Polynomial games: Computation of Nash and correlated equilibria

Noah Stein

Joint work with Profs. Pablo Parrilo and Asuman Ozdaglar

Outline

- Nash equilibria
	- Finite-dimensional structure
	- Computation in zero-sum games via SOS/SDP
	- Non-zero-sum games and PPAD (conjectures)
- Correlated equilibria
	- In finite games
	- Def. and characterizations in poly. games
	- No finite dimensional characterization
	- Computation comparison of three methods
- Conclusions and future work

Polynomial games

- Definition
	- n players, strategic form
	- Set of strategies $S_i = [-1, 1]$ ⊂ R for each player
	- $-$ Utilities $u_i: [-1,1]^n \to \mathbb{R}$ are polynomials
- Notation
	- Strategy for i^{th} player: $s_i \in S_i$
	- $-$ Strategy profile: $s \in S = \prod_i S_i$
	- Without player *i*: s_{-i} ∈ $\prod_{j \neq i} S_j$, $s = (s_i, s_{-i})$
	- Probability measure over $S_i: \sigma_i \in \Delta(S_i)$

Structure

[Dresher, Karlin, Shapley 1950's]

- Utility under random (mixed) strategy is expected utility [von Neumann - Morgenstern assumption]
- Only finitely many moments matter

$$
u_i(\sigma_j,s_{-j}) = \int \sum_{\alpha} c_{\alpha} s_j^{\alpha_j} s_{-j}^{\alpha_{-j}} d\sigma_j(s_j) = \sum_{\alpha} c_{\alpha} \left(\int s_j^{\alpha_j} d\sigma_j(s_j) \right) s_{-j}^{\alpha_{-j}}
$$

- Players can think about choosing moments $\int s_i^k$ $j^k d\sigma_j(s_j)$ instead of choosing σ_j directly
- Any such moments correspond to a measure with support size at most 1 more than the *j*-degree of u_i

Nash equilibria

- A mixed strategy profile σ is a **Nash equilibrium** if $u_i(\sigma) \geq u_i(\tau_i, \sigma_{-i})$ for all $\tau_i \in \Delta(S_i)$
- For polynomial games this is a finite dimensional problem in the moment spaces.
- In fact we can describe the set of moments of Nash equilibria with explicit polynomial inequalities
- The Nash equilibrium strategies of zero-sum games $(n = 2, u_2 = -u_1)$ are given by solutions to the minimax problem:

$$
\min_{\sigma_2 \in \Delta(S_2)} \max_{\sigma_1 \in \Delta(S_1)} u_1(\sigma_1, \sigma_2) = \min_{\sigma_2 \in \Delta(S_2)} \max_{s_1 \in S_1} u_1(s_1, \sigma_2)
$$

Example

Payoffs:

$$
u_x(x, y) = -u_y(x, y)
$$

$$
= 5xy - 2x^2 - 2xy^2 - y
$$

Value: -0.48 Optimal mixed strategies:

- P1 always picks $x = 0.2$
- P2 plays $y = 1$ with probability 0.78, and $y = -1$ with probability 0.22.

Computing minimax strategies [Parrilo 2006]

$$
\bullet \ \ u_x(x,y) = \sum_{j,k} a_{jk} x^j y^k = -u_y(x,y)
$$

• A minimax strategy τ for player y solves

min
$$
\beta
$$

\ns.t. τ is a prob. measure on [-1, 1]
\n
$$
\tau_k = \int_{-1}^{1} y^k d\tau
$$
 for $k \leq [y \text{-degree of } u_x]$
\n
$$
\sum_{j,k} a_{jk} x^j \tau_k \leq \beta
$$
 for all $x \in [-1, 1]$

• Must describe polynomials nonnegative on $[-1, 1]$ as well as moments of measures on $[-1, 1]$

Sums of squares $+$ SDP

• A polynomial $p(x)$ is ≥ 0 for all $x \in \mathbb{R}$ iff it is a sum of squares of polynomials q_k (SOS)

$$
p(x) = \sum q_k^2(x) \text{ for all } x \in \mathbb{R}
$$

• A polynomial $p(x)$ is ≥ 0 for all $x \in [-1, 1]$ iff there are SOS polynomials $s(x)$, $t(x)$ such that

$$
p(x) = s(x) + (1 - x^2)t(x)
$$

• Coefficients of SOS polynomials can be described in a semidefinite program (SDP)

