Adaptive Discretization Methods for Computing Correlated Equilibria of Polynomial Games

Noah Stein

Joint work with Profs. Pablo Parrilo and Asuman Ozdaglar

Game theoretic setting

- Standard strategic (normal) form game
- Players (rational agents) numbered i = 1, ..., n
- Each has a set C_i of strategies s_i
- Players choose their strategies simultaneously
- Rationality: Each player seeks to maximize his own utility function $u_i: C \to \mathbb{R}$, which represents all his preferences over outcomes

Chicken and correlated equilibria

(u_1, u_2)	Wimpy	Macho
Wimpy	(4, 4)	(1,5)
Macho	(5,1)	(0,0)

- Nash equilibria (self-enforcing independent distrib.)
 - -(M,W)
 - -(W,M)
- Correlated equilibria (self-enforcing joint distrib.) - $\frac{1}{2}(W, M) + \frac{1}{2}(M, W)$
 - $-\frac{1}{3}(W,W) + \frac{1}{3}(W,M) + \frac{1}{3}(M,W)$

Correlated equilibria in games with finite strategy sets

- $u_i(t_i, s_{-i}) u_i(s)$ is change in player *i*'s utility when strategy t_i replaces s_i in $s = (s_1, \dots, s_n)$
- A probability distribution π is a correlated
 equilibrium if

 $\sum_{s \in \{r_i\} \times C_{-i}} [u_i(t_i, s_{-i}) - u_i(s)] \pi(s|s_i = r_i) \le 0$

for all players i and all strategies $r_i, t_i \in C_i$

• No player has an incentive to deviate from his recommended strategy r_i

LP characterization

• A probability distribution π is a correlated equilibrium if and only if

$$\sum_{s_{-i} \in C_{-i}} [u_i(t_i, s_{-i}) - u_i(s)] \pi(s) \le 0$$

for all players i and all strategies $s_i, t_i \in C_i$

• Set of correlated equilibria of a finite game is a polytope

Polynomial games

- Strategy space is $C_i = [-1, 1]$ for all players i
- Utilities u_i are multivariate polynomials
- Finitely supported equilibria always exist

Finitely supported ϵ -correlated equilibria

• A probability measure π with finite support contained in $\tilde{C} = \prod \tilde{C}_i$ is an ϵ -correlated equilibrium if

$$\sum_{s_{-i}\in\tilde{C}_{-i}} [u_i(t_i, s_{-i}) - u_i(s)]\pi(s) \le \epsilon_{i,s_i}$$

for all $i, s_i \in \tilde{C}_i$, and $t_i \in C_i$ and

$$\sum_{s_i \in \tilde{C}_i} \epsilon_{i,s_i} \le \epsilon$$

for all i.

Adaptive discretization

- Given \tilde{C}_i^k , optimize the following (as an SDP)
 - min ϵ
 - s.t. π is an ϵ -correlated equilibrium which is a correlated equilibrium when deviations are restricted to \tilde{C}^k
- Let ϵ^k and π^k be an optimal solution
- If $\epsilon^k = 0$ then halt
- Otherwise, compute \tilde{C}_i^{k+1} (next slide) and repeat
- Convergence theorem: $\epsilon^k \to 0$

Adaptive discretization (II)

- Steps to compute \tilde{C}^{k+1}
 - For some player i, the ϵ -correlated equilibrium constraints are tight
 - Find values of t_i making these tight (free with SDP duality), add these into \tilde{C}_i^k to get \tilde{C}_i^{k+1}

- For
$$j \neq i$$
, let $\tilde{C}_j^{k+1} = \tilde{C}_j^k$

Applying SOS / SDP

- Given a polynomial game and a finite support set $\tilde{C}_i \subset [-1, 1]$ for each player, the condition that π be a probability measure on \tilde{C} and an ϵ -correlated equilibrium can be written in an SDP
- First constraint says a univariate polynomial in t_i with coefficients linear in the $\pi(s)$ and ϵ_{i,s_i} is ≥ 0 on [-1, 1], hence is expressible exactly in an SDP
- Remaining constraints are linear, so usable in SDP
- Always feasible since ϵ can vary and finite games have correlated equilibria

Random example

• Three players, random polynomial utilities (deg. 4)

k	ϵ^k	$\left \begin{array}{c} \tilde{C}_x^k \smallsetminus \tilde{C}_x^{k-1} \end{array} \right $	$\tilde{C}_y^k \smallsetminus \tilde{C}_y^{k-1}$	$\tilde{C}^k_z \smallsetminus \tilde{C}^{k-1}_z$
0	0.99	{0}	{0}	$\{0\}$
1	4.16			$\{0.89\}$
2	5.76	$\{-1\}$		
3	0.57		$\{1\}$	
4	0.28	$\{0.53\}$		$\{0.50, 0.63\}$
5	0.16		$\{0.49, 0.70\}$	
6	10^{-7}		$\{-1, 0.60\}$	$\{-0.60, 0.47\}$

Closing remarks

- Can you remove the condition that π is an exact correlated equilibrium when deviations are restricted to \tilde{C}_i^k from the optimization problem?
 - This seems to work well in practice
 - We have explicit counterexamples showing it doesn't work in general
- For a completely different approach to computing correlated equilibria of polynomial games that does not use discretization, see [SPO 2007]