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Outline

Game Theory – two slides only!

Rush through definitions

Introduce question

Reduce to geometry

Forget everything

The rest – slightly more relaxed

Convex sets

Extreme points

Sets of probability distributions

Finite-dimensional representations

Example to resolve the question
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Brief mention of game theory

Polynomial games

Two players choose x , y ∈ [−1, 1] and receive utilities

ux(x , y) =
m∑
i=1

n∑
j=1

cijx
iy j and uy (x , y) =

m∑
i=1

n∑
j=1

dijx
iy j

Nash equilibria

Pairs σ, τ ∈ ∆([−1, 1]) so X ∼ σ and Y ∼ τ indep. satisfy

E ux(x ,Y ) ≤ E ux(X ,Y ) for all x ∈ [−1, 1]

E uy (X , y) ≤ E uy (X ,Y ) for all y ∈ [−1, 1]

Independence, linearity: these only depend on σ and τ via

(Eσ X , . . . ,Eσ Xm,Eτ Y , . . . ,Eτ Y n)

Existence ⇒ finitely supported Nash equilibria
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Brief mention of game theory

Correlated equilibria

µ ∈ ∆([−1, 1]2) such that (X ,Y ) ∼ µ makes

E ux(h(X ),Y ) ≤ E ux(X ,Y ) for all h : [−1, 1]→ [−1, 1]

E uy (X , h(Y )) ≤ E uy (X ,Y ) for all h : [−1, 1]→ [−1, 1]

(σ, τ) is a Nash if and only if σ × τ is a correlated equilibrium

Convex relaxation of Nash equilibria

Correlated equilibrium conditions via finite # of moments?

Direct existence of finitely supported correlated equilibrium?

Example

ux(x , y) = xy = −uy (x , y)

Nash equilibria ≡ pairs of zero-mean distributions

Correlated equilibria ≡ conditionally zero-mean distributions
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Convexity

Extreme points

K is convex means

if x , y ∈ K , p ∈ (0, 1) then px + (1− p)y ∈ K

z ∈ K is extreme (pictured in bold) means

if x , y ∈ K and z = px + (1− p)y then x = y = z
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Probability and convexity

Sets of probability distributions

∆(S) = {(Borel) probability distributions on compact set S}
If S is finite then ∆(S) is a simplex

Define convex combinations

pµ+ (1− p)ν = sample from µ or ν based on a p-biased coin

Pointwise convex combination if µ and ν have densities

Support of µ: smallest closed set C with µ(C ) = 1

Dirac distributions δx have supp(δx) = {x}
supp(pµ+ (1− p)ν) = supp(µ) ∪ supp(ν)

Proposition

If K ⊆ ∆(S) has a unique measure with support contained in a set
C , this measure is an extreme point of K.
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Example

Zero-mean distributions

{µ ∈ ∆([−1, 1]) | Eµ X = 0} is convex

Non-extreme point

= 0.5 + 0.5
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Example

Zero-mean distributions

{µ ∈ ∆([−1, 1]) | Eµ X = 0} is convex

Extreme points all have support of size ≤ 2

δ0
y

x+y δ−x + x
x+y δy

for x , y ∈ (0, 1]
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Generalization: Finite-Dimensional Representability

Representability by moments

Formalize describability by finitely many parameters

A set R is representable by (generalized) moments if

R = {µ ∈ ∆(S) | (Eµ f1(X ), . . . ,Eµ fn(X )) ∈ Q}

(fi bounded Borel measurable)

Move questions about R into finite dimensions

Theorem

Extreme points of R have support of size at most n + 1.
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Proof of Theorem

Theorem

Extreme points of R have support of size at most n + 1 when

R = {µ ∈ ∆(S) | (Eµ f1(X ), . . . ,Eµ fn(X )) ∈ Y } .

Proof.

Let µ ∈ R have larger support so S =
⊔n+2

j=1 Bj with µ(Bj) > 0

For c ∈ Rn+2
≥0 and A ⊆ S define νc(A) :=

∑
j cjµ(A ∩ Bj)

νc ∈ R whenever c satisfies:

νc(S) :=
∑

j cjµ(Bj) = 1
Eµ fi (X ) = Eνc fi (X ) :=

∑
j cj Eµ fi (X )1Bj (X ) for i = 1, . . . , n

n + 1 linear equations in n + 2 variables cj

(1, . . . , 1) in interior of line segment of feasible c

c 7→ νc injective, linear

µ := ν(1,...,1) in interior of line segment in R
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A non-example

Conditional zero-mean distributions

Let Z ⊂ ∆([−1, 1]2) be the distributions with zero mean
conditioned on any horizontal or vertical line

Z is convex

This looks like infinitely many linear constraints

Z “should not” be representable by moments

Proof: extreme points with arbitrarily large support

Constructing elements of Z

Three steps:
1 Take a distribution assigning equal mass on both sides of the

axis to each line
2 Weight by density |xy |−1

3 Renormalize

This construction lets us focus on support only
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Extreme conditional zero-mean distributions

Example #1
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Extreme conditional zero-mean distributions

Non-example
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Extreme conditional zero-mean distributions

Example #2
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Extreme conditional zero-mean distributions

Example #3
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Extreme conditional zero-mean distributions

Theorem

The set of conditional zero-mean distributions is not representable
by moments.

Proof.

Select a finite set T ⊂ (0, 1]

Select a map g : T → T

As t ranges over T place equal mass at points:
(t, g(t)), (−t, t), (−t,−t), (t,−t)

Weight by |xy |−1 and normalize

If g is a permutation result will by conditionally zero-mean

If g consists of a single cycle result will be extreme

Support size is 4|T |
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Extreme distributions with infinite support

Generalizing the finite construction

Finite case General case

T finite subset of (0, 1] subset of [ε, 1]
endowed with measure λ

g : T → T permutation measure-preserving:
A ⊆ T : λ

(
g−1(A)

)
= λ(A)

single cycle ergodic:
if A = g−1(A)
then λ(A) = 0 or λ(Ac) = 0

An ergodic transformation

T = [0, 1) with λ = uniform distribution

gα(x) = x + α mod 1 = x + α− bx + αc measure-preserving

gα ergodic ⇔ α irrational

N. D. Stein, A. Ozdaglar, P. A. Parrilo Convexity, Extremal Measures, and Correlated Equilibria



Extreme distributions with infinite support

Example #4
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Wrap-up

Conclusions

Nash equilibria representable by moments, known since 1950’s

Outer approximations of correlated equilibria by moments
using SDP (master’s thesis)

Correlated equilibria not representable by moments

Odd – for finite games correlated equilibria are “simpler”

Future work

Explicit inner approximation of correlated equilibria which is
representable by moments

Provably efficient algorithms for computing correlated
equilibria of polynomial games
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