Exchangeable Equilibria in Symmetric Bimatrix Games

N. D. Stein P. A. Parrilo A. Ozdaglar

Laboratory for Information and Decision Systems Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

Brazilian Workshop on Game Theory, 2010

Outline

Topics

- Introduction to exchangeable equilibria
- Exchangeability of random variables
- Definition of exchangeable equilibria
- De Finetti's Theorem on exchangeable random variables
- Interpretation, characterization of exchangeable equilibria
- Separation example
- Multiplayer interpretation
- Elementary existence proof

・ 同 ト ・ ヨ ト ・ ヨ ト

Thought experiment

Setup

- Pick two random Bayesian rational agents off the street
- Put them in separate rooms
- Give them each the table for a symmetric bimatrix game:

 $\begin{bmatrix} (0,0) & (1,1) \\ (1,1) & (0,0) \end{bmatrix}$

- Tell them this is what you have done
- Ask each what strategy he would play

Main question

What should we expect to happen?

< 回 > < 三 > < 三

Main idea

More formal setup

- Population of interchangeable players
- Two play a game with symmetric payoffs
- We are outside observers predicting play
- Environment gives no way to break symmetry

Immediate implications

- Bayesian rationality \Rightarrow play is a correlated equilibrium W
- Interchangeability $\Rightarrow W = W^T$

Our claim

- Not all symmetric correlated equilibria are reasonable
- Some are "more symmetric" than others

ъ

Sneaky trick

- Suppose we pick three people
- Again put each in a room
- Give all the same bimatrix game
- Ask what they would do
- Call their responses X₁, X₂, and X₃

Implications

- Ignoring X₃, X₁ and X₂ should be a correlated equilibrium
- Joint distribution of the X_i invariant under relabeling

米間を そほと そほと

Non-example

Game:
$$\begin{bmatrix} (0,0) & (1,1) \\ (1,1) & (0,0) \end{bmatrix}$$
 Correlated equilibrium: $\begin{bmatrix} 0 & 0.5 \\ 0.5 & 0 \end{bmatrix}$

• Is this a reasonable joint distribution for X_1 and X_2 ?

Claim

No symmetric distribution of X_1, X_2, X_3 has marginal

$$\begin{bmatrix} 0 & 0.5 \\ 0.5 & 0 \end{bmatrix}$$
.

イロト イポト イヨト イヨト 三日

Proof.

- With probability one $X_i \neq X_j$ for all $i \neq j$.
- By the pigeonhole principle, $X_i = X_j$ for some $i \neq j$.

A sequence of random variables $X_1, X_2, ...$ is **exchangeable** if permuting finitely many of the X_k doesn't affect its distribution.

Properties

i.i.d.

- \Rightarrow exchangeable
- $\Rightarrow X_j, X_k$ marginal is symmetric, fixed for any $j \neq k$
- \Rightarrow identically distributed

Exchangeable but not independent examples

- Distribution of X_1 arbitrary, all $X_k = X_1$ almost surely
- Repeated flips of a coin with a random bias

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

An **exchangeable equilibrium** is a correlated equilibrium which is extendable to an exchangeable distribution.

Remarks

- Natural limit of thought experiment
- Correlated equilibrium ⇔ Bayesian rationality
- Exchangeable distribution ⇔ Bayesian model for interchangeable members of population
- Symmetric Nash equilibria are i.i.d. distributions

•
$$NE_{Sym} \subset XE_{Sym} \subset CE_{Sym}$$

Theorem (de Finetti)

A sequence $X_1, X_2, ...$ is exchangeable if and only if it is i.i.d. conditioned on some random parameter Λ .

Interpretation

- In exchangeable equilibria players react symmetrically to noisy measurement of environment
- If parameter A were common knowledge play would be a (random, symmetric) Nash equilibrium
- This corresponds to perfect measurements, but in general exchangeable equilibria measurements may be noisy
- E.g.: Sunspots may or may not occur; if they do players may or may not notice
- Standard game theoretic insight: Players may be better off with less info, i.e., noisier measurements

Let $Z = \{zz^T \mid z \in \mathbb{R}^{m \times 1} \ge 0\}$ be the set of symmetric, rank 1, nonnegative matrices. The set of **completely positive (CP)** matrices is conv(*Z*).

Observation

• The probability matrices in Z (those whose entries sum to 1) are the joint distributions of i.i.d. random variables.

Corollary (of de Finetti's theorem)

The joint distribution of random variables X_1, X_2 is completely positive if and only if it can be extended to an exchangeable sequence X_1, X_2, \ldots

Corollary

The exchangeable equilibria are the correlated equilibria which are completely positive as matrices.

Consequences

- The set of exchangeable equilibria is convex and compact
- $\bullet \ \mathsf{NE}_{\mathsf{Sym}} \subset \mathsf{conv}(\mathsf{NE}_{\mathsf{Sym}}) \subset \mathsf{XE}_{\mathsf{Sym}} \subset \mathsf{CE}_{\mathsf{Sym}}$
 - These sets can all be different (example soon)

Sidenote

- Can also use CP matrices to characterize conv(NE_{Sym})
- Can then prove that $conv(NE_{Sym}) = XE_{Sym}$ for 2 × 2 games

ヘロン ヘアン ヘビン ヘビン

Separation example

Example game

(u_1, u_2)	а	b	С
а	(5,5)	(5,4)	(0,0)
b	(4,5)	(4,4)	(4,5)
С	(0,0)	(5,4)	(5,5)

