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Abstract

How does long-term chaotic behavior respond to small parameter perturbations? Us-
ing detailed models, chaotic systems are frequently simulated across disciplines – from
climate science to astrophysics. But, an efficient computation of parametric deriva-
tives of their statistics or long-term averages, also known as linear response, is an
open problem. The difficulty is due to an inherent feature of chaos: an exponential
growth over time of infinitesimal perturbations, which renders conventional meth-
ods for sensitivity computation inapplicable. More sophisticated recent approaches,
including ensemble-based and shadowing-based methods are either computationally
impractical or lack convergence guarantees. We propose a novel alternative known
as space-split sensitivity or S3, which evaluates linear response as an efficiently com-
putable, provably convergent ergodic average. The main contribution of this thesis is
the development of the S3 algorithm for uniformly hyperbolic systems – the simplest
setting in which chaotic attractors occur – with one-dimensional unstable manifolds.
S3 can enable applications of the computed sensitivities to optimization, control the-
ory and uncertainty quantification, in the realm of chaotic dynamics, wherein these
applications remain nascent.

We propose a transformation of Ruelle’s rigorous linear response formula, which is
ill-conditioned in its original form, into a well-conditioned ergodic-averaging compu-
tation. We prove a decomposition of Ruelle’s formula, called the S3 decomposition,
that is differentiable on the unstable manifold. The S3 decomposition ensures that
one of the resulting terms, the stable contribution, can be computed using a regu-
larized tangent equation, similar to in a non-chaotic system. The remainder, known
as the unstable contribution, is regularized and converted into a computable ergodic
average. The S3 algorithm presented here can be naturally extended to systems with
higher-dimensional unstable manifolds.

The secondary contributions of this thesis are analysis and applications of existing
methods, including those shadowing-based and ensemble-based, to compute linear
response. A feasibility analysis of ensemble sensitivity calculation, which is a direct
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evaluation of Ruelle’s formula, reveals a problem-dependent, typically poor rate of
convergence, rendering it computationally impractical. Shadowing-based sensitivity
computation is not guaranteed to converge because of atypicality of shadowing orbits.
This atypicality also implies that small parameter perturbations can lead, contrary to
popular belief, to a large change in the statistics of a chaotic system, a consequence
being that numerical simulations of chaotic systems may not reproduce their true
long-term behaviors.

Thesis Supervisor: Qiqi Wang
Title: Associate Professor, Department of Aeronautics and Astronautics
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Chapter 1

Introduction

“Oh, and you know the thing about chaos? It’s fair!”, The Joker, in The Dark Knight

(taken entirely out of context).

This thesis is a step toward the solution of an important computational problem

concerning chaotic dynamical systems: an efficient estimation of their long-term re-

sponse to small perturbations. In this introductory chapter, we explain this problem

in detail and describe the cross-cutting applications of a practical algorithmic solution

to this problem. We examine the computational and mathematical difficulties posed

by chaos, which have hampered the application of existing methods for sensitivity

analysis of dynamical systems.

1.1 Long-term or statistical response to infinitesimal

perturbations and its applications

A common question of both fundamental scientific and practical importance that

arises in virtually every field of science and engineering is the following: how does

the long-term behavior of a dynamical system respond to small perturbations of
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system parameters? This question falls within the purview of sensitivity analysis,

which entails the computation of derivatives of outputs of interest obtained from

a dynamical system with respect to user-defined inputs, such as system parame-

ters. Such derivatives or sensitivities are obtained by solving linear perturbation

equations, i.e., tangent or adjoint equations [94][95] numerically or by automatic

differentiation [34][227], or by using finite-difference methods [194]. The result-

ing sensitivities are routinely used, when the dynamical system is non-chaotic, in

gradient-based computational approaches for various target applications such as op-

timization and design [111][112][201][31][140][203], control, analysis and prediction

[196][229][102][103][82][215], uncertainty quantification [104][270][216][7][192][283], data

assimilation [95][269][131][195][24][125], parameter selection [52][8][53][34][33] and in-

verse problems [151][255][254][115][258][151]. The vast literature on sensitivity anal-

ysis applications that we have only sparsely sampled here indicates not only that

the computed sensitivities are indispensable for various engineering tasks performed

by such gradient-based target computations, but that they are truly cross-cutting

quantities of interest. Even in the small collection we refer to above, gradient-based

computational approaches are used crucially in diverse disciplines such as biomedical

engineering, climate science and aerospace engineering.

Such full-fledged applications of sensitivity computation have so far been restricted

to situations wherein the underlying dynamical model is non-chaotic. When the

dynamical model exhibits chaos, and when the sensitivities needed are of long-time

averaged or equivalently, statistical quantities, such conventional linear perturbation

methods fail. This failure is a manifestation of the so-called butterfly effect, which is

the defining feature of chaotic dynamics: an infinitesimal perturbation to the state

grows exponentially in norm with time. For example, consider the solutions of linear

perturbation equations, computed using tangent, adjoint, finite-difference methods

shown in Figure 1-1. The underlying dynamical system, which is treated in Chapter

2, models chaotic thermoacoustic instabilities in a Rijke tube/acoustic cavity, which

serves as a reduced-order model for a gas turbine engine.

The plots indicate that an infinitesimal parameter perturbation, which is an in-
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Figure 1-1: Linear perturbation solutions computed for the thermoacoustic system
discussed in Chapter 2. FD stands for finite-difference and AD for automatic differ-
entiation.

finitesimal perturbation to the state at each time, causes an exponential divergence

from the unperturbed trajectory (at the original value of the parameter). This expo-

nential divergence also holds when automatic differentiation is used to compute the

tangent or adjoint solutions, as shown in Figure 1-1.

On the other hand, in many physical systems that obey the chaotic hypothesis

[236][108], the statistics or long-time averages of the systems vary differentiably with

respect to parameters. In other words, the derivative of the long-time averages or

ensemble averages of these systems with respect to system parameters are bounded

quantities, although along almost every trajectory, the derivative of the time-average

increases exponentially with time and does not converge. If 𝑠 is a system parameter

that is varied by an infinitesimal amount 𝛿𝑠, and ⟨𝐽⟩(𝑠) is the ensemble average

of a state function 𝐽, ⟨𝐽⟩(𝑠 + 𝛿𝑠) = ⟨𝐽⟩(𝑠) + (𝛿𝑠)𝑑𝑠⟨𝐽⟩(𝑠) + 𝑂(𝛿𝑠2). The derivative

𝑑𝑠⟨𝐽⟩(𝑠) is referred to as linear response because this statistical response is linear in the

perturbation 𝛿𝑠. The existence of this derivative implies that, up to first order in the

parameter perturbation, the ensemble/infinitely-long time average of an observable

can be expressed purely using information from the original, unperturbed dynamical
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system.

A notion of ergodicity is implicitly assumed in the above discussion of linear re-

sponse. Ergodicity of a dynamical system is a property that implies that its long-time

behavior is independent of its initial condition. Starting from almost every initial

state, the infinitely-long time average of an observable converges to the same value.

This is why, although the observable 𝐽 depends on the system state, ⟨𝐽⟩ is only

a function of the system parameters and independent of the initial condition of the

dynamics. This common value of an infinitely-long time average is the ensemble aver-

age of the observable with respect to a particular stationary probability measure over

states. In uniformly hyperbolic systems [46], which we treat exclusively in this thesis,

such a stationary measure, known as Sinai-Ruelle-Bowen or SRB measure exists that

captures the long-time behavior of almost every trajectory of the system. Thus, ⟨𝐽⟩

is both the infinitely-long time average of the observable 𝐽 along a single trajectory

starting almost everywhere and the expectation of the observable of 𝐽 with the states

distributed according to the SRB measure. The crux of this thesis is a computational

method to compute linear response, 𝑑𝑠⟨𝐽⟩, which is the parametric derivative of ex-

pectations according to the SRB measure. In uniformly hyperbolic systems, Ruelle

[232][234][235] first showed that linear response holds, i.e., the statistics are differen-

tiable with respect to parameters, and proved a rigorous formula for linear response.

However, in its original form, the computation of the Ruelle’s response formula is

inefficient [69][96], as we shall discuss in detail in Chapter 4.

An efficient computation of linear response will usher the entry of downstream

computational applications mentioned before, such as design, optimization, uncer-

tainty quantification, parameter selection, data assimilation, control theoretic and

inverse problems, into the realm of chaotic dynamics. These downstream applica-

tions have been largely absent on chaotic models such as mechanical and aerospace

engineering turbulent fluid flows and molecular simulations for biomedical applica-

tions, wherein long-time averaged/statistical behavior is of interest. For example,

flow control, output error-based mesh adaptation for chaotic unsteady simulations,

and design optimization for jet noise reduction, building engine components that are
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robust to i) fatigue induced by chaotic aerodynamics, and ii) chaotic thermoacous-

tic instabilities, remain significant engineering challenges due to the unavailability of

sensitivities [104][79][264].

Beyond having immense practical value, the computation of linear response, which

gives us a quantitative measure of the influence of each parameter on the long-term

behavior of a chaotic system, improves our fundamental understanding of chaotic

phenomena, such as fluid turbulence. An important area where the computation of

linear response in a chaotic model arises is climate sensitivity [228][185][9], wherein

the response of the climate system – a chaotic dynamical system – to greenhouse gas

concentrations, and the reduction in the uncertainty in this response (which in turn

involves linear response calculations in chaotic models of microphysical processes) are

actively sought [231][156][242][282].

1.2 Existing methods for linear response computa-

tion

A few methods exist that circumvent exponentially growing sensitivities to compute a

finite linear response value. Ruelle’s linear response formula [232][234][235] expresses

the desired derivative as a series summation of ensemble averages of short-term sen-

sitivities. Ensemble sensitivity methods, due to Lea et al. [168], are a direct ap-

proximation of Ruelle’s formula wherein each term of the series is approximated as a

sample average of short-time sensitivities computed using previously mentioned linear

perturbation methods. However, the number of samples needed to reduce the vari-

ance in the exponentially growing sensitivities and compute linear response accurately

makes this approach computationally infeasible [96]. In blended response algorithms

[1][2], the ensemble sensitivity approach for short-time sensitivities is blended with

a fluctuation-dissipation theorem-based approximation of the long-term sensitivities.

This approximation is however adhoc since the densities of the SRB measure on

unstable manifolds may not follow the fluctuation-dissipation theorem-based approx-
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imation, while linear response still holds.

A recent work by Ni [210] introduces the linear response algorithm, which appears

to be another viable solution to linear response computation. It has been derived for

uniformly hyperbolic systems with arbitrary dimensional unstable manifolds. This

algorithm provides a “fast” computation of the unstable divergence via a recursive

formula, analogous to the density gradient for one-dimensional unstable manifolds

treated in Chapter 7. In this linear response algorithm, second-order tangent equa-

tions, which are the most expensive step, are solved to differentiate certain vector

fields with respect to a modified shadowing direction. Unlike in Ni [210], the second-

order tangent equations developed in the present thesis (Chapter 6 and Chapter 7)

are derivatives along the one-dimensional unstable manifold.

The shadowing direction is computed by the non-intrusive least squares shadowing

algorithm [206][211][271], which was independently proposed as a method to compute

linear response. Least-squares shadowing [271][72][273] and its non-intrusive variants

[206][211][37] compute linear perturbation solutions – shadowing perturbations – that

remain bounded for a long time. While these lead to bounded sensitivities, these are

not unbiased estimates of linear response [209]. We explore the probability distribu-

tion of a shadowing solution, which is the foundation of these shadowing sensitivity

analysis methods, in Chapter 3.

1.3 Thesis contributions

As the main contribution of this work, we introduce the space-split sensitivity or

S3 algorithm to compute linear response, or the parametric derivative of statistics,

in chaotic systems. In order to be applicable to high-dimensional chaotic numerical

simulations, the S3 algorithm is designed to compute linear response as a time average

along a long trajectory of the system, which is the solution of a chaotic ODE/PDE

over a long time. The S3 algorithm provably converges, as the trajectory length tends

to infinity, to Ruelle’s linear response formula. S3 is an exact computation of linear

response that has an error convergence of 𝒪(
√

log log𝑁/
√
𝑁), almost like a typical
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Monte Carlo integration, when computed with an 𝑁 -length simulation, independent

of the system dimension.

A secondary purpose of this thesis is the analysis of some of the previous attempts

at linear response computation, including the shadowing algorithm [271][206] and

ensemble sensitivity computation [168]. We perform a detailed feasibility analysis of

the ensemble sensitivity method in Chapter 4 (also published as [69]), and conclude,

in agreement with previous works [96], that this method is, in general, impractical

in high-dimensional chaotic systems. In Chapter 3, we give examples to prove that

shadowing trajectories can be non-physical. This analysis reveals that the shadowing

algorithm is not guaranteed to converge to the true linear response value. The analysis

also dispels the notion that small parameter perturbations can result only in small

changes in statistics of chaotic systems [61].

1.4 Outline

Each remaining chapter is self-contained, and the notation and definitions are not

shared except among Chapters 7, 8 and 10. The organization of the chapters is as

follows. While shadowing is not guaranteed to give the correct value of sensitivities

in general, Chapter 2 treats an example where shadowing sensitivities are accurate

enough to yield meaningful downstream applications. We consider a reduced-order

model of an acoustic cavity that exhibits chaotic thermoacoustic instabilities. We

perform optimization and introduce a new data assimilation scheme both of which use

sensitivities computed by the shadowing algorithm. In Chapter 3, we prove through

examples that shadowing orbits can be nonphysical and discuss the implications of this

result for numerical simulation and sensitivity analysis of chaotic dynamical systems.

Turning our attention to Ruelle’s formula, in Chapter 4, we provide a feasibility

analysis of its direction evaluation – the ensemble sensitivity method.

In Chapter 5, a first version of the S3 (space-split sensitivity) algorithm is pre-

sented in which Ruelle’s formula is decomposed by splitting the parameter perturba-

tion into its stable and unstable components. For an expanding map in which the
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parameter perturbation would be purely unstable, Chapter 5 provides a derivation of

an alternative formulation of linear response that is efficiently computable. A recur-

sion trick is used to modify Ruelle’s formula to a form amenable to ergodic-averaging.

This chapter assumes the differentiability of the stable and unstable vector fields on

phase space, which is in general false [130], and the final version of S3, in Chapter 7,

does not make this assumption.

Chapter 7 develops the S3 algorithm for a generic uniformly hyperbolic system

with a one-dimensional unstable manifold. The basic idea is a particular decompo-

sition of Ruelle’s formula that involves a regularized tangent equation solution. The

regularized tangent solution leads to a decomposition into two components, which,

although still named stable and unstable contributions, differ from that in Chapter

5. We prove that such a solution that leads to a computable reformulation of Ruelle’s

formula exists and is differentiable on the unstable manifold. This chapter contains

the proof of this decomposition, known as the S3 decomposition, and the proof of

convergence of the S3 algorithm. The resulting unstable contribution involves the

derivative of the unstable direction along itself. A computational algorithm for such

derivatives is the subject of Chapter 6.

Chapter 8 extends the S3 algorithm presented for uniformly hyperbolic maps in

the previous chapter to uniformly hyperbolic flows that additionally have a center

direction. This situation is exemplified by time-discretized ODEs in which case the

center direction is spanned by the generating vector field. The S3 algorithm now

includes a center contribution, in addition to the stable and unstable contributions,

which are modified slightly from the case of uniformly hyperbolic maps. A detailed

cost and error analysis of the S3 algorithm is carried out in Chapter 9. The final

chapter presents a brief road map for future work on extending the S3 algorithm to

maps with arbitrary dimensional unstable manifolds. The algorithm developed in this

thesis for one-dimensional unstable manifolds serves as a starting point.
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Chapter 2

Shadowing and its application to a

time-delayed acoustic model

In this chapter, we perform sensitivity analysis of long-time (or ensemble) averages

in the chaotic regime using the shadowing algorithm. We introduce automatic dif-

ferentiation to eliminate the tangent/adjoint equation solvers used in the shadowing

algorithm. In a gradient-based optimization, we use the computed shadowing sensi-

tivity to minimize different long-time averaged functionals of a chaotic time delayed

system by optimal parameter selection. In combined state and parameter estima-

tion for data assimilation, we use the computed sensitivity to predict the optimal

trajectory given information from a model and data from measurements beyond the

predictability time. The algorithms are applied to a thermoacoustic model. Because

the computational framework is rather general, the techniques presented in this chap-

ter may be used for sensitivity analysis of ensemble averages, parameter optimization

and data assimilation of other chaotic problems, where shadowing methods are ap-

plicable.

This chapter also serves a tutorial on the shadowing algorithm [271][211][37], the

introduction of automatic differentiation into the algorithm and its application to

optimization and data assimilation. It is a joint work with Luca Magri and Qiqi

Wang and is available as a preprint at [58].
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2.1 Introduction

Sensitivities are quantitative measures of the response of model outputs to infinites-

imal changes in inputs, which are crucial to engineering design [251, 161]. They are

employed in parameter estimation and model selection [11, 147], uncertainty quan-

tification [4, 177], data assimilation [239, 164, 256] and design and optimization (see

[237, 45, 268, 190] for recent reviews of the applications of sensitivity derivatives in dif-

ferent engineering disciplines). With the growing ability to simulate high-dimensional

complex dynamics, much research effort has been invested into commensurately im-

proving sensitivity analysis methods. Adjoints of mathematical models have been

developed and used successfully in many fields; for example, adjoint sensitivity anal-

ysis in meteorology [110, 134], aircraft design [250], systems biology [155], chemical

kinetics [239], thermo-fluids [190], among others. The adjoint method is generally

used when the input parameter space is high-dimensional. Tangent Linear Models

(TLMs) and finite difference methods are also used for sensitivity analysis when the

dimension of the input parameter space is small enough that the cost of simulating

the original dynamics repeatedly is not prohibitive. In many of these applications,

automatic differentiation (AD) has successfully replaced the TLM or adjoint compu-

tations [48, 121]. For example, MITGCM [3], a popular climate model uses OpenAD

[278, 133], an open source source-transformation AD software [266, 265, 6, 138]; and

Tapenade [128, 129] has replaced adjoint differentiation in a few industrial-size nu-

merical codes.

In recent times, simultaneous advances in simulation capabilities and computing

power have led to a proliferation of scale-resolving simulations of chaotic systems

[39, 47, 92, 252]. For many of the above target applications, the relevant observables,

or outputs, in chaotic systems are statistically stationary or infinitely long-time aver-

aged functions [47, 92, 252, 141, 142]. Useful gradients of ensemble averages, which

are equal to infinite time averages in ergodic systems, cannot be obtained by time-

averaging the instantaneous gradients in chaotic systems [271]. Indeed, in the infinite

time limit, the time averages of the instantaneous gradients diverge despite that the
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ensemble averages of the functions may have a well-defined gradient. This is because

the tangent space of a chaotic attractor is exponentially unstable. Likewise, the sen-

sitivities computed on time-integrating the adjoint sensitivities diverge exponentially.

For the same reasons, other methods, such as TLMs and AD, also fail to compute

meaningful sensitivities in chaotic systems. Due to these challenges, sensitivity analy-

sis of chaotic systems has not developed as much as sensitivity analysis of non-chaotic

systems has [206, 208, 271].

One approach for the computation of sensitivities of long-time-averaged function-

als in chaotic systems is the Least Squares Shadowing [271] (LSS) method. This

method by-passes the exponential instability by computing the derivatives along a

close shadowing direction, which is obtained as the solution of a constrained min-

imization problem. A recent variant of the LSS method–the Non-Intrusive Least

Squares Shadowing (NILSS) [206]– has been proposed to reduce the computational

cost and memory requirements of the original LSS problem by projecting the gradients

onto the unstable subspaces only. The NILSS method has found successful applica-

tions in chaotic computational fluid dynamics; e.g., [39] and [208] applied NILSS to

scale-resolving Direct Simulations of chaotic flows around bluff bodies, [37] developed

the adjoint version of NILSS and applied it to wall-bounded chaotic flows; and [141]

applied it to the optimization of chaotic acoustic oscillations subject to synthetic tur-

bulence. Other methods for sensitivity analysis in chaotic systems are conceptually

based on extensions of the fluctuation-dissipation theorem for nonequilibrium systems

in physics. One method is based on estimating the invariant probability distribution

[80]. Other recent approaches [2, 77, 185, 2] computationally evaluate Ruelle’s re-

sponse formula for nonequilibrium systems [233]. In this chapter, we are concerned

with the NILSS algorithm and, in particular, on the development of the automatically

differentiated version of the algorithm. The algorithm is generalized to tackle time

delayed systems.

Delayed differential systems, which often tend to be chaotic, are extensively used

for mathematical modelling of transport and non-Markovian processes, such as popu-

lation dynamics and cell proliferation in mathematical ecology and biology [158, 249],
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chemical processes [51], neural networks, networked control systems [284, 30] thermoa-

coustics [190], among others. Sensitivity derivatives with respect to the parameters,

including the delay parameter, have been employed for model selection, system iden-

tification and stability analysis [23, 143, 190]. The objective function to be optimized,

in the case of the model parameter estimation or system identification problems, is

typically a mean quantity that depends on the parameters, including the time delays

[23, 141]. The tangent and adjoint discrete AD-shadowing methods developed in this

chapter offer a solution to this problem in chaotic time-delayed systems. In order to

compute sensitivities using AD, differentiating the numerical solution of the primal

dynamics is necessary. If the time delay is treated approximately as an integer num-

ber of timesteps by the time integrator, differentiating with respect to the delay poses

a problem since chain rule differentiability is lost. In order to circumvent this issue,

in this chapter we exploit the fact that the effect of a time delay can be replaced by

a linear advection equation, and, therefore, we solve for an extended primal system.

A practical engineering problem modelled with time-delayed equations is thermoa-

coustics [190]. Gas-turbine and rocket-motor manufacturers strive to design engines

that do not experience thermoacoustic instabilities [171]. Thermoacoustic instabilities

occur when the heat released by the flame is sufficiently in phase with the acoustic

pressure [178], such that the thermal energy of the flame that is converted into acoustic

energy exceeds dissipation mechanisms. Unstable thermoacoustic systems have intri-

cate nonlinear behaviours when design parameters are varied, from periodic, through

quasi periodic to chaotic oscillations [149]. Although methods to investigate the sen-

sitivity of fixed points (with eigenvalue analysis) and periodic solutions (with Floquet

analysis) are well-established [190], a stability and sensitivity framework to tackle

chaotic acoustic oscillations is only at its infancy [141, 142]. In themoacoustics, sen-

sitivity analysis quantitatively informs the practitioner on how to optimally change

design parameters, such as geometric quantities; which passive device is most stabi-

lizing; and how large is the uncertainty of the stability calculations [189, 243, 199], as

reviewed by [190]. All these studies are concerned with the calculation of sensitivities

of eigenvalues around non-chaotic attractors. These established eigenvalue-sensitivity
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methods fail in chaotic systems because of the butterfly effect [69, 168, 96, 141] (§2.2).

In this chapter, we apply the computational framework we develop to the calculation

of the derivative of two infinite time-averaged cost functionals, one being an energy

norm and the second being an integral metric, with respect to the parameters’ vector.

These derivatives give us a quantitative estimate of the long-term response of chaotic

acoustic oscillations. We use these sensitivities to stabilize a nonlinearly unstable, yet

eigenvalue-stable, thermoacoustic system. Physically, the cost functionals represent

the acoustic energy, which we want to minimize to make the combustor operate in

stable conditions. We use these sensitivities in a gradient-based optimization algo-

rithm to suppress a chaotic acoustic oscillation, which cannot be achieved by only

stabilizing the eigenvalues or through short-term chaotic sensitivity calculations.

The chapter is structured as follows. In section 2.2.5, the idea behind the NILSS

algorithm is reviewed. Section 2.2 defines the problem with a mathematical back-

ground on sensitivity analysis in chaotic systems. The main features of the shadow-

ing algorithm are explained in 2.3. The AD version of the algorithm is provided in

2.10. We present the chaotic time-delayed model of a prototypical thermoacoustic

system in section 2.4. The tangent and adjoint shadowing sensitivities of this model

are calculated and applied for parameter estimation for gradient-based optimization

in section 2.5, and for data assimilation in section 2.6. The chapter ends with a final

discussion in section 2.7.

2.2 Shadowing sensitivity in chaotic systems

Before we describe the NILSS algorithm, we recall the problem of extreme sensitiv-

ity to perturbations in chaotic systems, which leads to ill-conditioning of linearized

models, such as the tangent equation, the adjoint equation and algorithmic differ-

entiation. We define the primal problem by a set of ordinary differential equations
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(ODEs), which may be spatially discretized partial differential equations, as,

𝑑𝑢

𝑑𝑡
= ℱ(𝑢,𝒮), 𝒮 ∈ R𝑝

𝑢(0) = 𝑢0 ∈ R𝑑. (2.1)

Here 𝑢 ∈ R𝑑 is the state of the system, and, 𝒮 ∈ R𝑝 is a vector of system parameters.

The system parameters, which can be, e.g., control variables in an adjoint-based

design problem, do not change with time. The right hand side ℱ : R𝑑 × R𝑝 → R𝑑 of

the primal ODE (Eq. 2.1), which is also referred to as the time-derivative direction,

is a function of the instantaneous state and 𝒮. In this chapter, we study the discrete-

time system obtained by time-integration of the primal ODE. Throughout, we use

a subscript to denote a discrete time, which is represented by a positive integer. In

particular, 𝑢0 ∈ R𝑑 is the initial state; 𝑢𝑛 ∈ R𝑑 is the solution vector at time 𝑛 ∈ Z+.

We define the function 𝑓 : R𝑑 × R𝑝 → R𝑑 to denote the time-one map, i.e., the

time-integrator that evolves a solution state by one timestep, so that 𝑢1 = 𝑓(𝑢0,𝒮).

We use the notation 𝑓𝑛 to denote the 𝑛-time composition of the map 𝑓, at a fixed set

of parameters, so that 𝑢𝑛 = 𝑓𝑛(𝑢,𝒮), 𝑛 ∈ Z+. The set of vectors {𝑢𝑛} is an orbit or

a trajectory of the dynamics 𝑓(·,𝒮). Let 𝒥 be a set of 𝑙 scalar observables in 𝒞2(R𝑑),

and 𝐽 be an observable in this set. Given an initial state 𝑢0, the 𝑁 -time average

of 𝐽 is ⟨𝐽⟩𝑁 := (1/𝑁)
∑︀𝑁−1

𝑛=0 𝐽(𝑢𝑛). In ergodic systems, in the limit 𝑁 → ∞, the

𝑁 -time-average, which is referred to as ergodic average and denoted as ⟨𝐽⟩, is well-

defined and independent of the initial state 𝑢0. The ergodic average ⟨𝐽⟩ is a function

of the parameters 𝒮 only. Its value is equal to an expectation of 𝐽 with respect to

the ergodic, stationary probability distribution achieved by the state vector under

the dynamics 𝑓 . In chaotic systems, ergodic averages of observables are often the

quantities of interest for optimization and control problems. In these problems, the

long-term response of a chaotic system to infinitesimal perturbations may be desired

(e.g. [184]), as opposed to a short-term or intermediate-term response. The problem

of nonlinear acoustic oscillations that is studied in this chapter is one such example
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[141]. Our goal is to compute, for all 𝐽 ∈ 𝒥 and all 𝑠 ∈ 𝒮 the quantity,

𝑑𝑠⟨𝐽⟩ := 𝑑𝑠

(︁
lim

𝑁→∞
⟨𝐽⟩𝑁

)︁
, (2.2)

where 𝑑𝑠 := 𝑑/𝑑𝑠 denotes the differentiation operator with respect to 𝑠. We assume

that the ergodic average ⟨𝐽⟩ is differentiable with respect to 𝑠. In uniformly hyper-

bolic systems, a stationary probability distribution, known as the SRB measure [280],

exists, with respect to which ergodic averages converge starting from an open set in

R𝑑 containing the attractor. Under certain smoothness conditions on the map, the

SRB measure is differentiable with respect to parameters [233], for small, smooth

parameter perturbations. The assumption of uniform hyperbolicity is involved in the

shadowing algorithm (section 2.3) and in the data assimilation scheme (section 2.6).

There is a wealth of numerical and experimental evidence [107, 208] that shows that

physical systems exhibit quasi-hyperbolic behavior. Hyperbolicity of the time-delayed

system we consider in this chapter, has been numerically verified by Huhn and Magri

[141] for a range of design parameters (numerical experiments are also presented in

Figure 2-5 later in this chapter).

2.2.1 Tangent dynamics

The tangent equation describes the response of the system’s state to infinitesimal

perturbations in a parameter 𝑠 ∈ 𝒮 in a neighborhood of a reference trajectory {𝑢𝑛}.

By introducing the shorthand 𝑣𝑛 := 𝜕𝑠𝑢𝑛, the tangent equation is

𝑣𝑛+1 = 𝜕𝑠𝑓(𝑢𝑛,𝒮) + (𝐷𝑢𝑓)(𝑢𝑛,𝒮) 𝑣𝑛 (2.3)

𝑣0 = 0 ∈ R𝑑,

where 𝐷𝑢 denotes the differentiation with respect to the state vector. We refer to the

solutions 𝑣𝑛 as the inhomogeneous tangent solutions. On setting the source term in

Eq. 2.3 to zero, and starting with a non-zero initial perturbation, we obtain the time

evolution of the perturbations in the initial state, denoted 𝑞𝑛. We refer to 𝑞𝑛 as the
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homogeneous tangent solution whose time evolution is given by

𝑞𝑛+1 = (𝐷𝑢𝑓)(𝑢𝑛,𝒮) 𝑞𝑛, (2.4)

The solution 𝑞𝑛 is the derivative: 𝑞𝑛 := (𝐷𝑢𝑓𝑛)(𝑢0,𝒮)𝑞0, which means that the ho-

mogeneous tangent equation is an iterative application of the chain rule. The ho-

mogeneous tangent solution is the difference between two orbits of 𝑓 at 𝑛, which are

separated by an infinitesimal distance along 𝑞0 at time 0. The inhomogeneous tangent

solution, on the other hand, is the difference between two orbits of 𝑓(·,𝒮) at infinites-

imally different 𝑠, starting from the same initial condition. We can write down the

following difference approximation of the inhomogeneous tangent equation:

𝑣𝑛 ≈
𝑓𝑛(𝑢, 𝑠 + 𝜖)− 𝑢𝑛

𝜖
. (2.5)

The homogeneous tangent equation can also be approximately computed by finite

differences

𝑞𝑛 ≈
𝑓𝑛(𝑢 + 𝜖𝑞0,𝒮)− 𝑢𝑛

𝜖
, (2.6)

Both these finite difference approximations are valid only up to an index 𝑛 for which

the perturbed trajectory, and the original trajectory {𝑢𝑛}, remain near each other.

