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Abstract— Separable games are a structured subclass of
continuous games whose payoffs take a sum-of-products form;
the zero-sum case has been studied in earlier work. Included
in this subclass are all finite games and polynomial games.
Separable games provide a unified framework for analyzing
and generating results about the structural properties of low
rank games. This work extends previous results on low-rank
finite games by allowing for multiple players and a broader class
of payoff functions. We also discuss computation of exact and
approximate equilibria in separable games. We tie these results
together with alternative characterizations of separability which
show that separable games are the largest class of continuous
games to which low-rank arguments apply.

I. INTRODUCTION

There has been much interest recently in the problem of

computing mixed strategy Nash equilibria of games. The

hardness of this problem for cases as simple as two-player

finite games has been established by Chen and Deng [2], and

this suggests the need to search for classes of games which

are computationally tractable. Many such classes have been

identified, but in this paper we will consider a generalization

of the low-rank games studied by Lipton et al. [6]. Here

the computational simplification arises because it can be

proven that in an equilibrium, each player chooses a “simple

strategy” without loss of generality, where simple refers to

the fact that the players randomize among a small number

of pure strategies with positive probability.

In games with infinite strategy sets, additional complica-

tions arise in computing equilibria. Without compactness of

the strategy spaces and continuity of the payoff functions,

an equilibrium may fail to exist at all. Even when these

assumptions are made, as in so-called continuous games, the

strategies played in equilibrium may be arbitrarily compli-

cated. Specifically, two-player zero-sum games with compact

intervals for strategy sets and rational payoff functions can

be constructed in which the unique equilibrium strategies are

the Cantor measure or worse, see Karlin [5] for an example.

To compute equilibria of continuous games, we therefore

require some additional structure which will ensure that an

equilibrium exists which can be succinctly represented.

There are several possible structures which could be

imposed. In this paper we study a separable structure in

which the payoffs to each player can be written as a

weighted sum of products of functions in each player’s

strategy separately, e.g. as polynomials. Zero-sum games
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possessing such a separable structure have been studied by

Karlin [5]. Efficient algorithms for computing equilibria of

zero-sum games with polynomial payoffs have been given

by Parrilo [7]. Since continuous functions can be uniformly

approximated by polynomials, a large class of games can be

exactly or approximately represented as separable games.

Another advantage of the separable structure is that for

games of this type, the complexity of the payoffs gives

an immediate bound on the complexity of the strategies

played in equilibrium. If the payoff functions are viewed

as matrices whose indices range over compact metric spaces

rather than merely finite sets, then the separable form of the

payoffs can be viewed as a “finite rank” condition. Since

a generic continuous function has “infinite rank,” separable

games are a natural generalization of games with low-rank

payoff matrices. In this more general setting we extend the

results of [6] on low-rank two-player finite games, allowing

for an arbitrary finite number of players as well as infinite

strategy sets and a broader class of payoff functions.

The rest of this paper is organized as follows. In Section

II, we present the basic definitions and theorems as well

as introduce a running example. Then in Section III we

define the rank of a continuous game, present a theorem

demonstrating the relevance of this definition, and show how

to bound the rank for arbitrary separable games and compute

it exactly for finite and polynomial games. We also give a

characterization theorem which shows that separable games

form the largest class of continuous games to which low-

rank arguments apply. In Section IV we discuss computation

of equilibria and approximate equilibria. We close with

conclusions and directions for future work.

II. BASIC THEORY

The theorems stated in this background section are either

known or are slight generalizations of known results about

separable games. However, we present them in a setting

which will allow us to extend them in later sections.

Some notational conventions used throughout are that

subscripts refer to players, while superscripts are reserved

for other indices, rather than exponents. If Sj are sets for

j = 1, . . . , n then S = Πn
j=1Sj and S−i = Πj �=iSj . The n-

tuple s and the (n−1)-tuple s−i are formed from the points

sj similarly. We use the symbols span S, aff S, conv S, and

S to denote the span, affine hull, convex hull, and closure of

the set S, respectively.

Definition 2.1: An n-player continuous game is defined

by n pure strategy spaces Ci assumed to be nonempty

compact metric spaces and n utility or payoff functions
ui : C → R assumed to be continuous. Throughout, ∆i will
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denote the space of Borel probability measures σi over Ci,

referred to as mixed strategies, and the ui will be extended

from C to ∆ by expectation, defining

ui(σ) =
∫

C

ui(s)dσ.

