Characterization and Computation of Correlated Equilibria in Polynomial Games

Noah Stein

Joint work with Profs. Pablo Parrilo and Asuman Ozdaglar

Outline

- Introduction
- Characterizing correlated equilibria in finite games
- Characterizing correlated equilibria in continuous games [new]
- An overview of SDP / SOS methods
- Computing correlated equilibria in polynomial games with SDP relaxations [new]

Game theoretic setting

- Standard strategic (normal) form game
- Players (rational agents) numbered i = 1, ..., n
- Each has a set C_i of strategies s_i
- Players choose their strategies simultaneously
- Rationality: Each player seeks to maximize his own utility function $u_i: C \to \mathbb{R}$, which represents all his preferences over outcomes

Goals

- Much is known theoretically about correlated equilibria: existence (under some topological assumptions), relation to Nash equilibria, etc.
- Efficient algorithms are known for computing these when the strategy sets are finite
- Much less on games with infinite strategy sets
- Our goal is to find classes of infinite games for which correlated equilibria can be computed, as well as associated algorithms

Previous work

- Definition of correlated equilibrium [Aumann 1974]
- Rationality argument for playing correlated equilibria [Aumann 1987]
- Elementary existence proof [Hart & Schmeidler 1989]
- Efficient algorithms for computing correlated equilibria of finite games [Papadimitriou 2005]
- Sum of squares techniques [Parrilo 2000, . . .]
- Algorithm for computing minimax strategies of polynomial games [Parrilo 2006]

Chicken and correlated equilibria

(u_1, u_2)	Wimpy	Macho
Wimpy	(4,4)	(1,5)
Macho	(5,1)	(0,0)

- Nash equilibria (self-enforcing independent distrib.)
 - (M, W) yields utilities (5, 1); (W, M) yields (1, 5) $\left(\frac{1}{2}W + \frac{1}{2}M, \frac{1}{2}W + \frac{1}{2}M\right) \text{ yields expected utility}$ $(2\frac{1}{2}, 2\frac{1}{2})$
- Correlated equilibria (self-enforcing joint distrib.) - e.g. $\frac{1}{2}(W, M) + \frac{1}{2}(M, W)$ yields $(3\frac{1}{2}, 3\frac{1}{2})$ - $\frac{1}{3}(W, W) + \frac{1}{3}(W, M) + \frac{1}{3}(M, W)$ yields $(3\frac{2}{3}, 3\frac{2}{3})$

Correlated equilibria in games with finite strategy sets

- $u_i(t_i, s_{-i}) u_i(s)$ is change in player *i*'s utility when strategy t_i replaces s_i in $s = (s_1, \dots, s_n)$
- A probability distribution π is a correlated
 equilibrium if

 $\sum_{s \in \{r_i\} \times C_{-i}} [u_i(t_i, s_{-i}) - u_i(s)] \pi(s|s_i = r_i) \le 0$

for all players i and all strategies $r_i, t_i \in C_i$

• No player has an incentive to deviate from his recommended strategy r_i

LP characterization

• A probability distribution π is a correlated equilibrium if and only if

$$\sum_{\{s_{-i}\in C_{-i}\}} [u_i(t_i, s_{-i}) - u_i(s)]\pi(s) \le 0$$

for all players i and all strategies $s_i, t_i \in C_i$

- Proof: Use definition of conditional probability, pull denominator out of sum, and cancel it (reversible).
- Set of correlated equilibria of a finite game is a polytope

Departure function characterization

• A probability distribution π is a correlated equilibrium if and only if

$$\sum_{s \in C} [u_i(\zeta_i(s_i), s_{-i}) - u_i(s)] \pi(s) \le 0$$

for all players i and all **departure functions** $\zeta_i: C_i \to C_i$

- Proof: Let $t_i = \zeta_i(s_i)$ on previous slide and sum over $s_i \in C_i$. Conversely, define $\zeta_i(r_i) = r_i$ for all $r_i \neq s_i$ and $\zeta_i(s_i) = t_i$, then cancel terms.
- Interpretation as Nash equilibria of extended game

Continuous games

- Finitely many players (still)
- Strategy spaces C_i are compact metric spaces
- Utility functions $u_i: C \to \mathbb{R}$ are continuous
- Examples:

— • • •

- Finite games: $|C_i| < \infty$, u_i arbitrary
- Polynomial games: $C_i = [-1, 1], u_i$ polynomial

• Main property of continuous games: Correlated (and Nash) equilibria always exist

Defining correlated equilibria in continuous games

• Definition in literature: The probability measure π is a correlated equilibrium if

$$\int [u_i(\zeta_i(s_i), s_{-i}) - u_i(s)] d\pi \le 0$$

for all i and all (measurable) departure functions ζ_i

- Equivalent to above def. if strategy sets are finite
- Quantifier ranging over large set of functions
- Unknown function ζ_i inside u_i
- Is there a characterization without these problems?

