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Games

• Set I of interacting agents (I = {1, 2} throughout)

• Set Ci of strategies for each player i ∈ I.

• Utility function ui : C1 × C2 → R.

– Each player wants as much utility as possible.

– Utilities capture all strategic interactions.
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Equilibrium

• A Nash Equilibrium is a choice of strategy for

each player, so that if only one player deviates, he

cannot expect to improve his utility.

• An ǫ-equilibrium is weaker – no player can

improve his payoff by more than ǫ.
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Rock, Paper, Scissors

(u1, u2) Rock Paper Scissors

Rock (0, 0) (−1,+1) (+1,−1)

Paper (+1,−1) (0, 0) (−1,+1)

Scissors (−1,+1) (+1,−1) (0, 0)

• No equilibrium!

• Enlarge the set of strategies (not with dynamite).

• Allow players to choose a mixed strategy, i.e. a

probability distribution over Ci.

• Define utility on these larger strategy spaces as

expected utility.
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Zero-sum Finite Games

• Both C1 and C2 are finite.

• Utilities satisfy u1 = −u2.

• Strictly competitive games (Rock, Paper, Scissors).

• Set of mixed strategies for each player is a simplex.

• Prove existence of a Nash Equilibrium via LP

duality, and compute it efficiently with interior

point methods (von Neumann 1928).
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General Finite Games

• Both C1 and C2 are finite.

• Utilities are arbitrary.

• Allows for both competition and cooperation.

• Prove existence of an equilibrium via a

non-constructive fixed-point argument (Nash 1951).

• Simple algorithms exist, e.g. the Lemke-Howson

algorithm (simplex method with a different pivoting

rule).

• PPAD-completeness proven in a Dec. 4, 2005 paper.
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Continuous Games

• Both C1 and C2 are compact metric spaces.

• Utilities are continuous.

• An equilibrium always exists (Glicksberg 1952).

• But the probability measures involved can be

arbitrarily complicated!

• No hope of computing equilibria in general.
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Zero-sum Polynomial Games

• C1 = C2 = [−1, 1].

• Utilities satisfy u1 = −u2 = a polynomial.

• Space of mixed strategies is infinite-dimensional,

but has a finite-dimensional representation (more on

next slide).

• Can be cast as an SDP, and computed efficiently

with interior point methods (Parrilo 200x).
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Separable games

• A continuous game is separable if it has payoffs:

ui(s1, s2) =
r∑

k=1

ak
i fk

1 (s1)f
k
2 (s2)

where ak
i ∈ R and fk

j : Cj → R is continuous

(superscripts are not exponents).

• The separable structure allows for a

finite-dimensional representation of the mixed

strategy space.

• Can assume WLOG that each player randomizes

among at most r + 1 strategies.
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Computing ǫ-equilibria for
two-player separable games

• Assume Ci = [−1, 1] and the utilities are Lipschitz.

• Discretize the game: Choose a set C̃i of m ∝ 1
ǫ

equally spaced pure strategies for each player, and

sample the utilities to get ũi : C̃1 × C̃2 → R.

• Compute an equilibrium of this finite game.

• This yields an ǫ-equilibrium of the separable game.
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Will this work?

• In general computing an equilibrium of a finite

game is not easy.

• But in this case the finite game has the same

separable structure as the original game:

ũi(s1, s2) =

r∑

k=1

ak
i f̃k

1 (s1)f̃
k
2 (s2)

• In particular the finite game has an equilibrium in

which each player mixes among at most r + 1

strategies, independent of the choice of m ∝ 1
ǫ
.
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Computing an equilibrium of the
finite game

• Given a guess at the support of each player’s mixed

strategy (which pure strategies he plays with

positive probability) there is a simple LP to find

equilibria with that support.

•

# supports =

(
m

1

)

+

(
m

2

)

+. . .+

(
m

r + 1

)

≤

(
m + r

1 + r

)

︸ ︷︷ ︸

polynomial in m

MIT Laboratory for Information and Decision Systems 11



Complexity of the algorithm

• The number of LPs and the time to solve each are

both polynomial in 1
ǫ
.

• Algorithm is polynomial in 1
ǫ

and exponential in r.

• Dependence on r is no worse than for finite games.

• A recently published ǫ-equilibrium algorithm for

finite games is exponential in 1
ǫ2

(LMM 2003).
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Conclusion

• Future directions:

– Apply SDP-related methods to non-zero-sum

polynomial games.

– Consider separable games with additional

structure, e.g. graphical separable games.

– Algorithms for discontinuous games.

• Thanks to:

– Asuman Ozdaglar

– Pablo Parrilo

– LIDS Student Conference Committee
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