Definition 2.2: An n-player separable game is an n-

player continuous game with utility functions ui : C → R

taking the form

ui(s) =
m1∑

j1=1

· · ·
mn∑

jn=1

aj1···jn

i f j1
1 (s1) · · · f jn

n (sn), (1)

where aj1···jn

i ∈ R and the f j
i : Ci → R are continuous. In

the special case when the Ci are subsets of R and the f j
i are

polynomials in si, the game is called a polynomial game.

When it is convenient to do so, and always for polynomial

games, we will begin the summations in (1) at ji = 0.

For polynomial games we can then use the convention that

f j
i (si) = sj

i , where the superscript on the right hand side

denotes an exponent rather than an index.

Example 1: Consider a two player game with C1 = C2 =
[−1, 1] ⊂ R. Letting x and y denote the pure strategies of

players 1 and 2, respectively, we define the utility functions

u1(x, y) = 2xy + 3y3 − 2x3 − x − 3x2y2,

u2(x, y) = 2x2y2 − 4y3 − x2 + 4y + x2y.
(2)

This is a polynomial game, and we will return to it periodi-

cally to apply the results presented.

Let Vi denote the space of all finite-valued signed mea-

sures (henceforth simply called measures) on Ci, which can

be identified with the dual of the Banach space C(Ci) of

all continuous real-valued functions on Ci endowed with

the sup norm. Throughout, we will assume Vi is endowed

with the weak* topology. This is the weakest topology such

that whenever f : Ci → R is continuous, σ �→ ∫
fdσ is a

continuous linear functional on Vi.

We can extend the utility functions of a continuous game

to all of V in the same way they are extended from C to ∆,

yielding a multilinear functional on V . For a fixed separable

game we can extend the f j
i from Ci to Vi similarly, yielding

the so-called generalized moment functionals, so (1) holds

with s replaced by σ. In the case of polynomial games when

f j
i (si) = sj

i , the generalized moment functionals are just the

classical moment functionals. We will abuse notation and

identify the elements of Ci with the atomic measures in ∆i,

so Ci ⊆ ∆i ⊂ Vi. Note that conv Ci and span Ci are the

set of all finitely-supported probability measures and the set

of all finitely-supported finite signed measures, respectively.

The following are standard results (see Ch. 2 of Parthasarathy

[8] for the proofs).

Proposition 2.3:
• The sets Ci and ∆i are compact.

• The closures of conv Ci and span Ci are ∆i and Vi,

respectively.

The simplifications which occur in separable games as

opposed to general continuous games can be expressed in

terms of the following three notions of equivalence between

two measures:

Definition 2.4: Two measures σi, τi ∈ Vi are

• moment equivalent if f j
i (σi) = f j

i (τi) for all j
(representation-dependent and only defined for separa-

ble games).

• payoff equivalent if uj(σi, s−i) = uj(τi, s−i) for all j
and all s−i ∈ C−i.

• almost payoff equivalent if uj(σi, s−i) = uj(τi, s−i)
for all j �= i and all s−i ∈ C−i.

Note that in separable games moment equivalence im-

plies payoff equivalence and in all continuous games payoff

equivalence implies almost payoff equivalence. Since the f j
i

and uj are linear and multilinear functionals on Vi and V ,

respectively, these equivalence relations can be expressed in

terms of (potentially infinitely many) linear constraints on

σi − τi.

Definition 2.5: Let

• Wi = {measures moment equivalent to 0}
• Xi = {measures payoff equivalent to 0}
• Yi = {measures almost payoff equivalent to 0}

where 0 denotes the zero measure in Vi.

Then Wi ⊆ Xi ⊆ Yi, and σi − τi ∈ Xi if and only if σi

is payoff equivalent to τi, etc. Furthermore, the subspaces

Xi and Yi are representation-independent and well-defined

for any continuous game, separable or not. Note that these

subspaces are given by the intersection of the kernels of

(potentially infinitely many) continuous linear functionals,

hence they are closed.

We will analyze separable games by considering the

quotients of Vi by these subspaces, i.e. Vi mod these three

equivalence relations. To avoid defining excessively many

symbols let ∆i/Wi denote the image of ∆i in Vi/Wi and so

forth. The following theorem presents the most fundamental

result about separable games.

