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Outline

• Nash equilibria

– Finite-dimensional structure

– Computation in zero-sum games via SOS/SDP

– Non-zero-sum games and PPAD (conjectures)

• Correlated equilibria

– In finite games

– Def. and characterizations in poly. games

– No finite dimensional characterization

– Computation – comparison of three methods

• Conclusions and future work
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Polynomial games

• Definition

– n players, strategic form

– Set of strategies Si = [−1, 1] ⊂ R for each player

– Utilities ui : [−1, 1]n → R are polynomials

• Notation

– Strategy for ith player: si ∈ Si
– Strategy profile: s ∈ S =

∏
i Si

– Without player i: s−i ∈
∏
j 6=i Sj , s = (si, s−i)

– Probability measure over Si: σi ∈ ∆(Si)
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Structure

[Dresher, Karlin, Shapley 1950’s]

• Utility under random (mixed) strategy is expected
utility [von Neumann - Morgenstern assumption]

• Only finitely many moments matter

ui(σj , s−j) =
∫ ∑

α

cαs
αj

j s
α−j

−j dσj(sj) =
∑
α

cα

(∫
s
αj

j dσj(sj)
)
s
α−j

−j

• Players can think about choosing moments∫
skj dσj(sj) instead of choosing σj directly

• Any such moments correspond to a measure with
support size at most 1 more than the j-degree of ui
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Nash equilibria

• A mixed strategy profile σ is a Nash equilibrium
if ui(σ) ≥ ui(τi, σ−i) for all τi ∈ ∆(Si)

• For polynomial games this is a finite dimensional
problem in the moment spaces.

• In fact we can describe the set of moments of Nash
equilibria with explicit polynomial inequalities

• The Nash equilibrium strategies of zero-sum games
(n = 2, u2 = −u1) are given by solutions to the
minimax problem:

min
σ2∈∆(S2)

max
σ1∈∆(S1)

u1(σ1, σ2) = min
σ2∈∆(S2)

max
s1∈S1

u1(s1, σ2)
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Example

Payoffs:

ux(x, y) = −uy(x, y)

= 5xy − 2x2 − 2xy2 − y

Value: −0.48
Optimal mixed strategies:

• P1 always picks x = 0.2

• P2 plays y = 1 with
probability 0.78, and
y = −1 with probability
0.22.
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P(0.2,t)
0.22*P(t,−1)+0.78*P(t,1)
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Computing minimax strategies
[Parrilo 2006]

• ux(x, y) =
∑
j,k

ajkx
jyk = −uy(x, y)

• A minimax strategy τ for player y solves

min β

s.t. τ is a prob. measure on [−1, 1]

τk =
∫ 1

−1
ykdτ for k ≤ [y-degree of ux]∑

j,k ajkx
jτk ≤ β for all x ∈ [−1, 1]

• Must describe polynomials nonnegative on [−1, 1] as
well as moments of measures on [−1, 1]
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Sums of squares + SDP

• A polynomial p(x) is ≥ 0 for all x ∈ R iff it is a sum
of squares of polynomials qk (SOS)

p(x) =
∑

q2
k(x) for all x ∈ R

• A polynomial p(x) is ≥ 0 for all x ∈ [−1, 1] iff there
are SOS polynomials s(x), t(x) such that

p(x) = s(x) + (1− x2)t(x)

• Coefficients of SOS polynomials can be described in
a semidefinite program (SDP)
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Moments of measures + SDP

• For all polynomials p, must have∫
p2(x)dτ(x) ≥ 0 and

∫
(1− x2)p2(x)dτ(x) ≥ 0

• τ0, . . . , τ2m are the moments of a measure τ on
[−1, 1] (i.e. τk =

∫
ykdτ) iff

τ0 τ1 τ2

τ1 τ2 τ3

τ2 τ3 τ4

 � 0,

τ0 − τ2 τ1 − τ3
τ1 − τ3 τ2 − τ4

 � 0 (m = 2 case)

• Moments of measures on [−1, 1] can be described in
a semidefinite program
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Higher dimensions

• What if we want to characterize, e.g., polynomials
which are nonnegative on [−1, 1]k or joint moments
of measures on [−1, 1]k?

• There are a sequence of sufficient SDP conditions
for polynomial nonnegativity starting with SOS
which approach an exact condition

• Similarly there is a sequence of necessary SDP
conditions for a list of numbers to be joint moments
of a measure which are exact in the limit
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Non-zero-sum games

• How hard is computing Nash equilibria of general
polynomial games?

• Conjecture: PPAD-complete, i.e., same as finite
games

• We have most of a proof that the problem is in
PPAD, modulo some details about the
polynomial-time solvability of SDPs

• No progress on a completeness proof, but it would
be surprising if polynomial games were easier to
solve than finite games
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Chicken and correlated equilibria
(u1, u2) Wimpy Macho

Wimpy (4, 4) (1, 5)

Macho (5, 1) (0, 0)

• Nash equilibria (self-enforcing independent distrib.)

