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Abstract

Directed evolution has proven to be a successful strategy for the modification of enzyme properties. To

date, the preferred experimental procedure has been to apply mutations or crossovers randomly throughout the gene.
With the emergence of powerful computational methods, it has become possible to develop focused combinatorial
searches, guided by computer algorithms. Here, we describe several computational methods that have emerged to aid
the optimization of mutant libraries, the targeting of specific residues for mutagenesis, and the design of recombination

experiments. J. Cell. Biochem. Suppl. 37: 58-63, 2001.
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Directed evolution has emerged as a powerful
technique in protein engineering [Petrounia
and Arnold, 2000; Arnold, 2001]. Diversity is
created through mutagenesis or recombina-
tion and the resulting library is screened for
improvements in interesting properties. Tradi-
tionally, the diversity generated by directed
evolution has been applied randomly through-
out the gene. On one hand, this allows for the
discovery of beneficial mutations that may not
have been predicted a priori to have a positive
effect. However, the combinatorial explosion
of possibilities, and some experimental biases
(e.g., the genetic code), cause many opportu-
nities to be missed.

Concurrent with the rise of directed evolu-
tion, computational techniques have improved
dramatically [Dahiyat and Mayo, 1997; Street
and Mayo, 1999; Voigt et al., 2001b]. In parti-
cular, inverse design algorithms, where an
amino acid sequence is designed to fold into a
predetermined structure, have shown tremen-
dous success. These algorithms allow for the
prediction of the effects of mutations on the
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stability of the protein. Further, a better under-
standing has emerged on the biases of PCR and
the annealing of DNA fragments [Sun, 1999;
Wang et al., 2000]. Together, these techniques
will allow the optimization of directed evolu-
tion by focusing the diversity towards specific
regions of the gene. In turn, this decreases the
need for costly and time-consuming screening.

Here, we will describe several methods that
have been proposed to merge computational
algorithms with combinatorial experiments.
First, a model is explored that describes the
effect of mutations on the quality of the mu-
tant library. These simulations have improved
our understanding of the relationship between
parameters describing the search space (e.g.,
interactions between amino acids) and experi-
mental parameters such as the mutation rate
and library size. Next, an algorithm is des-
cribed that can calculate the tolerance of
each residue to amino acid substitutions, based
on the three-dimensional structure. Finally, a
computational model to optimize recombina-
tion experiments is explored.

Optimizing the Mutant Library

A key constraint in the evolutionary search
is the limited screening capacity. Typically,
screening is restricted to 10°-10° mutants
[Daugherty et al., 2000; Petrounia and Arnold,
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2000]. Even the state-of-the-art high through-
put selection techniques, such as RNA—protein
fusion, can handle on the order of 10'? mutants
[Roberts and Szostak, 1997]. Despite these
impressive experimental advances, the sam-
pling ability remains tiny when compared with
the vastness of sequence space. To reduce the
project time and cost of an experiment, it is
desirable to optimize the search parameters,
such that the maximum fitness improvements
can be found with the minimum screening
effort. Towards this goal, this section is devoted
to a model describing the properties of small
libraries of mutants, generated by error-prone
PCR.

For a given screening capacity, there is an
optimal mutation rate, defined as the rate that
produces the largest fitness improvement for
a given library size. This is a consequence of
two opposing effects. On the one hand, a large
enough mutation rate is required to generate
adequate diversity in the mutants. On the other
hand, because the probability of an individual
mutation demonstrating improvement is small,
multiple mutations on the same sequence
(the result of large mutation rate) are generally
deleterious. Thus, in a limited screening pool,
the probability of observing improvement de-
creases rapidly as the number of mutations
increases.

Using a statistical mechanical model, we have
investigated the effects of the finite screening
size on libraries generated by mutagenesis
[Voigt et al., 2001a,b]. Simulations using this
model demonstrate the relationship between
the number of mutants that can be screened and
the optimal mutation rate. The optimal muta-
tion rate is typically low (about one amino acid
substitution per sequence) because the prob-
ability of an individual mutation demonstrating
improvement is small (Fig. 1A). When multiple
mutations are accumulated, it is likely that
most are deleterious and these mutations
quickly erode the improvement from the few
beneficial mutations that may exist. This effect
worsens as the number of mutants that can be
screened decreases. In fact, as the mutation rate
increases, the number of possible combinations
increases exponentially. Therefore, to adequa-
tely sample higher mutation rates, exponen-
tially larger libraries are required. Similarly, as
the fitness of the parent sequence increases,
the probability of improvement decreases, thus
exaggerating the effect of deleterious mutations
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Fig. 1. The optimal DNA mutation rate as determined from
a statistical model, similar to a spin-glass, that captures the
effect of interactions between amino acids [Voigt et al., 2001].
The genetic code is included in the model. The data is for a
N =50 protein and 1,000 mutants are screened. The fitness
improvement is the average maximum change in fitness as
averaged over 10,000 landscapes. A: The optimal mutation
rate as the total number of interactions between residues (the
““landscape ruggedness’’) increases. The number of coupling
interactions is 75 (dotted line) and O (solid line). As the
landscape ruggedness increases, the optimal mutation rate
decreases. To compare the relative location of the optima,
the curves have been scaled so that the optima are at 1.0.
B: The optimal mutation rate is shown as a function of the
parental fitness for a smooth (solid line) and rugged (dotted
line) landscape. As the parental fitness increases, the prob-
ability that a mutation is deleterious also increases, making a
smaller mutation rate optimal. This effect is more rapid
when there are more interactions between amino acids.
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(Fig. 1B). Thus, as the generations of mutation
and selection progress, an exponentially in-
creasing screening size is required.