Theorem 2.6: In a separable game every mixed strategy σi

is moment equivalent to a finitely-supported mixed strategy

τi with |supp(τi)| ≤ mi + 1. Moreover, if σi is countably-

supported τi can be chosen with supp(τi) ⊂ supp(σi).
Proof: Note that the map

fi : σi �→
(
f1

i (σi), . . . , fmi
i (σi)

)
is linear and weak* continuous, with kernel Wi. Thus Vi/Wi

has dimension at most mi. Then

fi(∆i) = fi

(
conv Ci

) ⊆ fi(conv Ci)

= conv fi(Ci) = conv fi(Ci).
(3)

The first three steps follow from Proposition 2.3, continuity

of fi, and linearity of fi, respectively. The final equality

follows from the fact that conv fi(Ci) is compact, being

the convex hull of a compact subset of a finite-dimensional

space. The reverse inclusion is obvious, so we have fi(∆i) =
conv fi(Ci) = fi(conv Ci). Thus any mixed strategy is mo-

ment equivalent to a finitely-supported mixed strategy, and

applying Carathéodory’s theorem to the set conv fi(Ci) ⊂
R

mi yields the uniform bound. Since a countable convex
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Fig. 1. The space fi(∆i) ∼= ∆i/Wi of possible moments for either player
under the payoffs given in (2) due to a measure σi on [−1, 1]. The zeroth
moment, which is identically unity, has been omitted.

combination of points in a bounded subset of R
mi can always

be written as a finite convex combination of at most mi + 1
of those points, the final claim follows.

This theorem can also be proven by a separating hyper-

plane argument as applied to zero-sum games by Karlin [5].

Combining this theorem with Glicksberg’s result [3] that

every continuous game has an equilibrium yields:

Corollary 2.7: Any separable game has a Nash equilib-

rium in which player i mixes among at most mi + 1 pure

strategies.

Example 1 (cont’d): Apply the standard definition of the

f j
i to the polynomial game with payoffs given in (2). The

set of moments ∆i/Wi
∼= fi(∆i) as described in Theorem

2.6 is shown in Figure 1. In this case it is the same for both

players.

For each player the range of the indices in (1) is 0 ≤ ji ≤
3, so by Corollary 2.7, this game has an equilibrium in which

each player mixes among at most 4 + 1 = 5 pure strategies.

To produce this bound, we have not used any information

about the payoffs except for the degree of the polynomials.

However, there is extra structure here to be exploited. For

example, u2 depends on the expected value Eσ1 [x
2], but not

on Eσ1 [x] or Eσ1 [x
3]. In particular, player 2 is indifferent

between the two strategies ±x of player 1 for all x, insofar

as this choice does not affect his payoff (though it does

affect what strategy profiles are equilbria). In the following

section, we will show how to give improved bounds on the

number of strategies played in equilibrium which take these

simplifications into account in a systematic manner.

III. THE RANK OF A CONTINUOUS GAME

By comparing the two-player case of (1) with the singular

value decomposition for matrices, separable games can be

thought of as games of “finite rank.” Now we will define

rank precisely, use it to give a bound on the cardinality

of the support of equilibrium strategies, and show how to

compute the rank of finite and polynomial games. This will

generalize the results by Lipton et al. [6] on low-rank two-

player finite games to multiplayer finite and polynomial

games, simultaneously improving these results slightly. The

primary tool will be the notion of almost payoff equivalence

from Definition 2.4. In what follows, the dimension of a set

will refer to the dimension of its affine hull.

Definition 3.1: The rank of a continuous game is defined

to be ρ = (ρ1, . . . , ρn) where ρi = dim ∆i/Yi. A game is

said to have finite rank if ρi < ∞ for all i.
Since Wi ⊆ Yi and Vi/Wi is finite-dimensional for any

separable game, it is clear that separability implies finite

rank. In Section ?? we show that the converse is also true.

Using the rank of a game, Corollary 2.7 can now be improved

as follows:

Theorem 3.2: Given an equilibrium σ of a separable game

with rank ρ, there exists an equilibrium τ such that each

player i mixes among at most ρi + 1 pure strategies and

ui(σ) = ui(τ).
Proof: By Theorem 2.6, we can assume without loss

of generality that each player’s mixed strategy σi is finitely

supported. Fix i, let ψi : Vi → Vi/Yi denote the canonical

projection transformation and let σi =
∑

j λjsj
i be a finite

convex combination of pure strategies. By linearity of ψi we

have

ψi(σi) =
∑

j

λjψi(s
j
i ).