Because of chaos, for almost every direction 𝑞0, the perturbed and unperturbed tra-

jectories, exponentially diverge from each other. The finite difference approximations

are bounded by 𝐷/𝜖, where 𝐷 is a scalar upper bound for the attractor within which

all state vectors lie. On the other hand, the tangent solutions 𝑣𝑛 and 𝑞𝑛, which are

limits as 𝜖→ 0 of the right hand sides of Eq. 2.5 and Eq. 2.6, respectively, continue to

diverge exponentially with 𝑛 in a chaotic system, unlike the finite difference approxi-

mations. That is, for large 𝑛, and almost every 𝑞0, ‖𝑣𝑛‖ , ‖𝑞𝑛‖ ∼ 𝑒𝜆1𝑛, where 𝜆1 > 0

is the largest characteristic Lyapunov exponent [15]. In this chapter, we refer to 1/𝜆1

as the Lyapunov time, which is a timescale for the number of iterations needed to

increase the norm of a linear perturbation by a factor 𝑒. However, not all infinitesimal
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perturbations diverge exponentially. There are initial conditions, 𝑞0, at every 𝑢 on a

chaotic attractor that generate (asymptotically) exponentially decaying homogeneous

tangent solutions along the orbit of 𝑢. This is because the space of tangent solutions

R𝑑, has the direct sum decomposition R𝑑 = 𝐸𝑢(𝑢)⊕ 𝐸𝑠(𝑢)⊕ 𝐸𝑐(𝑢). The linear sub-

spaces 𝐸𝑢(𝑢) and 𝐸𝑠(𝑢) contain tangent vectors at 𝑢 that exponentially grow/decay

asymptotically under the tangent dynamics in Eq. 2.3, respectively. There is a

maximum of 𝑑 possible Lyapunov exponents that give the asymptotic exponential

growth/decay rates of tangent vectors (see [15] for Oseledets theorem). Hereafter,

we assume that there are 𝑑𝑢 strictly positive Lyapunov exponents, which means that

the unstable subspace at each point is 𝑑𝑢-dimensional. In a chaotic system, 𝑑𝑢 ≥ 1,

i.e., the unstable subspace is at least one-dimensional at every 𝑢. In this chapter, the

center subspace 𝐸𝑐(𝑢) consists of all the tangent vectors that asymptotically neither

grow nor decay on an exponential scale, i.e. the tangent vectors in this subspace have

a zero Lyapunov exponent. For example, consider the tangent vector ℱ(𝑢), whose

flow is our primal system (Eq. 2.1). If 𝑓 is a numerical discretization of the dy-

namical system in Eq. 2.1, ℱ approximately satisfies Eq. 2.3 (it exactly satisfies the

continuous-in-time formulation of Eq. 2.3). In this chapter, we assume that 𝐸𝑐(𝑢) is

one-dimensional at every 𝑢 and is spanned by a bounded tangent vector field, say ℱ̃ ,

which exactly satisfies Eq. 2.3,

ℱ̃(𝑢𝑛+1) = (𝜕𝑠𝑓)(𝑢𝑛,𝒮) + (𝐷𝑢𝑓)(𝑢𝑛,𝒮) ℱ̃(𝑢𝑛), (2.7)

The vector field ℱ̃ is approximated by the known vector field ℱ , and will be referred

to as the center direction. Note that this is a slight generalization of uniform hy-

perbolicity (𝐸𝑐 is technically absent in a uniformly hyperbolic system), for which we

assume the uniqueness and differentiability of the SRB measure [221].

2.2.2 Adjoint dynamics

Exponential divergence also holds for adjoint equations starting from almost every

initial condition. Fixing 𝑁 ∈ N, the 𝑁 -time average ⟨𝐽⟩𝑁 is affected by the primal
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solution at each 𝑛 ≤ 𝑁 . If 𝑢𝑛 is infinitesimally perturbed, then, 𝐽(𝑢𝑚) is modified for

all 𝑚 ≥ 𝑛, causing the 𝑁 -time average ⟨𝐽⟩𝑁 to be altered. Viewed in this manner,

at a fixed 𝒮, ⟨𝐽⟩𝑁 is a function of 𝑁 variables, {𝑢𝑛}𝑁−1
𝑛=0 , where each variable 𝑢𝑚

is, in turn, a function of 𝑢𝑛, 𝑛 < 𝑚. That is, ⟨𝐽⟩𝑁 ≡ ⟨𝐽⟩𝑁(𝑢0, 𝑢1, 𝑢1, · · · , 𝑢𝑁−1),

with 𝑢𝑛 = 𝑓(𝑢𝑛−1,𝒮). The adjoint solution at time 𝑛 is the response of ⟨𝐽⟩𝑁 to an

infinitesimal perturbation in 𝑢𝑛, keeping the states prior to 𝑛 fixed at a reference

orbit. At 𝑛 ≤ 𝑁 , the adjoint solution is defined as

𝑣*𝑛 := (𝐷𝑢𝑛⟨𝐽⟩𝑁)𝑇 ({𝑢𝑛}𝑁−1
𝑛=0 ) ∈ R𝑑, (2.8)

where 𝐷𝑢𝑛 refers to the total derivative with respect to 𝑢𝑛 and 𝑇 stands for transpose.

For 𝑛 = 𝑁 , Eq. 2.8 gives 𝑣*𝑁 = (1/𝑁) (𝐷𝑢𝐽)𝑇 (𝑢𝑁 ,𝒮). By applying the chain rule, the

adjoint vectors, 𝑣*𝑛, satisfy the inhomogenous adjoint equation, which is an iterative

equation

𝑣*𝑛 = (𝐷𝑢𝑓)𝑇 (𝑢𝑛,𝒮) 𝑣*𝑛+1 +
1

𝑁
(𝐷𝑢𝐽)𝑇 (𝑢𝑛)

𝑣*𝑁+1 = 0. (2.9)

The inhomogenous adjoint equation is solved backward in time with the zero vector

as the initial condition at 𝑁 + 1. The homogeneous adjoint solution is defined by

setting the source term to zero, which yields

𝑞*𝑛 = (𝐷𝑢𝑓)𝑇 (𝑢𝑛,𝒮) 𝑞*𝑛+1. (2.10)

This equation, which is solved backward in time with a non-zero initial condition

at 𝑁, is an iterative application of the chain rule, at a fixed 𝒮, to the definition

𝑞*𝑛 := (𝐷𝑢(𝑓𝑁−𝑛 ·𝑞*𝑁))𝑇 (𝑢𝑛). In other words, the homogeneous adjoint solution at time

𝑛 is the sensitivity to 𝑢𝑛 of the solution at time 𝑁 projected along 𝑞*𝑁 , 𝑁 ≥ 𝑛. Simi-

lar to the tangent solutions, the adjoint solutions asymptotically grow exponentially,

backward in time, for almost every initial condition, i.e., for large 𝑁 , 𝑞*0, 𝑣*0 ∼ 𝒪(𝑒𝜆1𝑁).

Intuitively, we can understand this growth as complementary to the growth of tan-
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gent solutions. That is, since infinitesimal perturbations to the state increase in

norm exponentially forward in time, we expect the solution at a given time to be

more sensitive (exponentially) to its far past compared to its recent past. The Lya-

punov exponents characterizing the adjoint dynamics’ growth are the same as those

for the tangent equations. The tangent and adjoint solutions are connected by bi-

orthogonality, which means that, homogeneous adjoint solution and tangent solutions

that are associated with two different Lyapunov exponents, are orthogonal to each

other. In particular, the tangent solutions with negative LEs, which span 𝐸𝑠, must

be orthogonal to adjoint solutions associated to positive or zero LEs. In other words,

it can be shown that the unstable adjoint subspace, consisting of all the adjoint solu-

tions that exponentially grow (at most at 𝑑𝑢 different asymptotic rates) backward in

time, is orthogonal to 𝐸𝑠 and 𝐸𝑐. Similarly, the stable adjoint subspace is orthogonal

to 𝐸𝑢 and 𝐸𝑐 [159].

2.2.3 Automatic differentiation to compute tangent and ad-

joint solutions

We consider another class of linear perturbation methods: automatic differentiation

(AD). Given a program, with output 𝑂 and input 𝐼, where 𝑂 and 𝐼 can be scalar

or vector-valued, AD obtains the derivative 𝑑𝑂/𝑑𝐼. In forward mode, the program

is traversed sequentially, and each line is differentiated with respect to 𝐼 using the

derivatives of the variables computed in the previous lines. Ultimately, 𝑑𝑂/𝑑𝐼 is

obtained exactly. In reverse mode AD, the derivative 𝑑𝑂/𝑑𝐼 is again obtained exactly,

but by traversing the program in reverse order and using the chain rule to update the

derivatives.

As noted in section 2.2.1 and section 2.2.2, each of the four linear perturbation

solutions discussed (homogeneous/inhomogeneous tangent/adjoint solutions) can be

written in the form of a derivative. By specifying 𝑂 and 𝐼 appropriately, all of them

can be computed through AD. From their derivative-based definitions, the functions

that specify 𝑂 only require the primal solver (i.e., a time-integrator, 𝑓(·,𝒮)) and
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the definition of the objective function. As a result, in order to compute linear

perturbation solutions, AD does not require the user to compute the Jacobian, and

eliminates the need for tangent/adjoint calculations through their respective iterative

equations. For example, consider the AD solution of the inhomogeneous adjoint

equation (Eq. 2.9). To compute it, we define a function that returns a value 𝑂 =

(1/𝑁)
∑︀𝑁−1

𝑛=0 𝐽(𝑓𝑛(𝑢0),𝒮). The function takes the argument 𝐼 = 𝑢0 time-integrates

the primal for 𝑁 steps, evaluates 𝐽 at each step for averaging at the end. Then, 𝑑𝑂/𝑑𝐼

computed by applying AD in reverse-mode is the solution of the inhomogeneous

adjoint equation at time 0. The reader is referred to texts on AD (e.g. Ch 3 [124],

Ch. 10 [122] and Ch. 15 [123] of Griewank and Walther) for the application of AD

to replace tangent/adjoint solvers. In this chapter, our focus is the implementation

of the shadowing algorithm [206] to compute sensitivities. We use AD to replace

the tangent/adjoint solvers needed within the shadowing algorithm. The inputs and

outputs to AD must be defined appropriately in the AD version of shadowing, as

discussed in 2.10.

While development time is reduced by AD through the elimination of hand-

differentiation, AD has compile-time and run-time overheads, which depend on the

AD software used. In this chapter, we use the AD package Zygote.jl [145] in Julia,

which uses the language’s multiple dispatch feature to compute derivatives. Several

AD library options exist in languages popular in scientific computing [19]. Some com-

bine modern language-level features (e.g. multiple dispatch or operator overloading

on dynamic types in Julia) with algorithmic advances [146] to achieve time and mem-

ory efficiency [227] when compared to traditional solvers for perturbation equations,

(see e.g. optimization in PerforAD in Python [139]).

In Figure 2-1, we plot the 𝑙2 norms of linear perturbations computed using the

four different methods discussed. The primal system that supplies 𝑓 is the chaotic

acoustic model (section 2.4). All of the linear perturbation methods evolve with

exponentially increasing norms. As noted earlier, finite difference saturates on the

order 𝒪(1/𝜖) since the attractor is bounded and, therefore, so is the norm of the

difference between any two solutions. The finite difference results shown as green Y’s
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Figure 2-1: 𝑙2 norms of the perturbation vectors computed through the homogeneous
tangent (blue triangle), adjoint equations (orange circle), finite difference (green Y),
forward-mode AD (red triangle) and reverse-mode AD (purple plus), are shown as a
function of time, for the time-delayed model of section 2.4.

in Figure 2-1 are calculated with an initial perturbation with norm 10−4. The norm of

the finite difference increases exponentially before saturating at about 104. Forward-

mode AD results, which compute the tangent solutions exactly, closely approximate

the latter. The tangent solutions computed using Eq. 2.4 and forward-mode AD, and

the adjoint solution computed using Eq. 2.10 and reverse-mode AD, show unbounded

exponential growth. The slopes of the perturbations on the logarithmic scale (≈ 0.2)

indicate the largest Lyapunov exponent of the chaotic acoustic model (section 2.4).

This is a manifestation of the butterfly effect. Next, we explain how this effect leads

to the breakdown of traditional sensitivity algorithms in chaotic problems.

2.2.4 The problem with computing sensitivities of ergodic av-

erages using conventional methods

To compute the sensitivity of a time-averaged quantity, one could potentially use

the tangent, adjoint solutions, or finite difference, or AD. Consider the problem of

sensitivity computation of a finite-time average ⟨𝐽⟩𝑁 . Using the tangent or adjoint
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solutions solved iteratively using Eq. 2.3 and Eq. 2.9 (or computed using AD)

respectively, one can obtain the derivative of ⟨𝐽⟩𝑁 as

𝑑𝑠⟨𝐽⟩𝑁(𝑢0, 𝑠) =
1

𝑁

𝑁−1∑︁
𝑛=0

𝑥*
𝑛 · 𝑣𝑛 (2.11)

=
1

𝑁

𝑁−1∑︁
𝑛=0

𝑥𝑛 · 𝑣*𝑛, (2.12)

where, for notational convenience, we have defined 𝑥𝑛 := (𝜕𝑠𝑓)(𝑢𝑛−1,𝒮), and 𝑥*
𝑛 :=

(𝐷𝑢𝐽)𝑇 (𝑢𝑛,𝒮). Both equations, which can be derived using the chain rule, along with

their AD counterparts discussed in section 2.2.3, are standard in sensitivity analysis.

To reap computational benefits, Eq. 2.11, or forward-mode AD, is used when the set

of observables has a larger dimension than the parameter space. The tangent solution

{𝑣𝑛} corresponding to a parameter, can be used to compute the derivatives of time

averages of all the observables with respect to that parameter. By contrast, when the

number of parameters exceeds the number of observables, Eq. 2.12, or reverse-mode

AD is the preferred approach to compute sensitivities since the same sequence {𝑣*𝑛}

computed for a given ⟨𝐽⟩𝑁 is used to compute the gradient of ⟨𝐽⟩𝑁 with respect to

all the parameters in 𝒮.

In chaotic systems, the above approach yields values of 𝑑𝑠⟨𝐽⟩𝑁 that exponentially

increase with 𝑁 , as 𝑁 → ∞. However, the quantity of interest, 𝑑𝑠⟨𝐽⟩ (Eq. 2.2), in

which the limit 𝑁 →∞ is taken before the derivative with respect to 𝑠, is bounded.

Hence the derivative of the ergodic average 𝑑𝑠⟨𝐽⟩ is not the same as the derivative

of the finite-time average 𝑑𝑠⟨𝐽⟩𝑁 in the limit 𝑁 → ∞. Thus, conventional methods

for sensitivity computation are not applicable to the computation of derivatives of

ergodic averages in chaotic systems. One early approach to circumvent this problem

is the ensemble sensitivity method [167, 96] in which 𝑑𝑠⟨𝐽⟩ is approximated by a

sample average of sensitivities computed by using Eq. 2.11 or Eq. 2.12 over a small

𝑁 (comparable to one Lyapunov time). The accuracy of this method improves as 𝑁

increases, provided that the number of samples increases exponentially with 𝑁 . This

makes the method prohibitively expensive in practice [96, 69]. In the next section,
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we describe Non-Intrusive Least Squares Shadowing (NILSS) due to Ni et al. [206],

which is a more efficient approach for computing the same quantity.

2.2.5 Non-Intrusive Least Squares Shadowing

Owing to the shadowing lemma (see e.g. [154]) for uniformly hyperbolic systems, it

has been shown by Wang [271] that there exists a unique perturbation direction 𝑣sh –

the tangent shadowing perturbation – for which the tangent equation (Eq. 2.3) has a

bounded solution for all time. The shadowing perturbation 𝑣sh is an inhomogeneous

tangent solution (i.e., 𝑣sh satisfies Eq. 2.3). However, unlike the conventional tan-

gent solution, 𝑣, it does not exhibit an unstable growth. This constraint is used by

the NILSS algorithm [206] to solve for 𝑣sh over a long, but finite-time, duration. In

particular, NILSS [206] constructs an approximation of the shadowing perturbation

by subtracting from 𝑣 an unstable tangent vector at every point along a trajectory.

The unstable tangent vector to be subtracted is represented in an orthonormal basis

of the unstable tangent subspace (𝐸𝑢). The orthonormal basis, is in turn, computed

by propagating at least as many tangent vectors as the dimension of the unstable

subspace, under the homogeneous tangent dynamics (Eq. 2.4), along with repeated

normalization. This procedure is typically used in the computation of Lyapunov vec-

tors [159, 113].

Let 𝑄𝑛 be a 𝑑× 𝑑𝑢 matrix whose columns form an orthonormal basis of 𝐸𝑢(𝑢𝑛).

In the NILSS algorithm [206], the total time duration 𝑁 is divided into multiple

short time segments, checkpoints, such that each short segment is comparable to the

Lyapunov time. We shall simplify the setting by considering a time segment to be

one timestep (i.e., every timestep is a checkpoint); we delay a discussion on this

simplification until the end of this section. The tangent shadowing perturbation can

be expressed as

𝑣sh𝑛 = 𝑣𝑛 + 𝑄𝑛 𝑎𝑛, 1 ≤ 𝑛 ≤ 𝑁, (2.13)
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where 𝑎𝑛 ∈ R𝑑𝑢 is a vector of coefficients. NILSS computes the sequence of vectors

{𝑎𝑛} along the trajectory by solving a minimization problem for the norms of
{︀
𝑣sh𝑛
}︀
.

For a complete description of the NILSS algorithm, the reader is referred to [206],

where the derivation of the algorithm for the time-continuous case is presented. Since

perturbations along the center direction neither grow nor decay exponentially, in

NILSS, the center direction is excluded from 𝑄. Its effect on the sensitivity is added

back later (see section 2 of [206]). When the map 𝑓 is a time-discretized ODE, it has

a center direction corresponding (but not exactly equal) to the center direction of the

ODE. Thus, we also take into account, in the discrete algorithm, modifications due

to this center direction, when 𝑓 models ODEs, as we shall see in section 2.3.4.

The NILSS problem minimizes the norms of the shadowing perturbation sequence{︀
𝑣sh𝑛
}︀
. The Lagrangian of this optimization problem can be written as

ℒsh({𝑎𝑛} , {𝛽𝑛}) :=
𝑁∑︁

𝑛=1

‖𝑣sh𝑛 ‖2 +
𝑁−1∑︁
𝑛=1

𝛽𝑛(𝑎𝑛+1 −𝑅𝑛+1𝑎𝑛 − 𝜋𝑛) (2.14)

=
𝑁∑︁

𝑛=1

(︁
‖𝑣𝑛‖2 + ‖𝑎𝑛‖2 + 2𝑣𝑛 ·𝑄𝑛𝑎𝑛

)︁
+

𝑁−1∑︁
𝑛=1

𝛽𝑛(𝑎𝑛+1 −𝑅𝑛+1𝑎𝑛 − 𝜋𝑛),

(2.15)

where Eq. 2.15 uses Eq. 2.13, and the fact that 𝑄𝑇
𝑛𝑄𝑛 is the 𝑑𝑢× 𝑑𝑢 identity matrix.

Here, {𝛽𝑛} is a sequence of Lagrange multipliers that imposes a sequence of equality

constraints at every timestep to ensure the continuity of the shadowing perturbation

(section 2.3.3). We solve the above problem to obtain a sequence {𝑎𝑛}, and then,

to obtain the shadowing perturbation through Eq. 2.13. Subsequently, we compute

the required sensitivity through Eq. 2.11, with the (exponentially growing) tangent

solution, 𝑣𝑛, replaced with the shadowing tangent solution 𝑣sh𝑛 . This yields

𝑑𝑠⟨𝐽⟩ ≈
1

𝑁

𝑁−1∑︁
𝑛=0

𝑥*
𝑛 · 𝑣sh𝑛 , (2.16)

as shown in Appendix C of [206], or in Theorem LSS of [271]. The same shadowing

perturbation 𝑣sh𝑛 is used to compute the sensitivities with respect to all 𝐽 ∈ 𝒥 . On
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the other hand, the tangent NILSS algorithm has to be repeated for every parameter

𝑠 ∈ 𝒮 in order to compute the corresponding shadowing perturbations. When the

parameter space is higher-dimensional when compared to the observable space, the

adjoint version of NILSS is preferred.

Adjoint non-intrusive least squares shadowing

While the adjoint algorithm can be obtained via reverse-mode automatic differentia-

tion of tangent NILSS, the theoretical basis for the existence of an adjoint shadowing

perturbation is developed in [207]. The adjoint algorithm, known as Non-Intrusive

Least Squares Adjoint Shadowing (NILSAS), is presented in [211] with an application

to a fluid flow problem in [208]. Here, we focus on the discrete time case, and for

simplicity, each time segment corresponds to one iteration of the map 𝑓. Analogous

to tangent NILSS, in the adjoint version, an adjoint shadowing perturbation 𝑣sh*𝑛 is

computed, which solves the inhomogeneous adjoint equation (Eq. 2.9). Extending

the analogy further, an unstable adjoint vector is subtracted from the conventional

adjoint solution to obtain 𝑣sh*𝑛 as

𝑣sh*𝑛 = 𝑣*𝑛 + 𝑄*
𝑛𝑎

*
𝑛, (2.17)

where 𝑄*
𝑛 is an orthonormal basis for the unstable adjoint subspace, (𝐸𝑠 ⊕ 𝐸𝑐)⊥,

and 𝑎*𝑛 ∈ R𝑑𝑢 is a set of coefficients. The orthonormal basis 𝑄*
𝑛 ∈ R𝑑×𝑑𝑢 is achieved

by iterating at least 𝑑𝑢 adjoint vectors backward in time, using Eq. 2.10, repeat-

edly normalizing with QR factorization. That is, the orthonormalization procedure is

identical to that for {𝑄𝑛}, but using the sequence of Jacobian transposes, instead of

the Jacobians, and with time-reversal. The particular set of coefficients 𝑎*𝑛 needed to

find the adjoint shadowing sequence 𝑣sh*𝑛 , which is a bounded solution of the inhomo-

geneous adjoint equation, is found as a solution of a least squares problem, which is

also analogous to Eq. 2.15. In order to compute the quantity of interest, we replace

the conventional (exponentially growing) inhomogeneous adjoint solution in Eq. 2.12
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with the adjoint shadowing solution

𝑑𝑠⟨𝐽⟩ ≈
1

𝑁

𝑁−1∑︁
𝑛=0

𝑣sh*𝑛 · 𝑥𝑛. (2.18)

We now comment on the error-vs-cost trade-off of the tangent and adjoint shadowing

algorithms, noting that a careful analysis of this trade-off is problem-specific and

beyond the scope of this chapter. In both algorithms, the most expensive computation

in the shadowing algorithm is the solution of the minimization problem. The size of

the minimization problem is directly proportional to 𝑑𝑢 and 𝑁. For the same overall

time duration 𝑁, choosing a larger time segment between checkpoints reduces the size

of the minimization problem, since the QR factorization and the equality constraints

that enter the problem (Eq. 2.15) are only computed at the boundaries of the time

segments.

For example, in the time delay acoustic problem of this chapter, we could theo-

retically choose a segment size over which the linear perturbations increase in norm

by, say, a factor of 2. From Figure 2-1, such a segment size is about 1 time unit (100

timesteps). Then, we need to perform QR factorization only every 100 timesteps.

While the QR factorization in itself is not the computational bottleneck, the size of

the least squares problem shrinks by a factor of 100, as compared to checkpointing

every timestep. In spite of the additional cost, we choose to checkpoint every timestep

in the considered problem. However, we choose a size 𝑁 such that the 𝒪((𝑁𝑑𝑢)3)

calculation of the least squares solution is neither memory-constrained nor is a pro-

hibitive computational expense. Then, we repeat the shadowing algorithm 𝑀 times

and sample-average the shadowing sensitivities. This procedure is effectively the same

as computing the sensitivity of an 𝑀𝑁 -time average by executing the shadowing al-

gorithm once, provided that 𝑁 is large enough for the convergence of the ergodic

averages. The reason for sample-averaging shadowing sensitivities as opposed to seg-

menting a long shadowing algorithm is that we observe, for the time-delayed acoustic

model, higher condition numbers of the least squares problem. Thus, we take the ap-

proach of checkpointing every timestep, and solving smaller least squares problems.
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The size of each problem is chosen large enough for ergodic averages to converge while

also curtailing the computed shadowing perturbations (from the solution of the least

squares problem) to an 𝒪(1) norm, at every timestep. The advantage of this approach

is the simpler program whose computational cost is nearly the same as the 𝑀𝑁 -sized

checkpointed NILSS, but produces better-behaved shadowing perturbations.

2.2.6 Error in shadowing and alternatives

The NILSS algorithm is not guaranteed to converge to the true value of the sensitivity,

as 𝑁 → ∞. To see why, we first note that the shadowing sensitivities computed by

NILSS, which are the right hand sides of Eq. 2.16 and Eq. 2.18, are ergodic averages

along a true orbit of a system at an infinitesimally perturbed 𝑠. For a mathematically

rigorous explanation, the reader is referred to [271]; a qualitative explanation is also

included in section 2.6. Now, due to a perturbation in 𝑠, the stationary probability

distribution on the attractor is perturbed as well, but this perturbation is excluded

by NILSS. In general, the ergodic averages along a shadowing orbit (a true orbit)

of a perturbed system do not converge to the expectation with respect to the sta-

tionary distribution of the unperturbed system. Hence, there is a systematic error in

NILSS, which has been recently studied in [209], along with the corrections that can

be made to reduce the error. In view of this shadowing error, we must mention that

a few alternatives have recently appeared. In particular, the space-split sensitivity

method (Chapter 7) is an ergodic-averaging method to compute Ruelle’s linear re-

sponse formula [233], which specifies the required sensitivity exactly. However, based

on the formulation in this thesis [62, 247], it is more complex to implement than the

shadowing method. Thus, in applications where a systematic error in the computed

sensitivities is not a serious impairment, such as in the parameter estimation and

data assimilation problems considered in sections 2.5 and 2.6, respectively, shadow-

ing methods may be preferred. Another sensitivity computation method, also based

on Ruelle’s linear response formula [233], is known as blended response [1], in which

short-term and long-term responses are computed using different methods. For the

long-term response to unstable perturbations, Ruelle’s formula, which is exact, is
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approximated using a Fluctuation-Dissipation theorem for non-equilibrium settings

[185]. However, this approach is computationally expensive and also inexact. Thus,

we focus on the shadowing-based methods for computing sensitivities in this chapter.

Moreover, shadowing methods have successfully been applied to dissipative models

in fluid mechanics [208, 141], as relevant to this study.

2.3 Tangent/adjoint shadowing algorithm

We provide a step-by-step description of the tangent and adjoint NILSS algorithms.

The reader is referred to [206] and [211] for the original descriptions of tangent and

adjoint NILSS, respectively. We consider the discrete algorithm without the check-

pointing scheme. We also adopt a simplified presentation for which the same pro-

gram can be used for implementing both tangent and adjoint NILSS, with a minimal

modification. Further, here, we introduce AD to compute the needed tangent and ad-

joint solutions. This automatic-differentiated unified program for the tangent/adjoint

NILSS, shall be referred to as the AD shadowing algorithm.

2.3.1 Shadowing algorithm: inputs and outputs

We present a shadowing algorithm that constructs a sequence of shadowing pertur-

bations 𝑣sh𝑛 , 1 ≤ 𝑛 ≤ 𝑁. The algorithm takes as inputs, a sequence of 𝑑× 𝑑 matrices

𝐴𝑛, and a sequence of 𝑑-length vectors, 𝑏𝑛, to return tangent or adjoint shadowing

sensitivities (defined in Eq. 2.16 and Eq. 2.18, respectively) in the following two

scenarios.

• Case 1 (tangent): The sequence {𝐴𝑛} is set to the Jacobian matrix sequence

{𝐷𝑢𝑓(𝑢𝑛,𝒮)} along a reference trajectory {𝑢𝑛}. The sequence 𝑏𝑛 is the pa-

rameter perturbation at 𝑛, i.e., 𝑏𝑛 = 𝑥𝑛. Then, the algorithm returns the se-

quence of tangent shadowing perturbation vectors at 𝑢1, 𝑢2, · · · , 𝑢𝑁 , namely,

𝑣sh1 , 𝑣sh2 , · · · , 𝑣sh𝑁 . These shadowing perturbations can be used to approximately

compute the 𝑙 sensitivities, 𝑑⟨𝒥 ⟩/𝑑𝑠.
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• Case 2 (adjoint): Now, on the other hand, defining 𝑛′ := 𝑁 + 1 − 𝑛

suppose 𝐴𝑛 is the transpose of the Jacobian matrix at 𝑛′, that is, 𝐴𝑛 =

(𝐷𝑢𝑓)𝑇 (𝑢𝑛′). Set 𝑏𝑛 := 𝑥*
𝑛′+1. In this case, the algorithm returns the se-

quence of adjoint shadowing perturbation vectors at 𝑢𝑁+1, 𝑢𝑁 , 𝑢𝑁−1, · · · , 𝑢2,

namely, 𝑣sh1 , 𝑣sh2 , · · · , 𝑣sh𝑁 (in the unified presentation, we drop the superscript

“*” used for adjoint solutions). The adjoint shadowing perturbation sequence

is used to compute the 𝑝 sensitivities, 𝐷𝒮⟨𝐽⟩.

A time reversal is accomplished in adjoint shadowing simply by reversing the indexing

of the input sequences; the output sequence of adjoint shadowing perturbations is

obtained in time-reversed order. We use the term shadowing perturbation to refer to

both tangent and adjoint shadowing perturbations. Note that 𝑢0 must be a point

on the attractor sampled according to the stationary probability distribution on the

attractor. That is, the primal system must be simulated for a run-up time long enough

for time-averages to converge. A solution state obtained after such a run-up time is

chosen as 𝑢0.

2.3.2 Evolution of homogeneous and inhomogeneous pertur-

bations with repeated normalization

Our goal is to compute the tangent or adjoint shadowing perturbation using Eqs.

