Exchangeable Equilibria

N. D. Stein P. A. Parrilo A. Ozdaglar

Laboratory for Information and Decision Systems Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

LIDS Student Conference, 2010

イロト イポト イヨト イヨト

ъ

Outline

Prelude

- Complete positivity
- Exchangeability
- Conic programming

2 Games

- Bimatrix games
- Nash and correlated equilibria
- Exchangeable equilibria
 - Interpretation
 - Computation

э

э

Complete positivity Exchangeability Conic programming

Complete positivity

Definition

The set of **completely positive** $n \times n$ matrices is defined by

$$\mathsf{CP}_n = \mathsf{conv} \left\{ \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \middle| x_1, \dots, x_n \ge \mathbf{0} \right\}$$

Definition

A matrix is **doubly nonnegative** if it is symmetric, elementwise nonnegative, and positive semidefinite.

$$\mathsf{DNN}_n = \left\{ X \in \mathbb{R}^{n \times n} \middle| X = X', X \ge 0, X \succeq 0 \right\}$$

Complete positivity Exchangeability Conic programming

◆□ > ◆□ > ◆豆 > ◆豆 > -

æ

Properties

Useful facts

- $CP_n \subseteq DNN_n$ for all n
- $CP_n = DNN_n$ if and only if $n \le 4$ [Diananda, Horn]
- CP_n and DNN_n are closed convex cones

Big difference

- Optimization over DNN_n is computationally tractable
- Checking membership in CP_n is NP-hard

Complete positivity Exchangeability Conic programming

Exchangeability

Definition

A sequence of random variables $X_1, X_2, ...$ is **exchangeable** if permuting finitely many of the X_k doesn't affect its distribution.

Properties

- i.i.d.
- \Rightarrow exchangeable
- $\Rightarrow X_j, X_k$ marginal is symmetric, fixed for any $j \neq k$
- \Rightarrow identically distributed

Exchangeable but not independent examples

- Distribution of X_1 arbitrary, all $X_k = X_1$ almost surely
- Repeated flips of a coin with a random bias

Complete positivity Exchangeability Conic programming

de Finetti's theorem

Theorem (corollary of de Finetti's theorem)

A matrix *P* is the X_i, X_j marginal of an exchangeable sequence X_1, X_2, \ldots taking values in $\{1, \ldots, n\}$ if and only if $P \in CP_n$ and $\sum P_{ij} = 1$.

Non-example

No symmetric distribution of X_1, X_2, X_3 has marginal

$$\begin{bmatrix} 0 & 0.5 \\ 0.5 & 0 \end{bmatrix}$$
.

ヘロト 人間 とく ヨ とく ヨン

Proof.

- With probability one $X_i \neq X_j$ for all $i \neq j$.
- By the pigeonhole principle, $X_i = X_j$ for some $i \neq j$.

Complete positivity Exchangeability Conic programming

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Conic programming

Definition

A **conic program** is an optimization problem over vectors *x*:

 $\begin{array}{ll} \text{maximize} & f(x) & [\text{linear objective}] \\ \text{subject to} & g_i(x) = b_i, \quad i = 1, \dots, m & [\text{linear constraints}] \\ & x \in K & [\text{convex cone constraint}] \end{array}$

Examples

- Linear program: $K = \{(x_1, \ldots, x_n) \mid x_i \ge 0 \text{ for all } i\}$
- Semidefinite program: $K = \{X \in \mathbb{R}^{n \times n} \mid X = X', X \succeq 0\}$
- $K = \text{DNN}_n$ reduces to semidefinite program
- $K = CP_n$ is NP-hard, even for m = 1

Prelude Co Games Ex Exchangeable equilibria Co

Complete positivity Exchangeability Conic programming

Completely positive programming

Modeling

Many hard optimization problems can be written as conic programs with $K = CP_n$ (completely positive programs or **CPP**s), e.g.:

- Quadratic programs with linear and 0-1 constraints [Burer]
- Stability number of a graph [De Klerk and Pasechnik]
- Chromatic number of a graph [Gvozdenović and Laurent]

LP and SDP relaxations

- Relax exchangeability to extendibility to a symmetric distribution on X₁,..., X_k to get LPs
- Relax CP_n to DNN_n to get an SDP
- Hierarchy of tighter SDP relaxations for CP_n [Parrilo]

Bimatrix games Nash and correlated equilibria

ヘロト 人間 とくほとくほとう

æ

Bimatrix games

Definition

A bimatrix game is one with:

- Two players
- Finite sets of strategies S₁, S₂
- Simultaneous moves (strategic/normal form)
- Utilities $u_i : S_1 \times S_2 \rightarrow \mathbb{R}$

Definition

A bimatrix game is **symmetric** if $S_1 = S_2$ and all $(s_1, s_2) \in S_1 \times S_2$ satisfy $u_1(s_1, s_2) = u_2(s_2, s_1)$.