• Symmetric Nash equilibria:

$$\begin{bmatrix}1 \quad 0 \quad 0\end{bmatrix}, \begin{bmatrix}0 \quad 0 \quad 1\end{bmatrix}, \begin{bmatrix}0.2 \quad 0.6 \quad 0.2\end{bmatrix}$$

• Non-exchangeable correlated equilibrium:

$$W^{1} = \begin{bmatrix} 0 & \frac{1}{4} & 0\\ \frac{1}{4} & 0 & \frac{1}{4}\\ 0 & \frac{1}{4} & 0 \end{bmatrix}$$
 (zero diagonal)

• Exchangeable equilibrium not in conv(NE_{Sym}):

$$W^{2} = \begin{bmatrix} \frac{1}{8} & \frac{1}{8} & 0\\ \frac{1}{8} & \frac{1}{4} & \frac{1}{8}\\ 0 & \frac{1}{8} & \frac{1}{8} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \frac{1}{2}\\ \frac{1}{2}\\ 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2}\\ \frac{1}{2}\\ 0 \end{bmatrix}^{T} + \frac{1}{2} \begin{bmatrix} 0\\ \frac{1}{2}\\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0\\ \frac{1}{2}\\ \frac{1}{2} \end{bmatrix}^{T}$$

N. D. Stein, P. A. Parrilo, A. Ozdaglar

Exchangeable Equilibria in Symmetric Bimatrix Games

Separation example, plotted

N. D. Stein, P. A. Parrilo, A. Ozdaglar Exchangeable Equilibria in Symmetric Bimatrix Games

Theorem (Nash)

A symmetric bimatrix game has a symmetric Nash equilibrium.

Remarks

- In particular this implies exchangeable equilibria exist
- There are several more elementary proofs
- One is an adaptation of Hart and Schmeidler's proof of existence of correlated equilibria
 - Adding a limiting argument we can prove Nash's theorem itself in full generality
- We give a different proof based on the statement of Hart and Schmeidler's result

The *n*-player extension of a symmetric bimatrix game Γ is the *n*-player game Γ^n in which each pair of players plays Γ and each player's utility is the sum of his utilities from these subgames.

Notation

- Set of strategy profiles: $(C_1)^n = C_1 \times \cdots \times C_1$
- Set of correlated strategies symmetric under permuting the players: Δ_{Sym}((C₁)ⁿ)
- Call the symmetric correlated equilibria CE_{Sym}(Γⁿ)
- Marginalization onto first *m* players: $\mu_m^n : \Delta_{Sym}((C_1)^n) \to \Delta_{Sym}((C_1)^m)$

イロト 不得 とくほ とくほとう

Multiplayer extension lemma

Lemma

Let
$$\pi \in \Delta_{Sym}((C_1)^n)$$
. Then $\pi \in CE_{Sym}(\Gamma^n)$ if and only if $\mu_2^n(\pi) \in CE_{Sym}(\Gamma)$. In particular $\mu_m^n : CE_{Sym}(\Gamma^n) \to CE_{Sym}(\Gamma^m)$.

Proof.

$$\mathbb{E}_{\pi} u_{1}^{n}(f(X_{1}), X_{2}, \dots, X_{n}) = \mathbb{E}_{\pi} \sum_{i=2}^{n} u_{1}(f(X_{1}), X_{i})$$
$$= \sum_{i=2}^{n} \mathbb{E}_{\pi} u_{1}(f(X_{1}), X_{i})$$
$$= \sum_{i=2}^{n} \mathbb{E}_{\mu_{2}^{n}(\pi)} u_{1}(f(X_{1}), X_{2})$$
$$= (n-1) \mathbb{E}_{\mu_{2}^{n}(\pi)} u_{1}(f(X_{1}), X_{2}) \qquad \Box$$

N. D. Stein, P. A. Parrilo, A. Ozdaglar Exchangeable Equilibria in Symmetric Bimatrix Games

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Equivalence with original definition

Original definition

An XE is a CE which extends to an exchangeable distribution.

Alternative definition

• An XE is a CE which extends to $\Delta_{Sym}((C_1)^n)$ for all *n*.

Corollary

• An XE is a CE which extends to $CE_{Sym}(\Gamma^n)$ for all n.

Interpretation

 Exchangeable equilibria are symmetric correlated equilibria of large games with many identical interactions

Theorem

Any symmetric bimatrix game admits an exchangeable equilibrium.

Proof.

- For all n, $CE(\Gamma^n)$ is compact, convex, nonempty (HS '89)
- Average over permutations of the players: so is CE_{Sym}(Γⁿ)
- For *m* < *n*:
 - $\mu_m^n : \mathsf{CE}_{\mathsf{Sym}}(\Gamma^n) \to \mathsf{CE}_{\mathsf{Sym}}(\Gamma^m)$
 - $\mu_2^n(\mathsf{CE}_{\mathsf{Sym}}(\Gamma^n)) = \mu_2^m(\mu_m^n(\mathsf{CE}_{\mathsf{Sym}}(\Gamma)^n)) \subseteq \mu_2^m(\mathsf{CE}_{\mathsf{Sym}}(\Gamma^m))$
- $XE(\Gamma) = \bigcap_{n=2}^{\infty} \mu_2^n(CE_{Sym}(\Gamma^n))$
- Nested intersection of convex sets is nonempty

Interpretations of exchangeable equilibria

- Natural objects between Nash and correlated equilibria
- Right way to maintain symmetry under correlation
- Coordination on noisy measurements of the environment
- Equilibria of games with many simultaneous interactions

Other results

- Extension to multiplayer games / general symmetries
- Can be used to prove Nash's theorem via the separation techniques of HS '89 without fixed point theorems

(本間) (本語) (本語)