Further, the probability of improvement is
affected by the ruggedness of the fitness land-
scape. The property of ruggedness is caused by
interactions between amino acids, where two
residues are considered interacting, or coupled,
when the sum of individual effects from mu-
tations at each residue is not equal to the
combined effect of both mutations together
[Kauffman and Levin, 1987; Matsuura et al.,
1998; Juncovic and Poteete, 1999]. As the
number of interactions increases, the probabil-
ity that a mutation is deleterious also increases.
When multiple mutations are accumulated on a
gene, a larger fraction of these mutations will
decrease the fitness. This effect quickly erodes
the beneficial effect of any positive mutations.
Therefore, to search rugged landscapes, a smal-
ler mutation rate is optimal.

Within a protein, some residues are involved
in more interactions than others. Single amino
acid substitutions at a coupled residue are often
not adequate to show improvement. Rather, it is
necessary to simultaneously optimize all of the
interacting residues, requiring a large mutation
rate. However, the mutation rate is limited by
the number of mutants that can be screened.
Under this limitation, the probability that a
single amino acid substitution will improve
the fitness is lower for coupled residues. Simu-
lations of the directed evolution algorithm on
simple fitness landscapes have shown that the
probability of discovering a beneficial mutation
at a highly coupled residue decreases signifi-
cantly as the sequence increases in fitness.

Targeted Mutagenesis Algorithms

Using error-prone PCR to mutate the entire
gene has several disadvantages. First, the at-
tainable amino acid substitutions are severely
restricted by the genetic code because the
probability of obtaining adjacent DNA muta-
tions is small. This reduces the number of
possible amino acid mutations at each residue
from 19 to about 5.7. Further, the diversity is
reduced by biases for transitions over transver-
sions, and A — T mutations over G« C muta-
tions. These limitations can be overcome by
saturating a selected set of residues with all
twenty amino acids. Towards this end, several
non-computational strategies have been pro-
posed to focus the mutations towards specific

regions of the gene, including the selective
saturation of residues near to the active site
[Shinkai et al., 2001] or residues where im-
provements have been previously found by di-
rected evolution [Miyazaki and Arnold, 1999].
Here, we describe a computational method,
based on the simulations described in the above
section, that determines which residues can
be mutated without disturbing the stability of
the protein.

Our statistical model has demonstrated that
the largest fitness improvements are made at
uncoupled residues when the fitness of the
parent sequence is high and the number of
mutants that can be screened is limited. We
have extended these findings to real proteins,
where data are available from directed evo-
lution experiments [Voigt et al., 2001b]. To
determine the coupling interactions between
residues, the energetic interactions between
amino acids are calculated using the ORBIT
protein design software [Dahiyat and Mayo,
1997]. The effect of all amino acid substitutions
was measured and the information condensed
into a site entropy by the following equation:

20
s; = Zpi(a) In p; (a)
j=1

where p;(a) is the probability of amino acid a
existing at residue i. A high site entropy in-
dicates that many amino acids may be sub-
stituted at that residue. To circumvent the
combinatorial difficulties in obtaining the pro-
babilities required by the above equation, we
applied mean-field theory, a technique bor-
rowed from statistical mechanics [Saven and
Wolynes, 1997]. A representative entropy pro-
file for substilisin E is shown in Figure 2.
Beneficial mutations accumulated in experi-
mental directed evolution were found to be
strongly correlated with the high entropy resi-
dues identified from our calculation [Chen and
Arnold, 1993; You and Arnold, 1996; Zhao and
Arnold, 1999]. Seven out of the nine mutations
that improved the thermostability of subtilisin
E occur at positions computed to be highly
tolerant. Ten out of the thirteen mutations that
improved the activity also occur at the calcu-
lated tolerant residues. Similarly strong corre-
lations were found for T4 lysozyme [Pjura et al.,
1993] and Antibody 4-4-20 [Boder et al., 2000].

