Convex Geometry, Extremal Measures, and Correlated Equilibria in Polynomial Games

N. D. Stein A. Ozdaglar P. A. Parrilo

Laboratory for Information and Decision Systems Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

LIDS Student Conference, 2011

Game Theory – two slides only!

- Rush through definitions
- Introduce question
- Reduce to geometry
- Forget everything

The rest – slightly more relaxed

- Convex sets
- Extreme points
- Sets of probability distributions
- Finite-dimensional representations
- Example to resolve the question

Brief mention of game theory

Polynomial games

• Two players choose $x, y \in [-1, 1]$ and receive utilities

$$u_{x}(x,y) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x^{i} y^{j}$$
 and $u_{y}(x,y) = \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} x^{i} y^{j}$

Nash equilibria

• Pairs
$$\sigma, \tau \in \Delta([-1,1])$$
 so $X \sim \sigma$ and $Y \sim \tau$ indep. satisfy

$$\begin{split} \mathbb{E} \ & u_x(x,Y) \leq \mathbb{E} \ u_x(X,Y) \qquad \text{for all } x \in [-1,1] \\ \mathbb{E} \ & u_y(X,y) \leq \mathbb{E} \ & u_y(X,Y) \qquad \text{for all } y \in [-1,1] \end{split}$$

Independence, linearity: these only depend on σ and τ via
 (E_σ X,..., E_σ X^m, E_τ Y,..., E_τ Yⁿ)

• Existence \Rightarrow finitely supported Nash equilibria

Brief mention of game theory

Correlated equilibria

• $\mu \in \Delta([-1,1]^2)$ such that $(X,Y) \sim \mu$ makes

$$\begin{split} \mathbb{E} \ & u_x(h(X),Y) \leq \mathbb{E} \ & u_x(X,Y) \qquad \text{for all } h: [-1,1] \to [-1,1] \\ \mathbb{E} \ & u_y(X,h(Y)) \leq \mathbb{E} \ & u_y(X,Y) \qquad \text{for all } h: [-1,1] \to [-1,1] \end{split}$$

- (σ, τ) is a Nash if and only if $\sigma imes au$ is a correlated equilibrium
- Convex relaxation of Nash equilibria
- Correlated equilibrium conditions via finite # of moments?
- Direct existence of finitely supported correlated equilibrium?

Example

- $u_x(x,y) = xy = -u_y(x,y)$
- Nash equilibria \equiv pairs of zero-mean distributions
- Correlated equilibria \equiv conditionally zero-mean distributions

Convexity

Extreme points

• K is **convex** means

if
$$x,y\in \mathcal{K}, p\in (0,1)$$
 then $px+(1-p)y\in \mathcal{K}$

• $z \in K$ is **extreme** (pictured in bold) means

if
$$x, y \in K$$
 and $z = px + (1 - p)y$ then $x = y = z$

N. D. Stein, A. Ozdaglar, P. A. Parrilo Convexity, Extremal Measures, and Correlated Equilibria

Sets of probability distributions

- $\Delta(S) = \{(Borel) \text{ probability distributions on compact set } S\}$
- If S is finite then $\Delta(S)$ is a simplex
- Define convex combinations

 $p\mu + (1-p)\nu =$ sample from μ or ν based on a p-biased coin

- Pointwise convex combination if μ and ν have densities
- Support of μ : smallest closed set C with $\mu(C) = 1$
 - Dirac distributions δ_x have supp $(\delta_x) = \{x\}$
 - $\operatorname{supp}(p\mu + (1-p)\nu) = \operatorname{supp}(\mu) \cup \operatorname{supp}(\nu)$

Proposition

If $K \subseteq \Delta(S)$ has a unique measure with support contained in a set C, this measure is an extreme point of K.

N. D. Stein, A. Ozdaglar, P. A. Parrilo Convexity, Extremal Measures, and Correlated Equilibria

Example

Zero-mean distributions

•
$$\{\mu \in \Delta([-1,1]) \mid \mathbb{E}_{\mu} X = 0\}$$
 is convex

• Non-extreme point

æ

Example

Zero-mean distributions

- $\{\mu \in \Delta([-1,1]) \mid \mathbb{E}_{\mu} X = 0\}$ is convex
- Extreme points all have support of size ≤ 2

3

Representability by moments

- Formalize describability by finitely many parameters
- A set R is representable by (generalized) moments if

$$R = \{\mu \in \Delta(S) \mid (\mathbb{E}_{\mu} f_1(X), \dots, \mathbb{E}_{\mu} f_n(X)) \in Q\}$$

(f_i bounded Borel measurable)

• Move questions about R into finite dimensions

Theorem

Extreme points of R have support of size at most n + 1.

