:
JitGitsi)s5-0) = uits)lam <0

for all 4 and all (measurable) departure functions (;
e Equivalent to above def. if strategy sets are finite
e Quantifier ranging over large set of functions

e Is there a characterization which looks more like the

finite case and doesn’t have this problem?
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An instructive failed attempt

e The following “characterization” fails:
[ it — wlo)lnts) <0
{s: s;=r;}
for all players ¢ and all strategies r;,t; € S;
e Holds for any continuous probability distribution 7

e This condition is much weaker than correlated

equilibrium
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New equivalent definitions of CE

e These conditions are equivalent to the departure

function definition

e Foralli, allt; € 5;, and all —1 < a; <b; <1,

/ i (i, 5_1) — wi(s)|dr < 0

{a;<s;<b;}

e For all 7, all £; € 5;, and all polynomials p,

/[ui(ti, s_i) — ui(s)]p?(s;)dm <0
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Computing CE in poly. games
(SDP)
e No discretization

e Sequence of SDP constraints to describe moments

of measures 7 on |—1,1|"

e For fixed d, use SDP to express

/[Ui(tias—z‘) — u;(s)]p*(s:)dm <0

for all 4, t; € [—1, 1], and polys. p of degree < d

e Get a nested sequence of SDPs converging to the set
of correlated equilibria!
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Comparison of Static Discretization, Adaptive Discretization, and SDP Relaxation

SDP Relaxation———

Static Discretization

_1'8 —

u (xy) = 0.554 + 1.36x - 1.2y + 0.596x” + 2.072xy —0.394y”

U, (xy) = ~1.886 - 1.232x + 0.842y - 0.108x2 + 1.918xy — 1.044y?

2.6
[ ]

| | |

Adaptive Discretization

0.5 1 15 2
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Conclusions

e New characterizations of correlated equilibria in

infinite games

e First algorithms for computing correlated equilibria

in any class of infinite games
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