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Outline

• Introduction

• Characterizing correlated equilibria in finite games

• Characterizing correlated equilibria in continuous
games [new]

• An overview of SDP / SOS methods

• Computing correlated equilibria in polynomial
games with SDP relaxations [new]
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Game theoretic setting

• Standard strategic (normal) form game

• Players (rational agents) numbered i = 1, . . . , n

• Each has a set Ci of strategies si

• Players choose their strategies simultaneously

• Rationality: Each player seeks to maximize his own
utility function ui : C → R, which represents all his
preferences over outcomes
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Goals

• Much is known theoretically about correlated
equilibria: existence (under some topological
assumptions), relation to Nash equilibria, etc.

• Efficient algorithms are known for computing these
when the strategy sets are finite

• Much less on games with infinite strategy sets

• Our goal is to find classes of infinite games for
which correlated equilibria can be computed, as well
as associated algorithms
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Previous work

• Definition of correlated equilibrium [Aumann 1974]

• Rationality argument for playing correlated
equilibria [Aumann 1987]

• Elementary existence proof [Hart & Schmeidler
1989]

• Efficient algorithms for computing correlated
equilibria of finite games [Papadimitriou 2005]

• Sum of squares techniques [Parrilo 2000, . . .]

• Algorithm for computing minimax strategies of
polynomial games [Parrilo 2006]
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Chicken and correlated equilibria
(u1, u2) Wimpy Macho

Wimpy (4, 4) (1, 5)

Macho (5, 1) (0, 0)

• Nash equilibria (self-enforcing independent distrib.)

– (M,W ) yields utilities (5, 1); (W,M) yields (1, 5)

–
(

1
2W + 1

2M, 1
2W + 1

2M
)

yields expected utility
(2 1

2 , 2
1
2 )

• Correlated equilibria (self-enforcing joint distrib.)

– e.g. 1
2 (W,M) + 1

2 (M,W ) yields (31
2 , 3

1
2 )

– 1
3 (W,W ) + 1

3 (W,M) + 1
3 (M,W ) yields (3 2

3 , 3
2
3 )
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Correlated equilibria in games
with finite strategy sets

• ui(ti, s−i)− ui(s) is change in player i’s utility when
strategy ti replaces si in s = (s1, . . . , sn)

• A probability distribution π is a correlated
equilibrium if∑

s∈{ri}×C−i

[ui(ti, s−i)− ui(s)]π(s|si = ri) ≤ 0

for all players i and all strategies ri, ti ∈ Ci

• No player has an incentive to deviate from his
recommended strategy ri
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LP characterization

• A probability distribution π is a correlated
equilibrium if and only if∑

{s−i∈C−i}

[ui(ti, s−i)− ui(s)]π(s) ≤ 0

for all players i and all strategies si, ti ∈ Ci

• Proof: Use definition of conditional probability, pull
denominator out of sum, and cancel it (reversible).

• Set of correlated equilibria of a finite game is a
polytope

MIT Laboratory for Information and Decision Systems 7



Departure function
characterization

• A probability distribution π is a correlated
equilibrium if and only if∑

s∈C
[ui(ζi(si), s−i)− ui(s)]π(s) ≤ 0

for all players i and all departure functions
ζi : Ci → Ci

• Proof: Let ti = ζi(si) on previous slide and sum
over si ∈ Ci. Conversely, define ζi(ri) = ri for all
ri 6= si and ζi(si) = ti, then cancel terms.

• Interpretation as Nash equilibria of extended game
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Continuous games

• Finitely many players (still)

• Strategy spaces Ci are compact metric spaces

• Utility functions ui : C → R are continuous

• Examples:

– Finite games: |Ci| <∞, ui arbitrary

– Polynomial games: Ci = [−1, 1], ui polynomial

– . . .

• Main property of continuous games: Correlated
(and Nash) equilibria always exist
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Defining correlated equilibria in
continuous games

• Definition in literature: The probability measure π
is a correlated equilibrium if∫

[ui(ζi(si), s−i)− ui(s)]dπ ≤ 0

for all i and all (measurable) departure functions ζi

• Equivalent to above def. if strategy sets are finite

• Quantifier ranging over large set of functions

• Unknown function ζi inside ui

• Is there a characterization without these problems?
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An instructive failed attempt

• The following “characterization” fails:∫
{si}×C−i

[ui(ti, s−i)− ui(s)]π(s) ≤ 0

for all players i and all strategies si, ti ∈ Si

• Holds for any continuous probability distribution π

• This condition is much weaker than correlated
equilibrium
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Simple departure functions

• A probability measure π is a correlated equilibrium
if and only if∫

[ui(ζi(si), s−i)− ui(s)]dπ ≤ 0

for all i and all simple (having finite range)
measurable departure functions ζi

• Proof: Approximate any ζi as a pointwise limit of
simple functions ξki (possible because Ci is compact
metric). Then ui(ξki (si), s−i)→ ui(ζi(si), s−i)
pointwise by continuity of ui and the result follows
by Lebesgue’s dominated convergence theorem.
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No departure functions

