Adaptive Discretization Methods for Computing Correlated Equilibria of Polynomial Games

Noah Stein

Joint work with Profs. Pablo Parrilo and Asuman Ozdaglar

Outline

- Intro to correlated equilibria
- Polynomial games
- Approximating correlated equilibria in poly games – Three (two?) discretization methods
- Example
- Implementation

Game theoretic setting

- Standard strategic (normal) form game
- Players (rational agents) numbered $i = 1, \ldots, n$
- Each has a set C_i of strategies s_i
- Players choose their strategies simultaneously
- Rationality: Each player seeks to maximize his own utility function $u_i: C \to \mathbb{R}$, which represents all his preferences over outcomes

Chicken and correlated equilibria

- Nash equilibria (self-enforcing independent distrib.)
	- (M, W)
	- (W, M)
- Correlated equilibria (self-enforcing joint distrib.) $-\frac{1}{2}$ $\frac{1}{2}(W,M)+\frac{1}{2}(M,W)$ $-\frac{1}{3}$ $\frac{1}{3}(W,W) + \frac{1}{3}(W,M) + \frac{1}{3}(M,W)$

Correlated equilibria in games with finite strategy sets

• A probability distribution π is a correlated equilibrium if

$$
\sum_{s \in \{r_i\} \times C_{-i}} [u_i(s) - u_i(t_i, s_{-i})] \pi(s|s_i = r_i) \ge 0
$$

for all players *i* and all strategies $r_i, t_i \in C_i$

• No player has an incentive to deviate from his recommended strategy r_i

LP characterization

• A probability distribution π is a correlated equilibrium if and only if

$$
\sum_{s_{-i}\in C_{-i}} [u_i(s) - u_i(t_i, s_{-i})]\pi(s) \ge 0
$$

for all players *i* and all strategies $s_i, t_i \in C_i$

• Set of correlated equilibria of a finite game is a polytope

Polynomial games

- Strategy space is $C_i = [-1, 1]$ for all players i
- Utilities u_i are multivariate polynomials
- Many nice properties
	- Finitely supported equilibria exist; bounds on support size [1950s, SOP 2006]
	- Minimax strategies and values can be computed by semidefinite programming [Parrilo 2006]
	- Can compute outer approximations to set of correlated equilibria by SDP [SOP 2007]

Finitely supported ϵ -correlated equilibria

• A probability measure π with finite support contained in $\tilde{C} = \prod \tilde{C}_i$ is an ϵ -correlated equilibrium if

$$
\sum_{s_{-i}\in\tilde{C}_{-i}} [u_i(s) - u_i(t_i, s_{-i})]\pi(s) + \epsilon_{i, s_i} \ge 0
$$

for all $i, s_i \in \tilde{C}_i$, and $t_i \in C_i$ and

$$
\sum_{s_i\in \tilde{C}_i}\epsilon_{i,s_i}\leq \epsilon
$$

for all i .

Method I: Static discretization

- Intended as a benchmark to judge other techniques
- Ignore polynomial structure
- Restrict strategy choices (and deviations) to fixed finite sets $\tilde{C}_i \subset C_i$
- Compute exact correlated equilibria of approximate game
- This is a sequence of LPs which converges (slowly!) to the set of correlated equilibria as the discretization gets finer.

Method II: Adaptive discretization attempt (a)

 $\bullet\,$ Given $\tilde{C}^k_i,$ optimize the following (as an SDP)

min ϵ

- s.t. π is an ϵ -correlated equilibrium supported on \tilde{C}^k
- Let ϵ^k and π^k be optimal (we're done if $\epsilon^k = 0$)
- \bullet Otherwise, compute \tilde{C}_i^{k+1} (next slide) and repeat

Method II: Adaptive discretization attempt (b)

- Steps to compute \tilde{C}^{k+1}
	- For some player i, the ϵ -correlated equilibrium constraints are tight
	- Find values of t_i making these tight (free with SDP duality), add these into \tilde{C}_i^k to get \tilde{C}_i^{k+1}
	- There are finitely many such values by polynomiality

- For
$$
j \neq i
$$
, let $\tilde{C}_j^{k+1} = \tilde{C}_j^k$

• Intuitively, this adds "good" strategies for player i

Method II: Adaptive discretization attempt (c)

- This often works in practice, but $\epsilon^k \to 0$ in general
- Consider the symmetric game with identical utilities

$$
\begin{array}{c|c|c|c|c} & a & b & c \\ \hline a & 0 & 1 & 0 \\ \hline b & 1 & 5 & 7 \\ \hline c & 0 & 7 & 0 \\ \hline \end{array}
$$

• If $\tilde{C}_1^0 = \tilde{C}_2^0 = \{a\}$ then $\tilde{C}_i^k = \{a, b\}$ and $\epsilon^k = 1$ for all $k > 1$

Method III: Adaptive discretization

- $\bullet\,$ Given $\tilde{C}^k_i,$ optimize the following (as an SDP)
	- min ϵ
	- s.t. π is an ϵ -correlated equilibrium supported on \tilde{C}^k which is a correlated equilibrium when deviations are restricted to \tilde{C}^k
- Let ϵ^k and π^k be optimal (we're done if $\epsilon^k = 0$)
- \bullet Compute \tilde{C}_i^{k+1} (same way as above) and repeat
- Convergence theorem: $\epsilon^k \to 0$

Random example

• Three players, random polynomial utilities (deg. 4)

Need to solve optimization problems with

- Finitely many decision variables
- Linear objective
- Linear equations and inequalities
- Constraints of the form $p(t) \geq 0$ for all $t \in [-1, 1]$ where $p(t)$ is a univariate polynomial in t whose coefficients are linear in the decision variables

Semidefinite programming

- A semidefinite program (SDP) is an optimization problem of the form
	- min $L(S) \leftarrow L$ is a given linear functional
	- s.t. $T(S) = v \leftarrow T$ is a given linear transformation,

v is a given vector

- $S \succeq 0$ ← S is a symmetric matrix of decision variables
- SDPs generalize linear programs and can be solved efficiently using interior point methods

Sums of squares $+$ SDP

• A polynomial $p(t)$ is ≥ 0 for all $t \in [-1, 1]$ iff there are polynomials $q_k(t)$, $r_k(t)$ such that

$$
p(t) \equiv \sum_{k} q_k^2(t) + (1 - t^2) \sum_{k} r_k^2(t)
$$

• Coefficients of polynomials of this form can be described in an SDP

Closing remarks (a)

- For a completely different approach to computing correlated equilibria of polynomial games that does not use discretization, see [SPO 2007]
- We did not use the polynomial structure of the u_i in the convergence proof, just continuity
- Used polynomiality to convert the optimization problem into an SDP

Closing remarks (b)

- Can also do this conversion if the u_i are rational or even piecewise rational (and continuous)
- Solutions of such games are surprisingly complex the Cantor measure arises as the unique Nash equilibrium of a game with rational u_i [Gross 1952]
- Now we have a way to approximate these algorithmically!
- Open questions
	- Convergence rate
	- Optimization over the set of correlated equilibria