An instructive failed attempt

• The following "characterization" fails:

$$\int_{\{s_i\} \times C_{-i}} [u_i(t_i, s_{-i}) - u_i(s)] \pi(s) \le 0$$

for all players i and all strategies $s_i, t_i \in S_i$

- Holds for any continuous probability distribution π
- This condition is much weaker than correlated equilibrium

Simple departure functions

• A probability measure π is a correlated equilibrium if and only if

$$\int [u_i(\zeta_i(s_i), s_{-i}) - u_i(s)] d\pi \le 0$$

for all i and all simple (having finite range) measurable departure functions ζ_i

Proof: Approximate any ζ_i as a pointwise limit of simple functions ξ^k_i (possible because C_i is compact metric). Then u_i(ξ^k_i(s_i), s_{-i}) → u_i(ζ_i(s_i), s_{-i}) pointwise by continuity of u_i and the result follows by Lebesgue's dominated convergence theorem.

No departure functions

• A probability measure π is a correlated equilibrium if and only if

$$\mu_{i,t_i}(B_i) := \int_{B_i \times C_{-i}} [u_i(t_i, s_{-i}) - u_i(s)] d\pi \le 0$$

for all $i, t_i \in C_i$, and measurable subsets $B_i \subseteq C_i$

- Equivalently, $-\mu_{i,t_i}$ is a positive measure for all i, t_i
- Proof: The above integral is the corresponds to the departure function given by $\zeta_i(r_i) = r_i$ for $r_i \notin B_i$ and $\zeta_i(r_i) = t_i$ for $r_i \in B_i$. Conversely, the integral for any simple departure function is a finite sum of terms of this type for some values of B_i and t_i .

Integration against test functions

• A probability measure π is a correlated equilibrium if and only if

$$\int f_i(s_i) d\mu_{i,t_i} = \int f_i(s_i) [u_i(t_i, s_{-i}) - u_i(s)] d\pi \le 0$$

for all $i, t_i \in C_i$, and $f_i : C_i \to [0, \infty)$ in some sufficiently rich class of test functions, e.g.

- Measurable characteristic functions
- Measurable functions
- Continuous functions
- Squares of polynomials (if $C_i \subset \mathbb{R}^k$)

Semidefinite programming

- A semidefinite program (SDP) is an optimization problem of the form
 - min $L(S) \leftarrow L$ is a given linear functional s.t. $T(S) = v \leftarrow T$ is a given linear transformation, v is a given vector
 - $S \succeq 0 \qquad \leftarrow S \text{ is a symmetric matrix}$ of decision variables
- SDPs generalize linear programs and can be solved efficiently using interior point methods

Sums of squares + SDP

• A polynomial p(x) is ≥ 0 for all $x \in \mathbb{R}$ iff it is a sum of squares of polynomials q_k (SOS)

$$p(x) = \sum q_k^2(x)$$
 for all $x \in \mathbb{R}$

• A polynomial p(x) is ≥ 0 for all $x \in [-1, 1]$ iff there are SOS polynomials s(x), t(x) such that

$$p(x) = s(x) + (1 - x^2)t(x)$$

• Coefficients of SOS polynomials can be described in an SDP

Multivariate SOS + SDP

• A polynomial $p(x_1, \ldots, x_k)$ is ≥ 0 for all $x \in \mathbb{R}^k$ iff there is an integer $r(p) \geq 0$ such that

$$\left(x_1^2 + \ldots + x_k^2\right)^r p(x_1, \ldots, x_k)$$

is a sum of squares of polynomials $q_l(x_1, \ldots, x_k)$

- Sequence of sufficient SDP conditions characterizing multivariate nonnegative polynomials exactly "in the limit"
- Similar conditions for nonnegativity on $[-1, 1]^k, \ldots$
- Such conditions are generally not exact for a fixed r independent of p, with some important exceptions