2.13 and 2.17, respectively. Toward this goal, we solve i) at least 𝑑𝑢 homogeneous

tangent equations, or 𝑑𝑢 homogeneous adjoint equations, and ii) 𝑝 inhomogeneous

tangent equations or 𝑙 inhomogeneous adjoint equations. The common form of the

homogeneous equation, which amounts to solving the tangent equation forward (in

case 1) or the adjoint equation backward in time (in case 2), is given by

𝑞𝑖𝑛 = 𝐴𝑛−1𝑞
𝑖
𝑛−1, 𝑛 = 1, · · · , 𝑁, 1 ≤ 𝑖 ≤ 𝑑𝑢. (2.19)

We define 𝑄𝑛 to be an 𝑛× 𝑑𝑢 matrix with columns 𝑞𝑖𝑛. The following equation gives

the evolution of the inhomogeneous tangent solution forward in time in case 1, and
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the inhomogeneous adjoint solution backward in time in case 2,

𝑣𝑛 = 𝐴𝑛−1𝑣𝑛−1 + 𝑏𝑛, 𝑛 = 1, · · · , 𝑁. (2.20)

At each 𝑛, we normalize both the homogeneous and inhomogeneous perturbations by

QR factorization. We choose 𝑑𝑢 pseudo-random vectors in R𝑑 as initial conditions 𝑞𝑖0,

1 ≤ 𝑖 ≤ 𝑑𝑢. The initial condition for Eq. 2.20, 𝑣0, is set to 0 ∈ R𝑑. Beginning with

𝑛 = 1, we perform the following loop until 𝑛 = 𝑁 .

1. Advance Eq. 2.19 by one timestep for each 1 ≤ 𝑖 ≤ 𝑑𝑢. This can be written as

𝑄𝑛 ←− 𝐴𝑛−1𝑄𝑛−1.

2. QR-factorize the matrix 𝑄𝑛 and set 𝑄𝑛 to the obtained “𝑄”. Let the “𝑅” from

QR factorization be stored as 𝑅𝑛. Thus, each 𝑞𝑖𝑛, 1 ≤ 𝑖 ≤ 𝑑𝑢 is now a unit

vector.

3. Obtain 𝑣𝑛 from 𝑣𝑛−1 by advancing Eq. 2.20 by one timestep.

4. Set 𝜋𝑛 := 𝑄𝑇
𝑛𝑣𝑛, which is a 𝑑𝑢-length vector of orthogonal projections of 𝑣𝑛

along 𝑞𝑖𝑛.

5. Project out the unstable components of 𝑣𝑛. That is, set 𝑣𝑛 ←− 𝑣𝑛 − 𝜋𝑛𝑄𝑛.

6. Go to step 1 with 𝑛←− 𝑛 + 1, or stop if 𝑛 = 𝑁.

First, using the above orthonormalization procedure, 𝑄𝑛 converges to an orthonormal

basis for the unstable tangent (adjoint) subspace in case 1 (case 2). Secondly, in case

1, we note that the above 𝑛-loop must be executed only once for the sensitivity with

respect to 𝑠 of all 𝐽 ∈ 𝒥 . Similarly, in case 2, the 𝑛-loop must be called just once

if we wish to compute the sensitivity of ⟨𝐽⟩ with respect to all the parameters 𝒮. In

other words, to obtain 𝐷𝒮𝒥 , in case 1 (tangent shadowing), the 𝑛-loop must be run

as many times as the number of parameters (= 𝑝), and in case 2 (adjoint shadowing),

as many times as the number of objective functions (= 𝑙). Thirdly, the sequence of

matrices 𝑅𝑛 can be used to obtain the Lyapunov exponents. In particular, if the 𝑘th
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diagonal element of the matrix 𝑅𝑛 is written as 𝑅𝑘
𝑛, then, the 𝑘th Lyapunov exponent

𝜆𝑘 ≈ (1/𝑁)
∑︀𝑁−1

𝑛=0 log |𝑅𝑘
𝑛|. This can be easily seen by recasting the definition of

Lyapunov exponents ([15]) and as an ergodic average.

2.3.3 Minimizing the growth of the shadowing perturbation

sequence

At the end of the 𝑛-loop described in section 2.3.2, we have at our disposal the

following sequences of vectors or matrices, where at each 𝑛 ≤ 𝑁 + 1,

• 𝑣𝑛 is the inhomogeneous perturbation orthogonalized with respect to the un-

stable tangent (adjoint) subspace in case 1 (case 2).

• 𝜋𝑛 consists of the orthogonal projections (before the orthogonalization) of 𝑣𝑛

on the unstable tangent (adjoint) subspace in case 1 (case 2).

• 𝑄𝑛 is a 𝑑×𝑑𝑢 matrix that forms an orthonormal basis for the unstable tangent

(adjoint) subspace at each 𝑛 (𝑛′) in case 1 (case 2), and,

• 𝑅𝑛 is a 𝑑𝑢 × 𝑑𝑢 matrix that contains the one-step growth factors of 𝑄𝑛 under

the tangent (adjoint) dynamics in case 1 (case 2).

In practice, a finite spin-up time, typically on the order of Lyapunov time, is needed for

the convergence of 𝑄𝑛 to an orthonormal basis for the true unstable (tangent/adjoint)

subspace. We can write the ansatz for the shadowing perturbation sequence (Eq. 2.13

and Eq. 2.17) in a form that is applicable to both tangent and adjoint shadowing

sequences, denoted here as 𝑣sh,

𝑣sh𝑛 = 𝑣𝑛 + 𝑄𝑛𝑎𝑛. (2.21)

Here the sequence 𝑎𝑛 is the unknown 𝑑𝑢-length vector, which we shall solve for. In

case 2, the sequence 𝑎𝑛, and subsequently 𝑣sh𝑛 , are obtained in time-reversed order

by virtue of time-reversing the inputs 𝐴𝑛, 𝑏𝑛 to the 𝑛−loop. In particular, 𝑣sh𝑛 is the
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adjoint shadowing perturbation at time 𝑁 + 2− 𝑛. In order to solve for 𝑎𝑛, we start

by multiplying Eq. 2.21 by 𝐴𝑛 and adding 𝑏𝑛+1 to both sides of the equation,

𝐴𝑛𝑣
sh
𝑛 + 𝑏𝑛+1 = 𝐴𝑛𝑣𝑛 + 𝑏𝑛+1 + 𝐴𝑛𝑄𝑛𝑎𝑛. (2.22)

Since the shadowing perturbation solves Eq. 2.20, the left hand side is 𝑣sh𝑛+1. Using

steps 3 to 5 of the 𝑛-loop in section 2.3.2, the first two terms on the right hand side

of Eq. 2.22 become 𝑣𝑛+1 + 𝑄𝑛+1𝜋𝑛+1. From step 2 of the 𝑛-loop, 𝐴𝑛𝑄𝑛 = 𝑄𝑛+1𝑅𝑛+1.

Thus,

𝑣sh𝑛+1 = 𝑣𝑛+1 + 𝑄𝑛+1𝜋𝑛+1 + 𝑄𝑛+1𝑅𝑛+1𝑎𝑛. (2.23)

From Eq. 2.21, the left hand side of the above equation is also equal to 𝑣𝑛+1 +

𝑄𝑛+1𝑎𝑛+1. We obtain the following iterative relationship for 𝑎𝑛, after multiplifying

both sides by 𝑄𝑇
𝑛+1

𝑎𝑛+1 = 𝜋𝑛+1 + 𝑅𝑛+1𝑎𝑛. (2.24)

This is the equality constraint that must be added to the NILSS problem, whose

Lagrangian is in Eq. 2.15. Hence, Eq. 2.24 is also one of the KKT conditions

(𝐷𝛽𝑛ℒsh = 0) of the NILSS optimization problem. Although one can theoretically

solve Eq. 2.24 starting from a random guess for 𝑎1 and iterating, this does not provide

accurate results in practice; Eq. 2.24 is not a well-conditioned problem for {𝑎𝑛} due

to the exponential growth of the round-off errors in {𝑅𝑛}, which tend to accumulate

upon iteration. Thus, following [206, 211], we resort to the direct method of solving

for the entire sequence {𝑎𝑛} at once (Appendix A of [211] and [206]). The direct

method is to solve the following system of linear equations for {𝑎𝑛}

𝐺𝑋 = 𝐻, (2.25)

where
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• 𝐺 is an 𝑁𝑑𝑢 × (𝑁 + 1)𝑑𝑢 block matrix with 𝑑𝑢 × 𝑑𝑢 blocks given by

𝐺 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑅1 𝐼 0 · · · 0 0

0 −𝑅2 𝐼 · · · 0 0

0 · · · · · · · · · 0 0

· · · · · · · · · · · · · · · · · ·

0 · · · · · · −𝑅𝑁−1 𝐼 0

0 · · · · · · · · · −𝑅𝑁 𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.26)

where 𝐼 is the 𝑑𝑢 × 𝑑𝑢 identity matrix,

• 𝑋 is an 𝑁 × 𝑑𝑢 vector consisting of [𝑎0, · · · , 𝑎𝑁 ] and,

• 𝐻 is an 𝑁𝑑𝑢-length vector containing the sequence [𝜋1, · · · , 𝜋𝑁 ].

The solution of the underdetermined system that minimizes the norm of 𝑋 is given

by

𝑋 = 𝐺𝑇 (𝐺𝐺𝑇 )−1𝐻.

2.3.4 Modifications due to the center direction

Whether in tangent or adjoint shadowing, a better accuracy is obtained if the cen-

ter direction, which is approximately the right hand of an ODE when 𝑓 is a time-

discretization of the ODE, is given a special treatment. In tangent shadowing, 𝑑𝑢 can

be set to the number of positive LEs plus 1, so that the center direction is treated as

an unstable direction. However, in some problems, this may increase the condition

number of the least squares problem for 𝑋. This leads to a poorer minimization

of 𝑋, which in turn increases the norm of the shadowing perturbation, when com-

pared to the following alternative. As suggested in [206], we project out the center

components of both the homogeneous and inhomogeneous tangents and add the con-

tribution to the sensitivity due to the center perturbation, in the final step. We

discuss the modification to which this leads in the 𝑛-loop (section 2.3.2). Then, we

discuss the modification in the calculation of the sensitivity in the next subsection. In
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the 𝑛-loop, in addition to step 2, we must also subtract from 𝑄𝑛 its projection along

ℱ , which is approximately the center direction, as: 𝑄𝑛 ←− 𝑄𝑛 − ℱ𝑛ℱ𝑇
𝑛 𝑄𝑛/ ‖ℱ𝑛‖2 ,

where ℱ𝑛 := ℱ(𝑢𝑛,𝒮). Similarly, for 𝑣𝑛, after step 3, 𝑣𝑛 ←− 𝑣𝑛 − ℱ𝑛ℱ𝑇
𝑛 𝑣𝑛/ ‖ℱ𝑛‖2 .

Next, we discuss modifications to adjoint shadowing due to the center perturbation.

As we noted earlier, the tangent and adjoint subspaces corresponding to two different

Lyapunov exponents are perpendicular to each other (see e.g. Appendix B in [207] for

a proof; we also show numerical results verifying this fact for the time-delayed system

considered, in Figure 2-6). This orthogonality gives rise to the constraint (derived in

section 5.4 of [207]):

(1/𝑁)
𝑁∑︁

𝑛=1

(𝑣sh𝑛 )𝑇ℱ𝑛 = 0.

By definition, since 𝑣sh𝑛 = 𝑣𝑛 + 𝑄𝑛𝑎𝑛, this leads to,

𝑁∑︁
𝑛=1

(︁
𝑣𝑇𝑛ℱ𝑛 + 𝑎𝑇𝑛𝑄

𝑇
𝑛ℱ𝑛

)︁
= 0. (2.27)

This condition leads to one more equation (adding one more row to 𝐺) while solving

the NILSS problem (section 2.3.3). The 𝑛-loop in adjoint shadowing need not be

modified.

2.3.5 Computation of the sensitivities

Having obtained the sequences {𝑎𝑛}, {𝑣𝑛} and {𝑄𝑛}, the shadowing perturbation is

determined, for 1 ≤ 𝑛 ≤ 𝑁 , as

𝑣sh𝑛 = 𝑣𝑛 + 𝑄𝑛𝑎𝑛. (2.28)

With the shadowing perturbation, the sensitivities can be computed as though the

system were not chaotic (Eq. 2.11 and Eq. 2.12). That is, in adjoint shadowing,

𝑑𝑠⟨𝐽⟩ =
1

𝑁

𝑁∑︁
𝑛=1

𝑣sh𝑛 · 𝑥𝑛′+1. (2.29)
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In the case of tangent shadowing, we add to the sensitivity in Eq. 2.11, the contribu-

tion from the center direction, if treating the center direction separately as described

in section 2.3.4,

𝑑𝑠⟨𝐽⟩ =
1

𝑁

(︁ 𝑁∑︁
𝑛=1

𝑥*
𝑛 · 𝑣sh𝑛 +

𝑣𝑇𝑛ℱ𝑛

‖ℱ𝑛‖2
(𝐽𝑛 − ⟨𝐽⟩𝑁)

)︁
, (2.30)

where 𝐽𝑛 in the above equation is the objective function at 𝑢𝑛. In both tangent and

adjoint shadowing, the projections onto the center direction, 𝑣𝑇𝑛ℱ𝑛 and 𝑄𝑇
𝑛ℱ𝑛, are

stored during the 𝑛-loop. However, the 𝑛-loop needs to be modified to account for

the center direction only while performing tangent shadowing.

2.3.6 Automatic differentiation

As discussed in section 2.2.3, we can replace tangent/adjoint solvers with forward/reverse-

mode automatic differentiation, respectively. In the 𝑛-loop (section 2.3.2), we can in-

troduce AD to advance 𝑄𝑛, 𝑣𝑛. Hence, AD-shadowing only requires the primal solver

to be supplied by the user, as opposed to primal, tangent and adjoint solvers. The

AD-version of the 𝑛-loop is shown in 2.10.

We remark that for the AD version of the shadowing algorithm, an exploration of

various techniques for memory and time-efficiency of AD [35, 144], such as combining

primal-tangent/adjoint solver, is needed. These approaches may lead to taking longer

timesteps without compromising on accuracy by utilizing the fact that AD is an

exact method, which does not increase the numerical error in the perturbations. This

more involved approach to AD shadowing, must be numerically investigated for a

given problem to determine whether (or not) it leads to a realizable computational

advantage (due to AD overheads) in practice.

2.4 The time delayed model for thermoacoustics

Chaotic thermoacoustic oscillations originate from two main physical nonlinearities,

which are deterministic. First, the heat released by the flame is a nonlinear function of
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the acoustic perturbations at the flame’s base, i.e. the flame saturates nonlinearly [87,

88]. Both experimental investigations [116, 149, 117, 150] and numerical studies

[274, 153, 214] showed that the nonlinear flame saturation may cause a periodic

acoustic oscillation to become chaotic, by either period doubling, or Ruelle-Takens-

Newhouse, or intermittency scenarios [205, 204], which are common in fluid dynamic

systems [90, 200, 91]. The numerical studies of [274, 153, 214] showed that the

nonlinear flame saturation may generate chaotic acoustic oscillations even in laminar

flame models, where the turbulent hydrodynamics is not modelled. We introduce a

nonlinear time-delayed model of chaotic thermoacoustic instabilities. We demonstrate

that shadowing obtains useful sensitivities of this model, in the chaotic regime. We

begin by describing the flame duct model of combustion in a horizontal Rijke tube

[253], open to the atmosphere on both ends. The inviscid momentum and energy

equations are linearized about the mean flow to yield,

𝜕𝑢

𝜕𝑡
+

𝜕𝑝

𝜕𝑥
= 0 (2.31)

𝜕𝑝

𝜕𝑡
+

𝜕𝑢

𝜕𝑥
+ 𝜁𝑝− 𝑞 𝛿(𝑥− 𝑥𝑓 ) = 0, (2.32)

where, 𝑢(𝑥, 𝑡) and 𝑝(𝑥, 𝑡) are the acoustic velocity and pressure at the one-dimensional

spatial location 𝑥 and at time 𝑡. The pointwise heat-release source is 𝑞 𝛿(𝑥 − 𝑥𝑓 ),

where 𝛿(𝑥−𝑥𝑓 ) is the Dirac delta centered at 𝑥𝑓 . The constant 𝜁 is a parameter that

models acoustic damping [163, 162]. We consider a Galerkin modal decomposition

in a Fourier basis [253] of the acoustic velocity and pressure fields, which transforms

Eqs. 2.31-2.32 into a set of time-delayed coupled oscillators

𝑑𝜂𝑗
𝑑𝑡
− 𝑗 𝜋 𝜃𝑗 = 0, (2.33)

𝑑𝜃𝑗
𝑑𝑡

+ 𝑗 𝜋 𝜂𝑗 + 𝜁𝑗 𝜃𝑗 + 2𝛽 𝑞(𝑢𝑓 (𝑡− 𝜏)) sin(𝑗𝜋𝑥𝑓 ) = 0,
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where 𝑗 = 1, · · · , 𝑑𝑔, indicates the index of the Galerkin modes, with 𝑑𝑔 being their

total number,

𝑢𝑓 (𝑡) =

𝑁𝑔∑︁
𝑘=1

𝜂𝑘(𝑡) cos(𝑘𝜋𝑥𝑓 ), and (2.34)

𝜁𝑗 = 𝑐1𝑗
2 + 𝑐2𝑗

1/2. (2.35)

In the above system of equations, 𝜂𝑗 indicate the velocity modes and 𝜃𝑗 indicate the

pressure modes. Modal damping is represented by 𝜁𝑗 and 𝑞 is the rate of heat release

at the flame location 𝑥𝑓 . The function 𝑞(𝑢) =
√︀
|1.0 + 𝑢|−1 is a modified King’s law

[253], which is non-differentiable at 𝑢 = −1. Along trajectories of this system, we may

encounter states corresponding to 𝑢𝑓 = −1, where the Jacobian does not exist. We

need to avoid this non-differentiability in order to compute the tangent/adjoint/AD

solutions needed for the shadowing algorithms. Thus, we follow the approach taken

in [141], wherein the function 𝑞 is approximated by a polynomial around the non-

differential point. In particular, when −1.01 ≤ 𝑢 ≤ −0.99, we take

𝑞(𝑢) = −1 + 1750 (1 + 𝑢)2 − 7.5× 106 (1 + 𝑢)4,

where the coefficients have been estimated by regression. The flame velocity 𝑢𝑓 affects

the pressure field modes 𝜃𝑗 after a time delay given by a constant, 𝜏 . This models

the fact that the disturbances in the flame velocity at the flame base require a finite

time to traverse the flame and cause a perturbation in the heat released [172, 188].

2.4.1 Replacing the time delay with an advection equation

When solving the above system numerically, if the time delay is modelled by con-

verting the delay parameter 𝜏 into an integer number of timesteps – that is, 𝜏 is

converted into a discrete parameter from a continuous one – the state cannot be

differentiated with respect to 𝜏 . We resolve this problem in order to ensure that

AD/tangent/adjoint solvers are applicable, by augmenting the primal system with an
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auxiliary linear advection model [141]

𝜏
𝜕𝑣

𝜕𝑡
+ 2

𝜕𝑣

𝜕𝑦
= 0, −1 ≤ 𝑦 ≤ 1 (2.36)

𝑣(𝑦 = −1, 𝑡) = 𝑢𝑓 (𝑡). (2.37)

The exact solution of the above advection equation at the right boundary is 𝑣(𝑦 =

1, 𝑡) = 𝑢𝑓 (𝑡− 𝜏). The advection solution, 𝑣(𝑦 = 1, 𝑡) can be used in place of the heat

release model, which in turn influences the pressure modes as per Eq. 2.33. Thus, we

mathematically make the overall primal system memory-less, by including the advec-

tion subsystem in Eq. 2.36 in the primal system (Eq. 2.33). The above discretized

equation retains the chain rule dependence on 𝜏 and, hence, can be differentiated with

respect to 𝜏 through AD. We use a Chebyshev spectral collocation method ([261] Ch.

6) to solve the advection equation. The additional cost per timestep incurred due

to adding this advection subsystem (i.e., adding Eq. 2.36 to the primal set of ODEs

in Eq. 2.33), depends on the spatial scale (in 𝑦) of the numerical discretization of

the advection system, i.e., the number of Chebyshev collocation points. We seek

to minimize the number of Chebyshev points in order keep the overall dimension

of the system as small as possible. The timestep size can also be commensurately

increased, ensuring the CFL condition, on decreasing the spatial resolution, which

is cost-effective for computing long-time averages. With these considerations, we

choose 𝑑𝑐 = 10 Chebyshev points in the interval −1 ≤ 𝑦 ≤ 1 and the timestep of

the primal system is chosen to be 𝜏/(2𝑁𝑐). Choosing 𝑑𝑔 = 10, the primal system

of dimension 𝑑 = 2𝑑𝑔 + 𝑑𝑐 = 30 is time-evolved by integrating Eq. 2.33 and Eq.

2.36 using the Tsitouras Runge-Kutta time-integrator (Tsit5()) offered by the Julia

package OrdinaryDiffEq [226, 225]. We remark that this auxiliary equation approach

can be used in any general system with a constant time-delay in order to maintain

its differentiability through AD with respect to the delay parameter.
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2.4.2 Types of solutions over a range of the heat-release pa-

rameter

We fix the damping coefficients at 𝑐1 = 0.06, 𝑐2 = 0.01, the delay parameter at 𝜏 = 0.2

[190], and numerically solve the primal system. In this section, we study the effect

of the heat-release parameter 𝛽 on the type of primal solution observed. Here, “type”

refers to the three different possibilities for the asymptotic behavior of a nonlinear

dissipative dynamical system, apart from convergence to a fixed point: convergence

to a (a) limit cycle (periodic behavior), (b) quasiperiodic attractor and (c) chaotic

attractor. These different regimes are all observed upon varying the parameter 𝛽

from about 2 to 9; smaller values of 𝛽 . 0.8 lead to a fixed point solution. We show

these regimes as a function of 𝛽 in the bifurcation diagram of Figure 2-2.

Ergodic average of acoustic energy

The bifurcation diagram in Figure 2-2 shows the acoustic energy upon time-averaging

over a long time window against the heat release parameter 𝛽. This quantity is

commonly used as an objective function for optimization problems in thermoacoustics,

and shall therefore be used to demonstrate the discrete shadowing algorithm. We

denote the acoustic energy by 𝐽ac, and its ergodic/ensemble average by ⟨𝐽ac⟩, the

latter quantity being computed numerically by time-averaging over a long trajectory.

The instantaneous acoustic energy is the sum of the acoustic kinetic and potential

energies, i.e., it is the Hamiltonian (constant of motion) of the natural acoustic system.

Using Parseval’s theorem, the acoustic energy is related to the Galerkin modes. That

is, the acoustic energy is defined as

𝐽ac =
1

2
(𝑝2 + 𝑢2) =

1

4

𝑁𝑔∑︁
𝑗=1

(𝜂2𝑗 + 𝜃2𝑗 ). (2.38)

The length of the averaging window is chosen to be the time taken for the standard

error in the empirical mean values to be within 1% of the mean, when computed in

the chaotic regime. This time, the time-average over which approximates the infinite-
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Figure 2-2: Bifurcation diagram. The values of ⟨𝐽ac⟩, the time-averaged acoustic en-
ergy, are color-coded according to the type of solution: periodic (blue), quasiperiodic
(green) and chaotic (red). The attractors represented on the 𝑢𝑓 -𝑞 plane, at four dif-
ferent 𝛽 values – 𝛽 = 2.5, 6.0, 7.0, 8.5 (from top to bottom) – are shown to the right.
The attractors shown on the 𝑢𝑓 -𝑞 plane, are also color-coded according to their type.
On the top-left inset figure is shown a zoomed-in plot of ⟨𝐽ac⟩-vs.-𝛽 at 𝛽 = 7.0.

time/ensemble average of a given function, was determined to be about 200 time units

(or 20000 timesteps, with a fixed timestep size of 0.01).

Another common objective function is the Rayleigh index, whose long-term be-

havior is also the subject of the sensitivity studies in this chapter. The Rayleigh index

is defined as [193, 141]

𝐽ray := 𝑝(𝑥𝑓 , 𝑡) 𝑞(𝑡) =
1

2

𝑁𝑔∑︁
𝑗=1

𝜁𝑗 𝜃
2
𝑗 . (2.39)

The physical significance of both these objective functions is discussed later in section

2.4.3.
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Limit cycles and quasiperiodicity

From Figure 9, it can be seen that ⟨𝐽ac⟩ increases continuously over a range of 𝛽

values from 2 to about 5. In this range, the primal solution is a limit cycle, which

has the effect that the values of ⟨𝐽ac⟩ (shown as blue dots) appear to be perfectly

observed, without any noise. With 𝑑𝑔 = 10 Galerkin modes and 𝑑𝑐 = 10 Chebyshev

points, the periodic attractor lives in a 30-dimensional space. For visualization, we

show 2D phase diagrams on the 𝑢𝑓 -𝑞 plane, for the different solution regimes. The

limit cycle phase diagram is shown in blue in the top-right of the bifurcation diagram.

When 𝛽 & 5, the limit cycle transitions into quasiperiodic oscillations, which are

aperiodic but appear to be almost periodic. For example, an iterative process of ro-

tation on a complex unit circle (or more generally, on the surface of a 𝑑-dimensional

torus) by a constant rational angle is periodic, while a rotation by a constant irrational

angle, is quasiperiodic. Mathematically, a quasiperiodic solution is distinguished from

a periodic solution by the number of zero Lyapunov exponents: quasiperiodic solu-

tions have more than one while periodic solutions have exactly one zero Lyapunov

exponent. We compute the Lyapunov exponents numerically (using a standard algo-

rithm as explained in section 2.3.2) in order to classify the different types of solutions

[141].

The quasiperiodic phase diagram, and the ⟨𝐽ac⟩ values in this regime are color-

coded green in Figure 2-2. Quasiperiodicity occurs in the transition from periodic

behavior to chaotic behavior. Both the periodic and quasiperiodic case are nonlinearly

stable, i.e., the nonzero Lyapunov exponents are negative. This means that an applied

(infinitesimal) perturbation does not grow exponentially (it may have subexponential

growth) in either case.

The chaotic regime

When 6.4 . 𝛽 . 7.3, the solutions exhibit at least one positive Lyapunov exponent:

this is the chaotic regime. In the bifurcation diagram (Figure 2-2), this regime is

shown in red. The phase portrait on the 𝑢𝑓 -𝑞 plane shows, as expected, a fractal
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Figure 2-3: The first 20 LEs at 𝛽 = 7.0 and 𝜏 = 0.2. The QR factorization is
performed every timestep, ie, at a segment length of 0.01. The total integration time
considered is 200 time units. Inset: the first 3 LEs at 𝛽 = 7.0 and 𝜏 = 0.2. The
values obtained are 𝜆1 ≈ 0.19, 𝜆2 ≈ 0.05, and 𝜆3 ≈ −0.07.

attractor. The values of ⟨𝐽ac⟩ also appear to be erratic, revealing the presence of

statistical noise due to a finite time-averaging window. In Figure 2-3, we show the

first 20 Lyapunov exponents at 𝛽 = 7. The value of the first exponent is about 0.2. As

mentioned in section 2.2.1, the time-derivative of the ODE is a center perturbation

with a zero Lyapunov exponent. The second Lyapunov exponent is is about 0.05

corresponding to this center direction (it would converge to zero as the averaging

time approaches infinity).

2.4.3 Acoustic energy and Rayleigh criterion as objective func-

tions

We analyze the chaotic thermoacoustic oscillation of the primal system by studying

the sensitivities of the long-time averages ⟨𝐽ac⟩ and ⟨𝐽ray⟩. Before we compute the

sensitivities, we motivate our particular choice of objective functions, among many

available candidates for norms [75, 109], semi-norms [187, 42], and physical mea-

surements in this multi-physical system. For thermoacoustic systems with negligible

mean flow, which cannot advect flow inhomogeneities like entropy spots, the acoustic

energy and Rayleigh criterion are two suitable quantities of interest [193].
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Since 𝐽ac is (half) the Euclidean semi-norm of the thermoacoustic system, we are

interested in calculating the sensitivity of its time average, ⟨𝐽ac⟩, in the interests of

reducing the amplitude of chaotic oscillations. The Rayleigh index can be derived

by (i) multiplying the acoustic momentum equation (2.31) by 𝑢; (ii) multiplying the

acoustic energy equation (2.32) by 𝑝; (iii) adding them up; and (iv) integrating in the

space domain. This procedure yields an equation for the evolution of the acoustic

energy
𝑑𝐽ac
𝑑𝑡

= −
∫︁ 1

0

𝜁𝑝2 𝑑𝑥 + 𝑝𝑓𝑞, (2.40)

where 𝑝𝑓 (𝑡) := 𝑝(𝑥𝑓 , 𝑡) is the pressure at the heat source. Defining the Rayleigh index

as

𝐽ray := 𝑝𝑓𝑞(𝑡), (2.41)

upon numerical discretization, we obtain

𝐽ray = −𝑞(𝑣(𝑦 = 1, 𝑡))

𝑁𝑔∑︁
𝑗=1

𝜃𝑗(𝑡) sin(𝑗𝜋𝑥𝑓 ). (2.42)

The Rayleigh index is an important cost functional that determines the stability of

acoustic oscillations fed by a heat source. Physically, Eq. 2.40 states that the acoustic

energy grows in time when the pressure at the heat source is sufficiently in phase with

the heat release rate to exceed damping mechanisms. The acoustic energy grows up

to nonlinear saturation, after which the self-sustained acoustic oscillation persists.

This mechanism is commonly studied through the Rayleigh criterion [178] for the

production of thermoacoustic oscillations. In chaotic oscillations, we are interested in

calculating the sensitivity of the time-averaged Rayleigh index, ⟨𝐽ray⟩. Applying the
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Figure 2-4: Ergodic average of the Rayleigh index, ⟨𝐽⟩ray. Inset: zoomed-in plot of
⟨𝐽⟩ray-vs.-𝛽 at 𝛽 = 7.0 in the chaotic regime.

infinite time average to Eq. 2.40 [141],

0 =

⟨
𝑑𝐽ac
𝑑𝑡

⟩
+

⟨∫︁ 1

0

𝜁𝑝2 𝑑𝑥 + 𝑝𝑓𝑞

⟩
= lim

𝑇→∞

1

𝑇

∫︁ 𝑇

0

𝑑𝐽ac
𝑑𝑡

𝑑𝑡 +

⟨∫︁ 1

0

𝜁𝑝2 𝑑𝑥

⟩
− ⟨𝑝𝑓𝑞⟩

= lim
𝑇→∞

𝐽ac(𝑇 )− 𝐽ac(0)

𝑇
+

⟨∫︁ 1

0

𝜁𝑝2 𝑑𝑥

⟩
− ⟨𝑝𝑓𝑞⟩ . (2.43)

Considering that the acoustic energy is a bounded quantity on a strange attractor,

the first term of the above equation is 0. Hence, Eq. 2.43 physically means that the

damping mechanism exactly balances the acoustic source at regime, i.e.,

⟨𝐽ray⟩ = ⟨𝑝𝑓𝑞⟩ =

⟨∫︁ 1

0

𝜁𝑝2 𝑑𝑥

⟩
. (2.44)

Thus, the time-averaged Rayleigh index can be expressed either from the heat-

source contribution or the dissipation term. From a computational point of view, the

calculation of the sensitivity of ⟨𝑝𝑓𝑞⟩ is difficult because the chaotic modulation, which

is imposed exactly at 𝑥 = 𝑥𝑓 , makes ⟨𝑝𝑓𝑞⟩ erratic. To overcome this computational

problem, we recommend using
⟨∫︀ 1

0
𝜁𝑝2 𝑑𝑥

⟩
(bearing in mind the equality Eq. 2.44),

which numerically behaves regularly because it is an integral quantity [141]. Using
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the Galerkin modal decomposition of the pressure, this integral becomes Eq. 2.39,

which was used earlier to define the Rayleigh index. In Figure 2-3, on the right

hand side, we plot the ergodic average of the Rayleigh index, ⟨𝐽ray⟩ as a function of

heat release 𝛽. The behavior of ⟨𝐽ray⟩ is consistent with that of ⟨𝐽ac⟩, with irregular

values in the chaotic regime (6.4 ≤ 𝛽 ≤ 7.3), and a sharp increase in the chaotic-to-

periodic transition. Note that the cost functional ⟨𝐽ray⟩ is not directly proportional

to the norm of the state, unlike the acoustic energy. The sensitivity and optimization

framework we propose can tackle general cost functionals.