– (M,W ) yields utilities (5, 1); (W,M) yields (1, 5)

–
(

1
2W + 1

2M, 1
2W + 1

2M
)

yields expected utility
(2 1

2 , 2
1
2 )

• Correlated equilibria (self-enforcing joint distrib.)

– e.g. 1
2 (W,M) + 1

2 (M,W ) yields (3 1
2 , 3

1
2 )

– 1
3 (W,W ) + 1

3 (W,M) + 1
3 (M,W ) yields (32

3 , 3
2
3 )
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Correlated equilibria in finite
games

• ui(ti, s−i)− ui(s) is change in player i’s utility when
strategy ti replaces si in s = (s1, . . . , sn)

• A prob. distribution π is a correlated
equilibrium if∑

{s: si=ri}

[ui(ti, s−i)− ui(s)]π(s) ≤ 0

for all players i and all strategies ri, ti ∈ Si

• Linear ineq. in variables π(s)⇒ linear program
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Defining CE in infinite games

• Definition in literature:∫
[ui(ζi(si), s−i)− ui(s)]dπ ≤ 0

for all i and all (measurable) departure functions ζi

• Equivalent to above def. if strategy sets are finite

• Quantifier ranging over large set of functions

• Utilities composed with these complicated functions

• Is there a characterization which looks more like the
finite case and doesn’t have these problems?
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An instructive failed attempt

• The following “characterization” fails:∫
{s: si=ri}

[ui(ti, s−i)− ui(s)]π(s) ≤ 0

for all players i and all strategies ri, ti ∈ Si

• Holds for any continuous probability distribution π

• This condition is much weaker than correlated
equilibrium
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New equivalent definitions of CE

• These conditions are equivalent to the departure
function definition

• For all i, all ti ∈ Si, and all −1 ≤ ai ≤ bi ≤ 1,∫
{ai≤si≤bi}

[ui(ti, s−i)− ui(s)]dπ ≤ 0

• For all i, all ti ∈ Si, and all polynomials p,∫
[ui(ti, s−i)− ui(s)]p2(si)dπ ≤ 0
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Finite-dim’l characterization?

• Conditions on finitely many moments equivalent to
a measure being a correlated equilibrium?

• If so, convexity ⇒ all extreme points of correlated
eq. set have uniformly bounded finite support

• Counterexample: mixed extension of matching
pennies

– Large family of extreme points with arbitrarily
large finite support and infinite support
constructed using ergodic theory
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Examples of extreme correlated
equilibrium supports
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• n = 2, S1 = S2 = [−1, 1]

• u1(s1, s2) = s1s2 = −u2(s1, s2)
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1: Static discretization (LP)

• Intended as a benchmark to judge other techniques

• Ignore polynomial structure

• Restrict strategies to finite sets S̃i ⊂ Si

• Compute exact correlated eq. of approximate game

• This is a sequence of LPs which converges (slowly!)
to the set of correlated equilibria as the
discretization gets finer.
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2a: Adaptive discretization (SDP)

• Given S̃ki , optimize the following (as an SDP)

min ε

s.t. π is an ε-correlated equilibrium supported

on
∏
S̃ki which is a correlated equilibrium

when deviations are restricted to S̃ki

• Let εk and πk be optimal (we’re done if εk = 0)

• Compute S̃k+1
i (following slides) and repeat

• Convergence theorem: εk → 0
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2b: Finitely supported
ε-correlated equilibria

• A probability measure π with finite support
contained in

∏
S̃i is an ε-correlated equilibrium if∑

s−i∈C̃−i

[ui(ti, s−i)− ui(s)]π(s) ≤ εi,si

for all i, si ∈ S̃i, and ti ∈ Si and∑
si∈C̃i

εi,si ≤ ε

for all i.
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2c: Adaptive discretization update
steps

• Steps to compute S̃k+1

– For some player i, the ε-correlated equilibrium
constraints are tight

– Find values of ti making these tight (free with
SDP duality), add these into S̃ki to get S̃k+1

i

– There are finitely many such values by
polynomiality

– For j 6= i, let S̃k+1
j = S̃kj

• Intuitively, this adds “good” strategies for player i
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3: Moment relaxation (SDP)

• No discretization

• Sequence of SDP constraints to describe moments
of measures π on [−1, 1]n

• For fixed d, use SDP to express∫
[ui(ti, s−i)− ui(s)]p2(si)dπ ≤ 0

for all i, ti ∈ [−1, 1], and polys. p of degree ≤ d

• Get a nested sequence of SDPs converging to the set
of correlated equilibria
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Comparison of Static Discretization, Adaptive Discretization, and SDP Relaxation
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(x,y) = 0.554 + 1.36x − 1.2y + 0.596x2 + 2.072xy −0.394y2
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Static Discretization

Adaptive Discretization

MIT Laboratory for Information and Decision Systems 23



Future work

• PPAD-completeness proof

• Convergence rate of adaptive discretization

• Steering adaptive discretization toward a “good”
equilibrium

• Finite algorithm for computing correlated equilibria
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