Moments of measures + SDP

• If τ is a measure on [-1, 1], then for a polynomial p:

$$\int p^2(x)d\tau(x) \ge 0 \text{ and } \int (1-x^2)p^2(x)d\tau(x) \ge 0$$

• $\tau_0, \ldots, \tau_{2m}$ are the moments of a measure τ on [-1,1] (i.e. $\tau_k = \int x^k d\tau(x)$) iff

$$\begin{bmatrix} \tau_0 & \tau_1 & \tau_2 \\ \tau_1 & \tau_2 & \tau_3 \\ \tau_2 & \tau_3 & \tau_4 \end{bmatrix} \succeq 0, \begin{bmatrix} \tau_0 - \tau_2 & \tau_1 - \tau_3 \\ \tau_1 - \tau_3 & \tau_2 - \tau_4 \end{bmatrix} \succeq 0 \quad (m = 2 \text{ case})$$

 Moments of measures on [-1, 1] can be described in an SDP

Moments of multivariate measures

• If τ is a measure on $[-1,1]^k$, then for a polynomial $p(x_1,\ldots,x_k)$:

$$\int p^2(x)d\tau(x) \ge 0 \text{ and } \int (1-x_i^2)p^2(x)d\tau(x) \ge 0$$

- Requiring these conditions for all p up to a fixed degree gives a necessary semidefinite condition the joint moments of a measure must satisfy.
- Exact "in the limit"

Polynomial games

- Strategy space is $C_i = [-1, 1]$ for all players i
- Utilities u_i are multivariate polynomials
- Finitely supported equilibria always exist, with explicit bounds on support size [1950s; SOP 2006]
- Minimax strategies and values can be computed by semidefinite programming [Parrilo 2006]

Computing corr. equil. in poly. games: Naive attempt (LP)

- Intended as a benchmark to judge other techniques
- Ignore polynomial structure
- Restrict strategy choices (and deviations) to fixed finite sets $\tilde{C}_i \subset C_i$
- Compute exact correlated equilibria of approximate game
- This is a sequence of LPs which converges (slowly!) to the set of correlated equilibria as the discretization gets finer.

Computing corr. equil. in poly. games by SDP relaxation

- Describe moments of measures π on [-1,1]ⁿ with a sequence of necessary SDP conditions which become sufficient in the limit
- For fixed d, we want to use SDP to express $\int p^2(s_i)[u_i(t_i, s_{-i}) - u_i(s)]d\pi \le 0$

for all $i, t_i \in [-1, 1]$, and polys. p of degree < d

• Shown above: for each d this is a necessary condition for π to be a correlated equilibrium which becomes sufficient as $d \to \infty$

Computing corr. equil. in poly. games by SDP relaxation (II)

- Define $S_i^d \in \mathbb{R}^{d \times d}[s_i]$ by $\left[S_i^d\right]_{jk} = s_i^{j+k}, \ 0 \le j, k < d$
- A polynomial is a square of a polynomial if and only if it can be written as $c^{\top}S_i^d c$ for some $c \in \mathbb{R}^d$
- Let $M_i^d(t_i) = \int S_i^d[u_i(t_i, s_{-i}) u_i(s)]d\pi \in \mathbb{R}^{d \times d}[t_i]$
- Then we wish to constrain π to satisfy $c^{\top} M_i^d(t_i) c \leq 0$ for all $c \in \mathbb{R}^d$ and $t_i \in [-1, 1]$, i.e. $M_i^d(t_i) \leq 0$ for $t_i \in [-1, 1]$

Computing corr. equil. in poly. games by SDP relaxation (III)

- $M_i^d(t_i)$ is a matrix whose entries are univariate polynomials in t_i with coefficients which are affine in the decision variables of the problem (the joint moments of π)
- This can be expressed exactly as an SDP constraint for any d (this is one of those special cases in which the condition is exact, even though there are multiple variables, t_i and c)
- Putting it all together we get a nested sequence of SDPs converging to the set of correlated equilibria

Comparison of Static Discretization, Adaptive Discretization, and SDP Relaxation

MIT Laboratory for Information and Decision Systems

Conclusions

- New characterizations of correlated equilibria in infinite games
- First algorithms for computing correlated equilibria in any class of infinite games

Acknowledgements

- My advisors: Profs. Asuman Ozdaglar and Pablo Parrilo
- Prof. Muhamet Yildiz

Time for a better discretization algorithm?

Approximate correlated equilibria

• The probability measure π is an ϵ -correlated equilibrium if

$$\int [u_i(\zeta_i(s_i), s_{-i}) - u_i(s)] d\pi \le \epsilon$$

for all i and all (measurable) departure functions ζ_i

- Same as definition of correlated equilibrium if $\epsilon=0$
- We will be interested in the case when the support of π is a finite set

Characterizing finitely supported ϵ -correlated equilibria

• A probability measure π with finite support contained in $\tilde{C} = \prod \tilde{C}_i$ is an ϵ -correlated equilibrium if and only if

$$\sum_{\{s_{-i} \in C_{-i}\}} [u_i(t_i, s_{-i}) - u_i(s)] \pi(s) \le \epsilon_{i, s_i}$$

for all $i, s_i \in \tilde{C}_i$, and $t_i \in C_i$ and

$$\sum_{s_i \in \tilde{C}_i} \epsilon_{i,s_i} \le \epsilon$$

for all i.

