Computation of ϵ -equilibria in Separable Games

Noah Stein

Joint work with Asu Ozdaglar and Pablo Parrilo

Outline

- Motivation
- Previous work
	- Structural results (e.g. Karlin, Glicksberg 1950s)
	- SDP formulation of equilibrium for zero-sum polynomial games (Parrilo 2006)
- Background and definitions
- Theory and examples
- An algorithm

Continuous games

- Finite set of players $I = \{1, \ldots, n\}$. For player *i*, let:
	- $-$ the ${pure\ strategy\ space\ }C_i}$ be a compact metric space.
	- the utility or payoff function $u_i: \Pi_{j=1}^n C_j \to \mathbb{R}$ be continuous.
	- $-$ the \bold{mixed} strategy space Δ_i be the set of Borel probability measures over C_i .
- Extend u_i to all of $\Pi_{j=1}^n \Delta_j$ by defining the utility to be the expected utility.
- Notation: $\sigma_i \in \Delta_i$ and $\sigma_{-i} \in \Pi_{j \neq i} \Delta_j$.

Equilibria

• An ϵ -equilibrium is a $\sigma \in \prod_{j=1}^n \Delta_j$ such that for all *i* and $\tau_i \in \Delta_i$:

$$
u_i(\tau_i, \sigma_{-i}) \leq u_i(\sigma_i, \sigma_{-i}) + \epsilon
$$

i.e. no player can unilaterally improve his payoff by more than ϵ .

- A Nash equilibrium is a 0-equilibrium.
- Theorem: Every continuous game has a Nash equilibrium (Glicksberg 1952).
- But this equilibrium may be arbitrarily complicated!

Separable games

• A continuous game is **separable** if it has payoffs:

$$
u_i(s_1, ..., s_n) = \sum_{k=1}^r a_i^k f_1^k(s_1) \cdots f_n^k(s_n)
$$

where a_i^k $i \in \mathbb{R}$ and f_j^k $j^k_j : C_j \to \mathbb{R}$ is continuous.

- E.g. games with polynomial payoffs; finite games.
- For $\sigma_i \in \Delta_i$, define the **moments** ν_i^k $i^k\,=\,\int$ C_i f_i^k $i^k d\sigma_i.$

• Then:

$$
u_i(\sigma_1,\ldots,\sigma_n) = \sum_{k=1}^r a_i^k \nu_1^k \cdots \nu_n^k
$$

so the payoffs are determined by the moments.

Finite-dimensional representations for separable games

• Theorem:

Set of moments $\stackrel{def.}{=} \{(\nu_i^1)\}$ $[\nu_i^1,\ldots,\nu_i^r)|\sigma_i\in\Delta_i\big\}$ $=\big\{(\nu_i^1)$ $\langle v_i^1, \ldots, v_i^r \rangle | \tau_i \in \Delta_i$ such that $|\text{supp}(\tau_i)| \leq r+1$

Proof: separating hyperplanes, Carathéodory's thm.

- Any $\sigma_i \in \Delta_i$ has the same moments as a $\tau_i \in \Delta_i$ in which player *i* mixes among at most $r + 1$ strategies.
- The strategies σ_i and τ_i are **payoff equivalent**.
- A separable game has equilibria in which no player mixes among more than $r + 1$ strategies.

An example

$$
C_1 = C_2 = [0, 1];
$$
 $u_i(x, y) = a_i xy^2 + b_i x^2 y;$ $a_i, b_i \in \mathbb{R}$

Classical results about separable games

Mixed strategy spaces mod payoff equivalence relation are finite dimensional

Separable

⇓

6⇑⇓ Each mixed strategy is payoff equivalent to a finitely-supported mixed strategy ⇓

Each countably supported σ is payoff equivalent to a finitely supported τ such that $supp(\tau) \subset supp(\sigma)$

Some new results about separable games

Separable

⇓⇑

Mixed strategy spaces mod payoff equivalence relation are finite dimensional

⇓6⇑

⇓⇑

Each mixed strategy is payoff equivalent to a finitely-supported mixed strategy

Each countably supported σ is payoff equivalent to a finitely supported τ such that $supp(\tau) \subset supp(\sigma)$

Proof ideas

- Extending a game from pure to mixed strategies yields multilinear payoffs.
- Modding out by payoff equivalence relation removes any superfluous structure introduced in this process without affecting multilinearity of the payoffs.
- Multilinear functions on finite-dimensional vector spaces are separable.
- To get counterexample in lower left, apply this procedure to a game whose pure strategy spaces are infinite-dimensional and whose payoffs are multilinear and non-degenerate.

Computing ϵ -equilibria for two-player separable games

- Assume $C_i = [-1, 1]$ and the utilities are Lipschitz.
- Discretize the game by choosing m equally spaced pure strategies for each player, call this set D_i .
- Choose m so that payoffs of the original game are always within ϵ of the payoffs obtained by rounding to the nearest point in D_i . By the Lipschitz assumption we may choose m proportional to $\frac{1}{\epsilon}$.
- Compute a Nash equilibrium of this finite game.
- This yields an ϵ -equilibrium of the separable game.

Will this work?

- In general computing an equilibrium of a finite game is not easy.
- But in this case the finite game has the same separable structure as the original game:

$$
u_i(s_1, s_2) = \sum_{k=1}^r a_i^k f_1^k(s_1) f_2^k(s_2)
$$

• In particular the finite game has an equilibrium in which each player mixes among at most $r + 1$ strategies, independent of the choice of $m \propto \frac{1}{\epsilon}$ $\frac{1}{\epsilon}$.

Computing an equilibrium of the finite game

- Choose a support: up to $r + 1$ strategies from the finite game for each player to play with positive probability.
- There exists an LP (size polynomial in m, r) to check whether this is the support of an equilibrium of the finite game (lose linearity with > 2 players).

$$
\#
$$
 supports for each player \leq

•

$$
\underbrace{\binom{m+r}{m-1}}
$$

polynomial in \overline{r} for fixed \overline{m}

Complexity of the algorithm

- The number of LPs and the time to solve each are both polynomial in r for fixed ϵ .
- So the algorithm is polynomial in r for fixed ϵ and similarly polynomial in $\frac{1}{\epsilon}$ for fixed r.
- A recent ϵ -equilibrium algorithm for finite games has similar $\frac{1}{\epsilon}$ dependence for fixed m, but is quasipolynomial in m for fixed ϵ (LMM 2003).
- Separability, combined with the continuous nature of the space and the Lipschitz condition make computing ϵ -equilibria easier!

Conclusions

- Separable games are games which abstractly resemble finite games, enabling one to:
	- Generalize structural results (e.g. r / rank)
	- Extend computational results

Future work

- Algorithms for computing other solution concepts in separable games
	- Correlated equilibria
	- Iterated elimination of dominated strategies

Correlated equilibria (in polynomial games)

- Main difficulty not finite-dimensional
	- Finitely many joint moments do not determine conditional distributions
- Discretization algorithms
	- A priori discretization Converges slowly
	- Adaptive discretization Convergence is hard to prove, seems to be fast
- SDP relaxation algorithms
	- Converge, faster than above algorithms

Iterated elimination of strictly dominated strategies (in polynomial games)

- Replace iterative procedure with fixed point characterization (Dufwenberg & Stegeman 2002; Chen et al. 2005)
- Main difficulty This yields a second-order condition, with quantifiers ranging over sets
- Results limited to cases in which these sets can be parametrized, e.g. games with intervals for strategy sets and quasiconcave utility functions