Carathéodory’s theorem states that (renumbering the sj
i and

adding some zero terms if necessary) we can write

ψi(σi) =
ρi∑

j=0

µjψi(s
j
i ),

a convex combination but perhaps with fewer terms. Let τi =∑ρi

j=0 µjsj
i . Then ψi(σi) = ψi(τi). Since σ was a Nash

equilibrium, and σi is almost payoff equivalent to τi, σj is

a best response to (τi, σ−i,j) for all j �= i. On the other

hand σi was a mixture among best responses to the mixed

strategy profile σ−i, so the same is true of τi, making it a

best response to σ−i. Thus (τi, σ−i) is a Nash equilibrium.

Repeating the above steps for each player in turn completes

the construction of τ .

If a submatrix is formed from a matrix by “sampling,” i.e.

selecting a subset of the rows and columns, the rank of the

submatrix is bounded by the rank of the original matrix. The

same is true of continuous games.

Proposition 3.3: Let ({Ci}, {ui}) be a continuous game

with rank ρ and C̃i be a nonempty compact subset of Ci for

each i, with ũi = ui

∣∣
C̃

. Then the game ({C̃i}, {ũi}) satisfies

ρ̃i ≤ ρi for all i.
Proof: Since ∆̃i ⊆ ∆i and Yi ∩ Ṽi ⊆ Ỹi,

ρ̃i = dim ∆̃i/Ỹi ≤ dim ∆̃i/(Yi ∩ Ṽi)

= dim ∆̃i/Yi ≤ dim ∆i/Yi = ρi.

Definition 3.4: The game ({C̃i}, {ũi}) in Proposition 3.3

is called a sampled game or a sampled version of

({Ci}, {ui}).
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Note that if we take C̃i to be finite for each i, then

the sampled game is a finite game. If the original game

is separable and hence has finite rank, then Proposition

3.3 yields a uniform bound on the complexity of finite

games which can arise from this game by sampling. This

fact is applied to the problem of computing approximate

equilibria in Section IV below. Note that while the proof of

Proposition 3.3 is trivial, there exist other kinds of bounds

on the cardinality of the support of equilibria (e.g. for special

classes of polynomial games as studied by Karlin [5]) which

do not share this sampling property.

With the significance of rank made clear by Theorem 3.2

and Proposition 3.3, we will now present a bound on the rank

for arbitrary separable games which is tight in the case of

finite and polynomial games. For consistency while deriving

these results we will use the convention that the summations

in (1) begin at zero, even for non-polynomial games. For

finite games we will assume each player’s strategy set is a set

of the form Ci = {0, 1, . . . , mi} and let f ji

i (si) = δ(ji −si)
where δ is the Kronecker delta function. We will assume that

polynomial games are written so that f j
i (si) = sj

i . This way

the coefficients in (1) are just the payoffs for finite games and

the coefficients of the polynomials for polynomial games.

Despite the fact that Vi may be infinite-dimensional, the

problem of computing the rank of a separable game can

be reduced to computing the dimension of certain finite-

dimensional convex sets. To show this, we first require

several preliminary definitions and a lemma. Let fi : Vi →
Mi, where Mi = R

mi+1 ⊇ Vi/Wi, be the generalized

moment function defined by

fi(σi) = (f0
i (σi), . . . , fmi

i (σi)).

We write xi =
(
x0

i , . . . , x
mi
i

)
for a typical element of Mi

and we define multilinear functionals vi : M → R by

vi(x) =
m1∑

j1=0

· · ·
mn∑

jn=0

aj1···jn

i xj1
1 · · ·xjn

n , (4)

so ui(σ) = vi (f1(σ1), . . . , fn(σn)). Let e0
i , . . . , e

mi
i denote

the standard unit vectors in Mi.

Lemma 3.5: Consider the linear functionals on Vi of the

form vl(fi(·), x−i) for 1 ≤ l, i ≤ n where l �= i and x−i ∈
M−i. Then

Yi ⊇
⋂

xk∈{e0
k

,...,e
mk
k }

k,l �=i

ker vl(fi(·), x−i) (5)

with equality holding for all i if span fi(Ci) = Mi for all i.
Proof: The definition of Yi can be written as

Yi =
⋂

sk∈Ck
k,l �=i

ker ul(·, s−i).