Applying SOS / SDP

- Given a polynomial game and a finite support set $\tilde{C}_i \subset [-1, 1]$ for each player, the condition that π be a probability measure on \tilde{C} and an ϵ -correlated equilibrium can be written in an SDP
- First constraint says a univariate polynomial in t_i with coefficients linear in the $\pi(s)$ and ϵ_{i,s_i} is ≥ 0 on [-1, 1], hence is expressible exactly in an SDP
- Second constraint is linear, so usable in SDP
- Conditions to make π a prob. measure also linear
- Always feasible if ϵ can vary

Adaptive discretization

- Given \tilde{C}_i^k , optimize the following (as an SDP)
 - min ϵ
 - s.t. π is an ϵ -correlated equilibrium which is a correlated equilibrium when deviations are restricted to \tilde{C}^k
- Let ϵ^k and π^k be an optimal solution
- If $\epsilon^k = 0$ then halt
- Otherwise, compute \tilde{C}_i^{k+1} as described on next slide and repeat

Adaptive discretization (II)

- Steps to compute \tilde{C}^{k+1}
 - For some player i, the ϵ -correlated equilibrium constraints are tight
 - Find values of t_i making these tight (free with SDP duality), add these into \tilde{C}_i^k to get \tilde{C}_i^{k+1}

- For
$$j \neq i$$
, let $\tilde{C}_j^{k+1} = \tilde{C}_j^k$

• By construction $\tilde{C}_i^{k+1} \supsetneq \tilde{C}_i^k$ because if not then $\epsilon = 0$, a contradiction

Proof that $\epsilon^k \to 0$

- If not, there is a subseq. along which $\epsilon^{k_l} \ge \epsilon > 0$.
- There is some player *i* for whom $\tilde{C}_i^{k_l+1} \supsetneq \tilde{C}_i^{k_l}$ for infinitely many *l*.
- Assume WLOG that $\tilde{C}_i^{k_l+1} \supseteq \tilde{C}_i^{k_l}$ for all l.
- Cover C_i with finitely many open balls B_i^j such that $|u_i(s_i, s_{-i}) - u_i(t_i, s_{-i})| \leq \frac{\epsilon}{2}$ for all $s_{-i} \in C_{-i}$ whenever s_i and t_i are in the same B_i^j .
- For some l, all the balls B_i^j which will ever contain a point of some $\tilde{C}_i^{k_l}$ already do.

Proof that $\epsilon^k \to 0$ (II)

- Let $t_{i,s_i} \in \tilde{C}_i^{k_l+1}$ make the ϵ^{k_l} -correlated equilibrium constraints tight.
- Let $r_{i,s_i} \in \tilde{C}_i^{k_l}$ be in the same B_i^j as t_{i,s_i} for each s_i .
- Then we get a contradiction:

$$\begin{aligned} \epsilon &\leq \sum_{s \in \tilde{C}^{k_{l}}} \left[u_{i}(t_{i,s_{i}}, s_{-i}) - u_{i}(s) \right] \pi^{k_{l}}(s) \\ &- \sum_{s \in \tilde{C}^{k_{l}}} \left[u_{i}(r_{i,s_{i}}, s_{-i}) - u_{i}(s) \right] \pi^{k_{l}}(s) \\ &= \sum_{s \in \tilde{C}^{k_{l}}} \left[u_{i}(t_{i,s_{i}}, s_{-i}) - u_{i}(r_{i,s_{i}}, s_{-i}) \right] \pi^{k_{l}}(s) \leq \sum_{s \in \tilde{C}^{k_{l}}} \frac{\epsilon}{2} \pi^{k_{l}}(s) = \frac{\epsilon}{2} \end{aligned}$$

Adaptive discretization (III)

- We did not use the polynomial structure of the u_i in the convergence proof, just continuity
- Used polynomiality to convert the optimization problem into an SDP
- Can also do this conversion if the u_i are rational or even piecewise rational (and continuous)
- Solutions of such games are surprisingly complex the Cantor measure arises as the unique Nash equilibrium of a game with rational u_i [Gross 1952]
- Now we have a way to approximate these!