• A probability measure π is a correlated equilibrium
if and only if

µi,ti(Bi) :=
∫
Bi×C−i

[ui(ti, s−i)− ui(s)]dπ ≤ 0

for all i, ti ∈ Ci, and measurable subsets Bi ⊆ Ci
• Equivalently, −µi,ti is a positive measure for all i, ti

• Proof: The above integral is the corresponds to the
departure function given by ζi(ri) = ri for ri 6∈ Bi
and ζi(ri) = ti for ri ∈ Bi. Conversely, the integral
for any simple departure function is a finite sum of
terms of this type for some values of Bi and ti.
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Integration against test functions

• A probability measure π is a correlated equilibrium
if and only if∫

fi(si)dµi,ti =
∫
fi(si)[ui(ti, s−i)− ui(s)]dπ ≤ 0

for all i, ti ∈ Ci, and fi : Ci → [0,∞) in some
sufficiently rich class of test functions, e.g.

– Measurable characteristic functions

– Measurable functions

– Continuous functions

– Squares of polynomials (if Ci ⊂ Rk)
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Semidefinite programming

• A semidefinite program (SDP) is an
optimization problem of the form

min L(S) ← L is a given linear functional

s.t. T (S) = v ← T is a given linear transformation,

v is a given vector

S � 0 ← S is a symmetric matrix

of decision variables

• SDPs generalize linear programs and can be solved
efficiently using interior point methods
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Sums of squares + SDP

• A polynomial p(x) is ≥ 0 for all x ∈ R iff it is a sum
of squares of polynomials qk (SOS)

p(x) =
∑

q2k(x) for all x ∈ R

• A polynomial p(x) is ≥ 0 for all x ∈ [−1, 1] iff there
are SOS polynomials s(x), t(x) such that

p(x) = s(x) + (1− x2)t(x)

• Coefficients of SOS polynomials can be described in
an SDP
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Multivariate SOS + SDP

• A polynomial p(x1, . . . , xk) is ≥ 0 for all x ∈ Rk iff
there is an integer r(p) ≥ 0 such that(

x2
1 + . . .+ x2

k

)r
p(x1, . . . , xk)

is a sum of squares of polynomials ql(x1, . . . , xk)

• Sequence of sufficient SDP conditions characterizing
multivariate nonnegative polynomials exactly “in
the limit”

• Similar conditions for nonnegativity on [−1, 1]k, . . .

• Such conditions are generally not exact for a fixed r

independent of p, with some important exceptions
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Moments of measures + SDP

• If τ is a measure on [−1, 1], then for a polynomial p:∫
p2(x)dτ(x) ≥ 0 and

∫
(1− x2)p2(x)dτ(x) ≥ 0

• τ0, . . . , τ2m are the moments of a measure τ on
[−1, 1] (i.e. τk =

∫
xkdτ(x)) iff

τ0 τ1 τ2

τ1 τ2 τ3

τ2 τ3 τ4

 � 0,

τ0 − τ2 τ1 − τ3
τ1 − τ3 τ2 − τ4

 � 0 (m = 2 case)

• Moments of measures on [−1, 1] can be described in
an SDP
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Moments of multivariate measures

• If τ is a measure on [−1, 1]k, then for a polynomial
p(x1, . . . , xk):∫

p2(x)dτ(x) ≥ 0 and
∫

(1− x2
i )p

2(x)dτ(x) ≥ 0

• Requiring these conditions for all p up to a fixed
degree gives a necessary semidefinite condition the
joint moments of a measure must satisfy.

• Exact “in the limit”
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Polynomial games

• Strategy space is Ci = [−1, 1] for all players i

• Utilities ui are multivariate polynomials

• Finitely supported equilibria always exist, with
explicit bounds on support size [1950s; SOP 2006]

• Minimax strategies and values can be computed by
semidefinite programming [Parrilo 2006]
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Computing corr. equil. in poly.
games: Naive attempt (LP)

• Intended as a benchmark to judge other techniques

• Ignore polynomial structure

• Restrict strategy choices (and deviations) to fixed
finite sets C̃i ⊂ Ci

• Compute exact correlated equilibria of approximate
game

• This is a sequence of LPs which converges (slowly!)
to the set of correlated equilibria as the
discretization gets finer.
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Computing corr. equil. in poly.
games by SDP relaxation

• Describe moments of measures π on [−1, 1]n with a
sequence of necessary SDP conditions which become
sufficient in the limit

• For fixed d, we want to use SDP to express∫
p2(si)[ui(ti, s−i)− ui(s)]dπ ≤ 0

for all i, ti ∈ [−1, 1], and polys. p of degree < d

• Shown above: for each d this is a necessary
condition for π to be a correlated equilibrium which
becomes sufficient as d→∞
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Computing corr. equil. in poly.
games by SDP relaxation (II)