Letting xk = fk(sk) and applying (4), we obtain

Yi =
⋂

xk∈fk(Ck)
k,l �=i

ker vl(fi(·), x−i). (6)

Without changing the set on the right hand side, we can

take the intersection over the kernels of a larger class of

linear functionals, those which are linear combinations of

the functionals considered in (6). Using the multilinearity of

the vl yields

Yi =
⋂

xk∈span fk(Ck)
k,l �=i

ker vl(fi(·), x−i). (7)

If we replace span fk(Ck) by Mk we will be taking the

intersection over a larger collection of sets, so

Yi ⊇
⋂

xk∈Mk
k,l �=i

ker vl(fi(·), x−i)

with equality if span fk(Ck) = Mk for all k �= i. Reversing

the procedure used to pass from (6) to (7), we may replace

the collection of linear functionals on the right hand side

by a spanning set. Letting xk range over the standard unit

vectors in Mk for all k �= i yields such a spanning set (by

the multilinearity of the vl), which proves the lemma.

The linear functional vl(fi(·), x−i) appearing in (5) can

be written as the composition vl(·, x−i) ◦ fi. Since x−i is of

the form

x−i =
(
ej1
1 , . . . , e

ji−1
i−1 , e

ji+1
i+1 , . . . , ejn

n

)
,

the matrix for the linear functional vl(·, x−i) is the row

vector consisting of the mi + 1 coefficients aj1···jn

l as ji

ranges from 0 to mi.

Definition 3.6: Let Si denote the matrix composed of all

such row vectors as jk ranges from 0 to mk and k, l �= i;
the order of these vectors is irrelevant. The matrix Si has

(n−1)Πk �=i(mk+1) rows and mi+1 columns. For a set X ⊆
Mi we will write Si·X to denote the image set {Six|x ∈ X}.

Theorem 3.7: The rank is bounded by

ρi ≤ dim [Si · fi(Ci)]

with equality for all i if span fi(Ci) = Mi for all i. In

particular, equality holds for arbitrary finite games and for

polynomial games which satisfy |Ci| > mi.

Proof: Given Si, we can rephrase Lemma 3.5 as: Yi ⊇
ker [Si · fi] with equality for all i when span fi(Ci) = Mi

for all i. Using the definition of rank we have

ρi = dim ∆i/Yi ≤ dim ∆i/ (ker [Si · fi])
= dim [Si · fi(∆i)] = dim [Si · conv fi(Ci)]
= dim [Si · fi(Ci)]

with equality for all i if span fi(Ci) = Mi for all i. The third

equality follows from (3) and the final equality follows from

the definition of the dimension of a set as the dimension of

its affine hull.

In the case of a finite game, we have

aff fi(Ci) = aff fi({0, . . . , mi}) = aff{e0
i , . . . , e

mi
i }

=

{
(x0

i , . . . , x
mi
i ) ∈ R

mi+1
∣∣∣ mi∑

k=0

xk
i = 1

}
.

(8)
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In the case of a polynomial game

aff fi(Ci) = aff{(1, x, x2, . . . , xmi)|x ∈ Ci}
= aff{e0

i , e
0
i + e1

i , e
0
i + e2

i , . . . , e
0
i + emi

i }
= {(x0

i , . . . , x
mi
i ) ∈ R

mi+1|x0
i = 1},

(9)

where we assume that |Ci| > mi to get the penultimate

equality, which is a standard result. Note that in both the

finite and polynomial cases we have shown that aff fi(Ci)
is a hyperplane which does not pass through the origin, so

span fi(Ci) = Mi.

Let Fi be the matrix with one fewer column than Si whose

jth column is the jth column of Si minus the 0th column of Si

for 1 ≤ j ≤ mi. Let Pi be Si with the 0th column removed.

In view of (8) and (9) we have proven the following.

Proposition 3.8: The rank can be computed or bounded

as follows. For any:

• Separable game, ρi ≤ rank Si.

• Finite game, ρi = rankFi ≥ rank Si − 1.

• Polynomial game with |Ci| > mi for all i, ρi =
rank Pi ≥ rank Si − 1.

