Adaptive Discretization Methods for Computing Correlated Equilibria of Polynomial Games

Noah Stein

Joint work with Profs. Pablo Parrilo and Asuman Ozdaglar

Outline

- Intro to correlated equilibria
- Polynomial games
- Approximating correlated equilibria in poly games
 Three (two?) discretization methods
- Example
- Implementation

Game theoretic setting

- Standard strategic (normal) form game
- Players (rational agents) numbered i = 1, ..., n
- Each has a set C_i of strategies s_i
- Players choose their strategies simultaneously
- Rationality: Each player seeks to maximize his own utility function $u_i: C \to \mathbb{R}$, which represents all his preferences over outcomes

Chicken and correlated equilibria

(u_1, u_2)	Wimpy	Macho
Wimpy	(4,4)	(1,5)
Macho	(5,1)	(0,0)

- Nash equilibria (self-enforcing independent distrib.)
 - -(M,W)
 - -(W,M)
- Correlated equilibria (self-enforcing joint distrib.)
 - $-\frac{1}{2}(W,M) + \frac{1}{2}(M,W)$
 - $\frac{1}{3}(W, W) + \frac{1}{3}(W, M) + \frac{1}{3}(M, W)$

Correlated equilibria in games with finite strategy sets

A probability distribution π is a correlated
 equilibrium if

$$\sum_{s \in \{r_i\} \times C_{-i}} [u_i(s) - u_i(t_i, s_{-i})] \pi(s|s_i = r_i) \ge 0$$

for all players i and all strategies $r_i, t_i \in C_i$

• No player has an incentive to deviate from his recommended strategy r_i

LP characterization

• A probability distribution π is a correlated equilibrium if and only if

$$\sum_{s_{-i} \in C_{-i}} [u_i(s) - u_i(t_i, s_{-i})] \pi(s) \ge 0$$

for all players i and all strategies $s_i, t_i \in C_i$

• Set of correlated equilibria of a finite game is a polytope

Polynomial games

- Strategy space is $C_i = [-1, 1]$ for all players i
- Utilities u_i are multivariate polynomials
- Many nice properties
 - Finitely supported equilibria exist; bounds on support size [1950s, SOP 2006]
 - Minimax strategies and values can be computed by semidefinite programming [Parrilo 2006]
 - Can compute outer approximations to set of correlated equilibria by SDP [SOP 2007]

Finitely supported ϵ -correlated equilibria

• A probability measure π with finite support contained in $\tilde{C} = \prod \tilde{C}_i$ is an ϵ -correlated equilibrium if

$$\sum_{s_{-i}\in\tilde{C}_{-i}} [u_i(s) - u_i(t_i, s_{-i})]\pi(s) + \epsilon_{i,s_i} \ge 0$$

for all $i, s_i \in \tilde{C}_i$, and $t_i \in C_i$ and

$$\sum_{s_i \in \tilde{C}_i} \epsilon_{i,s_i} \leq \epsilon$$

for all i.

Method I: Static discretization

- Intended as a benchmark to judge other techniques
- Ignore polynomial structure
- Restrict strategy choices (and deviations) to fixed finite sets $\tilde{C}_i \subset C_i$
- Compute exact correlated equilibria of approximate game
- This is a sequence of LPs which converges (slowly!) to the set of correlated equilibria as the discretization gets finer.

Method II: Adaptive discretization attempt (a)

• Given \tilde{C}_i^k , optimize the following (as an SDP)

min ϵ

- s.t. π is an ϵ -correlated equilibrium supported on \tilde{C}^k
- Let ϵ^k and π^k be optimal (we're done if $\epsilon^k = 0$)
- Otherwise, compute \tilde{C}_i^{k+1} (next slide) and repeat

Method II: Adaptive discretization attempt (b)

- Steps to compute \tilde{C}^{k+1}
 - For some player i, the ϵ -correlated equilibrium constraints are tight
 - Find values of t_i making these tight (free with SDP duality), add these into \tilde{C}_i^k to get \tilde{C}_i^{k+1}
 - There are finitely many such values by polynomiality

- For
$$j \neq i$$
, let $\tilde{C}_j^{k+1} = \tilde{C}_j^k$

• Intuitively, this adds "good" strategies for player i

Method II: Adaptive discretization attempt (c)

- This often works in practice, but $\epsilon^k \not\rightarrow 0$ in general
- Consider the symmetric game with identical utilities

• If $\tilde{C}_1^0 = \tilde{C}_2^0 = \{a\}$ then $\tilde{C}_i^k = \{a, b\}$ and $\epsilon^k = 1$ for all $k \ge 1$

Method III: Adaptive discretization

- Given \tilde{C}_i^k , optimize the following (as an SDP)
 - min ϵ
 - s.t. π is an ϵ -correlated equilibrium supported on \tilde{C}^k which is a correlated equilibrium when deviations are restricted to \tilde{C}^k
- Let ϵ^k and π^k be optimal (we're done if $\epsilon^k = 0$)
- Compute \tilde{C}_i^{k+1} (same way as above) and repeat
- Convergence theorem: $\epsilon^k \to 0$

Random example

• Three players, random polynomial utilities (deg. 4)

k	ϵ^k	$\tilde{C}^k_x\smallsetminus \tilde{C}^{k-1}_x$	$\tilde{C}_y^k \smallsetminus \tilde{C}_y^{k-1}$	$\tilde{C}_z^k\smallsetminus \tilde{C}_z^{k-1}$
0	0.99	{0}	{0}	{0}
1	4.16			$\{0.89\}$
2	5.76	$\{-1\}$		
3	0.57		{1}	
4	0.28	$\{0.53\}$		$\{0.50, 0.63\}$
5	0.16		$\{0.49, 0.70\}$	
6	10^{-7}		$\{-1, 0.60\}$	$\{-0.60, 0.47\}$

Need to solve optimization problems with

- Finitely many decision variables
- Linear objective
- Linear equations and inequalities
- Constraints of the form $p(t) \ge 0$ for all $t \in [-1, 1]$ where p(t) is a univariate polynomial in t whose coefficients are linear in the decision variables

Semidefinite programming

- A semidefinite program (SDP) is an optimization problem of the form
 - min $L(S) \leftarrow L$ is a given linear functional s.t. $T(S) = v \leftarrow T$ is a given linear transformation, v is a given vector
 - $S \succeq 0 \qquad \leftarrow S \text{ is a symmetric matrix}$ of decision variables
- SDPs generalize linear programs and can be solved efficiently using interior point methods

Sums of squares + SDP

• A polynomial p(t) is ≥ 0 for all $t \in [-1, 1]$ iff there are polynomials $q_k(t), r_k(t)$ such that

$$p(t) \equiv \sum_{k} q_{k}^{2}(t) + (1 - t^{2}) \sum_{k} r_{k}^{2}(t)$$

• Coefficients of polynomials of this form can be described in an SDP

Closing remarks (a)

- For a completely different approach to computing correlated equilibria of polynomial games that does not use discretization, see [SPO 2007]
- We did not use the polynomial structure of the u_i in the convergence proof, just continuity
- Used polynomiality to convert the optimization problem into an SDP

Closing remarks (b)

- Can also do this conversion if the u_i are rational or even piecewise rational (and continuous)
- Solutions of such games are surprisingly complex the Cantor measure arises as the unique Nash equilibrium of a game with rational u_i [Gross 1952]
- Now we have a way to approximate these algorithmically!
- Open questions
 - Convergence rate
 - Optimization over the set of correlated equilibria