2.4.4 Lyapunov vectors in the chaotic regime

We treat the numerical solution of the system of ODEs as the map 𝑓 between con-

secutive timesteps. The parameters 𝒮, as per our notation in section 2.3, is set to

[𝛽, 𝜏 ]𝑇 . Corresponding to the LEs (shown in Figure 2-3), we also compute the tangent

Covariant Lyapunov Vectors (CLVs) using Ginelli et al.’s algorithm [113]. The CLVs

are tangent/adjoint vectors whose asymptotic exponential growth or decay rates are

exactly equal to the LEs; further, they are covariant in the sense that a homogeneous

tangent/adjoint solution (Eq. 2.4 and Eq. 2.10) starting from a CLV always lies in

the span of the same CLV field. The reader is referred to [159] for the properties of

CLVs. In this chapter, the CLVs are normalized. The unstable (stable) tangent CLVs

form a basis of (non-orthonormal) unit vectors for 𝐸𝑢 (𝐸𝑠); the span of the unstable

(stable) adjoint CLVs is (𝐸𝑠)⊥ ((𝐸𝑢)⊥). Since the center subspace is one-dimensional,

the normalized time-derivative ℱ/ ‖ℱ‖ is the center tangent CLV field. The Ginelli

algorithm can also compute the adjoint CLVs. For this, we use the Jacobian transpose

trajectory, in place of the Jacobian trajectory used to compute the tangent CLVs, and

we also reverse time (i.e, the forward/backward phase of Ginelli’s algorithm is carried

out backward/forward). We compute the tangent and adjoint CLVs at 𝛽 = 7. In

Figure 2-5, we show the angles between each pair among the first 6 tangent CLVs,

and each pair of adjoint CLVs, on the right. The angles are averaged over 250 time

units. In a hyperbolic system, the angles between every pair of CLVs (corresponding

to different LEs) are uniformly (in phase space) bounded away from 0. Although not

71



Figure 2-5: Ergodic average of the angles between the first 6 different adjoint CLVs
(right) and tangent CLVs (left). The averaging window was set at 250 time units.
The colorbar shows the angle in degrees.

a rigorous test for hyperbolicity, the results of Figure 2-5 indicate that, at least on

average, the first 6 CLVs, both tangent and adjoint, do not show tangencies. Over the

time window of calculation, the minimum angle observed between any dissimilar pair

was about 4 degrees. This indicates that the system is likely uniformly hyperbolic.

Biorthogonality is numerically verified in Figure 2-6. Except along the diagonals,

which contain the mean angles between a tangent and adjoint CLV corresponding to

the same LE, the mean angles are all about 90 degrees, as expected.

2.5 Suppression of a nonlinear oscillation by gradient-

based optimization

The thermoacoustic model under investigation displays chaotic behavior in the region

6.4 ≤ 𝛽 ≤ 7.3. As illustrated in Figure 2-1, conventional methods to compute the

sensitivities of the long-time behavior of this model, in this chaotic regime, fail to

produce meaningful sensitivities. In this section, we use the shadowing algorithm

presented in section 2.3 to enable the computation of these sensitivities. Our goal is

to illustrate the potential of the algorithm for practical sensitivity-based optimization

and parameter estimation in the regime of chaotic acoustics.

Given the small number of parameters and objective functions, it is possible to
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Figure 2-6: Angles between pairs of adjoint and tangent CLVs when averaged over
250 time units. As expected, each tangent CLV is orthogonal to every adjoint CLV
except those with the same LE.

compare the sensitivities computed through the algorithm with the slopes obtained

from the bifurcation diagrams in Figures 2-2 and 2-3 (right). These comparisons

validate the results of our algorithm, which is one of the goals in this section. We

demonstrate the usefulness of the computed sensitivities by using them in a gradient

descent algorithm to minimize the ergodic average of the acoustic energy. This simple

optimization procedure can be used for heat release parameter selection. The NILSS

algorithm and its discrete AD variant presented here thus introduce sensitivity-based

optimization and parameter estimation to the chaotic regime, more generally in hy-

perbolic systems with constant time-delays, extending the work of Huhn and Magri

[141].

2.5.1 Shadowing sensitivities of the acoustic energy and Rayleigh

criterion

We apply the shadowing algorithm from section 2.3 to compute both tangent and

adjoint shadowing sensitivities. We compute the tangent shadowing direction once to

estimate (𝑑⟨𝐽ac⟩/𝑑𝛽) and (𝑑⟨𝐽ray⟩/𝑑𝛽). Similarly, we compute an adjoint shadowing

direction once, to calculate both the sensitivities 𝑑⟨𝐽ac⟩/𝑑𝛽 and 𝑑⟨𝐽ac⟩/𝑑𝜏 . Next we
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Figure 2-7: Sensitivities of ⟨𝐽ac⟩ (red) and ⟨𝐽ray⟩ (blue) computed through tangent
shadowing. The sensitivities are obtained by a cumulative average over sensitivities
each of which is computed over 20 time units.

define the inputs to the shadowing algorithms. A primal orbit {𝑢𝑛} is a sequence

of 30-dimensional solution vectors obtained by time-integrating the primal system

(Eq. 2.33 and Eq. 2.36). The map 𝑓 is the Tsitouras Runge-Kutta time-integrator

that advances a solution state by one timestep. The timestep size is fixed at 0.01.

For tangent shadowing, the input 𝑏𝑛 is set to 𝑥𝑛 = (𝜕𝑓/𝜕𝛽)(𝑢𝑛−1,𝒮). In the ad-

joint shadowing algorithm, we arrange the input sequence {𝑏𝑛} so that 𝑏𝑛′+1 is set

to 𝑥*
𝑛 = 𝐷𝐽ac(𝑢𝑛). (i.e., we pass 𝑥*

𝑛 in time-reversed order to the adjoint shadowing

algorithm). We use the AD package Zygote.jl [226] [225] to compute the sequence

{𝑏𝑛} for tangent shadowing, through AD. The Jacobian matrix 𝐴𝑛 := 𝐷𝑓(𝑢𝑛) and

its transpose, needed for the tangent and adjoint algorithms respectively, are com-

puted by using finite difference. Instead, if using AD, each 𝐴𝑛 must be computed

row-by-row (since Zygote.jl does not support vector-valued outputs), leading to a

much larger computation time compared to using finite difference. Moreover, the

shadowing algorithms do not need the Jacobian to be computed exactly. In the AD

version of tangent and adjoint shadowing, we do not need to compute 𝐴𝑛 and 𝑏𝑛;

the tangent/adjoint perturbations needed in the 𝑛-loop (section 2.3.2) are directly

computed using AD as shown in 2.10. The input to the AD version of both tangent

and adjoint shadowing are the functions that perform primal time-integration and

compute the objective functions, given the primal state. In order to ensure that 𝑢0 is

a point on the chaotic attractor, we evolve the system for a time of 10000 time units,

starting from a random 30 dimensional vector.

We set 𝑑𝑢 = 2 for both algorithms. Although we could theoretically have used
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Figure 2-8: Sensitivities of ⟨𝐽ac⟩ with respect to 𝜏 (green, right) and ⟨𝐽ac⟩ (red, left),
wrt 𝛽, computed through adjoint shadowing at 𝛽 = 6.9, 𝜏 = 0.2. The recorded
sensitivities were obtained by a cumulative average over sensitivities each computed
over a time length of 20 units.

𝑑𝑢 = 1 in the tangent algorithm, setting 𝑑𝑢 = 2 leads to better approximations of

the shadowing direction via the least squares problem (section 2.3.3). Each mini-

mization problem is solved over a time duration of 20 time units, which is about 4

Lyapunov times. To obtain the sensitivity of a long-time average, a sample mean

of these intermediate-time sensitivities is taken. A cumulative mean of the sensitivi-

ties converges as the length of time (number of samples) increases (2-7 and 2-8). In

Figure 2-7, we show the sensitivities of the long-time averaged acoustic energy (left)

and Rayleigh index (right), with respect to 𝛽, computed using sample averages of

the tangent shadowing sensitivities. In Figure 2-8, we show the sensitivities of the

long-time averaged acoustic energy with respect to 𝛽 (left) and 𝜏 (right), computed

using sample averages of the adjoint shadowing sensitivities. The mean up to a time

of 200,000 (i.e., calculated using 10,000 shadowing sensitivities each over a time of 20

units) is shown as a solid line. The mean values shown in both plots in Figure 2-7

compare well against the corresponding slopes from the inset plots of Figures 2-2 and

2-4. The mean value of the sensitivity with respect to 𝛽, about -3.9, also agrees well,

with the same sensitivity computed using the adjoint algorithm, around -3.5, which is

shown in Figure 2-8 (left). Since all three quantities, the shadowing sensitivities from

the two algorithms as well as a direct reading of the slope from the ⟨𝐽ac⟩-vs-𝛽 plots,

suffer from statistical noise due to a finite computation window, we do not expect

exact agreement. Nevertheless, we note that both tangent and adjoint sensitivities

are within 12% of the slope estimate of -4 obtained from by approximating ⟨𝐽ac⟩-vs-𝛽
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Figure 2-9: The path of optimization starting at 𝛽 = 6.5. The points are superim-
posed on the plot of ⟨𝐽ac⟩. In the gradient descent algorithm, the step size is taken
to be 0.1.

as a line in Figure 2-2 (inset). To ensure its correctness, the program that implements

the two shadowing algorithms is validated by computing sensitivities on the classical

model of a chaotic ODE, the Lorenz’63 system, to verify the computed sensitivities

against the values available for this system in the literature. For details on this vali-

dation and on the replication of Figures 2-8 and 2-7, see 2.8. The absolute values of

the sensitivities 𝑑⟨𝐽ray⟩/𝑑𝛽 from Figure 2-7 are consistent with our expectation from

Figure 2-4 that the ergodic average ⟨𝐽ray⟩ decreases with 𝛽, around 𝛽 = 6.9, but not

as rapidly as ⟨𝐽ac⟩. From Figure 2-8 (right), we see that the ergodic average of the

acoustic energy is highly sensitive (when compared to changes in 𝛽) to small pertur-

bations in the time delay parameter 𝜏. The shadowing algorithm shows convergence,

when the same derivative is computationally prohibitive to obtain accurately with

ensemble sensitivity calculations [96, 69].

2.5.2 Minimization of the acoustic energy using shadowing

We shall demonstrate an application of the sensitivity 𝑑⟨𝐽ac⟩/𝑑𝛽 that we computed in

the previous section, to the problem of optimal design by parameter selection [141].
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We use the numerically computed bifurcation diagram (Figure 2-2) as a qualitative

check of our parameter selection procedure. We aim to solve the following optimiza-

tion problem,
minimize

𝛽
⟨𝐽ac⟩(𝛽)

subject to Eq.2.36, Eq.2.33,

(2.45)

where ⟨𝐽ac⟩ is the ergodic average of the acoustic energy, which is approximated using

a long-time average over a time duration of 𝑁 steps. The parameter can be updated

by a steepest descent method

𝛽𝑛+1 = 𝛽𝑛 − 𝛾𝑑𝛽⟨𝐽ac⟩|𝛽=𝛽𝑛
, (2.46)

A relaxation factor of 𝛾 = 0.1 is used to enable stable and accurate numerical conver-

gence. At each 𝛽, the shadowing sensitivity is computed over 1000 time units, which

is a sample average of 50 sensitivities collected from runs of the shadowing algorithm

each over a time of 20 units. The algorithm stops when the condition

⟨𝐽ac(𝛽𝑛)⟩ < 𝜖 · ⟨𝐽ac(𝛽0)⟩ (2.47)

is met, where 𝜖 = 1%. This condition physically signifies that the optimization is

successful when the system vibrates around the fixed point. In Figure 2-9, we show

the optimization path (blue points) taken by this procedure, starting from 𝛽 = 6.5

We show the points (𝛽, ⟨𝐽ac⟩(𝛽)) numbered in the order in which they are encountered

in the optimization procedure. As shown in the figure, the path leads to a reduction

in ⟨𝐽ac⟩ by exiting the chaotic region into the periodic regions for larger of 𝛽, and

eventually into the periodic region at smaller values of 𝛽. We remark that, in this case,

direct evaluation of the bifurcation diagram is possible, owing to the relatively low

dimension of the system and the parameter space. This bifurcation diagram itself

suggests optimal paths for acoustic energy reduction. However, in a more general

setting, the dimension of the system, the objective function and parameter spaces

may be such that bifurcation diagrams, at the resolution of parameters required to
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compute accurate gradients, are computationally infeasible. The demonstration in

this section indicates that the shadowing sensitivities, which can be computed at a

smaller cost relative to the bifurcation diagram computation, can be used instead, for

optimization problems. For illustration purposes, we have chosen a simple gradient-

descent with a fixed relaxation factor. The numerical results in Figure 2-9, however,

show that the step size plays an important role in the rapid transition from large 𝛽

in the periodic region (around 7.4) to the periodic region for smaller values (around

4.0). We defer to a future work the effect of the step size, which is beyond the scope

of this chapter.

2.6 Data assimilation with discrete shadowing

A common problem whenever we have incomplete, and often noisy, observations to-

gether with a model of a physical system, is to estimate a model trajectory that

reproduces the observations. In this section, we explain that the variational formula-

tion of this problem is an application of the shadowing algorithm discussed in section

2.3. Then, we apply the shadowing algorithm to the time-delayed model to illustrate

its potential for data assimilation in chaotic solutions.

In a data assimilation problem, we are given external measurements of an observ-

able 𝑔 at a sequence of times, denoted 𝑔obs𝑛𝑘
, 1 ≤ 𝑘 ≤ 𝑁 . In the data assimilation

method 4DVar [259], an initial state 𝑢0 is sought so that the model trajectory at

the observation times, 𝑓𝑛𝑘
(𝑢0) = 𝑢𝑛𝑘

produces a sequence 𝑔𝑛𝑘
:= 𝑔(𝑢𝑛𝑘

) that closely

matches the observations 𝑔obs𝑛𝑘
. If a reliable guess for the initial state, known as

background 𝑢bg
0 , is available, we desire our predicted initial state to be close to the

background. The optimal initial state, known as analysis, is obtained by minimizing

the following cost functional

⟨𝐽⟩(𝑢0) =
1

2
(𝑢0 − 𝑢bg

0 )𝑇𝐵−1(𝑢0 − 𝑢bg
0 ) +

1

2

𝑁∑︁
𝑘=1

(𝑔obs𝑛𝑘
− 𝑔𝑛𝑘

)𝑇𝐿−1(𝑔obs𝑛𝑘
− 𝑔𝑛𝑘

). (2.48)

The first term in the cost functional in Eq. 2.48 corresponds to the misfit between
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the predicted initial state and the background, where 𝐵 is a 𝑑× 𝑑 background error

covariance matrix. The second term is the misfit between the external observations

and values of the observable generated by the model, using the predicted state as the

initial condition. Given an observable space of dimension 𝑙, the 𝑙 × 𝑙 matrix 𝐿 is the

observation error covariance matrix. Without loss of generality, take 𝐵 and 𝐿 to be

identity matrices (in R𝑑×𝑑 and R𝑙×𝑙 respectively), which results in the following cost

functional:

⟨𝐽⟩(𝑢0) =
1

2

⃦⃦⃦
𝑢0 − 𝑢bg

0

⃦⃦⃦2
+

1

2

𝑁∑︁
𝑘=1

(𝑔obs𝑛𝑘
− 𝑔𝑛𝑘

)2. (2.49)

The cost functional is minimized using a standard optimization procedure, and an

analysis state 𝑢*
0 is obtained. The reader is referred to [260] for data assimilation

of nonchaotic states with a similar thermoacoustic model considered in the present

chapter. When the model is chaotic, the standard optimization procedure fails since

the gradient of the functional with respect to 𝑢0 grows exponentially with the time

duration of available observations (Figure 2-1). Thus, assimilation for a time window

longer than the typically short Lyapunov time, cannot be achieved using standard

optimization methods.

However, several effective strategies have been proposed, particularly in the field

of numerical weather prediction, wherein chaotic models are widely used, that are

successful over long assimilation windows. The most popular of these include 4DVar-

AUS, in which the analysis increment – the discrepancy added to the state during

optimization – is restricted, to the nonstable (𝐸𝑢 ⊕ 𝐸𝑐) subspace, at every timestep

[262]. Another method is projected shadowing-based data assimilation in which the

cost functional is minimized using Newton’s method in each step of which the analysis

trajectory, as a whole, is updated. Additionally, the updates to the analysis trajectory

during each Newton iteration is carried out only on the nonstable subspace, and this

leads to the economy of the method. The updates to the analysis trajectory on the

stable subspace is treated using a different method, known as synchronization [83].

In this work, we present an alternative approach that uses the shadowing algorithm
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described in section 2.3. The goal of this approach is to compute a model orbit

that shadows the pseudo-orbit pertaining to the observations. Our method thus

joins the class of shadowing-based data assimilation methods offering an alternative

formulation that indirectly computes the shadowing orbit through NILSS.

2.6.1 Tangent NILSS for state estimation with full-state ob-

servations

We introduced NILSS [206] as a method to differentiate long-time averages with

respect to parameters in a chaotic system. How is the method relevant to the problem

of state and parameter estimation? The answer to this question lies in the fact that

a shadowing trajectory can be obtained as a byproduct of the NILSS method, and

shadowing trajectories can be used for state estimation. First, we recognize that,

in NILSS, the derivative of the long-time average is computed along a shadowing

trajectory at a perturbed parameter. Secondly, we relate the shadowing perturbation

sequence,
{︀
𝑣sh𝑛
}︀
, that is computed by tangent NILSS, to the solution of the state and

parameter estimation problem.

Shadowing-based interpretation of NILSS

NILSS and its adjoint versions use the shadowing lemma (see e.g. 18.1.2 of [154]) by

considering the reference trajectory {𝑢𝑛} as a pseudo-orbit of 𝑓(·, 𝑠 + 𝜖). According

to the shadowing lemma, there is a unique orbit of 𝑓(·, 𝑠 + 𝜖) called the shadowing

orbit, that is close to the given reference orbit of 𝑓(·, 𝑠), 𝑢𝑛. The tangent shadowing

perturbation is the sequence of tangent vectors, along this shadowing orbit, that

expresses the discrepancy between the shadowing orbit and the pseudo-orbit 𝑢𝑛, 𝑛 ∈

Z+, in the limit 𝜖→ 0. Hence it remains bounded for all time. A close approximation

of the shadowing perturbation, 𝑣sh, is obtained by solving the following least squares
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problem ([271], Theorem LSS)

𝑣sh = argmin𝑤∈𝒱

𝑁−1∑︁
𝑛=0

‖𝑤𝑛‖2

s.t. 𝑤𝑛+1 = 𝐷𝑢𝑓(𝑢𝑛) 𝑤𝑛 + 𝑥𝑛+1. (2.50)

In the above optimization problem, the search space 𝒱 is restricted to a subset of

(R𝑑)𝑁 in which each 𝑤𝑛 can be expressed as 𝑤𝑛 = 𝑣𝑛 + 𝑄𝑛𝑎𝑛, i) for some 𝑎𝑛 ∈ R𝑑𝑢 ,

ii) where 𝑣𝑛 is the conventional tangent solution, i.e., solution of Eq. 2.3 with zero

initial condition. This leads the NILSS algorithm [206] to being more efficient than

if the search space was set to (R𝑑)𝑁 [206].

2.6.2 Converting the state estimation problem to a parameter

estimation problem

The cost functional in state estimation consists of two parts: the background error and

the observation error. We may assume that the background orbit is a pseudo-orbit of

𝑓(·, 𝑠+𝜖), for some 𝜖 around zero. Then, the shadowing problem (Eq. 2.50) minimizes

the first part of the state estimation cost functional, which is the background error.

In order to minimize the second part, the observation error, we use the observation

error as the objective function in the shadowing algorithm. Through the parameter

optimization procedure described in section 2.5, we find an optimal parameter that

minimizes the observation error. This amounts to finding an 𝜖 such that the error

between an observation orbit and a true orbit of 𝑓(·, 𝜖) is minimized. Then, we can

refine the background trajectory, using the shadowing perturbation (computed by

the shadowing algorithm). The parameter optimization is then repeated with the re-

fined trajectory as the new background. By repeating this combined state-parameter

optimization procedure, we minimize both parts of the state estimation cost func-

tional separately. At the end of this procedure, the analysis state is obtained by

iteratively refining the background state using the shadowing perturbations at dif-

ferent parameters. We outline the state-parameter optimization procedure assuming
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Figure 2-10: Relative error in the instantaneous acoustic energy between its predicted
and observed values in the chaotic regime (𝛽 = 7). The maximum error increases
from blue to green colors. The mean error (over the assimilation time window) is
shown in black.

we have observations at every timestep. The following steps are repeated, until the

cost functional is less than a specified tolerance. Initially, the reference orbit 𝑢𝑛 for

shadowing is set to the background orbit. The algorithm is the following:

1. Run tangent shadowing (section 2.3) with an objective function

⟨𝐽⟩(𝑠) :=
1

𝑁

𝑁−1∑︁
𝑛=0

(𝑔obs𝑛 − 𝑔𝑛)2, (2.51)

to obtain 𝑑𝑠⟨𝐽⟩, and the sequence {𝑣sh𝑛 }.

2. Update the parameter as: 𝑠←− 𝑠 + 𝛿𝑠, where 𝛿𝑠 = 𝛾 𝑑𝑠⟨𝐽⟩.

3. Update the initial condition for the next iteration as 𝑢0 ←− 𝑢0 + 𝛿𝑠 𝑣sh0 . Go

to step 1.

In practice, the time 0 corresponding to the start of the assimilation window, must

be postponed roughly by 1/𝜆1 (Lyapunov time), to allow a spin-up time for 𝑣sh0 to be

accurately computed. The relaxation factor 𝛾 is assumed to be a fixed constant, as

in the parameter optimization procedure in section 2.5.
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2.6.3 Numerical results

We present state estimation results on the time-delayed model, computed using the

above algorithm. The algorithm is validated on the Lorenz’63 model, as shown in

Figure 2-12 in 2.9. A total of 180 experiments are performed on the time-delayed

model, each with a different background trajectory of length 20 time units. The

parameter 𝑠 that is updated is set to 𝛽, with the reference value of 7.0. In each

experiment, a background state is generated by perturbing each component of a

reference state by a Gaussian random variable of variance 0.1. The original trajectory,

started from the reference state, is used to generate the observations (of the acoustic

energy) 𝐽obs
ac at every timestep. The mean squared observational error is the objective

function for tangent NILSS,

⟨𝐽⟩ :=
1

𝑁

𝑁−1∑︁
𝑛=0

|𝐽obs
ac𝑛 − 𝐽ac𝑛|2.

The step size for gradient descent (section 2.5) is 𝛾 = 0.1. We show in Figure 2-10

the relative errors in the acoustic energy along the analysis orbit, which is the result

of the algorithm after 200 gradient descent steps. The relative error is defined as

|𝐽obs
ac𝑛 − 𝐽ac𝑛|/𝐽obs

ac𝑛 . Each colored line indicates a single experiment, with a total of

180 numerical experiments performed with different background states. The color of

the line indicates the maximum relative error observed in that experiment, during the

assimilation window of 20 units; the maximum errors increase from blue to green. The

sample mean of the relative errors across all the experiments is shown in black. Note

that the assimilation time is 4 times longer than 1/𝜆1, the Lyapunov time. As shown

in Figure 2-1, over 20 time units, we expect a small perturbation introduced in the

initial condition, in almost any direction, to grow by 3 orders of magnitude. However,

as the results in Figure 2-10 indicate, the relative error in 𝐽ac has been restricted to

within 10 % over this assimilation window, due to use of shadowing directions to

iteratively refine the initial condition and the parameter, to match the observations.

Improvements to this algorithm in order to reduce the errors, and further increase

the predictability window will be studied in future work. One modification to the
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suggested algorithm, toward this goal, is to incorporate the observation error at every

timestep, into the perturbation 𝑥𝑛 in the shadowing algorithm.

2.7 Conclusions

Naïve applications of linear perturbation methods such as tangent/adjoint/Automatic

Differentiation (AD)/finite-difference, cannot compute the derivatives of long-time av-

erages in chaotic systems with respect to specified inputs. A recent method, known

as the Non-Intrusive Least Squares Shadowing [206], computes these derivatives by

numerical construction of tangent/adjoint shadowing perturbations, which are in-

finitesimal perturbations that remain bounded for a long time duration. In this

chapter, we introduce AD into the tangent and adjoint NILSS. This nontrivial com-

bination of algorithms is an enabler for the application of shadowing to complex dy-

namical systems. We demonstrate shadowing by computing sensitivities on a chaotic

time-delayed model, which is a reduced-order model of a gas turbine combustor.

We compute tangent and adjoint shadowing sensitivities of the ensemble averages

of the acoustic energy and Rayleigh index with respect to the design parameters

that control the heat release rate and the time delay. Although the model is a re-

duced representation compared to CFD-based combustion models, it can be used to

estimate the development of chaotic acoustic instabilities. First, we demonstrate an

automatically-differentiated procedure for the minimization of the long time-averaged

acoustic energy through heat-release parameter selection, which does not require a

tangent solver [141]. Secondly, we construct a pseudo-orbit data assimilation scheme

using the computed shadowing sensitivities in an optimization loop. We show that

this scheme extends the predictability window by four Lyapunov times. Finally, we

remark that the proposed algorithm, the shadowing-based optimization and data

assimilation scheme are more generally applicable. The algorithms and the soft-

ware developed (available at [58]) may be used for other hyperbolic chaotic models

with/without time delay.
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2.8 Validation of sensitivity computation on the Lorenz’63

model

We use the classical model of chaos, the Lorenz’63 system, for validation results in this

chapter. The Lorenz’63 model is the following set of nonlinear ODEs that serves as a

reduced-order model for fluid thermal convection between parallel plates maintained

at a temperature difference [179]:

𝑑

𝑑𝑡

⎡⎢⎢⎢⎣
𝑥

𝑦

𝑧

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
10(𝑦 − 𝑥)

𝑥(𝑠− 𝑧)− 𝑦

𝑥𝑦 − (8/3)𝑧

⎤⎥⎥⎥⎦ . (2.52)

Here a phase point 𝑢 is represented using 3 coordinates as 𝑢 ≡ [𝑥, 𝑦, 𝑧]𝑇 ∈ R3 and the

map 𝑓(·, 𝑠) advances a state 𝑢𝑛 to 𝑢𝑛+1 by timestepping the ODE system (Eq. 2.52).

For the time integration, we use a Forward Euler scheme with a timestep of 0.005.

The Lyapunov exponents of this system are about 0.9, 0, and -14.6. This is a partially

hyperbolic system [14] that has been shown to possess an SRB measure [136]. The

objective function for validating shadowing is chosen to be the 𝑧 coordinate function.

It is known that the ergodic average ⟨𝑧⟩ as a function of 𝑠, can be approximated as

a straight line with a slope of about 0.96, over a range of values around the standard

𝑠 = 28 [167]. We use the discrete shadowing algorithms described in section 2.3

in both tangent and adjoint mode, to compute this derivative. Numerical results

are shown in Figure 2-11, in which 100 sample sensitivities are shown each over a

time duration of 15 units, starting from different points on the Lorenz’63 attractor.

On the left, we see the computed tangent shadowing sensitivities with 𝑑2 = 2, and

the on the right, the adjoint shadowing sensitivities, also computed with 𝑑𝑢 = 2.

From the numerical results, we see that the sample means of both sensitivities are

within 10% of the reference value of 0.96, thus validating both tangent and adjoint

shadowing sensitivity codes. These tests can be run from tests/test_lorenz63.jl

at [58]. Interestingly, adjoint shadowing appears to be better suited for this objective
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Figure 2-11: Sensitivities 𝑑⟨𝑧⟩/𝑑𝑠 computed for the Lorenz’63 model using the tangent
algorithm (left) and the adjoint algorithm (right). Different trajectories of length 3000
or 15 timeunits are used to compute the sensitivities, shown as an errorbar of length
one standard deviation.

Figure 2-12: Relative error in the predicted state 𝑧 as a function of time for the
Lorenz’63 system. The maximum prediction error increases from light to dark colors.
The mean error across all experiments is shown in black.

function-parameter pair since the variance of tangent sensitivities is 10 times larger

than the adjoint.

2.9 Validation of data assimilation scheme on the

Lorenz’63 model

We apply the data assimilation scheme described in section 2.6 on the Lorenz’63

model. We perform a series of 100 numerical experiments each with a different back-
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ground. We fix a reference trajectory of length 5000 steps (10 time units), and

generate a background by perturbing the reference initial condition in the 𝑧 direction

by an additive Gaussian noise with a variance of 0.1. The reference trajectory is used

to generate the observation trajectory 𝐽obs
𝑛 := 𝑧obs𝑛 . Tangent NILSS is run with an

objective function,

⟨𝐽⟩(𝑠) :=
1

𝑁

𝑁−1∑︁
𝑛=0

(𝑧obs𝑛 − 𝑧𝑛)2, (2.53)

where 𝑧𝑛 is the 𝑧-coordinate of a trajectory 𝑢𝑛. Using the derivative (𝑑⟨𝐽⟩/𝑑𝑠)(𝑠)

computed by shadowing, the parameter 𝑠 is updated in a gradient descent algorithm

with a constant step size of 𝛾 = 0.1. At the beginning of gradient descent, the

trajectory is set to the background trajectory. At each gradient descent step, it is

iteratively refined to a pseudo-orbit, as described in Step 3 in section 2.6. The mean

error is calculated by averaging the optimal error across the 100 experiments. The

optimal errors , defined as relative observation errors after 200 gradient descent steps,

across experiments are as shown as a function of time in Figure 2-12. The relative

observation error at time 𝑛 is |(𝑧obs𝑛 − 𝑧𝑛)|/𝑧obs𝑛 . The colors of the lines in Figure 2-12

are according to the maximum over 𝑛 of the relative observation error. As mentioned

before, the only positive Lyapunov exponent of this system is known to be about 0.9.