Moments of measures $+$ SDP

• For all polynomials p , must have

$$
\int p^2(x)d\tau(x) \ge 0 \text{ and } \int (1-x^2)p^2(x)d\tau(x) \ge 0
$$

• $\tau_0, \ldots, \tau_{2m}$ are the moments of a measure τ on [-1,1] (i.e. $\tau_k = \int y^k d\tau$) iff

$$
\begin{bmatrix}\n\tau_0 & \tau_1 & \tau_2 \\
\tau_1 & \tau_2 & \tau_3 \\
\tau_2 & \tau_3 & \tau_4\n\end{bmatrix} \succeq 0, \begin{bmatrix}\n\tau_0 - \tau_2 & \tau_1 - \tau_3 \\
\tau_1 - \tau_3 & \tau_2 - \tau_4\n\end{bmatrix} \succeq 0 \quad (m = 2 \text{ case})
$$

• Moments of measures on $[-1, 1]$ can be described in a semidefinite program

Higher dimensions

- What if we want to characterize, e.g., polynomials which are nonnegative on $[-1, 1]^k$ or joint moments of measures on $[-1, 1]^{k}$?
- There are a sequence of sufficient SDP conditions for polynomial nonnegativity starting with SOS which approach an exact condition
- Similarly there is a sequence of necessary SDP conditions for a list of numbers to be joint moments of a measure which are exact in the limit

Non-zero-sum games

- How hard is computing Nash equilibria of general polynomial games?
- Conjecture: PPAD-complete, i.e., same as finite games
- We have most of a proof that the problem is in PPAD, modulo some details about the polynomial-time solvability of SDPs
- No progress on a completeness proof, but it would be surprising if polynomial games were easier to solve than finite games

Chicken and correlated equilibria

- Nash equilibria (self-enforcing independent distrib.)
	- (M, W) yields utilities $(5, 1)$; (W, M) yields $(1, 5)$
	- $\left(\frac{1}{2}\right)$ $\frac{1}{2}W + \frac{1}{2}$ $\frac{1}{2}M, \frac{1}{2}W + \frac{1}{2}$ $\frac{1}{2}M$) yields expected utility $(2\frac{1}{2}, 2\frac{1}{2})$ $\frac{1}{2}$
- Correlated equilibria (self-enforcing joint distrib.)
	- e.g. $\frac{1}{2}(W, M) + \frac{1}{2}(M, W)$ yields $(3\frac{1}{2}, 3\frac{1}{2})$ $\frac{1}{2}$ $-\frac{1}{3}$ $\frac{1}{3}(W,W) + \frac{1}{3}(W,M) + \frac{1}{3}(M,W)$ yields $(3\frac{2}{3},3\frac{2}{3})$ $\frac{2}{3})$

Correlated equilibria in finite games

- $u_i(t_i, s_{-i}) u_i(s)$ is change in player *i*'s utility when strategy t_i replaces s_i in $s = (s_1, \ldots, s_n)$
- A prob. distribution π is a correlated equilibrium if

$$
\sum_{\{s:\ s_i = r_i\}} [u_i(t_i, s_{-i}) - u_i(s)]\pi(s) \le 0
$$

for all players *i* and all strategies $r_i, t_i \in S_i$

• Linear ineq. in variables $\pi(s) \Rightarrow$ linear program

Defining CE in infinite games

• Definition in literature:

$$
\int [u_i(\zeta_i(s_i), s_{-i}) - u_i(s)]d\pi \leq 0
$$

for all i and all (measurable) departure functions ζ_i

- Equivalent to above def. if strategy sets are finite
- Quantifier ranging over large set of functions
- Utilities composed with these complicated functions
- Is there a characterization which looks more like the finite case and doesn't have these problems?