Now consider a two-player finite game having payoff ma-

trices U1 and U2 where player 1 chooses rows and player 2
chooses columns. Then S1 = U ′

2 and S2 = U1, so the general

separable game rank bound in Proposition 3.8 applied to

Theorem 3.2 shows that the game has an equilibrium in

which player 1 mixes among at most rank U2 + 1 pure

strategies and player 2 mixes among at most rank U1 + 1
pure strategies, as proven by Lipton et al. [6]. The finite

game bound proven in Proposition 3.8 yields strictly better

results in some cases (by at most one), and applies also to

the multiplayer case which was left open in [6].

Example 1 (cont’d): We can apply Proposition 3.8 and

Theorem 3.2 to the example with payoffs given by (2). Using

the procedure described above, we produce the matrices

S1 =

⎡
⎢⎢⎣

0 0 −1 0
4 0 1 0
0 0 2 0
−4 0 0 0

⎤
⎥⎥⎦ , S2 =

⎡
⎢⎢⎣

0 0 0 3
−1 2 0 0
0 0 −3 0
−2 0 0 0

⎤
⎥⎥⎦

and

P1 =

⎡
⎢⎢⎣

0 −1 0
0 1 0
0 2 0
0 0 0

⎤
⎥⎥⎦ , P2 =

⎡
⎢⎢⎣

0 0 3
2 0 0
0 −3 0
0 0 0

⎤
⎥⎥⎦ .

Thus the rank of the example game is

ρ = (rankP1, rank P2) = (1, 3),

so in fact there exists an equilibrium in which player 1 mixes

among at most 2 pure strategies and player 2 mixes among

at most 4 pure strategies.

We close this section with two alternative characterizations

of separable games, using the concept of finite rank as

defined above.

Theorem 3.9: For a continuous game, the following are

equivalent:

1) The game is separable.

2) The game has finite rank.

3) For each player i, every countably supported mixed

strategy σi is almost payoff equivalent to a finitely sup-

ported mixed strategy τi with supp(τi) ⊂ supp(σi).
Proof: See the extended version [9] for a proof and

an example of a nonseparable continuous game for which

every (not necessarily countably supported) mixed strategy

is payoff equivalent to a pure strategy, which shows that

the property supp(τi) ⊂ supp(σi) cannot be removed from

condition 3, even if a uniform bound on the cardinality

of supp(τi) is assumed and almost payoff equivalence is

strengthened to payoff equivalence.

IV. COMPUTATION OF EQUILIBRIA AND

APPROXIMATE EQUILIBRIA

In this section, we present an algorithm for computing ap-

proximate equilibria of separable games with infinite strategy

sets which follows directly from the results on the rank of

games given in Section III. First, we consider briefly the

problem of computing exact equilibria.

The moments of an equilibrium can in principle be com-

puted using the following generalization of the equilibrium

formulation given by Başar and Olsder [1]:

max
∑n

i=1 [vi(x) − pi]
s.t. xi ∈ ∆i/Wi for all i

vi(fi(si), x−i) ≤ pi for all i, all si ∈ Ci

where xi are the moments, fi is the moment function, and

vi is the payoff function on the moment spaces as defined

in Section III. Each player also has an auxilliary variable pi.

The optimum objective value of this problem is zero and is

attained exactly at the Nash equilibria. To compute equilibria

by this method, we require an explicit description of the

spaces of moments ∆i/Wi. We also require a method for

computing the payoff to player i if he plays a best response

to an m−i-tuple of moments for the other players.

While it seems doubtful that such descriptions could be

found for arbitrary f j
i , they do exist for two-player polyno-

mial games in which the pure strategy sets are intervals.

In this case they can be given in terms of linear matrix

inequalities as in Parrilo’s treatment of the zero-sum case [7].

This yields a problem with multiaffine objective and linear

matrix inequality constraints.

Example 1 (cont’d): Directly solving this nonconvex

problem with MATLAB’s fmincon has proven error-prone,

as there appear to be many local minima which are not

global. However, we were able to compute the equilibrium

measures

σ1 = 0.5532δ(x + 1) + 0.4468δ(x − 0.1149),
σ2 = δ(y − 0.7166)

(i.e. player 1 plays the pure strategy x = −1 with probability

0.5532 and so on) for the payoffs in (2) by this method.