The results indicate a predictability within 10% of the observation, on average, even

up to 10 time units, which is about 10×(1/𝜆1). With this validation on the Lorenz’63

model, we apply the same method for data assimilation in the Rijke tube model, as

described in section 2.6.

2.10 AD shadowing and code for replication/extension

As we describe in the main text, the AD version of shadowing is enabled by the intro-

duction of AD to replace the tangent/adjoint solvers in tangent/adjoint shadowing. In

this section, we give a pseudocode for this modification. The source code in Julia for

generating the numerical results in this chapter is available at [58]. This section also
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briefly describes how this code may be used with a different chaotic ODE/map. We

must mention that an alternative AD-version of the NILSS algorithm is also available

at [68], in which the OpenAD AD software package [266, 6, 138], written in Fortran, is

used. This latter code assumes that the primal solver is available from the user as a

binary file.

In the AD version of tangent/adjoint shadowing, as mentioned before, we replace

the needed tangent/adjoint solvers with AD. In order to do this, we define a function,

say f, whose return value will be differentiated in forward/reverse-mode, and we

specify some input variable(s) to differentiate with respect to. The AD software

returns the gradient of the return value with respect to the input which is a function

of the arguments passed to f. Let f be a function with the arguments 𝑥, 𝑦. The scalar

or vector return value of this function is written as f(𝑥, 𝑦). For instance, using the

Zygote.jl Julia package, one would use the following syntax to obtain the gradient

of f(𝑥, 𝑦) with respect to 𝑥: Zygote.gradient(𝑥-> f(𝑥, 𝑦), 𝑥). If using the OpenAD

Fortran package instead, we declare the input 𝑥 and the output of f to be active

variables. If ret_f is the variable that stores the return value of f, its derivative with

respect to 𝑥 is stored in the variable ret_f%d. In the AD version of tangent/adjoint

shadowing, we only propose to modify the 𝑛-loop in section 2.3.2 by introducing AD to

replace the tangent/adjoint solvers; the rest of the algorithm is retained as described

in section 2.3. The inputs to the AD shadowing algorithm are the sequences {𝑢𝑛}

and {𝐽𝑛}. We now give the modified 𝑛-loop in which we define the needed function,

and input variables, for each AD invocation.

1. Obtain 𝑞𝑖𝑛 from 𝑞𝑖𝑛−1 by applying AD. In particular,

• for tangent shadowing, we differentiate the function 𝑓(𝑢𝑛−1 + 𝜖𝑞𝑖𝑛−1, 𝑠).

The input variable is 𝜖 and the output is the return value of the function.

The derivative obtained from forward-mode AD is 𝑞𝑖𝑛, and this must be

carried out for 1 ≤ 𝑖 ≤ 𝑑𝑢;

• for adjoint shadowing, we differentiate the value 𝑓(𝑢𝑛′+1, 𝑠)·𝑞𝑖𝑛−1, where

𝑛′ = 𝑁 + 1 − 𝑛. The input variable is 𝑢𝑛′+1. The derivative obtained
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from reverse-mode AD is 𝑞𝑖𝑛, and this must be carried out for 1 ≤ 𝑖 ≤ 𝑑𝑢.

2. Let 𝑄𝑛 be the matrix with the columns 𝑞𝑖𝑛, 1 ≤ 𝑖 ≤ 𝑑𝑢. QR-factorize 𝑄𝑛 and

set 𝑄𝑛 to the obtained “Q”. Let the “R” from QR factorization be stored as

𝑅𝑛. Thus, each 𝑞𝑖𝑛, 1 ≤ 𝑖 ≤ 𝑑𝑢 is now a unit vector.

3. Obtain 𝑣𝑛 from 𝑣𝑛−1 by applying AD. In particular,

• for tangent shadowing, we differentiate the function 𝑓(𝑢𝑛−1 + 𝜖𝑣𝑛−1, 𝑠+

𝜖). The input variable is 𝜖. The derivative obtained from forward-mode

AD is 𝑣𝑛;

• for adjoint shadowing, we differentiate the value 𝑣𝑛−1 · 𝑓(𝑢𝑛′+1, 𝑠) +

(1/𝑁)𝐽𝑛′+1. The input variable is 𝑢𝑛′+1. The derivative obtained from

reverse-mode AD is 𝑣𝑛.

4. Set 𝜋𝑛 := 𝑄𝑇
𝑛𝑣𝑛, which is a 𝑑𝑢-length orthogonal projection row-vector of 𝑣𝑛

along 𝑞𝑖𝑛.

5. Normalize 𝑣𝑛 by projecting out the components along 𝑞𝑖𝑛, that is, set 𝑣𝑛 →

𝑣𝑛 − 𝜋𝑞𝑣𝑄𝑛.

6. Go to step 1 with 𝑛→ 𝑛 + 1, and repeat until 𝑛 = 𝑁.

In the code at [58], the Julia script tests/test_lorenz63.jl and tests/test_rijke.jl

compute respectively, for the Lorenz’63 model (Eq. 2.52) and the Rijke tube model

(Eq. 2.33), the tangent and adjoint shadowing sensitivities. In order to use the code

at [58] with a different model, we can use one of these test files as a template. The

Julia file describing the model equations, which must be included in the test file, can

follow the existing examples in examples/lorenz63.jl or examples/rijke.jl. The

optimization and data assimilation routines described in section 2.5 and 2.6 respec-

tively, can also be applied to a new model. To do this, we include the file containing

the model equations into the utilities i) utils/optimize.jl for parameter optimiza-

tion and ii) utils/rijke_tangent_state_estimation.jl for the state estimation

algorithm.
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Chapter 3

On the probability of finding a

nonphysical solution through

shadowing

This chapter proves that shadowing solutions can be almost surely nonphysical. This

finding invalidates the argument that small perturbations in a chaotic system can only

have a small impact on its statistical behavior. This theoretical finding has implica-

tions for many applications in which chaotic mechanics plays an important role. It

suggests, for example, that we can control the climate through subtle perturbations.

It also suggests that numerical simulations of chaotic dynamics, such as turbulent

flows, may fail to predict the true long-term or statistical behavior. This chapter has

been published at [66], and a preprint of this chapter can be found at [61].

3.1 Introduction

In this chapter, we show that a large mismatch is possible in the statistical or long-

time averages measured in a pair of chaotic solutions to slightly different models. We

construct numerical and analytical examples that illustrate this feature of chaotic dy-

namics. The analysis of the long-term behavior of shadowing solutions in the majority

of the chaotic models constructed in this chapter reveals that shadowing solutions are
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almost surely nonphysical: they do not represent the behavior of a physically ob-

served solution starting almost everywhere. This also leads us to the conclusion that

shadowing-based sensitivities [273] of long-time averages to parameter changes can be

incorrect. Thus, the main conjecture of this chapter urges us to reconsider the use of

chaotic numerical simulations, and statistical sensitivity analysis on these simulations.

These implications are particularly important for climate studies, where chaotic mod-

els are widely used to make long-term predictions. In particular, three implications of

the evidence in this chapter may be stated, the third of which harnesses the statistical

inconsistency between slightly different models:

• we cannot trust the long-time averages generated by numerical simulations

of chaotic processes, even when we eliminate model uncertainties stemming

from imperfect modeling of the underlying physics, and statistical noise due

to finite-time averaging;

• we cannot trust the sensitivities of long-time averages or statistical averages

to small parameter changes computed by using shadowing-based methods for

sensitivity computation;

• it is possible for two models separated by tiny changes in parameter values to

have drastically different statistical behavior. This means that the Lorenzian

butterfly can significantly alter the climate (statistical/long-term average) of

Texas, and not just its weather (short-term events).

The chapter is organized as follows. In section 3.2, we introduce the dynamical sys-

tems concept of shadowing and its applications in the context of chaotic numerical

simulations. In section 3.3, we define the notion of physicality and give examples

to illustrate the different ways in which to obtain nonphysical solutions. Section

3.4 is dedicated to several examples of perturbed tent maps that have nonphysical

shadowing solutions. In the discussion in section 3.5, we illustrate with an example

that a small parameter perturbation can change the statistics significantly. The sup-

plementary material, section 3.6, contains the numerical procedure to generate the

probability distributions of the shadowing solutions.
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3.2 Shadowing and applications

Our main analysis tool in advancing our conjecture is shadowing. Shadowing and

other dynamical systems concepts used in this chapter are introduced in detail, where

they appear, so as to make our presentation accessible to the large audience of com-

putational scientists across different disciplines. Shadowing refers to the relationship

between a pair of solutions to slightly different governing equations. The difference

between the governing equations can be due to parameter perturbation or numerical

error. The solution to one governing equation is said to shadow a solution to a second,

slightly different equation if the first solution stays close to the second solution for

some amount of time.

When the slightly different governing equations are uniformly hyperbolic, it has

been long known that infinitely long shadowing solutions exist [10][46]. Numerical

experiments in non-hyperbolic systems have shown that shadowing solutions may still

exist [119][127] for a finite amount of time.

The existence of shadowing trajectories underlies many applications. Numerical

simulations of turbulent flows have been widely used to study its statistical behav-

ior. It is argued, based on shadowing, that such numerical simulations of chaotic

dynamical systems can be useful, despite the butterfly effect that causes infinitesimal

errors in the state to grow exponentially in time. Because of numerical and modeling

errors, there is invariably a small difference between the true governing physics and

the equations solved on a computer. By nature of chaos, this difference increases ex-

ponentially, as the system is evolved forward in time. Thus, the fidelity of numerical

solutions of chaotic systems, such as turbulent flows, to the true physics is called into

question. The existence of shadowing solutions is used to argue for the usefulness of

such numerical solutions.

When certain conditions for shadowing theorems are met, the numerical solu-

tion would be an approximation to a “true” solution that satisfies the real governing

physics.

Shadowing is also used in sensitivity analysis of chaotic dynamical systems. In
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particular, it is used in computing how long-time-averages in a chaotic system respond

to small perturbations in the governing equation [273][206][165]. In this application,

the derivative of the long-time-averages is computed using a solution to the perturbed

governing equation that shadows a solution to the unperturbed equation. The Least

Squares Shadowing [273][206] method uses this concept.

There is an implicit assumption in both of these applications. The assumption

is that the shadowing trajectory is a physical trajectory, a trajectory on which the

long-time-average of a quantity is equal to the ensemble average. Not all solutions

satisfying the physical governing equation are considered physical in this sense. In

high-Reynolds number fluid flows, for example, a steady-state, laminar flow solution

may satisfy the Navier-Stokes equation. But such a solution would never be observed

in reality because it is unstable, and any small perturbation would trip it into turbu-

lence. Unstable steady-state solutions are not the only nonphysical solution. Many

chaotic dynamical systems have infinitely many periodic solutions that are, similar

to their steady counterpart, unstable. These trajectories can have a probability dis-

tribution that is remarkably different from that of a typically observed solution of

the governing equation. It is also possible to effect significant change in the statis-

tics of the true governing dynamics by introducing a minor parameter perturbation.

Thus, although trajectories of governing equations at slightly different parameters

may shadow each other, the long-time-averages that are typically observed at one

parameter may not be close to that of the other. As we will see in the next section,

even solutions that look “chaotic”, i.e., unsteady and aperiodic, may not be physical.

3.3 What are physical and nonphysical solutions?

Intuitively, we call a solution to a governing equation physical if it represents what one

would observe in a physical experiment. In particular, the statistics measured from

a physical solution match the statistics observed in an experiment. Not all solutions

are physical. A laminar flow solution, despite satisfying the governing equation, does

not produce the turbulent statistics one would observe in a high-Reynolds number
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experiment. Such solutions are thus called nonphysical.

In this section, we first describe what distinguishes, mathematically, a physical

and a nonphysical solution. We also explain why it is theoretically unlikely to observe

a nonphysical solution in an experiment. We then give a few examples of these almost-

never-observed nonphysical solutions.

3.3.1 Physical solutions

What we have intuitively defined as physical solutions to a governing equation satisfy

the following two criteria:

1. Time-averaged quantities converge in the limit of infinite averaging time. Con-

sider 𝑢(𝑡) as the solution to a chaotic governing equation, then for a regular

observable of interest 𝐽(𝑢(𝑡)),

lim
𝑇→∞

1

𝑇

∫︁ 𝑇

0

𝐽(𝑢(𝑡)) 𝑑𝑡 (3.1)

exists.

2. For almost any small perturbation to the initial condition 𝑢(0) → 𝑢′(0), the

perturbed solution 𝑢′(𝑡) should have the same statistics, i.e.,

lim
𝑇→∞

1

𝑇

∫︁ 𝑇

0

𝐽(𝑢(𝑡)) 𝑑𝑡 = lim
𝑇→∞

1

𝑇

∫︁ 𝑇

0

𝐽(𝑢′(𝑡)) 𝑑𝑡 (3.2)

The left column of Figures 3-1-3-3 illustrates a physical solution of the Lorenz

system,

𝑑𝑢

𝑑𝑡
=

𝑑

𝑑𝑡

⎛⎜⎜⎜⎝
𝑢1

𝑢2

𝑢3

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝜎(𝑢2 − 𝑢1)

𝑢1(𝜌− 𝑢3)− 𝑢2

𝑢1 𝑢2 − 𝛽 𝑢3

⎞⎟⎟⎟⎠ (3.3)

where 𝜎 = 10, 𝜌 = 28, and 𝛽 = 8/3. The solution starts at the initial condition

𝑢(0) = (0.01, 0.01, 28). After a long time evolution, we observe that the solution

has visited a large portion of the 𝑢1 − 𝑢3 plane with a varying, but well-defined,

95



Figure 3-1: L: An ensemble of initial conditions distributed uniformly in the box
𝑢1 ∈ [0, 1], 𝑢2 ∈ [0, 1], 𝑢3 ∈ [28, 39] after 10 time units of evolution, shown on the
𝑢1 − 𝑢3 plane. R: distribution of a trajectory of 1000 time units in length. In both
plots, the color represents the number of samples in a 2048× 2048 uniform grid. The
trajectory is sampled every 0.001 time units.

Figure 3-2: L: distribution of the same ensemble as in Figure 3-1 after another 5 time
units of evolution. R: distribution of the same trajectory as in Figure 3-1 evolved for
10, 000 time units.
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Figure 3-3: L: distribution of the same ensemble as in Figures 3-1 and 3-2 after a total
of 50 time units of evolution. R: distribution of the same trajectory as in Figures 3-1
and 3-2 evolved for 100, 000 time units.

frequency. We can use a probability distribution, 𝜇, to quantify how frequently a

physical solution visits portions of the phase space. Specifically, for a subset 𝐴 of the

phase space, 𝜇(𝐴) measures the fraction of time a very long physical solution spends

inside the subset 𝐴. With this distribution defined, the infinite-time average of any

quantity 𝐽(𝑢) can be represented as an average of 𝐽 over the entire phase space 𝑈 ,

weighted by this statistical distribution 𝜇. Mathematically,

1

𝑇

∫︁ 𝑇

0

𝐽(𝑢(𝑡)) 𝑑𝑡
𝑇→∞−−−→

∫︁
𝑈

𝐽(𝑢) 𝑑𝜇(𝑢) (3.4)

Remarkably, the distribution 𝜇 not only characterizes the history of a long physical

solution, but also describes the settled state of an ensemble of solutions. This is

illustrated on the right column of Figures 3-1–3-3. We generate these plots by starting

from an ensemble of about one billion initial conditions, randomly and uniformly

spaced in a small three-dimensional box. All these billion solutions are evolved by

solving Eq. 3.3 for 10, 15, and 50 time units, to obtain the plots. We observe that, as

time evolves, the ensemble spreads over an increasingly larger portion of the 𝑢1 − 𝑢3

plane. After a long time, the ensemble settles into a time-invariant attractor that
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contains the unstable manifold, which appears as filaments forming the attractor.

The probability distribution of the ensemble on the attractor becomes identical to

the distribution of a single, very long physical solution, which is also contained in the

attractor (Figure 3-3).

This remarkable agreement has been thoroughly studied under the subject of er-

godic theory. Under surprisingly weak conditions, a solution starting from almost

any initial condition, chosen randomly from a set enclosing the attractor, is a physical

solution [281]. Meanwhile, an ensemble of trajectories starting from any distribution

with a finite density also evolves towards the same final distribution, 𝜇. Due to ex-

pansion of a volume of solutions tangent to the attractor filaments, a finite density

under long-time evolution becomes absolutely continuous on the unstable manifold,

i.e., the likelihood of a trajectory visiting any set not intersecting the attractor fil-

aments is zero. The stationary distribution achieved on long-time evolution of the

ensemble that has the absolute continuity property is called the Sinai-Ruelle-Bowen

(SRB) measure. The absolute continuity property is sufficient to ensure that the

SRB measure is the same 𝜇. That is, the SRB measure is physically observed in the

sense that physical solutions produce long-time-averages which are expectations with

respect to the SRB measure.

Note that almost any, not any, initial condition leads to a physical solution. A set

of special initial conditions contained in a neighborhood of the attractor may exist

starting from which physical solutions are not generated. These initial conditions do

not produce the same statistics as the physical solutions. This special set of initial

conditions is Lebesgue measure zero – one has zero chance of finding such an initial

condition by randomly sampling. Nonphysical solutions thus take an effort to find.

Nevertheless, they turn out to be important when discussing shadowing, the topic of

this chapter. We first introduce a type of obviously nonphysical solutions in the next

subsection, before discussing a less obvious type in section 3.3.4.
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Figure 3-4: Periodic solutions of the Lorenz equation, overlaid on top of its SRB
distribution. The solid line, dashed line, and dotted line represent three distinct
periodic solutions.

3.3.2 Nonphysical solutions type I: Periodic solutions

A periodic solution is nonphysical because it does not visit as much of the phase

space as a physical solution does. Figure 3-4 shows a few periodic solutions of the

Lorenz equation. Comparing these solutions to the physical solution visualized in

Figures 3-1–3-3, we see that the periodic solutions are significantly more limited in

their extent of exploration.

Because periodic solutions have a more limited extent in the phase space, their

statistics are different from physical solutions. Here we illustrate the difference using

the mean of two quantities of interest

𝐽1(𝑢) = 𝑢3 and 𝐽2(𝑢) = 𝑒
−
𝑢2
3

2 . (3.5)

Table 3.1 shows these quantities of interest averaged over the three periodic solutions

shown in Figure 3-4, compared against those averaged over a physical solution. Here,

Periodic #1, #2, and #3 correspond to the solid, dashed, and dotted lines, respec-
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tively. We observe from the table that the mean of 𝐽1 over the periodic solutions is

different but comparable to the mean over physical solutions. The mean of 𝐽2 over

the periodic solutions, on the other hand, is orders of magnitude different from that of

the physical solutions. These differences disqualify the periodic solutions from being

physical.

Periodic #1 Periodic #2 Periodic #3 Physical solutions

𝐽1 23.05 23.19 23.37 23.67

𝐽2 4× 10−35 7× 10−28 3× 10−22 1.58× 10−05

Table 3.1: Comparison of statistics computed from periodic solutions of the Lorenz
equation with the statistics computed from physical solutions

While periodic solutions are generally difficult to find, the Lorenz equation has a

special feature that makes the task significantly easier. In a typical solution to the

Lorenz equation, the 𝑢3(𝑡) component oscillates in a pattern that appears neither

regular nor random. Lorenz observed that the height of one peak in the oscillation

can predict the height of the next peak. He quantified his observation by the Lorenz

map, as shown in Figure 3-5.

The Lorenz map provides us a tool to find as many periodic solutions as we want.

By intersecting the map with a diagonal line, we can find a local maximum of 𝑢3(𝑡)

for which the next maximum is almost the same value. We then look up the values of

𝑢1(𝑡) and 𝑢2(𝑡) when 𝑢3(𝑡) achieves this maximum. This gives us an initial condition

starting from which the solution is nearly periodic. We can similarly intersect the

second iterate of the Lorenz map (right plot of Figure 3-5), and the third iterate, etc,

with a diagonal line, to find increasingly complex periodic solutions.

This Lorenz map is more than a tool to study the Lorenz equation. It is a chaotic

dynamical system all by itself. Unlike the Lorenz equation, which is a continuous-time

dynamical system in three dimensions, the Lorenz map is a discrete-time dynamical

system in one dimension. It exhibits the same sensitivity to initial condition that

characterizes the Lorenz equation. One can readily observe in the right plot of Figure

3-5 that a small perturbation in the x-axis can lead to a large change in the y-axis.
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Figure 3-5: L: the Lorenz map. The x-axis is the 𝑛-th local maximum of 𝑢3(𝑡) over
a long solution; the y-axis is the (𝑛+ 1)-th local maximum of 𝑢3(𝑡). The intersection
of this curve with the dashed line (𝑦 = 𝑥) indicates the initial condition for the solid
line in Figure 3-4. R: the Lorenz map iterated twice. The x-axis is the 𝑛-th local
maximum of 𝑢3(𝑡); the y-axis is the (𝑛 + 2)-th maximum. The intersections with the
diagonal dashed line indicate the initial conditions for both the dotted and dashed
lines in Figure 3-4.

This sensitivity grows exponentially for iterates of this map. A solution to the Lorenz

map can be obtained by extracting the consecutive local maxima of a solution to the

Lorenz equation. If we extract from a physical solution to the Lorenz equation, we

obtain a physical solution of the Lorenz map. It will visit the interval between 29

and 49 with varying, well-defined frequencies. By contrast, if one extracts a solution

to the Lorenz map from a periodic solution to the Lorenz equation, the solution will

visit only a discrete set of points. It is thus a periodic, nonphysical solution. What

we learned about the Lorenz equation could have all been learned from the Lorenz

map.

Having discussed periodic solutions in this section, we move to a second type of

nonphysical solutions. This type is more difficult to find and study than the periodic

solutions. To make it easier, we switch our example to a one-dimensional, discrete-

time dynamical systems like the Lorenz map. Because the Lorenz map lacks a closed

form, we construct, in the next subsection, a one-dimensional discrete-time dynamical
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Figure 3-6: The tent map 𝜙.

system with a closed form, one that qualitatively resembles the Lorenz map. This

map will help us, in section 3.3.4, to study a more insidious type of nonphysical

solutions that hides in shadowing solutions.

3.3.3 Tent map: periodic and physical solutions

The tent map is qualitatively similar to the Lorenz map,

𝜙(𝑥) :=

⎧⎪⎨⎪⎩2𝑥 𝑥 < 1

4− 2𝑥 2 ≥ 𝑥 ≥ 1

. (3.6)

Due to its simple analytical form, the properties of the tent map have been studied

extensively [86][279]. Figure 3-6 shows the tent map.

The tent map 𝜙 is chaotic because a trajectory 𝑥0, 𝑥1, . . . satisfying 𝑥𝑖+1 = 𝜙(𝑥𝑖)

exhibits exponential sensitivity to initial condition. An infinitesimal perturbation of

absolute value 𝛿𝑥, applied to an initial condition 𝑥0, generates a trajectory that is 2𝛿𝑥

away from 𝑥1, 4𝛿𝑥 from 𝑥2, 8𝛿𝑥 from 𝑥3 and so on. This exponential divergence of two

trajectories that start infinitesimally apart is the butterfly effect that characterizes

chaotic dynamics.
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It is easy to find periodic solutions for the tent map. 4
3

maps to itself; 4
5

and
8
5

map to each other; 4
7
, 8
7
, and 12

7
map circularly. In fact, any rational number

evolves into periodic solutions that visit only a finite set of rational numbers with

the same denominator. This is compatible with ergodic theory because all rational

numbers in [0, 2] comprise a subset of Lebesgue measure zero. That is, we would

have zero likelihood of getting a rational number if we sampled the Lebesgue measure

(the uniform distribution) on [0, 2]. Instead, with a 100% probability, one would get

an irrational number that, when iterated under the tent map, leads to a physical

trajectory that distributes uniformly on the interval [0, 2].

To understand why a physical solution visits the interval [0, 2] at a uniform fre-

quency, it is helpful to view the tent map from a different perspective. For a randomly

chosen 𝑥0 ∈ [0, 2], we can represent it in binary form:

𝑥0 =
∞∑︁
𝑗=0

𝑥0,𝑗

2𝑗
(3.7)

where 𝑥0,0 ∈ {0, 1} is the integer component of 𝑥0 and 𝑥0,𝑗 ∈ {0, 1} is the 𝑗th bit

after the binary point. Let 𝑥𝑖+1 = 𝜙(𝑥𝑖), then it is straightforward to verify from the

definition of the map that its binary representation

𝑥𝑖 =
∞∑︁
𝑗=0

𝑥𝑖,𝑗

2𝑗
(3.8)

satisfies

𝑥𝑖+1,𝑗 = 𝑥𝑖,0 Y 𝑥𝑖,𝑗+1, (3.9)

where Y is the xor operator. To see why, note that multiplication by 2 is a left-shift

operator in binary, and subtraction from 4 flips every bit after the binary point. If 𝑥0

is chosen uniformly in [0, 2], then each bit 𝑥0,𝑗, 𝑗 = 0, 1, . . . of 𝑥0 has equal probability

of being 0 or 1, and each bit is independent of other bits. It follows from Eq. 3.9

that each bit 𝑥𝑖,𝑗, 𝑗 = 0, 1, . . . of 𝑥𝑖, 𝑖 = 1, 2, . . . has equal probability of being 0 or 1,

and each bit is still independent of the other bits. As the map iterates starting from

almost any 𝑥0, a physical solution explores the entire interval [0, 2] uniformly.
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3.3.4 Nonphysical solutions type II: Quasi-physical solutions

The simplicity of the tent map, as well as its binary form (Eq. 3.9), enables us to

study nonphysical solutions that are not periodic. As in the last section, consider an

𝑥0 =
∞∑︁
𝑗=0

𝑥0,𝑗

2𝑗
(3.10)

in which the bits 𝑥0,𝑗 are not independent of each other. Instead, suppose each

bit is more likely to be identical to the previous bit than to be different. That is,

𝑥0,𝑗+1 = 𝑥0,𝑗 with probability 𝑝 > 1
2

for 𝑗 = 0, 1, 2, . . .. Then, by Eq. 3.9, the bits of

every 𝑥𝑖, 𝑖 = 1, 2, . . . follow the same pattern, namely, each bit repeats the previous

bit with probability 𝑝. Moreover, consider Eq. 3.9 for 𝑗 = 0 and any 𝑖:

𝑥𝑖+1,0 = 𝑥𝑖,0 Y 𝑥𝑖,1. (3.11)

Because 𝑥𝑖,0 = 𝑥𝑖,1 with probability 𝑝 > 1
2
, 𝑥𝑖+1,0 = 0 with probability 𝑝 > 1

2
. Starting

from 𝑥1, this solution visits [0, 1] with probability 𝑝 > 1
2
. Instead of visiting [0, 1] and

[1, 2] with equal probability, as a physical solution does, this solution favors [0, 1].

Since it provably visits the interval [0, 2] with a different frequency from that of a

physical solution, this is a nonphysical solution.

If 𝑝 = 1, the bits of 𝑥0 are either all zeros or all ones, which is the same as all

zeros in mod 2 arithmetic. So, all further iterates when 𝑥0 is 0, are 0, and this is

a trivial nonphysical solution of type 1. Now when 𝑝 > 1
2

but strictly less than 1,

the solutions we just constructed are both nonphysical and aperiodic. The bits of 𝑥0,

though correlated with each other, still can exhibit an infinite variety of patterns. This

implies that the solution may not eventually converge to any fixed point, nor follow

any strict period. As the map iterates, the nonrepetitive bit patterns shift towards

more significant digits, and the solution visits an infinite set of points. Nevertheless,

the solutions observed along a trajectory also do not conform to a uniform distribution

on [0, 2] since they preferentially visit the first half of this interval. We call such

aperiodic nonphysical solutions “quasi-physical” solutions.
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Figure 3-7: Empirical probability distribution of long solutions (a billion steps) start-
ing from four points whose binary digits have probability 𝑝 of repeating the previous
digit. The solution shown in the top-left plot starts from a point with 𝑝 = 0.5001;
top-right: 𝑝 = 0.51; bottom-left: 𝑝 = 0.55; bottom-right: 𝑝 = 0.9.
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Figure 3-7 shows the empirical density functions of four such quasi-physical solu-

tions. When 𝑝 = 0.5001, the statistical distribution of the quasi-physical solution is

approximately uniform. Recall that a physical solution explores [0, 2] uniformly. In

this case, the quasi-physical solution has very similar statistical behavior as a physical

solution. When 𝑝 = 0.51, the empirical distribution becomes “hairy”. An apparently

fractal pattern emerges. This fractal pattern further amplifies when 𝑝 = 0.55. Mean-

while, the density on the left sub-interval, [0, 1], becomes obviously higher than the

density on the right sub-interval, [1, 2]. This is consistent with our theoretical analysis

at the beginning of this subsection. When 𝑝 = 0.9, the fractal pattern is so intensified

that most of the solution seems to concentrate in a collection of tiny intervals. These

plots expose the diversity of quasi-physical solutions. Their statistical distribution

can be either very similar or completely different from that of physical solutions.

So far we have constructed one class of quasi-physical solutions. It is noteworthy

that there are infinite ways to construct quasi-physical solutions. In the binary repre-

sentation of the initial condition 𝑥0, any statistical deviation from equal probability

of 0 or 1, or any statistical dependence among digits would lead to quasi-physical

solutions. One could, for example, construct an 𝑥0 in which a bit is more likely to be

1 than 0 only if it follows two consecutive 0’s. Such an 𝑥0 would lead to a nonphysical

solution. Its statistical distribution would differ from any of the plots in Figure 3-7.

Nevertheless, as can be observed in Figure 3-8, it shows a remarkable resemblance in

its “hairiness”; some kind of fractal pattern emerges from the distribution. A fractal

distribution appears to be a signature of quasi-physical solutions.