• Define Sdi ∈ Rd×d[si] by
[
Sdi

]
jk

= sj+ki , 0 ≤ j, k < d

• A polynomial is a square of a polynomial if and
only if it can be written as c>Sdi c for some c ∈ Rd

• Let Md
i (ti) =

∫
Sdi [ui(ti, s−i)− ui(s)]dπ ∈ Rd×d[ti]

• Then we wish to constrain π to satisfy
c>Md

i (ti)c ≤ 0 for all c ∈ Rd and ti ∈ [−1, 1], i.e.
Md
i (ti) � 0 for ti ∈ [−1, 1]
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Computing corr. equil. in poly.
games by SDP relaxation (III)

• Md
i (ti) is a matrix whose entries are univariate

polynomials in ti with coefficients which are affine
in the decision variables of the problem (the joint
moments of π)

• This can be expressed exactly as an SDP constraint
for any d (this is one of those special cases in which
the condition is exact, even though there are
multiple variables, ti and c)

• Putting it all together we get a nested sequence of
SDPs converging to the set of correlated equilibria
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Static Discretization
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Conclusions

• New characterizations of correlated equilibria in
infinite games

• First algorithms for computing correlated equilibria
in any class of infinite games

Acknowledgements
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Time for a better discretization
algorithm?
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Approximate correlated equilibria

• The probability measure π is an ε-correlated
equilibrium if∫

[ui(ζi(si), s−i)− ui(s)]dπ ≤ ε

for all i and all (measurable) departure functions ζi

• Same as definition of correlated equilibrium if ε = 0

• We will be interested in the case when the support
of π is a finite set
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Characterizing finitely supported
ε-correlated equilibria

• A probability measure π with finite support
contained in C̃ =

∏
C̃i is an ε-correlated

equilibrium if and only if∑
{s−i∈C−i}

[ui(ti, s−i)− ui(s)]π(s) ≤ εi,si

for all i, si ∈ C̃i, and ti ∈ Ci and∑
si∈C̃i

εi,si
≤ ε

for all i.
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Applying SOS / SDP

• Given a polynomial game and a finite support set
C̃i ⊂ [−1, 1] for each player, the condition that π be
a probability measure on C̃ and an ε-correlated
equilibrium can be written in an SDP

• First constraint says a univariate polynomial in ti
with coefficients linear in the π(s) and εi,si

is ≥ 0
on [−1, 1], hence is expressible exactly in an SDP

• Second constraint is linear, so usable in SDP

• Conditions to make π a prob. measure also linear

• Always feasible if ε can vary
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Adaptive discretization

• Given C̃ki , optimize the following (as an SDP)

min ε

s.t. π is an ε-correlated equilibrium

which is a correlated equilibrium

when deviations are restricted to C̃k

• Let εk and πk be an optimal solution

• If εk = 0 then halt

• Otherwise, compute C̃k+1
i as described on next slide

and repeat
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Adaptive discretization (II)

• Steps to compute C̃k+1

– For some player i, the ε-correlated equilibrium
constraints are tight

– Find values of ti making these tight (free with
SDP duality), add these into C̃ki to get C̃k+1

i

– For j 6= i, let C̃k+1
j = C̃kj

• By construction C̃k+1
i ) C̃ki because if not then

ε = 0, a contradiction

MIT Laboratory for Information and Decision Systems 31



Proof that εk → 0

• If not, there is a subseq. along which εkl ≥ ε > 0.

• There is some player i for whom C̃kl+1
i ) C̃kl

i for
infinitely many l.

• Assume WLOG that C̃kl+1
i ) C̃kl

i for all l.

• Cover Ci with finitely many open balls Bji such that
|ui(si, s−i)− ui(ti, s−i)| ≤ ε

2 for all s−i ∈ C−i
whenever si and ti are in the same Bji .

• For some l, all the balls Bji which will ever contain
a point of some C̃kl

i already do.
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Proof that εk → 0 (II)

• Let ti,si
∈ C̃kl+1

i make the εkl -correlated
equilibrium constraints tight.

• Let ri,si ∈ C̃
kl
i be in the same Bji as ti,si

for each si.

• Then we get a contradiction:

ε ≤
∑
s∈C̃kl

[ui(ti,si , s−i)− ui(s)]πkl(s)

−
∑
s∈C̃kl

[ui(ri,si , s−i)− ui(s)]πkl(s)

=
∑
s∈C̃kl

[ui(ti,si
, s−i)− ui(ri,si

, s−i)]πkl(s) ≤
∑
s∈C̃kl

ε

2
πkl(s) =

ε

2
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Adaptive discretization (III)

• We did not use the polynomial structure of the ui in
the convergence proof, just continuity

• Used polynomiality to convert the optimization
problem into an SDP

• Can also do this conversion if the ui are rational or
even piecewise rational (and continuous)

• Solutions of such games are surprisingly complex –
the Cantor measure arises as the unique Nash
equilibrium of a game with rational ui [Gross 1952]

• Now we have a way to approximate these!
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