Bimatrix games Nash and correlated equilibria

Nash and correlated equilibria

The game of chicken

(u_1, u_2)	Wimpy	Macho
Wimpy	(4, 4)	(1,5)
Macho	(5,1)	(0,0)

Nash equilibria (self-enforcing independent distributions)

- (*M*, *W*) yields utilities (5, 1); (*W*, *M*) yields (1, 5)
- $\left(\frac{1}{2}W + \frac{1}{2}M, \frac{1}{2}W + \frac{1}{2}M\right)$ yields expected utilities $\left(2\frac{1}{2}, 2\frac{1}{2}\right)$

Correlated equilibria (self-enforcing joint distributions)

- $\frac{1}{2}(W, M) + \frac{1}{2}(M, W)$ yields $(3\frac{1}{2}, 3\frac{1}{2})$
- $\frac{1}{3}(W, W) + \frac{1}{3}(W, M) + \frac{1}{3}(M, W)$ yields $(3\frac{2}{3}, 3\frac{2}{3})$, etc.

Computational complexity of equilibria

Nash equilibria

- Exist (even symmetric ones)
- Can be viewed as pairs (π_1, π_2) or as products $\pi_1 \times \pi_2$
- Set of Nash equilibria given by polynomial inequalities
- PPAD-complete to compute one Nash equilibrium
- NP-hard to optimize over Nash equilibria

Correlated equilibria

- Joint probability distribution written as a matrix
- Nash equilibria = rank 1 correlated equilibria
- Set of correlated equilibria given by linear inequalities
- Polynomial time to optimize over correlated equilibria

Interpretation Computation

Motivation

Computation

- Computing "approximate" Nash equilibria in some sense
- Shrink correlated equilibrium set to get "closer" to Nash
- Add convex constraints satisfied by Nash equilibria but not all correlated equilibria?
- Want "natural" constraints expressible in terms of utilities
- Still want to be able to compute efficiently

Interpretation

• Do these constraints define correlated equilibria which are "reasonable" or "fair" in some sense?

イロト イポト イヨト イヨト

Interpretation Computation

Exchangeable equilibria

Definition

A (symmetric) exchangeable equilibrium is a correlated equilibrium which is completely positive.

Example

(u_1, u_2)	а	b	С
а	(5,5)	(5,4)	(0,0)
b	(4,5)	(4,4)	(4,5)
С	(0,0)	(5,4)	(5,5)

- $conv(Nash equilibria) \subsetneq Exchangeable equilibria$
- Exchangeable equilibria \subsetneq Correlated equilibria

イロト イポト イヨト イヨト

Interpretation Computation

Equilibria of the example

Interpretation Computation

Interpretation

Definition

The *n*-player extension of a symmetric bimatrix game Γ is the *n*-player game in which each pair of players plays Γ and each player's utility is the sum of his utilities from these subgames.

Remark

It doesn't matter whether we allow the players to choose different strategies in each subgame.

Theorem

A matrix π is an exchangeable equilibrium of Γ if and only if it is the marginal of a symmetric correlated equilibrium of the *n*-player extension for all *n*.

< 回() く ヨ > く ヨ >

Interpretation Computation

Computation

Theorem

Can compute an exchangeable equilibrium in polynomial time.

Remark

This is surprising because checking complete positivity of a matrix is NP-hard. Our algorithm constructs a proof that its output is completely positive.

Approximation results

- Set of exchangeable equilibria is the feasible set of a CPP.
- Convex hull of Nash equilibria is the feasible set of a CPP.
- Get immedate LP and SDP relaxations for these.
- Can optimize over relaxations efficiently.

Interpretation Computation

Concluding remarks

Complete positivity, exchangeability, conic programming

- Good tools to know
- Interesting open questions remain

Exchangeable equilibria

- Main contribution of this talk
- Intermediate between Nash and correlated equilibria
- Game theoretic interpretations
- Efficient computation

Future work

- Tighter computable relaxations
- Rounding to Nash equilibria