We have only seen quasi-physical solutions for the tent map. It is difficult to

analytically construct quasi-physical solutions to the Lorenz equation and other, more

complex, governing equations which typically produce chaotic solutions. Nevertheless,

the similarity between the tent map and the Lorenz map [279], shown in Figure 3-5,

suggests that quasi-physical solutions may exist for the Lorenz map, and by extension,

the Lorenz equation. It is then natural to conjecture that such aperiodic, nonphysical,

quasi-physical solutions exist in general for chaotic dynamical systems.

These quasi-physical solutions raise doubts over the usefulness of shadowing in
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Figure 3-8: Empirical distribution function of other quasi-physical solutions. The
solution shown in the left plot starts from an initial condition whose bits are inde-
pendent and have probability 0.6 of being 0. The solution shown in the right plot
starts from an initial condition whose bits have a probability of 0.6 of being 1 only
following two consecutive 1’s; otherwise a bit is 0 or 1 with equal probability.

some applications. For example, even if a numerical solution is shadowed by a solution

to the true governing physics, is the shadowing solution physical or quasi-physical?

At first glance, this may seem to be a nonissue because almost all solutions are

physical. It seems reasonable to argue that because the set of all nonphysical solutions

is Lebesgue measure-zero, the probability of finding a nonphysical solution through

shadowing is zero percent. Such an argument, as we show in the next section, is

wrong. The probability of finding a nonphysical solution through shadowing can be,

instead of zero percent, one hundred percent.
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Figure 3-9: L: The scaled tent map 𝜙𝑠 at different values of 𝑠 between 0 and 1. R:
sensitivity to small perturbation in the governing equation. The y-axis shows the
absolute value of the difference between two solutions, one satisfying Eq. 3.12, one
for 𝑠 = 0 and the other for 𝑠 = 10−5. The x-axis shows the iteration number. The
initial condition is at 𝑥0 = 𝜋/2.

3.4 Are shadowing solutions physical?

3.4.1 Example of a shadowing solution for the tent map

To illustrate the concept of shadowing, consider the tent map, defined in Eq. 3.6,

and a scaled version of the map, defined by

𝜙𝑠(𝑥) :=

⎧⎪⎨⎪⎩2𝑥 𝑥 < 1 + 𝑠

4(1 + 𝑠)− 2𝑥 𝑥 ≥ 1 + 𝑠

(3.12)

where 𝑠 << 1. Note that a small change in 𝑠 can lead to drastic differences between

solutions starting from the same initial condition. As demonstrated in Figure 3-9,

this sensitivity to small perturbations reflects the chaotic nature of the governing

equation.

We can avoid this sensitivity to the governing equation using a coordinated pertur-

bation to the initial condition. Consider two solutions satisfying Eq. 3.12 at different

values of 𝑠. Instead of starting from the same initial condition, these two solutions
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start from 𝑥0(1+𝑠) with the same 𝑥0 but their respective values of 𝑠. It can be shown

that the solution of these two equations would be 𝑥𝑖(1 + 𝑠), 𝑖 = 0, 1, . . . with their

respective values of 𝑠, where 𝑥𝑖+1 = 𝜙(𝑥𝑖) satisfies the original tent map (Eq. 3.6).

When the values of 𝑠 are similar between the two solutions, this pair of solutions

stays uniformly close to each other forever. Such a true solution of the governing

equation that stays close to a given perturbed solution over a long time, is known

as a shadowing solution. In this example, the perturbed solution satisfies a slightly

different governing equation.

For every solution 𝑥̂𝑖, 𝑖 = 0, . . . satisfying Eq. 3.12, there is a shadowing solution

satisfying Eq. 3.6: 𝑥𝑖 := 𝑥̂𝑖/(1 + 𝑠). The map,

ℎ̂𝑠(𝑥) := 𝑥/(1 + 𝑠) (3.13)

is known as a conjugacy between the two maps 𝜙 and 𝜙𝑠 because it satisfies

𝜙(ℎ̂𝑠(𝑥)) = ℎ̂𝑠(𝜙𝑠(𝑥)) , ∀ 𝑥 (3.14)

or equivalently, 𝜙∘ ℎ̂𝑠 ≡ ℎ̂𝑠 ∘𝜙𝑠. Such conjugacy maps can generally help us construct

shadowing solutions. For every solution satisfying 𝜙𝑠, ℎ𝑠 maps it to a shadowing

solution satisfying 𝜙 because iterating Eq. 3.14, we get 𝜙𝑛 ∘ ℎ̂𝑠(𝑥) = ℎ̂𝑠 ∘ 𝜙𝑛
𝑠 (𝑥), for

𝑛 = 1, 2, 3 · · · , where 𝑓𝑛 stands for the function composition of 𝑓 𝑛-times.

Is the shadowing solution a physical solution? In this example, the answer is al-

most surely positive. We can demonstrate that almost any solution of the scaled tent

map (Eq. 3.12) is uniformly distributed in [0, 2(1 + 𝑠)] – we can repeat our analysis

in section 3.3.3 but represent our initial condition as 𝑥0 = (1 + 𝑠)
∑︀∞

𝑗=0 𝑥0,𝑗/2𝑗. Its

shadowing solution, which satisfies the original tent map (Eq. 3.6), can be obtained

through the conjugacy (Eq. 3.13). Thus, the distribution of the shadowing solution

can be obtained by mapping a uniform distribution in [0, 2(1 + 𝑠)] through the con-

jugacy map. This leads to a uniformly distribution in [0, 2], which is precisely the

distribution of a physical solution of the tent map.

This simple example is useful in illustrating the concept of shadowing and the
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utility of the conjugacy map. But it is rather special in that the shadowing solution

is almost always physical. Our next example introduces a tilted version of the tent

map. Although the tilting perturbation to the tent map seems as simple as the scaling

perturbation, the shadowing solution, as we will see, is almost always a quasi-physical

solution.

3.4.2 An example of quasi-physical shadowing solution

The tilted tent map is defined as

𝜙𝑠(𝑥) :=

⎧⎪⎨⎪⎩
2

1+𝑠
𝑥 𝑥 < 1 + 𝑠

2
1−𝑠

(2− 𝑥) 𝑥 ≥ 1 + 𝑠

(3.15)

When 𝑠 = 0, this map is identical to the tent map (Eq. 3.6). Let 𝑥̃𝑖+1 = 𝜙𝑠(𝑥̃𝑖), 𝑖 =

0, 1, . . . be a solution of 𝜙𝑠 that is also a perturbed solution of 𝜙. As we explained in

the previous subsection, the corresponding shadowing solution, which solves 𝜙, can

be found through a conjugacy map ℎ̃𝑠 that connects the solutions of 𝜙 and 𝜙𝑠. If

𝜙 ∘ ℎ̃𝑠 ≡ ℎ̃𝑠 ∘ 𝜙𝑠, then 𝑥𝑖 = ℎ̃𝑠(𝑥̃𝑖), 𝑖 = 0, 1, . . . is the shadowing solution that satisfies

𝑥𝑖+1 = 𝜙(𝑥𝑖), corresponding to the perturbed solution 𝑥̃𝑖, 𝑖 = 0, 1, · · · .

The conjugacy map, although more complex than the one in the last subsection,

has the following closed form:

ℎ̃𝑠(𝑥) =
∞∑︁
𝑗=0

𝜉𝑠,𝑗(𝑥)

2𝑗
, (3.16)

where

𝜉𝑠,𝑗(𝑥) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 𝑗 = 0, 𝑥 < 1 + 𝑠

1 𝑗 = 0, 𝑥 ≥ 1 + 𝑠

𝜉𝑠,𝑗−1(𝑥) 𝑗 > 0, 𝜙𝑗
𝑠(𝑥) < 1 + 𝑠

1− 𝜉𝑠,𝑗−1(𝑥) 𝑗 > 0, 𝜙𝑗
𝑠(𝑥) ≥ 1 + 𝑠.

(3.17)

In the above expression, 𝜙𝑗
𝑠 refers to the 𝑗-time composition of 𝜙𝑠. That is, if 𝑥̃𝑗+1 =
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Figure 3-10: L: the tilted tent map Eq. 3.15 for 𝑠 = 0, 0.1, 0.2, 0.3, 0.4, and 0.5. R:
the conjugacy ℎ̃𝑠 between the tent map (Eq. 3.6) and the tilted tent map (Eq. 3.15),
evaluated using Eq. 3.16-3.17, for the same set of 𝑠 as the left plot.

𝜙𝑠(𝑥̃𝑗), 𝑗 = 0, 1, · · · , is a solution, 𝜙𝑖
𝑠(𝑥̃𝑗) = 𝑥̃𝑗+𝑖, 𝑖, 𝑗 = 0, 1, · · · .

To see why ℎ̃𝑠 constructed in Eq. 3.16 satisfies the definition of a conjugacy map –

ℎ̃𝑠(𝜙𝑠(𝑥)) = 𝜙(ℎ̃𝑠(𝑥)) for all 𝑥 – we need to analyze two cases: 𝑥 < 1+𝑠 and 𝑥 ≥ 1+𝑠.

When 𝑥 < 1 + 𝑠, 𝜉𝑠,0(𝑥) = 0; thus ℎ̃𝑠(𝑥) =
∑︀∞

𝑗=1
𝜉𝑠,𝑗(𝑥)

2𝑗
. Inside this infinite series,

𝜉𝑠,1(𝑥) = 𝜉𝑠,0(𝑥) = 0 if 𝜙𝑠(𝑥) < 1 + 𝑠, or 𝜉𝑠,1(𝑥) = 1 − 𝜉𝑠,0(𝑥) = 1 if 𝜙𝑠(𝑥) ≥ 1 + 𝑠.

Thus, 𝜉𝑠,1(𝑥) = 𝜉𝑠,0(𝜙𝑠(𝑥)) according to the definition of 𝜉𝑠,0. Using this as the base

case, one can inductively verify that 𝜉𝑠,𝑗+1(𝑥) = 𝜉𝑠,𝑗(𝜙𝑠(𝑥)) for all 𝑗 > 0, using just

the definitions of 𝜉𝑠,𝑗 and 𝜉𝑠,𝑗+1. Therefore, ℎ̃𝑠(𝑥) = 1
2

∑︀∞
𝑗=0

𝜉𝑠,𝑗(𝜙𝑠(𝑥))

2𝑗
= 1

2
ℎ̃𝑠(𝜙𝑠(𝑥)).

On the other hand, because ℎ̃𝑠(𝑥) =
∑︀∞

𝑗=1
𝜉𝑠,𝑗(𝑥)

2𝑗
≤ 1, 𝜙(ℎ̃𝑠(𝑥)) = 2ℎ̃𝑠(𝑥) according to

the definition of 𝜙. Thus, 𝜙(ℎ̃𝑠(𝑥)) = ℎ̃𝑠(𝜙𝑠(𝑥)) holds when 𝑥 < 1 + 𝑠.

When 𝑥 ≥ 1 + 𝑠, 𝜉𝑠,0(𝑥) = 1; thus ℎ̃𝑠(𝑥) = 1 +
∑︀∞

𝑗=1
𝜉𝑠,𝑗(𝑥)

2𝑗
= 2 −

∑︀∞
𝑗=1

1−𝜉𝑠,𝑗(𝑥)

2𝑗
.

Inside this infinite series, 1 − 𝜉𝑠,1(𝑥) = 1 − 𝜉𝑠,0(𝑥) = 0 if 𝜙𝑠(𝑥) < 1 + 𝑠, or 1 −

𝜉𝑠,1(𝑥) = 𝜉𝑠,0(𝑥) = 1 if 𝜙𝑠(𝑥) ≥ 1 + 𝑠. Thus, 1 − 𝜉𝑠,1(𝑥) = 𝜉𝑠,0(𝜙𝑠(𝑥)) according to

the definition of 𝜉𝑠,0. Using this as the base case, one can inductively verify that

1 − 𝜉𝑠,𝑗+1(𝑥) = 𝜉𝑠,𝑗(𝜙𝑠(𝑥)) for all 𝑗 > 0, using just the definitions of 𝜉𝑠,𝑗 and 𝜉𝑠,𝑗+1.

Therefore, ℎ̃𝑠(𝑥) = 2− 1
2

∑︀∞
𝑗=0

𝜉𝑠,𝑗(𝜙𝑠(𝑥))

2𝑗
= 2− 1

2
ℎ̃𝑠(𝜙𝑠(𝑥)). On the other hand, because

ℎ̃𝑠(𝑥) = 1 +
∑︀∞

𝑗=1
𝜉𝑠,𝑗(𝑥)

2𝑗
≥ 1, 𝜙(ℎ̃𝑠(𝑥)) = 4− 2ℎ̃𝑠(𝑥) according to the definition of 𝜙.
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Figure 3-11: L: the density of a trajectory satisfying Eq. 3.6 that shadows a random
trajectory satisfying Eq. 3.15 for 𝑠 = 0.1. R: the density of a trajectory satisfying
Eq. 3.6 that shadows a random trajectory satisfying Eq. 3.15 for 𝑠 = 0.5.

Thus, 𝜙(ℎ̃𝑠(𝑥)) = ℎ̃𝑠(𝜙𝑠(𝑥)) also holds when 𝑥 ≥ 1 + 𝑠.

Figure 3-10 shows how fractal the conjugacy map is. This fractal conjugacy map

transforms a uniform distribution in [0, 2] into a fractal distribution, shown in Figure

3-11, similar to the ones plotted in section 3.3.4. In fact, we will show that the fractal

distribution obtained by mapping a uniform distribution through ℎ̃𝑠 is exactly the

family of distributions shown in Figure 3-7. We will also show that a physical solution

of the tilted tent map (Eq. 3.15) is uniformly distributed in [0, 2]. Thus, for almost

any physical solution of the tilted tent map, a shadowing solution of the original

tent map, obtained through the conjugate map ℎ̃𝑠, has a fractal distribution. Such a

shadowing solution is therefore a quasi-physical solution of the tent map.

We first show that a physical solution of the tilted tent map (3.15) is uniformly

distributed in [0, 2], for any 0 ≤ 𝑠 < 1. For this, we only need to show that the uniform

distribution is stationary under the tilted tent map. The function 𝜙𝑠 stretches an

infinitesimal region around each 𝑥 by the absolute value of the derivative at 𝑥; hence,

a uniform density on an infinitesimal region around 𝜙𝑠(𝑥) is reduced by the same

factor. In other words, let 𝜌(𝑥) be the map of a uniform density on [0, 2], through 𝜙𝑠.

112



Then, 𝜌(𝜙𝑠(𝑥)) = 0.5/|𝜙′
𝑠(𝑥)| + 0.5/|𝜙′

𝑠(𝑥
′)|, where 𝑥 and 𝑥′ lie on two sides of 1 + 𝑠

and 𝜙𝑠(𝑥) = 𝜙𝑠(𝑥
′); the two terms express the conservation of probability from the

two pre-images of 𝜙𝑠. Substituting the piecewise constant derivative of 𝜙𝑠 on the two

intervals, [0, 1 + 𝑠) and [1 + 𝑠, 2], we have 𝜌(𝜙𝑠(𝑥)) = 0.25(1 + 𝑠) + 0.25(1− 𝑠) = 0.5,

at all 𝑥. Hence, a uniform density of 0.5 is unaltered by mapping through 𝜙𝑠(𝑥).

We now show that the conjugacy ℎ̃𝑠 maps a uniform distribution to a fractal. Here

we use the closed forms Eqs. 3.16-3.17. If 𝑥 is a random number drawn uniformly

in [0, 2], it has 1+𝑠
2

probability of being less than 1 + 𝑠. Thus, 𝜉𝑠,0(𝑥) = 0 with

probability 1+𝑠
2

. This means, according to Eq. 3.16, ℎ̃𝑠(𝑥) < 1 with probability
1+𝑠
2

: ℎ̃𝑠(𝑥) is more likely to lie in the left half of the domain [0, 2]. Furthermore, for

𝑗 ≥ 0, 𝜉𝑠,𝑗+1(𝑥) = 𝜉𝑠,𝑗(𝑥) with probability 1+𝑠
2

since each 𝜙𝑗
𝑠(𝑥) is sampled from the

uniform distribution on [0, 2]. This probability has direct implication on ℎ̃𝑠(𝑥) since,

again by Eq. (3.16), 𝜉𝑠,𝑗 is the 𝑗th bit in the binary representation of ℎ̃𝑠 – each bit

repeats the previous one with probability 1+𝑠
2

. For a uniformly random 𝑥, ℎ̃𝑠(𝑥) is

exactly the kind of initial condition we used to construct the quasi-physical solution

in section 3.3.4, with 𝑝 = 1+𝑠
2

. Since this analysis holds for any 𝑥 sampled uniformly

on [0, 2], we can conclude that the shadowing solution is almost surely nonphysical.

Let 𝑥𝑠,𝑖, 𝑖 = 0, 1, . . . be a solution to the tilted tent map 𝜙𝑠 with 𝑥𝑠,0 chosen randomly

in [0, 1 + 𝑠]. Then, with a hundred percent probability, it is a physical solution

that uniformly visits the domain [0, 2]. Its shadowing solution ℎ̃𝑠(𝑥𝑠,𝑖), 𝑖 = 0, 1, . . .,

however, is a quasi-physical solution, also with a hundred percent probability. It

explores [0, 2] at a nonuniform frequency with a fractal probability distribution.

3.4.3 Are general shadowing solutions physical?

In the previous subsection, we examined a tilting perturbation to the tent map. We

derived the fractal conjugacy map, and showed that a typical shadowing trajectory

is exactly the quasi-physical solution we analyzed in section 3.3.4. This example con-

trasts with section 3.4.1, in which the shadowing solutions of a different perturbation,

the scaling perturbation, are physical solutions. Which situation is more typical?

When we make other types of perturbations, do we expect to observe physical or
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Figure 3-12: The “squashed” tent map (Eq. 3.18) for 𝑠 = 0.01, 0.05, 0, 2, and 0.5.

nonphysical shadowing solutions?

This section attempts to answer this question by investigating several other per-

turbations, the first of which scales the height, but not the width, of the tent map.

The resulting “squashed” tent map, illustrated in Figure 3-12, has the closed form

𝜙sq
𝑠 (𝑥) :=

⎧⎪⎨⎪⎩(2− 𝑠)𝑥 𝑥 < 1

(2− 𝑠)(2− 𝑥) 2 > 𝑥 ≥ 1.

(3.18)

In Figure 3-13, we show side-by-side the probability distributions generated by

observing a long solution (of length 10 billion) of 𝜙sq
𝑠 (left) and its corresponding

shadowing solution (right) at two different values of 𝑠. The left column showing the

probability distribution of the shadowing solution is reminiscent of the hairy proba-

bility distributions of the quasi-solutions of the tent map (section 3.3.4). The reader

is referred to the Supplementary Material section 3.6.2 for the computational method

used in this chapter, for the shadowing solutions. Note that, unlike the tilted tent

maps, the family of squashed tent maps do not have the uniform distribution as their

SRB distribution, but have a different regular probability distribution as indicated

on the right column of Figure 3-13. On the other hand, the shadowing solution is dis-

tributed neither like a physical solution of the original tent map nor of the squashed

114



Figure 3-13: The left column shows the empirical probability distribution of the
shadowing solution for the squashed tent map at 𝑠 = 0.01 (top) and at 𝑠 = 0.2
(bottom). The right column shows the empirical probability distribution of a physical
solution at the same two values of 𝑠 = 0.01 (top) and 𝑠 = 0.2 (bottom).
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Figure 3-14: The pinched tent map (Eq. 3.19) for 𝑠 = 0.01 (blue), 𝑠 = 0.05 (orange),
𝑠 = 0.2, (green) and 𝑠 = 0.5(red).

tent map, as suggested by its fractal-like probability distribution on the left column

of Figure 3-13.

Next we consider a second perturbation of the tent map, the pinched tent map,

which has the following closed form

𝜙𝑝
𝑠(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4𝑥

1 + 𝑠 +
√︀

(1 + 𝑠)2 − 4𝑠𝑥
, 𝑥 < 1

4(2− 𝑥)

1 + 𝑠 +
√︀

(1 + 𝑠)2 − 4𝑠(2− 𝑥)
, 2 ≤ 𝑥 ≤ 1.

(3.19)

Again, at 𝑠 = 0, the original tent map is recovered, and at other values of 𝑠, the tent

map is “pinched” by perturbations that are symmetric around 𝑥 = 1, and zero at the

end points. Figure 3-14 shows the pinched tent map at different 𝑠 values. In Figure

3-15, we show the corresponding plots of the physical and shadowing distributions for

the pinched tent map. From the right column, which shows the probability density

of a long physical solution, we can see that the pinching perturbation changes the

uniform density of the original tent map to a linearly varying density. The more

pronounced the perturbation – the higher the value of 𝑠 – the steeper the slope.

The shadowing distribution, in this case as well, appears fractal. Once again, with

probability one – or, for any randomly chosen initial condition of the solution of the
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pinched tent map – a physical solution is shadowed by a quasi-physical solution. We

consider yet another perturbation of the tent map with the closed form

𝜙𝑤
𝑠 (𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4𝑥

1 + 𝑠 +
√︀

(1 + 𝑠)2 − 4𝑠𝑥
, 𝑥 < 1

4(2− 𝑥)

1− 𝑠 +
√︀

(1− 𝑠)2 − 4𝑠(2− 𝑥)
, 2 ≤ 𝑥 ≤ 1.

(3.20)

The above map, called the wave tent map, is illustrated in Figure 3-16. To construct

the pinched tent map (Eq. 3.19), we perturbed the original tent map in such a way

that the perturbations on the two halves of the interval [0, 2] are mirror images of

each other about the 𝑥 = 1 line. In the wave tent map, the perturbations on the two

halves are a reflection of each other about the 𝑥-axis. The wave perturbation does

not noticeably alter the SRB density of the original tent map. As we show in Figure

3-17 (right), a solution of the wave tent map, starting from almost any point on [0, 2]

– a physical solution – has a density that looks almost identical to a uniform density

of 0.5. On the left column of Figure 3-17, we observe that the distributions of the

shadowing solutions corresponding to the physical solutions on the right once again

appear fractal. Hence, we can once again conclude that almost every solution, which is

physical, has a corresponding shadowing solution that is nonphysical. In this section,

we have shown that the same conclusion holds for several different perturbations of the

tent map. The physical solutions were distributed nonuniformly and differently from

one another. However, we observed a commonality in the different perturbations: the

shadowing solutions corresponding to almost every physical solution had a fractal-

like probability distribution that did not resemble the distributions of the physical

solutions in any case. Thus, we have shown significant evidence, through analytical

constructions of perturbed tent maps in this section and section 3.3.4 that shadowing

solutions can almost surely be nonphysical.
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Figure 3-15: The left column shows the empirical distribution of the shadowing so-
lution for the pinched tent map at 𝑠 = 0.05 (top) and at 𝑠 = 0.2 (bottom). The
right column shows the probability distribution of a physical solution at the same
two values of 𝑠 = 0.05 (top) and 𝑠 = 0.2 (bottom).
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Figure 3-16: The wave tent map (Eq. 3.20) for 𝑠 = 0.01, 0.05, 0.2, and 0.5.

3.4.4 What about the Lorenz equation?

In order to analyze the behavior of the shadowing solutions of the Lorenz’63 system of

equations, we first make a closed form approximation of the Lorenz map (see section

3.6.1 of the supplementary material). Except at rare parameter values, the Lorenz

system does not have solutions that shadow perturbed orbits for all time, but rather

only for a finite time [157]. Hence, the Lorenz map also does not have infinitely

long shadowing solutions. This implies that a numerical solution of the Lorenz map

approximates a true solution, as accurately as desired, only for a finite time.

A closed form approximation is constructed by regression performed using long

solutions of the Lorenz map (Figure 3-5). The Lorenz map approximation obtained

this way is illustrated in Figure 3-18, for variations of the parameters around their

standard values of 𝜌 = 28, 𝜎 = 10, and 𝛽 = 8/3. Using the approximate Lorenz map,

we calculate next the shadowing solutions. The empirical distribution computed from

long shadowing solutions, of length 10 billion, are shown in the left column of Figure

3-19 at three different sets of parameter values, which are also different from the

standard values of 𝜌 = 28, 𝜎 = 10, and 𝛽 = 8/3. In each row, one of the parameters

is perturbed from the standard values. On the right column, we plot the distribution

of physical solutions, the SRB distribution, at the set of parameters corresponding to
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Figure 3-17: The left column shows the empirical distribution of the shadowing solu-
tion for the wave tent map (Eq. 3.20) at 𝑠 = 0.05 (top) and at 𝑠 = 0.2 (bottom). The
right column shows the probability distribution of a physical solution at the same two
values of 𝑠 = 0.05 (top) and 𝑠 = 0.2 (bottom).
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Figure 3-18: The left, center, and right plots show the effect of the parameters 𝜎, 𝜌,
and 𝛽 on the Lorenz map, respectively. In the left plot, the blue and orange lines
represent 𝜎 = 10 and 12, respectively, while 𝜌 = 28 and 𝛽 = 8/3. In the center plot,
the blue and orange lines represent 𝜌 = 28 and 30, respectively, while 𝜎 = 10 and
𝛽 = 8/3. In the right plot, the blue and orange lines represent 𝜎 = 8/3 and 10/3
respectively, while 𝜎 = 10 and 𝜌 = 28.
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Figure 3-19: The left column shows the empirical distribution of the shadowing solu-
tion, and the right column shows the physical distribution of the Lorenz map at the
following sets of parameters: top row: 𝜎 = 15, 𝜌 = 28, 𝛽 = 8/3, 𝜌 = 29, middle row:
𝜎 = 10, 𝜌 = 30, 𝛽 = 10/3, and bottom row: 𝜎 = 10, 𝜌 = 28, 𝛽 = 10/3.
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each row. We again notice that, while the physical distributions appear smooth, the

shadowing solutions clearly exhibit roughness. Thus, we draw the same conclusion in

the Lorenz map as in the various perturbations of the tent map treated in section 3.4.3:

shadowing solutions do not have the same distribution as a typically observed solution

of the governing equation. In other words, shadowing solutions are nonphysical.

3.5 Discussion and outlook

Through rigorous counterexamples, we show that shadowing can lead to nonphysi-

cal solutions. This has a troubling implication for numerical simulations of chaotic

governing equations. Through the examples in this chapter, it is clear that a nu-

merical solution, satisfying a governing equation perturbed due to numerics, is not

expected to be shadowed by a physical solution of the real governing physics. What

is, if any, the relation of a numerical solution, such as DNS of turbulent flows, to the

true physics? For an 𝒪(10−18) perturbation (due to numerical error), we may get

completely different statistics from a true, physical solution. How then can we trust

numerical solutions when they are not guaranteed to share the long-term statistical

behavior of the governing equation? We conclude with an example that illustrates a

counterintuitive feature of some chaotic systems: a small perturbation to the govern-

ing equation can significantly change the statistics/long-term behavior of its physical

solutions. We construct yet another perturbed tent map – the plucked tent map –

in which an oscillatory perturbation is introduced (see Supplementary Material sec-

tion 3.6.3 for the map equation). In Figure 3-20, we show that the magnitude of

the oscillatory perturbation is controlled by parameters 𝑠 and 𝑛, and its frequency

is controlled by the parameter 𝑛; at 𝑠 = 0, we recover the original tent map at all

𝑛. The physical probability distributions – computed empirically over a trajectory of

length 10 billion – at 𝑠 = 0.1, are shown on the right column of Figure 3-20. On the

top row, 𝑛 = 0, and there is already a marked asymmetry developed in the physical

distribution compared to the uniform distribution, which is the physical distribution

seen at 𝑠 = 0, 𝑛 = 0. The figure shows that by increasing 𝑛, despite the fact that
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the magnitude of the perturbation becomes smaller with 𝑛, we see a dramatic change

in the appearance of the stationary probability distribution: we observe an apparent

fractal distribution reminiscent of that of the quasi-physical solutions in section 3.4.3.

By construction of the map (Supplementary Material section 3.6.3), the nonunifor-

mities of the probability distribution at 𝑛 = 0 are transferred to smaller and smaller

scales, as 𝑛 is increased. It is worth emphasizing that these remarkable changes in

the physical distribution (shown on the bottom-right of Figure 3-20) are effected with

a tiny perturbation – the perturbed map at 𝑛 = 6 and the original tent map appear

indiscernible on the bottom-left of Figure 3-20.

In view of the plucked tent map, we can further question the validity of numerical

solutions. Can numerical solutions play the role of the plucking perturbation to the

governing equation? That is, can numerical solutions represent slight perturbations

to the governing equations for which the physical distribution is drastically different

from the physical distribution of the original governing equation? Sauer [240] has

shown examples in which numerical error due to computation in double-precision

floating point arithmetic causes significant change in the stationary probability dis-

tribution on the attractor; other works [170] further analyze the unreliability due to

double-precision arithmetic of statistical measures such as power spectra and correla-

tion functions. The plucked tent map adds to this list of examples by demonstrating

a mechanism to produce an extreme non-smooth response (Supplementary Mate-

rial section 3.6.3). Uniformly hyperbolic dynamical systems exhibit linear response

([232][28]) by which small parameter perturbations lead to small changes in statistics,

which can be expanded as Taylor series around the reference parameter value. But,

uniform hyperbolicity is a mathematical idealization, and although some physical

systems have been observed to behave as if they were uniformly hyperbolic [108], a

violation of uniform hyperbolicity is more likely [275][191].

Both the nonphysicality of shadowing solutions, and the existence of extremely

non-smooth statistical response, undermine the validity of using shadowing for sensi-

tivity analysis of statistics [273][206][165]. When the goal is to compute derivatives of

ensemble averages, where the ensemble is distributed according to the physical mea-

124



Figure 3-20: The effect of increasing 𝑛 on the physical probability distribution as-
sociated to the plucked tent map. The left column shows the plucked tent map at
different values of 𝑠 and 𝑛 = 0 (top), 𝑛 = 3 (middle), 𝑛 = 6 (bottom). The original
tent map is at 𝑠 = 0 on each plot. The right column shows the stationary, physical
probability distribution of the plucked tent map at 𝑠 = 0.1 and 𝑛 = 0 (top), 𝑛 = 3
(middle), 𝑛 = 6 (bottom).

sure, i.e., the SRB measure, shadowing-based methods can give wrong results. This

is because shadowing-based methods compute the sensitivities of ensemble statistics

along shadowing solutions, but these may not be physical solutions that reproduce

ensemble statistics. The error in shadowing sensitivities has been observed before

and appropriately attributed as “ergodicity breaking error” [37] [209]. Violations of

smooth response, like in the plucked tent map, have an immediate implication for

shadowing sensitivities as well. In particular, if perturbed solutions are shadowed by

physical solutions for all time, the change in the statistics of the perturbed solutions

must be small. In other words, the physicality of shadowing predicts that there can-

not be a large change in statistics due to small parameter perturbations; the reality

is that, as illustrated by the plucked tent map, the effect of small parameter changes
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on the statistics can be drastic.