The difficulties in computing equilibria by general non-

convex optimization techniques suggest the need for more

specialized systematic methods. As a step toward this, we

present an algorithm for computing approximate equilibria
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of separable games. There are several possible definitions of

approximate equilibrium, but here we will use:

Definition 4.1: A mixed strategy profile σ ∈ ∆ is an ε-
equilibrium (ε ≥ 0) if

ui(si, σ−i) ≤ ui(σ) + ε

for all si ∈ Ci and i = 1, . . . , n. If ε = 0 then σ is called a

Nash equilibrium.

Throughout the rest of this section, we will consider a

separable game for which Ci is a compact interval for each

i, and for which the utility funcitons satisfy a Lipschitz

condition

|ui(si, s−i) − ui(s′i, s−i)| ≤ Li|si − s′i|
for some Li ≥ 0, all s−i ∈ C−i and all i. Clearly this is

equivalent to requiring the same inequality for all σ−i ∈
∆−i. We must also be able to compute the values of ui

efficiently, so for example ui could be a polynomial with

rational coefficients. These assumptions could be relaxed, say

by making Ci a box in R
n or by requiring a Hölder condition

in place of a Lipschitz condition, but for the sake of clarity

we do not do so here.

Fix ε > 0. Divide the interval Ci into equal subintervals of

length no more than 2 ε
Li

; at most � 1
2ε l(Ci)Li� such intervals

are required, where l(Ci) denotes the length of the interval

Ci. Let C̃i be the set of center points of these intervals and

let ũi be the corresponding sampled payoffs. Suppose σ is a

Nash equilibrium of the sampled game. Choose any si ∈ Ci

and let s′i be an element of C̃i closest to si, so |si−s′i| ≤ ε
Li

.

Then

ui(si,σ−i) − ui(σ)
≤ ui(si, σ−i) − ui(s′i, σ−i) + ui(s′i, σ−i) − ui(σ)
≤ |ui(si, σ−i) − ui(s′i, σ−i)| + ũi(s′i, σ−i) − ũi(σ)

≤ Li
ε

Li
+ 0 = ε

so σ is automatically an ε-equilibrium of the original separa-

ble game. Thus it will suffice to compute a Nash equilibrium

of the finite sampled game.

To do so, first compute or bound the rank ρ of the original

separable game as in Proposition 3.8. By Theorem 3.2 and

Proposition 3.3, the sampled game has a Nash equilibrium in

which player i mixes among at most ρi + 1 pure strategies,

independent of how large |C̃i| is. The number of possible

choices of at most ρi + 1 pure strategies from C̃i is

ρi+1∑
k=1

(|C̃i|
k

)
≤

(|C̃i| + ρi

1 + ρi

)
,

which is a polynomial in |C̃i| since ρi is fixed.

This leaves the step of checking whether there exists an

equilibrium σ for a given choice of supp(σi) ⊆ C̃i with

| supp(σi)| ≤ ρi + 1 for each i, and if so, computing such

an equilibrium. If the game has two players, the set of such

equilibria for given supports is described by O(|C̃1|+ |C̃2|)
linear equalities and inequalities (with more than two players

these would become nonlinear), and hence an equilibrium

or certificate of nonexistence of an equilibrium for a given

support can be found in time polynomial in |C̃1|+ |C̃2| ∝ 1
ε .

Since the number of possible supports to be checked is also

polynomial in 1
ε , we have the following result.

Proposition 4.2: For ε > 0, an ε-equilibrium of a two-

player separable game satisfying the conditions of this sec-

tion can be found in time polynomial in 1
ε and exponential

in ρ.

While an algorithm which is polynomial in ρ would be

preferable, the complexity results for finite games, e.g. those

proven by Chen and Deng [2], suggest that this is most likely

impossible.

V. CONCLUSIONS AND FUTURE WORK

We have shown that separable games provide a natural

setting for the study of games with payoffs satisfying a low-

rank condition. This level of abstraction allows the low-rank

results of Lipton et al. [6] to be extended to the multiplayer

and polynomial cases. Since the rank of a separable game

gives a bound on the cardinality of the supports of equilibria

for any sampled version of that separable game, approxi-

mate equilibria can be computed in time polynomial in 1
ε

by discretizing the strategy spaces and applying standard

computational techniques for low-rank games.

Other types of low-rank conditions have been studied

for finite games, for example Kannan and Theobald have

considered the condition that the sum of the payoff matrices

be low-rank [4]. It is likely that that the discretization

techniques used here can be applied in an analogous way

to yield results about computing approximate equilibria of

continuous games when the sum of the payoffs of the players

is a separable function.
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