An instructive failed attempt

• The following "characterization" fails:

$$
\int_{\{s:\ s_i = r_i\}} [u_i(t_i, s_{-i}) - u_i(s)]\pi(s) \le 0
$$

for all players *i* and all strategies $r_i, t_i \in S_i$

- Holds for any continuous probability distribution π
- This condition is much weaker than correlated equilibrium

New equivalent definitions of CE

- These conditions are equivalent to the departure function definition
- For all *i*, all $t_i \in S_i$, and all $-1 \leq a_i \leq b_i \leq 1$,

$$
\int_{\{a_i \le s_i \le b_i\}} [u_i(t_i, s_{-i}) - u_i(s)]d\pi \le 0
$$

• For all i , all $t_i \in S_i$, and all polynomials p ,

$$
\int [u_i(t_i, s_{-i}) - u_i(s)] p^2(s_i) d\pi \le 0
$$

Finite-dim'l characterization?

- Conditions on finitely many moments equivalent to a measure being a correlated equilibrium?
- If so, convexity \Rightarrow all extreme points of correlated eq. set have uniformly bounded finite support
- Counterexample: mixed extension of matching pennies
	- Large family of extreme points with arbitrarily large finite support and infinite support constructed using ergodic theory

Examples of extreme correlated equilibrium supports

•
$$
n = 2
$$
, $S_1 = S_2 = [-1, 1]$
\n• $u_1(s_1, s_2) = s_1 s_2 = -u_2(s_1, s_2)$

1: Static discretization (LP)

- Intended as a benchmark to judge other techniques
- Ignore polynomial structure
- Restrict strategies to finite sets $\tilde{S}_i \subset S_i$
- Compute exact correlated eq. of approximate game
- This is a sequence of LPs which converges (slowly!) to the set of correlated equilibria as the discretization gets finer.

2a: Adaptive discretization (SDP)

- \bullet Given $\tilde{S}_i^k,$ optimize the following (as an SDP)
	- min ϵ
	- s.t. π is an ϵ -correlated equilibrium supported on $\prod \tilde{S}_i^k$ which is a correlated equilibrium when deviations are restricted to \tilde{S}_i^k
- Let ϵ^k and π^k be optimal (we're done if $\epsilon^k = 0$)
- \bullet Compute \tilde{S}_i^{k+1} (following slides) and repeat
- Convergence theorem: $\epsilon^k \to 0$

2b: Finitely supported ϵ -correlated equilibria

• A probability measure π with finite support contained in $\prod \tilde{S}_i$ is an ϵ -correlated equilibrium if

$$
\sum_{s_{-i}\in\tilde{C}_{-i}} [u_i(t_i, s_{-i}) - u_i(s)]\pi(s) \le \epsilon_{i, s_i}
$$

for all $i, s_i \in \tilde{S}_i$, and $t_i \in S_i$ and

$$
\sum_{s_i \in \tilde{C}_i} \epsilon_{i,s_i} \leq \epsilon
$$

for all i .

2c: Adaptive discretization update steps

- Steps to compute \tilde{S}^{k+1}
	- For some player *i*, the ϵ -correlated equilibrium constraints are tight
	- Find values of t_i making these tight (free with SDP duality), add these into \tilde{S}_i^k to get \tilde{S}_i^{k+1}
	- There are finitely many such values by polynomiality

- For
$$
j \neq i
$$
, let $\tilde{S}_j^{k+1} = \tilde{S}_j^k$

• Intuitively, this adds "good" strategies for player i

3: Moment relaxation (SDP)

- No discretization
- Sequence of SDP constraints to describe moments of measures π on $[-1, 1]$ ⁿ
- For fixed d , use SDP to express

$$
\int [u_i(t_i, s_{-i}) - u_i(s)] p^2(s_i) d\pi \le 0
$$

for all $i, t_i \in [-1, 1]$, and polys. p of degree $\leq d$

• Get a nested sequence of SDPs converging to the set of correlated equilibria

MIT Laboratory for Information and Decision Systems 23

Future work

- PPAD-completeness proof
- Convergence rate of adaptive discretization
- Steering adaptive discretization toward a "good" equilibrium
- Finite algorithm for computing correlated equilibria