In this chapter, we have constructed several counterexamples that dispel the notion

that shadowing solutions are physical solutions, i.e., that their statistical distribution

is the same as that typically observed for almost every solution of a governing equa-

tion. The existence of long-time shadowing solutions [119] has historically been used

to address the issue of whether numerical simulations, which are perturbed solutions,

represent the true physics implied by the governing equation. In light of the evidence

in this chapter, we must reopen this issue. Even when numerical simulations are

shadowed by a true solution in that the difference between them is small for a long

time, this shadowing solution may not represent the long-term or ensemble behavior

of the physical system. The nonphysicality of shadowing solutions also indicates that

shadowing-based methods can lead to incorrect values of sensitivities of statistics to

parameter changes.

3.6 Supplementary material

The supplementary material for this chapter including the code and data to generate

the figures can be found on Github [56]. The code can be found under the code

subdirectory inside which section-wise code is separated into further subdirectories.

The data used to plot the figures can be found under data. The files referred to in

this section can be found in the appropriate subdirectory under code.

3.6.1 Approximation of the Lorenz Map

The motivation for approximating the Lorenz map is that a closed form expression for

the map is necessary for our numerical shadowing procedure (section 3.6.2). In a small

region around the cusp, we approximate the map using an exponential function. The

tails on both sides are fitted with a sum of a cubic polynomial and a rational function.
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Figure 3-21: L: the blue and orange lines are the Lorenz map at the standard param-
eters, and the dotted black lines indicate the approximate Lorenz map (Table 3.2).
R: the regression error is shown as a function of 𝑧

Thus, the approximate Lorenz map has the following closed form expression:

𝜙(𝑥) =

⎧⎪⎨⎪⎩𝑧max − 𝑓𝑅(𝑥− 𝑧sep) 𝑥 > 𝑧sep

𝑧max − 𝑓𝐿(𝑧sep − 𝑥) 𝑥 ≤ 𝑧sep

(3.21)

where

𝑓𝑅(𝑦) =
(︁

(1000𝑦)𝑝 +
3∑︁

𝑛=0

𝑝𝑅,𝑛𝑦
𝑛 +

𝑎𝑅,0 + 𝑎𝑅,1𝑦∑︀3
𝑛=0 𝑏𝑅,𝑛𝑦𝑛

)︁
, (3.22)

and,

𝑓𝐿(𝑦) =
(︁

(1000𝑦)𝑝 +
3∑︁

𝑛=0

𝑝𝐿,𝑛𝑦
𝑛 +

𝑎𝐿,0 + 𝑎𝐿,1𝑦∑︀3
𝑛=0 𝑏𝐿,𝑛𝑦

𝑛

)︁
. (3.23)

The location of the cusp is denoted 𝑧sep (in which “sep” stands for separation), and the

maximum and minimum values encountered in the Lorenz map iterates are denoted

𝑧max and 𝑧min, respectively. The exponent of the cusp is denoted 𝑝. The coefficients

of the cubic polynomial modelling the left (right) tail are denoted 𝑝𝐿,𝑛, 𝑛 = 0, 1, 2, 3

(𝑝𝑅,𝑛, 𝑛 = 0, 1, 2, 3). The coefficients of the numerator and denominator of the rational
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function modelling the left (right) tail are denoted 𝑎𝐿,0, 𝑎𝐿,1 (𝑎𝑅,0, 𝑎𝑅,1) and 𝑏𝐿,𝑛, 𝑛 =

0, 1, 2, 3 (𝑏𝑅,𝑛, 𝑛 = 0, 1, 2, 3), respectively. The values of these coefficients, which are

obtained by regression, are shown for the map at standard parameters, in the table

below. As shown in Figure 3-21, the fit obtained matches the Lorenz map closely.

𝑧sep = 38.55302437476555 𝑧min = 29.213182255013322

𝑧max = 47.978140718671284 𝑝 = 0.28796740575434676

𝑝𝐿,3 = -0.00024683786275242047 𝑝𝐿,2 = 0.016174566354858824

𝑝𝐿,1 = 0.40179772568004946 𝑝𝐿,0 = -0.24612651488351725

𝑝𝑅,3 = -0.00020712463321688308 𝑝𝑅,2 = 0.017130843276711716

𝑝𝑅,1 = 0.3930080703420676 𝑝𝑅,0 = -0.23471384266765036

𝑎𝐿,1 = -0.05405742075580959 𝑎𝐿,0 = -0.05405742075580959

𝑎𝑅,1 = -0.05351127783496397 𝑎𝑅,0 = 0.22489891059122896

𝑏𝐿,3 = 0.5609397451213353 𝑏𝐿,2 = -0.3491184293228338

𝑏𝐿,1 = 2.419972619058592 𝑏𝐿,0 = 1.0

𝑏𝑅,3 = 0.6456076059873844 𝑏𝑅,2 = -0.34840383986411055

𝑏𝑅,1 = 2.6035438510917692 𝑏𝑅,0 = 1.0

Table 3.2: The fitting parameters of the Lorenz map at 𝜎 = 10, 𝛽 = 8/3, and 𝜌 = 28.

3.6.2 Computing shadowing solutions

In general, to numerically compute the shadowing solutions, one could use exist-

ing methods such as the least squares shadowing method [273]. However, since the

maps we consider are all one-dimensional chaotic systems that have in common non-

invertibility with two inverse branches, we devise a simpler approach. The map 𝜙𝑠 in

this section refers to any of the perturbations of the tent map (section 3.4.3) or the

Lorenz map. Suppose we are given a perturbed solution 𝑥𝑛, 𝑛 = 0, 1, · · · , 𝑁 that we

must compute a shadow of. The shadowing solution, 𝑦𝑛, 𝑛 = 0, 1, 2, · · · , 𝑁 must a)

satisfy the governing equation: 𝑦𝑛+1 = 𝜙𝑠(𝑦𝑛) and b) lie close to the given perturbed

solution at all times up to 𝑁 , i.e., |𝑥𝑛 − 𝑦𝑛| < 𝜖, for some 𝜖 > 0, for all 𝑛 ≤ 𝑁 .

Suppose we set 𝑦0 = 𝑥0, the difference 𝑦1−𝑥1 will amplify on further iterations under
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𝜙𝑠 for any perturbed solution. On the other hand, backward iteration of the map is

contracting, and thus we set 𝑦𝑁 = 𝑥𝑁 . Then, we proceed backward in time to con-

struct a solution of 𝜙𝑠, noting that any difference that emerges at a given time 𝑛 will

be made smaller starting at 𝑛− 1. Each point has two pre-images under 𝜙𝑠, and thus

there are two possible choices for 𝑦𝑁−1, each lying in one of two fixed sub-intervals

separated by the cusp of 𝜙𝑠. Due to the contraction of errors backward in time, as

long as we choose a pre-image in the same subinterval as the perturbed solution, we

are guaranteed to approximate a shadowing solution. Marching backward by choos-

ing at each step, the pre-image 𝑦𝑛 in the same subinterval as 𝑥𝑛, 𝑦𝑛 approximates the

shadowing solution better as 𝑛 decreases. Thus, the procedure to find a shadowing

solution simply reduces to solving for a backward trajectory (specifically one among

the possible 2𝑁), starting at a given final condition, 𝑥𝑁 .

Hence, it is clear that all we need is the inverse of 𝜙𝑠, which is propagated backward

by choosing the same branch of the inverse as 𝑥𝑛 at time 𝑛. This logic is implemented

for each map of section 3.4.3 in the function shadow that can be found in the files

named for each map (for example, the shadowing solution of the pinched tent map can

be found by executing the shadow function of tent_shadow/tent_shadow_pinched.py).

These functions use the analytical inverses of the maps, which are easy to derive for the

tent map perturbations of section 3.4.3. For the Lorenz map, we use Newton’s method

to solve for the inverse, and this is implemented in the file lorenz_map/shadow.py.

Note that we need a closed form expression of the map, for the Newton’s method,

and this is indeed the reason why we approximate the map, as described in section

3.6.1.

3.6.3 The plucked tent map

We provide a recursive definition of the plucked tent map, which is illustrated at

different values of 𝑛 and 𝑠 in Figure 3-20. First we define a function 𝑓𝑠(𝑥), which
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creates a bend in the tent map that increases with 𝑠, around ((1− 𝑠)/2, 1):

𝑓𝑠(𝑥) = min
(︁ 2𝑥

1− 𝑠
, 2− 2(1− 𝑥)

1 + 𝑠

)︁
, 𝑥 < 1. (3.24)

Then, we introduce oscillations using repetitions of the above map within the unit

interval,

𝑜𝑠(𝑥) =

⎧⎪⎨⎪⎩𝑓𝑠(2𝑥)/2, 𝑥 < 0.5

2− 𝑓𝑠(2− 2𝑥)/2, 𝑥 ≥ 0.5.

(3.25)

We can modulate the frequency of repetitions – proportional to 𝑛 – of the oscillations

through

𝜆𝑠,𝑛(𝑥) =
𝑜𝑠(2

𝑛𝑥− ⌊2𝑛𝑥⌋)
2𝑛

+ 2
⌊2𝑛𝑥⌋

2𝑛
, (3.26)

where ⌊𝑥⌋ is the greatest integer less than or equal to 𝑥. Finally, the plucked tent

map is defined as the above function in the unit interval, and as its reflection about

𝑥 = 1, in the interval [1, 2).

𝜙𝑠,𝑛(𝑥) = min (𝜆𝑠,𝑛(𝑥), 𝜆𝑠,𝑛(2− 𝑥)) , 0 < 𝑥 < 2. (3.27)

Recall that our motivation is to construction a slight perturbation of the tent map

whose stationary probability distribution is not just non-uniform (e.g. like the other

tent map perturbations of section 3.4.3), but in which the nonuniformity can be

controlled, and made skewed as desired. Thus, we choose to construct a base per-

turbation of the tent map, min(𝑜𝑠(𝑥), 𝑜𝑠(2 − 𝑥)) – which is also obtained by setting

𝑛 = 0 in 𝜙𝑠,𝑛 – in which an asymmetry is produced in the probability distribution

(top-right of Figure 3-20). Upon repeating, with appropriate scaling, the oscillation

𝑜𝑠, the frequency of which is controlled by 𝑛, we obtain 𝜙𝑠,𝑛, as indicated by Eq. 3.26-

3.27. Thus, the asymmetric probability distribution, through this process of scaled

repetition, acquires an apparent fractal-like structure seen on increasing 𝑛, as shown
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on the bottom-right of Figure 3-20.

One way to see the asymmetry in the probability distribution about 𝑥 = 1, at

𝑛 = 0, is to construct a Markov chain with nodes 00, 01, 10, and 11, that indicate

the subintervals (0, 0.5), [0.5, 1), [1, 1.5) and [1.5, 2), respectively. From Eq. 3.27, we

can see that the application of 𝜙𝑠,0 yields the following transition matrix:

⎡⎢⎢⎢⎢⎢⎢⎣
(1− 𝑠)/2 (1 + 𝑠)/2 0 0

0 0 (1 + 𝑠)/2 (1− 𝑠)/2

0 0 (1 + 𝑠)/2 (1− 𝑠)/2

(1− 𝑠)/2 (1 + 𝑠)/2 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

The stationary probability distribution of this Markov chain, which is the left eigen-

vector of the transition matrix corresponding to eigenvalue 1, is [(1 − 𝑠)2/2, (1 −

𝑠2)/2, (1 + 𝑠)2/2, (1− 𝑠2)/2]𝑇 . One can verify this is consistent with the top-right of

Figure 3-20 for 𝜙0.1,0. Clearly, the time spent by an infinitely long physical solution

in the second quarter interval, [0.5, 1] is about 1.2 times the time spent in the first

quarter, [0, 0.5]; the time spent in the third quarter [1, 1.5] is about 1.5 times that

spent in the first quarter. This nonuniformity is more pronounced with increasing

𝑠. For instance, at 𝑠 = 0.5, the left subinterval, [0,1),is three times less likely to be

visited by a long trajectory compared to [1, 2).

But, as mentioned in the main text, even a small perturbation – very small 𝑠 –

is sufficient to trigger a remarkable variation in the statistics. This is because this

particular construction transfers the nonuniformities in the probability distribution

at larger scales to smaller scales, with increasing 𝑛. The nonuniformity at the largest

scale of half intervals is retained at higher values of 𝑛. That is, the probability of

visiting the interval [0, 1] is the same: (1 − 𝑠), at all 𝑛. However, with increasing

𝑛, the nonuniformity emerges within smaller subintervals, due to the construction of

the map that relies on repeating the behavior at larger scales at smaller scales (Eq.

3.26). This repetitive construction is responsible for the apparent fractal structure

of the probability distribution (Figure 3-20, bottom-right). The scripts that generate

the plucked tent map and its physical probability distributions can be found under
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tent_sens_stat.

132



Chapter 4

Ruelle’s formula and the infeasibility

of its direct evaluation

In chaotic systems, such as turbulent flows, the solutions to tangent and adjoint

equations exhibit an unbounded growth in their norms. This behavior renders the

instantaneous tangent and adjoint solutions unusable for sensitivity analysis. The

Lea-Allen-Haine ensemble sensitivity (ES) estimates provide a way of computing

meaningful sensitivities in chaotic systems by utilizing tangent/adjoint solutions over

short trajectories. In this chapter, we analyze the feasibility of ES computations

under optimistic mathematical assumptions on the flow dynamics. Furthermore, we

estimate upper bounds on the rate of convergence of the ES method in numerical

simulations of turbulent flow. Even at the optimistic upper bound, the ES method

is computationally intractable in each of the numerical examples considered. This

chapter is joint work with Pablo Fernandez, Chaitanya Talnikar and Qiqi Wang and

has been published at [69].

4.1 Introduction

Gradient-based computational approaches in multi-disciplinary design and optimiza-

tion require sensitivity information computed from numerical simulations of fluid flow.

In Reynolds-averaged-Navier-Stokes (RANS) simulations, sensitivity computation is
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traditionally performed using tangent or adjoint equations or using finite difference

methods. Sensitivities computed from RANS simulations and non-chaotic Navier-

Stokes simulations have been extensively applied toward uncertainty quantification

[216, 272], mesh adaptation [104], flow control [229], noise reduction [43, 93, 263]

and aerostructural design optimization applications [219, 111, 112, 224, 212]. Many

modern applications require computing sensitivities in direct numerical simulations

(DNS) or large-eddy simulations (LES); examples include buffet prediction in high-

maneuverability aircraft, modern turbomachinery design and jet engine and airframe

noise control. Conventional tangent/adjoint approaches cannot be used to compute

sensitivities of statistical averages (or long-time averaged quantities) in these high-

fidelity, eddy-resolving simulations. This is because the tangent and adjoint solutions

diverge exponentially [206, 168], since these simulations exhibit chaotic behavior i.e.,

infinitesimal perturbations to initial conditions grow exponentially in time. For this

reason, sensitivity studies on DNS or LES have been restricted to short-time horizons;

these short-time sensitivities have found limited applicability including in flow control

in combustion systems [52], jet noise reduction [43] and structural design [201].

The first proposed approach to tackle the computation of sensitivities of statis-

tics is the Lea-Allen-Haine ensemble sensitivity (ES) method [168]. In this method,

the problem of exponentially diverging linearized perturbation solutions (such as tan-

gent/adjoint) is mitigated by taking a sample average of short-time sensitivities. The

method approximates Ruelle’s response formula [232] for sensitivity of average quanti-

ties to system parameters. The convergence of the method has been shown by Eyink

et al. [96] in the limit of taking an infinite number of samples and increasing the

time duration for sensitivity computation to infinity, in that order. Eyink et al. [96]

establish that the rate of convergence is worse than a typical Monte Carlo simulation

(in which the error in a sample average diminishes at the rate 1/
√
𝑁 , where 𝑁 is the

number of samples) in the case of the classical 3-variable Lorenz ’63 system. However,

the convergence trend is still unknown for general chaotic systems. In this work, we

present an analysis of the mean squared error of the ES method as a function of the

computational cost for a certain class of systems called uniformly hyperbolic systems
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[154]. It is worth noting that at the time of writing of this chapter, alternatives

to the ES method [210, 67, 211] are under active investigation. Non-intrusive least

squares shadowing (NILSS) [206, 37] and its adjoint-variant [211, 37] are methods

that are conceptually based on the shadowing property of uniformly hyperbolic sys-

tems. This property enables the computation of a particular tangent solution that

remains bounded in a long time window and sensitivities are estimated using this

tangent solution. The NILSS algorithm requires the knowledge of the unstable sub-

space (of the tangent space, corresponding to the positive Lyapunov exponents). This

makes the algorithm expensive when the dimension of the subspace or the number of

positive Lyapunov exponents is large. The NILSS method has been applied to LES

of turbulent flows around bluff bodies [39, 40] at low Reynolds numbers, where the

number of positive Lyapunov exponents is small enough to limit the computational

expense when compared to wall-bounded flows, for instance.

The chapter is organized as follows. In the next section, we review the ES method

and define the ES estimator for the sensitivity. In section 4.3, we describe the mean

squared error in the ES estimator in terms of the associated bias and variance and

obtain optimistic, problem-dependent estimates for both components. We predict

the rate of convergence as a function of computational cost under these optimistic

assumptions on the dynamics. The rest of the chapter consists of numerical examples

that illustrate the convergence trend of the ES method. In sections 4.4.1 and 4.4.2,

we discuss two low-dimensional models of chaotic fluid behavior: the Lorenz ’63 and

Lorenz ’96 systems. We apply our optimistic analysis to roughly estimate an upper

bound on the rate of convergence. We then present two numerical simulation results

that serve to illustrate the applicability of ES schemes in fluid simulations of practical

interest, in light of our mathematical analysis in section 4.3. The first is a simulation of

a NACA 0012 airfoil in section 4.4.3 and the second, an LES of turbulent flow around

a turbine vane in section 4.4.4. Section 4.5 contains some practical recommendations

on the applicability of the ES method, based on analytical and numerical insights

from the previous sections.
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4.2 The ES estimator

4.2.1 The sensitivity computation problem setup

Consider a chaotic fluid flow parameterized by 𝑠, expressed through a PDE system

of the following form:

𝜕𝑢(𝑡, 𝑠)

𝜕𝑡
= 𝑓(𝑢(𝑡, 𝑠), 𝑠) 𝑢(𝑡, 𝑠) ∈ R𝑑, 𝑠 ∈ R𝑝, (4.1)

𝑢(0, 𝑠) = 𝑢0 ∈ R𝑑.

Here, we use 𝑢(𝑡, 𝑠) to denote the state vector at time 𝑡 obtained due to the evolution

of an initial state 𝑢0 according to Eq. 4.1; 𝑢0 is chosen independently of 𝑠. As an

example, if Eq.4.1 is the spatially discretized incompressible Navier-Stokes equation, a

state vector consists of the velocity components, and pressure at all the grid points. In

this case, the dimension of the parameterized, spatially-discretized Navier-Stokes state

vector – 𝑢(𝑡, 𝑠) – is 𝑑 = 4× the number of degrees of freedom (and in a two-dimensional

flow, 𝑑 = 3× the degrees of freedom). The state vector 𝑢(𝑡, 𝑠) is approximately known

from numerical simulation and can be thought of as a point in the phase space 𝑀 ,

a compact subset of R𝑑. The set of input parameters 𝑠 can be, for instance, related

to the inlet conditions, the geometry of the domain or solid bodies in the flow and

so on. In the interest of simplicity, from here on, 𝑠 is a scalar parameter. The state

vector is also a function of the initial condition and to make explicit this dependence,

we write as 𝑢(𝑡, 𝑠, 𝑢0) the solution of Eq.4.1 at time 𝑡, solved with 𝑢0 as the initial

state.

The fluid flows we consider here are statistically stationary, i.e., the states in phase

space are distributed according to a time-invariant probability distribution 𝜇𝑠. The

subscript 𝑠 indicates that the stationary distribution is a function of the parameter;

we work under the assumption that 𝜇𝑠 is a smooth function of 𝑠. Suppose 𝐽 is a

smooth scalar function of the state such as the lift/drag ratio or the pressure loss in a

turbine wake. The ensemble mean of 𝐽 is defined as its expectation with respect to 𝜇𝑠

and denoted by 𝜇𝑠(𝐽) :=
∫︀
𝐽 𝑑𝜇𝑠. We are interested in computing the sensitivity of
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𝜇𝑠(𝐽) to 𝑠. The ensemble mean 𝜇𝑠(𝐽), is an average over phase space, and hence can

be measured as a time average along almost every trajectory, under the assumption

of ergodicity. More precisely, for almost every initial state 𝑢0,

𝜇𝑠(𝐽) = lim
𝑡→∞

1

𝑡

∫︁ 𝑡

0

𝐽(𝑢(𝑡′, 𝑠, 𝑢0)) 𝑑𝑡
′.

In practice, 𝜇𝑠(𝐽) is computed approximately as a finite-time average by truncating a

trajectory at a large 𝑡. The Lea-Allen-Haine ES method, the subject of this chapter,

computes the sensitivity (𝑑𝜇𝑠(𝐽)/𝑑𝑠) approximately, as we describe next.

4.2.2 The Lea-Allen-Haine ES algorithm

The ES estimator of the sensitivity is the sample mean of a finite number of in-

dependent sensitivity outputs computed over short trajectories. We now make this

statement precise in the following description of the ES algorithm. Consider 𝑁 inde-

pendent initial states
{︁
𝑢
(𝑖)
0

}︁𝑁

𝑖=1
, sampled according to 𝜇𝑠. Let us denote the sensitivity

computed along a flow trajectory, of length 𝜏 , starting from 𝑢
(𝑖)
0 , as 𝜃

(𝑖)
𝜏 . Then, the

Lea-Allen-Haine estimator 𝜃𝜏,𝑁 , is given by,

𝜃𝜏,𝑁 =
1

𝑁

𝑁∑︁
𝑖=1

𝜃(𝑖)𝜏 . (4.2)

The standard adjoint method was proposed to be used originally [168, 96] to com-

pute the sensitivities 𝜃(𝑖)𝜏 in order to retain the advantage of adjoint methods, namely

that they scale well with the parameter space dimension, since the parameters enter

the computation only when determining the sensitivities using the adjoint solution

vectors, and the adjoint vectors the computation of which is the majority of the

computational cost, are themselves parameter-independent. The analysis in the re-

mainder of this chapter would be identical however, if the tangent equation or a finite

difference approximation to the sensitivity derivative was used instead. The three

methods of computing 𝜃
(𝑖)
𝜏 , dropping the superscript 𝑖 for clarity, are listed below.

The sensitivity estimator computed using Eq. 4.2 when 𝜃
(𝑖)
𝜏 are computed using the
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tangent equation, adjoint equation and from finite difference are denoted using 𝜃T𝜏,𝑁 ,

𝜃A𝜏,𝑁 and 𝜃FD𝜏,𝑁 respectively.

1. From the tangent equation:

𝑑𝑣(𝑡, 𝑢0)

𝑑𝑡
=

𝜕𝑓

𝜕𝑠

⃒⃒⃒
𝑡
+

𝜕𝑓

𝜕𝑢

⃒⃒⃒
𝑡
𝑣(𝑡, 𝑢0) (4.3)

where, 𝑣(𝑡, 𝑢0) = (𝑑𝑢(𝑡, 𝑠, 𝑢0)/𝑑𝑠) is the tangent solution at time 𝑡 when the

primal initial condition is 𝑢0. The tangent initial condition 𝑣(0, 𝑢0) = 0 ∈

R𝑑 since 𝑢0 is independent of 𝑠. We use (𝜕𝑓/𝜕𝑠)
⃒⃒⃒
𝑡

to represent the partial

derivative of 𝑓 with respect to the parameter 𝑠, evaluated at 𝑢(𝑡, 𝑠, 𝑢0). The

Jacobian matrix at time 𝑡 is written as (𝜕𝑓/𝜕𝑢)
⃒⃒⃒
𝑡
. The ES estimator based on

the tangent equation is

𝜃T𝜏,𝑁 =
1

𝜏𝑁

𝑁∑︁
𝑖=1

∫︁ 𝜏

0

𝜕𝐽

𝜕𝑢

⃒⃒⃒
𝑡,𝑖
· 𝑣(𝑡, 𝑢

(𝑖)
0 ) 𝑑𝑡, (4.4)

where we have used a second subscript 𝑖 in
𝜕𝐽

𝜕𝑢

⃒⃒⃒
𝑡,𝑖

to indicate that the primal

initial condition is 𝑢
(𝑖)
0 .

2. From the adjoint equation:

𝑑𝑦(𝑡, 𝑢0)

𝑑𝑡
= −𝜕𝐽

𝜕𝑢

⃒⃒⃒
𝑡
−
(︂
𝜕𝑓

𝜕𝑢

)︂* ⃒⃒⃒
𝑡
𝑦(𝑡, 𝑢0), (4.5)

where 𝑦(𝜏, 𝑢0) = 0 ∈ R𝑑 is the adjoint vector at time 𝜏 which results in the

adjoint vector 𝑦(𝑡, 𝑢0) at time 𝑡 when evolved backwards in time for a time

𝜏 − 𝑡. Here (𝜕𝑓/𝜕𝑢)*
⃒⃒⃒
𝑡

is the conjugate transpose of the Jacobian matrix at

time 𝑡. The ES estimator based on the adjoint equation is,

𝜃A𝜏,𝑁 =
1

𝜏𝑁

𝑁∑︁
𝑖=1

∫︁ 𝜏

0

𝑦(𝑡, 𝑢
(𝑖)
0 ) · 𝜕𝑓

𝜕𝑠

⃒⃒⃒
𝑡,𝑖

𝑑𝑡, (4.6)

where we have used a second subscript 𝑖 in (𝜕𝑓/𝜕𝑠)
⃒⃒⃒
𝑡,𝑖

to indicate that the
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primal initial condition is 𝑢
(𝑖)
0 .

3. Using, for example, a second-order accurate finite difference approximation:

𝜃FD𝜏,𝑁 =
1

𝜏𝑁

𝑁∑︁
𝑖=1

1

2∆𝑠

(︃∫︁ 𝜏

0

𝐽(𝑢(𝑡, 𝑠 + ∆𝑠, 𝑢
(𝑖)
0 )) 𝑑𝑡−

∫︁ 𝜏

0

𝐽(𝑢(𝑡, 𝑠−∆𝑠, 𝑢
(𝑖)
0 )) 𝑑𝑡

)︃
,

(4.7)

for a small ∆𝑠.

4.3 Error vs. computational cost of the ES estimator

Chaotic systems such as turbulent fluid flows often exhibit regularity in long-time

averages despite showing seeming randomness in instantaneous measurements. The

chaotic hypothesis, proposed by Gallavotti and Cohen [108], is the notion that these

systems can be treated, for the purpose of studying their long-time behavior, as hav-

ing a certain smooth structure in phase space. This smooth structure allows for the

existence of subspaces of the tangent space consisting of expanding and contracting

derivatives of state functions. Our goal in this section is to predict the convergence

trend of the ES method for systems that satisfy the chaotic hypothesis. More specifi-

cally, we would like to construct an optimistic model for the least mean squared error

of the ES method, achievable at a given computational cost, in these systems. Before

we delve into the construction of the optimistic model, we will discuss the rigorous

justification for the convergence of the ES method – Ruelle’s response formula. Here

we will focus on the implications of the formula for the ES method without going into

details; the reader is referred to Ruelle’s original chapter [232, 234] for the derivation

of the response formula. We shall refrain from a technical discussion on hyperbol-

icity and other concepts from dynamical systems theory but provide the necessary

qualitative description, in the context used here.

139



4.3.1 ES estimator as approximation of Ruelle’s response for-

mula

The following response formula [235] due to Ruelle gives the sensitivity to 𝑠, of an

objective function 𝐽 ’s statistical average,

𝑑𝜇𝑠(𝐽)

𝑑𝑠
=

∫︁ ∞

0

𝑑𝑡

∫︁
𝑀

𝜕𝐽

𝜕𝑢0

⃒⃒⃒
𝑡
· 𝜕𝑓
𝜕𝑠

⃒⃒⃒
0
𝑑𝜇𝑠(𝑢0), (4.8)

where (𝜕𝐽/𝜕𝑢0)
⃒⃒⃒
𝑡

:= 𝜕𝐽(𝑢(𝑡, 𝑠;𝑢0))/𝜕𝑢0 represents the derivative of 𝐽 at time 𝑡 with

respect to the initial state 𝑢0. One can interpret the inner integral (over 𝑀) as the

statistical response of the objective function at time instant 𝑡. It is a phase space

average of the sensitivity at time 𝑡 with the initial conditions distributed according to

the stationary probability distribution 𝜇𝑠. Ruelle’s formula has been proven to hold

for a certain class of smooth dynamical systems known as uniformly hyperbolic sys-

tems. Roughly speaking, these are systems in which the tangent space at every point

in phase space can be split into stable and unstable subspaces, which contain respec-

tively, exponentially decaying and growing tangent vectors. In reality, the formula is

applicable to a large class of fluid flow problems (this wider applicability referenced

earlier as the chaotic hypothesis) that are not necessarily uniformly hyperbolic, as

subsequent works [108, 232] have analyzed.

An iterated integral such as in Eq. 4.8, gives the same value upon switching

the order of integration if and only if the double integral, in which the integrand

is replaced by its absolute value, is finite (this is the Fubini-Tonelli theorem). The

absolute value of the integrand in Eq. 4.8 diverges to infinity as 𝑡 → ∞ for almost

every initial condition in phase space. In other words, in a chaotic system, for every

initial condition 𝑢0 in phase space except those in a set of 𝜇𝑠-measure 0,

∫︁ ∞

0

⃒⃒⃒⃒
𝜕𝐽

𝜕𝑢0

⃒⃒⃒
𝑡
· 𝜕𝑓
𝜕𝑠

⃒⃒⃒
0

⃒⃒⃒⃒
𝑑𝑡 =∞.

For this reason, in Eq.4.8, the integral over phase space and over time do not

commute. The iterated integral in Eq.4.8 in which the integration over phase space is
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performed first, leads to a bounded value, which is equal to 𝑑𝜇𝑠(𝐽)/𝑑𝑠. On the other

hand, changing the order of integration and integrating over 𝑡 first, results in infinity.