Taken together, our results imply a struc-
tural and functional overlap in sequence space:
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Fig. 2. The entropy profile for subtilisin E. Stars mark the
positions where experimental directed evolution found muta-
tions that improved thermostability or activity in organic solvent
[Chen and Arnold, 1993; You and Arnold, 1996; Zhao and
Arnold, 1999]. In these studies, the mutations were found by
screening 2,000-5,000 mutants generated with an average
mutation rate of 2—3 nucleotide substitutions per gene.

functional improvements tend to occur when
the structure is least perturbed. This effect
increases with the fitness of the parents, as it
becomes more important to preserve the stabi-
lity (Fig. 2). From the perspective of experi-
mental design, targeting residues that are
structurally tolerant will create a mutant lib-
rary that is richer in folded, stable proteins.
By focusing mutagenesis towards residues
that preserve the stability, functional space
can be more thoroughly explored [Huynen et al.,
1996].

Recombination Strategies

Recombination is a powerful tool for in vitro
protein evolution [Stemmer, 1994; Patten et al.,
1997; Crameri et al., 1998; Ness et al., 1999;
Ostermeier et al., 1999]. By exchanging gene-
tic information from several parental genes, a
library of recombinant mutants is generated.
Screening or selection can identify those hybrid
genes coding for proteins that are stable, func-
tional, or have improved properties. Currently,
crossovers are introduced at more or less ran-
dom positions. There is little or no a priori input
where the crossovers should occur, and many of
the hybrid proteins are either unfolded or not
functional. It is desirable to predict where cros-
sovers will be accepted in functional protein
hybrids in order to make focused shuffled libra-
ries and minimize labor-intensive screening.
In this section, we describe a computational
algorithm to predict the location of crossovers,

based on the assumption that the stability of the
offspring need to be retained.

The dynamics of recombination have been
explored extensively in computer science to
study the effectiveness of genetic algorithms.
Recombination is a powerful search strategy
because it can combine beneficial clusters of
interacting amino acids (schema or building
blocks) that have previously survived selection
onto a single offspring gene [Holland, 1998].
However, for recombination to be successful, the
crossover locations in the gene have to corre-
spond to those that allow the most schema
to be retained. When a schemata is divided by
recombination such that fractions of it are in-
herited from different parents, thisis referred to
as schema disruption [Vose and Liepens, 1991,
Forrest and Mitchell, 1993]. When schema dis-
ruption is not controlled, genetic algorithms will
often fail to converge on an optimal solution.

Applying this simple idea to protein struc-
ture, we postulate that recombination is most
successful when the crossovers break the fewest
stabilizing interactions between amino acids.
Two residues are considered interacting if
their side chains are within a cut-off distance.
The schema disruption of a recombinant mu-
tant counts the total number of interactions
that are broken by the specific pattern of frag-
ments inherited from each parent. The recom-
binants with the minimum schema disruption
are most likely to retain the structure of the
parents.

We have examined schema disruption in
several shuffling experiments. To simulate the
recombination of PurN and GART glycinamide
ribonucleotide transformylase [Ostermeier
et al., 1999; Lutz et al., 2001], the interacting
residues was calculated from the structure of
PurN. All single-crossover recombinant mu-
tants were generated and the schema disrup-
tion of each was calculated. The crossovers
found experimentally by screening the library
for functional hybrid enzymes were strongly
biased towards the two computed local minima
(Fig. 3). We have found similar results when
we compare the calculated schema disruption
with recombination experiments with beta-
lactamase, subtilisin, P450, and phytase.

CONCLUSIONS

Several new computational techniques to aid
in the design of directed evolution experiments
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Fig. 3. To simulate the recombination of PurN and GART
glycinamide ribonucleotide transformylase [Ostermeier et al.,
1999; Lutz et al., 2001], the coupling matrix was calculated
from the structure of PurN. All single crossover recombinant
mutants were generated and the crossover disruption of each
was calculated. The crossovers found experimentally by screen-
ing the library for functional hybrid enzymes (indicated by the
stars) were strongly biased towards the computed local minima.

have been introduced. We employ a statistical
model to study the dynamics of directed evolu-
tion as a search algorithm. Using this simpli-
fied model, we have explored the relationship
between the optimal mutation rate, library size,
fitness of the parents, and the interactions
between amino acids. Further, a bias was dis-
covered that mutations preferentially occur
at uncoupled residues, when the mutation rate
and number of mutants screened is small. This
inspired the development of a more detailed
structural model that measures the effect on
stability of amino acid substitutions at each
residue. Using this model, we find that muta-
tions that were found to improve activity often
occur at positions where the stability is least
likely to be disturbed. Finally, a model is pro-
posed that describes the optimal crossover
locations as those that preserve structural
schema. Together, these computational techni-
ques represent a major step towards informa-
tion-driven combinatorial protein design.
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