Proof of Theorem

Theorem

Extreme points of R have support of size at most n + 1 when

$${\mathcal R} = \{\mu \in \Delta({\mathcal S}) \mid ({\mathbb E}_\mu \, f_1({\mathcal X}), \dots, {\mathbb E}_\mu \, f_n({\mathcal X})) \in {\mathcal Y}\}$$
 .

Proof.

- Let $\mu \in R$ have larger support so $S = igsqcup_{j=1}^{n+2} B_j$ with $\mu(B_j) > 0$
- For $c \in \mathbb{R}^{n+2}_{\geq 0}$ and $A \subseteq S$ define $\nu_c(A) := \sum_j c_j \mu(A \cap B_j)$
- $\nu_c \in R$ whenever c satisfies:

$$\nu_c(S) := \sum_j c_j \mu(B_j) =$$

- $\mathbb{E}_{\mu} f_i(X) = \mathbb{E}_{\nu_c} f_i(X) := \sum_j c_j \mathbb{E}_{\mu} f_i(X) \mathbf{1}_{B_j}(X)$ for $i = 1, \dots, n$
- n+1 linear equations in n+2 variables c_i
- $(1,\ldots,1)$ in interior of line segment of feasible c
- $c\mapsto \nu_c$ injective, linear
- $\mu := \nu_{(1,...,1)}$ in interior of line segment in R

A non-example

Conditional zero-mean distributions

- Let Z ⊂ Δ([−1,1]²) be the distributions with zero mean conditioned on any horizontal or vertical line
- Z is convex
- This looks like infinitely many linear constraints
- Z "should not" be representable by moments
- Proof: extreme points with arbitrarily large support

Constructing elements of Z

- Three steps:
 - Take a distribution assigning equal mass on both sides of the axis to each line
 - 2 Weight by density $|xy|^{-1}$
 - 8 Renormalize
- This construction lets us focus on support only

Non-example

Example #2

Theorem

The set of conditional zero-mean distributions is not representable by moments.

Proof.

- Select a finite set $T \subset (0, 1]$
- Select a map $g: T \to T$
- As t ranges over T place equal mass at points:
 (t, g(t)), (-t, t), (-t, -t), (t, -t)
- Weight by $|xy|^{-1}$ and normalize
- If g is a permutation result will by conditionally zero-mean
- If g consists of a single cycle result will be extreme
- Support size is 4|T|

- 4 同 ト 4 ヨ ト 4 ヨ

Extreme distributions with infinite support

Generalizing the finite construction		
	Finite case	General case
Т	finite subset of $(0, 1]$	subset of $[\epsilon, 1]$
		endowed with measure λ
$g:T \to T$	permutation	measure-preserving:
		$A\subseteq T\colon \lambda\left(g^{-1}(A) ight)=\lambda(A)$
	single cycle	ergodic:
		if $A = g^{-1}(A)$
		then $\lambda(A) = 0$ or $\lambda(A^c) = 0$

An ergodic transformation

- T = [0, 1) with $\lambda =$ uniform distribution
- $g_{\alpha}(x) = x + \alpha \mod 1 = x + \alpha \lfloor x + \alpha \rfloor$ measure-preserving
- g_{α} ergodic $\Leftrightarrow \alpha$ irrational

< 回 > < 回 > < 回 >

э

Extreme distributions with infinite support

N. D. Stein, A. Ozdaglar, P. A. Parrilo Convexity, Extremal Measures, and Correlated Equilibria

Conclusions

- Nash equilibria representable by moments, known since 1950's
- Outer approximations of correlated equilibria by moments using SDP (master's thesis)
- Correlated equilibria not representable by moments
 - Odd for finite games correlated equilibria are "simpler"

Future work

- Explicit inner approximation of correlated equilibria which is representable by moments
- Provably efficient algorithms for computing correlated equilibria of polynomial games

▲ □ ▶ ▲ □ ▶ ▲ □ ▶