From here on, we use the following sample average as the definition of the ES

estimator

𝜃𝜏,𝑁 :=
1

𝑁

𝑁∑︁
𝑖=1

∫︁ 𝜏

0

𝜕𝐽

𝜕𝑢0

⃒⃒⃒
𝑡,𝑖
· 𝜕𝑓

𝜕𝑠

⃒⃒⃒
0,𝑖

𝑑𝑡, (4.9)

where the set of initial states
{︁
𝑢
(𝑖)
0

}︁𝑁

𝑖=1
is independent and identically distributed

according to 𝜇𝑠. The ES estimator can be interpreted as an approximation of Ruelle’s

formula in the following sense: if the outer integral over time (in Eq. 4.8) is truncated

at time 𝜏 and the phase space average of the integrand approximated with a sample

mean over 𝑁 independent samples, we obtain the estimator in Eq. 4.9. The definition

can also be interpreted as the average sensitivity of
∫︀ 𝜏

0
𝐽(𝑢(𝑡, 𝑠, 𝑢0)) 𝑑𝑡 to initial

condition perturbations along the vector field (𝜕𝑓/𝜕𝑠)
⃒⃒⃒
0
. This can be computed

using the tangent equation method listed in 4.2.2 but using the homogeneous tangent

equation – i.e., the tangent equation without the forcing term, (𝜕𝑓/𝜕𝑠)
⃒⃒⃒
𝑡
. To wit, the

homogeneous tangent equation solved with the initial condition 𝑣ℎ(0, 𝑢0) = (𝜕𝑓/𝜕𝑠)
⃒⃒⃒
0

yields at time 𝑡, the solution,

𝑣ℎ(𝑡, 𝑢0) =
𝜕𝑢

𝜕𝑢0

⃒⃒⃒
𝑡

𝜕𝑓

𝜕𝑠

⃒⃒⃒
0
.

Therefore, the sensitivity of
∫︀ 𝜏

0
𝐽(𝑢(𝑡, 𝑠, 𝑢0)) 𝑑𝑡 to initial condition perturbations along

(𝜕𝑓/𝜕𝑠)
⃒⃒⃒
0

is,

∫︁ 𝜏

0

𝜕𝐽

𝜕𝑢0

⃒⃒⃒
𝑡
· 𝜕𝑓
𝜕𝑠

⃒⃒⃒
0
𝑑𝑡 =

∫︁ 𝜏

0

𝜕𝐽

𝜕𝑢

⃒⃒⃒
𝑡
· 𝜕𝑢

𝜕𝑢0

⃒⃒⃒
𝑡

𝜕𝑓

𝜕𝑠
𝑑𝑡 =

∫︁ 𝜏

0

𝜕𝐽

𝜕𝑢

⃒⃒⃒
𝑡
· 𝑣ℎ(𝑡, 𝑢0).

Taking an 𝑁 -sample average of the above results in the formula for the estimator

4.9. The resulting 𝜃𝜏,𝑁 is different from the sensitivities 𝜃FD𝜏,𝑁 , 𝜃T𝜏,𝑁 and 𝜃A𝜏,𝑁 defined

in section 4.2.2, all of which are also different from one another. However, in the

asymptotic limit of 𝜏 → ∞, all these sensitivities grow exponentially (𝜃FD𝜏,𝑁 does

141



not grow unbounded in norm with 𝜏 , but rather saturates, for a non-zero value of

∆𝑠) at the same rate determined by the largest among the Lyapunov exponents

(the asymptotic exponential growth or decay rate of tangent/adjoint vectors) of the

system. Therefore, for the purpose of an asymptotic analysis, we restrict our attention

to the estimator defined by Eq. 4.9 and refer to 𝜃𝜏,𝑁 using the umbrella term ES

estimator.

One notices that in the practical computation of the ES method, the integrals are

commuted when compared to Ruelle’s formula but the integral in time is truncated

at a finite time. As noted in Eyink et al’s analysis [96], the rationale behind swapping

the order of integration as compared to Ruelle’s formula in Eq. 4.8 is the observation

that the “divergence of the individual adjoints is delayed on taking a sample average”,

for the Lorenz ’63 system, a low-order model for fluid convection that we discuss in

section 4.4.1. In the rest of the chapter, our goal is to analyze the convergence trend

in more generality.

4.3.2 Bias and variance of the ES estimator

Having defined the ES estimator, we now construct an optimistic model for its mean

squared error in uniformly hyperbolic systems. In this section, we present our choices

of optimistic estimates for the bias and the variance associated with the estimator

and use uniform hyperbolicity to justify those choices. The ES estimator, as defined

in Eq.4.9, has a non-zero bias for a finite 𝜏 . By definition, the bias, denoted by b(𝜏),

gives the difference between the value attained by the estimator on using an infinite

number of samples and the true value of the sensitivity,

b(𝜏) = 𝜇𝑠(𝜃𝜏,𝑁)− 𝑑𝜇𝑠(𝐽)

𝑑𝑠
. (4.10)

Therefore b is only a function of 𝜏 (and not 𝑁) because on using an infinite number

of samples,

lim
𝑁→∞

𝜃𝜏,𝑁 = 𝜇𝑠(𝜃𝜏,𝑁) =

∫︁
𝑀

𝑑𝜇𝑠

∫︁ 𝜏

0

𝜕𝐽

𝜕𝑢0

⃒⃒⃒
𝑡
· 𝜕𝑓

𝜕𝑠
𝑑𝑡. (4.11)
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Writing Eq. 4.10 more explicitly as,

b(𝜏) =

∫︁
𝑀

∫︁ 𝜏

0

𝜕𝐽

𝜕𝑢0

⃒⃒⃒
𝑡
· 𝜕𝑓

𝜕𝑠
𝑑𝑡 𝑑𝜇𝑠 −

∫︁ ∞

0

∫︁
𝑀

𝜕𝐽

𝜕𝑢0

⃒⃒⃒
𝑡
· 𝜕𝑓

𝜕𝑠
𝑑𝜇𝑠 𝑑𝑡, (4.12)

clearly indicates why there is a non-zero bias for a finite value of 𝜏 . As an optimistic

estimate of b(𝜏), we choose an exponential decay at a problem-dependent rate denoted

𝛾1, using the following justification. In a uniformly hyperbolic system, a tangent

vector can be decomposed, at every point in phase space, into its stable and unstable

components. A stable (unstable) tangent vector would diminish in norm along a

forward (backward) trajectory at an exponential rate. More precisely, for almost

every 𝑢0, if 𝑣ℎ(0, 𝑢0) is a stable tangent vector at 𝑢0, there exist 𝐶, 𝛼 > 0 such that,

⃦⃦
𝑣ℎ(𝑡, 𝑢0)

⃦⃦
≤ 𝐶 exp (−𝛼𝑡)

⃦⃦
𝑣ℎ(0, 𝑢0)

⃦⃦
, for all 𝑡 ≥ 0. (4.13)

That is, in uniformly hyperbolic systems, solving the homogeneous tangent equation

with a stable tangent vector as the initial condition, results in a stable tangent vector

whose norm grows smaller exponentially. It must be mentioned here that the interval

[−𝛼, 𝛼] (with 𝛼 defined by Eq. 4.13) lies in the gap between the largest negative and

smallest positive Lyapunov exponents. That 𝛼 provides a lower bound for the smallest

positive Lyapunov exponent will be used in our analysis later. Let us now examine

the bias when the initial perturbation given by (𝜕𝑓/𝜕𝑠)(𝑢0) is a stable tangent vector

at every 𝑢0. From Eq. 4.12,

b(𝜏) = −
∫︁
𝑀

∫︁ ∞

𝜏

𝜕𝐽

𝜕𝑢0

⃒⃒⃒
𝑡
· 𝜕𝑓

𝜕𝑠

⃒⃒⃒
0
𝑑𝑡 𝑑𝜇𝑠 = −

∫︁
𝑀

∫︁ ∞

𝜏

𝜕𝐽

𝜕𝑢

⃒⃒⃒
𝑡
· 𝑣ℎ(𝑡, 𝑢0) 𝑑𝑡 𝑑𝜇𝑠

(4.14)

=⇒ |b(𝜏)| ≤
∫︁
𝑀

∫︁ ∞

𝜏

⃦⃦⃦⃦
𝜕𝐽

𝜕𝑢

⃒⃒⃒
𝑡

⃦⃦⃦⃦
(𝐶 exp (−𝛼𝑡))

⃦⃦⃦⃦
𝜕𝑓

𝜕𝑠

⃒⃒⃒
0

⃦⃦⃦⃦
𝑑𝑡 𝑑𝜇𝑠 (4.15)

≤ 𝐶

𝛼

⃦⃦⃦⃦
𝜕𝐽

𝜕𝑢

⃦⃦⃦⃦
∞

⃦⃦⃦⃦
𝜕𝑓

𝜕𝑠

⃦⃦⃦⃦
∞

exp (−𝛼𝜏). (4.16)

The norm ‖·‖∞ of a vector field 𝑋 expressed in coordinates as 𝑋(𝑢) = (𝑋1(𝑢), 𝑋2(𝑢), · · · , 𝑋𝑑(𝑢))

is defined as ‖𝑋‖∞ := sup𝑢∈𝑀 ‖𝑋(𝑢)‖, where the norm of the tangent vector 𝑋(𝑢) is
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the 𝑙2-norm, ‖𝑋(𝑢)‖ :=
√︁

(
∑︀𝑑

𝑖=1 |𝑋𝑖(𝑢)|2). We obtain Eq. 4.14 by recognizing that

the order of integration can be swapped in the second term (the true sensitivity) in

Eq. 4.12 in this case since the absolute value of the integrand is bounded for all time.

Equation 4.15 follows from using the Cauchy-Schwarz inequality and the fact that

stable perturbations decay in time, as described by inequality 4.13. Thus, we obtain

that the bias of the estimator 𝜃𝜏,𝑁 decays exponentially with 𝜏 if the perturbations

lie entirely in the stable subspace of the tangent space at every point. In general,

the initial tangent vector will also have an unstable component. The unstable con-

tribution to the bias follows the decay of time correlations [232] in the system, which

has been shown to be exponential, at best, in uniformly hyperbolic systems. Collet

and Eckmann [78] proposed the conjecture that for randomly picked observables in

expanding systems (where all the Lyapunov exponents are stricly positive), the decay

of time correlations is at an exponential rate that is at least as slow as the smallest

positive Lyapunov exponent. Applying the Collet-Eckmann conjecture provides an-

other rationalization of the fact that even in the optimistic event of the perturbation

field being stable (Eq.4.14 - Eq.4.16), we would expect the time for the decay of the

bias (and hence the minimum time required for the convergence of the ES method)

to be at least that of the decay of time correlations in the system. This is because

the exponential rate at which the bias decays in the stable perturbation case is 𝛼

(from Eq.4.16), a lower bound on the smallest positive Lyapunov exponent, which

assuming the Collet-Eckmann conjecture applies, is on the same order as the decay

of time correlations in the system.

Estimating the decay of correlations is an active research area and previous stud-

ies [26, 27] have obtained that even among hyperbolic chaotic systems, intermittent

systems can exhibit subexponential decay of correlations. Therefore, an exponential

decay of the bias with integration time is justified as a representation of the optimal

scenario, giving rise to the following model for the squared bias, for some constant

𝐶b > 0:

b2(𝜏) = 𝐶b exp (−2𝛾1𝜏), (4.17)
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where 𝛾1 is a problem-dependent rate. In the same vein as our discussion on the

bias above, we propose a model for the best case variance and provide a justification

for the chosen model. The ES estimator 𝜃𝜏,𝑁 is a sample average of the random

variable
∫︀ 𝜏

0
(𝜕𝐽/𝜕𝑢0)

⃒⃒⃒
𝑡
· (𝜕𝑓/𝜕𝑠)

⃒⃒⃒
0
𝑑𝑡, the randomness arising in the (deterministic)

chaotic system due to the randomness in the initial condition. We know that the

initial conditions are distributed according to 𝜇𝑠 and this gives rise to an unknown

𝜏 -dependent distribution for
∫︀ 𝜏

0
(𝜕𝐽/𝜕𝑢0)

⃒⃒⃒
𝑡
· (𝜕𝑓/𝜕𝑠)

⃒⃒⃒
0
𝑑𝑡. For a finite 𝜏 , we assume

that the variance of this distribution is finite. Then, it follows that since 𝜇𝑠(𝜃𝜏,𝑁)

is bounded as we established above, the central limit theorem (CLT) applies and

therefore, for large 𝑁 ,

var(𝜃𝜏,𝑁)→
var(

∫︀ 𝜏

0
(𝜕𝐽/𝜕𝑢0)

⃒⃒⃒
𝑡
· (𝜕𝑓/𝜕𝑠)

⃒⃒⃒
0
𝑑𝑡)

𝑁
. (4.18)

The applicability of the CLT for the distribution of 𝜃𝜏,𝑁 is in general an optimistic

assumption, as discussed in previous works [96] and in the numerical example in sec-

tion 4.4.1. It is reasonable to expect that var(
∫︀ 𝜏

0
(𝜕𝐽/𝜕𝑢0)

⃒⃒⃒
𝑡
· (𝜕𝑓/𝜕𝑠)

⃒⃒⃒
0
𝑑𝑡) increases

exponentially with 𝜏 since for almost every initial state,
⃒⃒
(𝜕𝐽/𝜕𝑢0)

⃒⃒
𝑡
· (𝜕𝑓/𝜕𝑠)

⃒⃒
0

⃒⃒
∼

𝒪(exp(𝜆1𝑡)), where 𝜆1 is the largest Lyapunov exponent of the system. Therefore,

we expect that the variance grows exponentially at the rate of twice the largest Lya-

punov exponent of the system. Thus, we propose the following optimistic model for

the variance, for some 𝐶var > 0,

var(𝜏,𝑁) =
𝐶var exp (2𝜆1𝜏)

𝑁
. (4.19)
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Figure 4-1: The mean squared error as a function of integration time 𝜏 , for different
values of the variables 𝑘 and 𝑟. The optimal value 𝜏 * is marked on each of the plots.

4.3.3 Optimistic convergence estimate for the ES method

Using the optimistic estimates for the bias and the variance described in section 4.3.2,

we arrive at the following ansatz for the mean squared error in the ES estimator:

𝑒(𝜏, 𝑇 ) = b2(𝜏) + var(𝜏,𝑁) (4.20)

= 𝐶b exp (−2𝛾1𝜏) +
𝐶var𝜏

𝑇
exp (2𝜆1𝜏), (4.21)

where we use 𝑇 := 𝑁𝜏 to denote the computational cost. The relationship between

the integration time 𝜏 * that minimizes the mean squared error and the cost 𝑇 for the

model in Eq. 4.21 is:

𝜏 *(𝑇 ) = arg min
𝜏

𝑒(𝜏, 𝑇 ) = − 1

2𝜆1

+
𝒲(𝑐)

2(𝛾1 + 𝜆1)
(4.22)

where,

𝑐 = 2 𝐶b
𝛾1(𝛾1 + 𝜆1)𝑇

𝐶var𝜆1

exp (1 + 𝛾1/𝜆1)

and 𝒲 is the Lambert 𝑊 -function. The above relationship shows that, given con-

stants 𝐶b and 𝐶var independent of 𝜏 , the optimal trajectory length of each independent

sensitivity evaluation, 𝜏 *, varies sub-logarithmically with the cost 𝑇 .

From Eqs. 4.21 and 4.22, it can be seen that the least mean squared error, denoted
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by 𝑒min(𝑇 ) := 𝑒(𝜏 *(𝑇 ), 𝑇 ) can be reduced to a function of the variables, 𝑘 := 𝐶b𝛾1/𝐶var

and 𝑟 := 𝛾1/𝜆1. Figure 4-1 shows the variation of 𝑒(𝜏, 𝑇 ) with 𝜏 at a fixed 𝑇 , for

different values of 𝑘 and 𝑟. It is clear that the mean squared error is high in magnitude

when 𝑟 < 1 no matter the trajectory length, 𝜏 . As expected for 𝑟 > 1, the optimal

trajectory length increases with 𝑟 and leads to smaller mean squared errors. The

mean squared error is large, as expected, both when a) 𝜏 is so short that variance

is negligible, and the bias is significant and b) 𝜏 is large enough that the effect of

exponential increase in the variance is clear. Thus we see a roughly parabolic shape

centered at the optimal trajectory length for 𝑟 = 1, where the competing timescales

are equal. The parabola is asymmetric 𝑟 < 1 because the time constant of the

squared bias decay (1/(2𝛾1)) is larger than that for the variance increase (1/(2𝜆1)).

Thus, the bias drops more slowly when compared to 𝑟 ≥ 1, and upon increasing 𝜏 , is

overwhelmed very quickly by the dramatic increase in the variance, which is reflected

in 𝑒(𝜏, 𝑇 ) for 𝜏 > 𝜏 *. Analogously, the downward deflection of the right arm of the

parabola for 𝑟 > 1, is explained by the fact that for values of 𝜏 > 𝜏 *, we have a

negligible bias and the exponential increase of the variance is slow, when compared

to at 𝑟 = 1, while for 𝜏 < 𝜏 *, increasing the trajectory length dramatically drops the

bias but the variance remains small, and hence presents as a quick decline in the mean

squared error. In 4-2 (left), 𝑒min(𝑇 )/𝑘 is shown against the total computational cost

𝑇 at different values of 𝑟. The plots in 4-2 (left) reveal that 𝑒min is shifted upward

on decreasing 𝑘 but the slope of 𝑒min vs. T, is relatively unaffected by a change in 𝑘

when compared to a change in 𝑟. From 4-2 (left), we also observe that the least mean

squared error 𝑒min decays like an approximate power law of the total cost 𝑇 . That is,

𝑒min ∼ 𝒪(𝑇−𝛽) for some 𝛽 ≡ 𝛽(𝑘, 𝑟) > 0. (4.23)

In 4-2 (right), the rate of convergence 𝛽 is reported at different values of 𝑟 and

𝑘. From 4-2 (right), 𝛽 appears to be quite robust to varying the ratio of the bias

to variance coefficients, 𝐶b/𝐶var, when 𝛾1 is kept constant. On the other hand, it

can be seen that the influence of the ratio of timescales 𝑟 is significant on the rate
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Figure 4-2: Left: 𝑒min/𝑘 as a function of 𝑇 , at different values of 𝑟. Right: Rate of
convergence as a function of the ratio 𝑟 = 𝛾1/𝜆1.

of convergence. For values of 𝑟 > 1, the least mean squared error falls faster than

1/
√
𝑇 , for a range of values of 𝑘, indicating that convergence rates better than a

typical Monte Carlo sampling can be achieved on choosing an optimal 𝜏 under the

assumptions of section 4.3.2. This implies that, assuming a strongly chaotic system

satisfying our optmistic estimates, when the timescale of the decay of bias is shorter

than that of the growth of perturbations (1/𝜆1), the ES method can be very efficient.

On the contrary, 4-2 also indicates that the number of samples required to half 𝑒min

at 𝑟 = 1 must be increased four-fold while at 𝑟 = 0.1, a factor of 210 increase in the

number of samples is required to half the error. To summarize, even in the ideal case

of exponential decay of the bias, a rate of decay smaller than the leading Lyapunov

exponent, would lead to a significantly less efficient method than a typical Monte

Carlo.

4.4 Numerical examples

The previous section was dedicated to a mathematical analysis of the convergence

of the ES method. We were able to predict the best possible rates of convergence
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under suitable assumptions on the dynamics. In this section, we treat numerical

examples of low-dimensional chaotic systems as well as simulations of turbulent flow.

In each of the examples, our goal is to gauge, based on our numerical results, the

applicability of the assumptions adopted in our analysis in section 4.3. When deemed

applicable, we estimate the rate of convergence using our results from section 4.3

and discuss the computational tractability of the ES method given this rate. In other

cases where either the analysis is inapplicable or the estimation of bias and variance is

not practical, we use a physics-informed approach to predict the rate of convergence.

The discussions following the numerical results delineate guidelines for determining

the practicality of the ES method.

4.4.1 The Lorenz ’63 attractor

As noted in the introduction, Eyink et al. [96] have performed a numerical analysis of

the ensemble adjoint and related methods on the Lorenz ’63 system and make several

important observations regarding the convergence trends of 𝜃𝜏,𝑁 in 𝜏 and in 𝑁 . We

choose the Lorenz ’63 system as the first example in order to validate our present

results against Eyink et al.’s. The Lorenz ’63 system is a 3-variable model of fluid

convection that is used as a classic example of chaos [179]. It consists of the following

system of ODEs:

𝑑𝑥

𝑑𝑡
= −𝜎𝑥 + 𝜎𝑦

𝑑𝑦

𝑑𝑡
= −𝑥𝑧 + 𝑠𝑥− 𝑦

𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝑏𝑧, (4.24)

with the standard values of 𝜎 = 10, 𝑏 = 8/3 and 𝑠 = 28. These equations were derived

by Lorenz and Saltzman [179] from the conservation equations for a fluid between

horizontal plates maintained at a constant temperature difference. The phase vector

𝑢 := [𝑥, 𝑦, 𝑧]𝑇 , whose evolution these equations describe, corresponds to coefficients in

the Fourier series expansion of the stream function and the temperature profile. The
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parameter 𝑠 is the Rayleigh coefficient normalized by the critical value above which

flow instabilities develop. The objective function of our interest is 𝐽(𝑢(𝑡)) := 𝑧(𝑡)

which is proportional to the deviation of the temperature from the linear profile that

would be achieved if the fluid were static. It is well-known that a compact attractor

exists in phase space.

We use the algorithms described in section 4.2.2 to compute all three types of

ES estimators 𝜃FD𝜏,𝑁 , 𝜃A𝜏,𝑁 and 𝜃T𝜏,𝑁 . To ensure that the initial condition is sampled

from the steady-state distribution on the Lorenz attractor, the system is evolved for

a spin-up time of about 1.1 time units, before we start computing the sensitivities.

This spin-up time is estimated as 1/𝜆1, with 𝜆1 ≈ 0.9 known from the literature to

be the largest Lyapunov exponent. The true value of the sensitivity (𝑑𝜇𝑠(𝐽)/𝑑𝑠) was

computed by Eyink et al. [96] to be ≈ 0.96. This value is obtained by numerically

computing 𝜇𝑠(𝐽) as an ergodic average at a range of values of 𝑠. It can be seen

that 𝜇𝑠(𝐽) turns out approximately to be a straight line with a slope of 0.96 around

𝑠 = 28. The primal, the tangent and adjoint dynamics in equations 3.3, 4.3 and

4.5 respectively are computed using forward Euler time integration with a timestep

of 0.005 time units. The computational cost 𝑇 = 𝑁𝜏 was chosen to be 5000 time

units. The estimators were computed for a range of values of 𝜏 up to 3 time units.

In order to apply our analysis in section 4.3, we wish to numerically estimate the

bias and variance of 𝜃𝜏,𝑁 . We estimate 𝜇𝑠(𝜃𝜏,𝑁) as a sample average of 𝜃𝜏,𝑁 using 5

million independent samples. That is, we approximate 𝜇𝑠(𝜃𝜏,𝑁) as 𝜃𝜏,5×106 while the

true value is not a function of the number of samples but only of 𝜏 . The variance of

𝜃𝜏,𝑁 is again approximated as a sample average wherein 𝜇𝑠(𝜃𝜏,𝑁) is replaced with its

estimate 𝜃𝜏,5×106 .

Empirically determined upper bound for rate of convergence

Our overarching goal is to predict the rate of convergence of the ES method. We now

discuss that it is possible to roughly estimate the rate based on numerical results at a

fixed computational cost 𝑇 . In Lea-Allen-Haine’s application of the ES method on the

Lorenz ’63 system [168], 𝜏 = 1 is used to obtain an accurate estimate of 𝑑𝜇𝑠(𝐽)/𝑑𝑠;
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for the sake of comparison with their results, we estimate the rate of convergence

locally around 𝜏 = 1. To obtain the rate of convergence, we obtain estimates, for the

exponential rates of increase and decrease of the variance and the bias respectively,

from our numerical results. Then, we use 4-2 to obtain the rate of convergence from

the ratio of these obtained rates.

First we establish an empirical estimate for the variance rate. Our numerical

estimates for the bias and variance of the estimators 𝜃A𝜏,𝑁 , 𝜃
T
𝜏,𝑁 and 𝜃FD𝜏,𝑁 computed

as described above, are shown in 4-3 (left). In 4-3 (right), the numerical estimates

of 𝜇𝑠(𝜃
2
𝜏,𝑁) are shown for all three estimators. Ignoring transient behavior for 𝜏

up to ∼ 0.5, the asymptotic exponential rate of the variance estimate, obtained by

determining the slope from 4-3 (left), is larger than the 2𝜆1 rate that we predicted

in 4.3.3. To understand this result, let us assert that our numerical estimate of the

variance reflects the trend of the true variance and the CLT holds for the given range of

values of 𝜏 . If the first assertion holds, the true variance is increasing exponentially at

a faster rate than 2𝜆1. Now, owing to the convergence of Ruelle’s formula, we know

that 𝜇𝑠(𝜃𝜏,𝑁) cannot have an unbounded growth as a function of 𝜏 and therefore,

the rate of increase of var(𝜃𝜏,𝑁) must be captured by that of 𝜇𝑠(𝜃
2
𝜏,𝑁). Computing

the slope from 4-3 (right), we see that the numerical estimate of 𝜇𝑠(𝜃
2
𝜏,𝑁) is indeed

exponential in 𝜏 at the rate ∼ 2× 0.85 for both the tangent and adjoint estimators,

from a least-squares fit. This value of the rate is closer to our theoretical prediction

of 2𝜆1. Therefore, it is reasonable to conclude that neither of our previously stated

assertions holds true. As a result, we have considerable error in our estimates of

𝜇𝑠(𝜃𝜏,𝑁) and 𝜇𝑠(𝜃
2
𝜏,𝑁) since the error is decaying slower than expected from CLT.

Since both these errors play a role in the variance estimation, obtaining the rate of

increase from the estimate of 𝜇𝑠(𝜃
2
𝜏,𝑁) is more accurate. It is thus reasonable to take

the better numerical estimate, 2 × 0.85, as the rate of exponential increase of the

variance for 𝜏 up to 1.5.

In 4-3 (left), we obtain from the slope of the bias term (again using a least-

squares fit) for 𝜏 ≤ 1.5, the rate 𝛾1 ∼ 1.3. Therefore, we obtain 𝑟 = 1.3/0.85 = 1.5

as the rough estimate needed to determine the rate of convergence under our model
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Figure 4-3: Left: Estimates of the variance and the bias of 𝜃𝜏,𝑁 as a function of 𝜏 ,
for the Lorenz ’63 system outlined in section 4.4.1. The dashed line indicates the
least-squares fit over 𝜏 ≤ 1.5. Right: Sample mean estimates of 𝜇𝑠(𝜃

2
𝜏,𝑁) as a function

of 𝜏 for the Lorenz ’63 system outlined in section 4.4.1. The dashed line indicates the
least-squares fit over 𝜏 ≤ 1.5.

assumptions in sec 4.3.3. Thus, we note from 4-2 that 𝛽 ∼ 0.5. It would not be

gainful to also estimate 𝑘 since we only seek an upper bound for 𝛽 which is quite

insensitive to 𝑘, in the first place. We can interpret this rate as the best possible rate

of convergence for the Lorenz ’63 system.

Agreement with Eyink et al.’s results

Eyink et al. [96] propose that the probability distribution of 𝜃𝜏,𝑁 for the Lorenz ’63

system is a fat-tailed distribution and does not obey the classical CLT. Consequently,

our assumption of bounded variance of 𝜃𝜏,𝑁 for finite values of 𝜏 should fail for this

system. Our numerical results indicate that both the variance and bias trends are

worse than our optimistic model, thus confirming their predictions. However, locally

around 𝜏 ∼ 1, operating under the assumption that the bias and the variance trends

can be empirically modelled using our optimistic estimates, we were able to provide

an upper bound on the actual convergence rate. Owing to the fact that 𝜏 ∼ 1 is not

large enough for the failure of the CLT assumption to be manifest, our empirically
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determined rate of 0.5 provides an upper bound on that estimated using Eyink et al.’s

tail estimates. Thus we conclude firstly that our numerical results provide further

evidence in support of the failure of the CLT for 𝜃𝜏,𝑁 . Secondly, empirical determina-

tion of the optimistic rate of convergence under the CLT assumption locally around

𝜏 ∼ 1, predicts an upper bound at the rate of a Monte Carlo simulation, confirming

Eyink et al.’s observations.

It is worth commenting on the fundamental difference between the distribution of

sample averages of state functions and that of 𝜃𝜏,𝑁 , which is a sample average of the

derivative of a state function (averaged over a short time). The former distribution has

bounded variance but the latter is not guaranteed to, as this example demonstrates.

In fact, it has been shown [136] that 𝑁 -sample averages (computed numerically as

ergodic averages) of state functions converge at the rate of 1/
√
𝑁 . However, the

behavior of the 𝑁 -sample average that is 𝜃𝜏,𝑁 , is unlike that of state functions. 𝜃𝜏,𝑁

converges to 𝜇𝑠(𝜃𝜏,𝑁) (due to the law of large numbers) at a rate slower than 1/
√
𝑁 .

This rate decreases as 𝜏 increases, bearing on the poor accuracy of the estimate

𝜃𝜏,5×106 for values of 𝜏 & 1.5 seen in 4-3 (left), despite using a seemingly large number

of samples.

Another observation that can be made from 4-3 (left) is that unlike the variances

of 𝜃A𝜏,𝑁 and 𝜃T𝜏,𝑁 , var(𝜃FD𝜏,𝑁) appears to saturate for 𝜏 & 1.5. This is explained by

the fact that
⃒⃒
𝜃FD𝜏,𝑁

⃒⃒
is bounded above by ‖𝐽‖∞ /𝜖 = 𝑐/𝜖, where 𝜖 is the value of the

parameter perturbation in the finite difference approximation. The value 𝑐 is the

supremum of the 𝑧 coordinate of the Lorenz attractor, which is a finite value since

the attractor is a bounded set. The fact that 𝜃FD𝜏,𝑁 is bounded for all 𝜏 can also be

observed in the saturation of the estimate of 𝜇𝑠(𝜃
FD2

𝜏,𝑁 ) shown in 4-3.

4.4.2 The Lorenz ’96 model

Our results for the Lorenz ’63 system in section 4.4.1 show that an upper bound on

the rate of convergence for an optimal choice of 𝜏 (∼ 1) is 0.5. Although the actual

rate is slower than a typical Monte Carlo simulation, one can immediately see that

since the system is low-dimensional, ES is still practical in the Lorenz ’63 system.
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Figure 4-4: The variance and the square of the bias in the ensemble tangent sensitivity
estimator for the Lorenz ’96 system. The dashed line indicates the least-squares fit
of the variance data.

In this section, we aim to assess the computational practicality of the ES method in

a higher-dimensional system. We consider the atomspheric convection model, called

the Lorenz ’96 [180] model, that is known to have a strange attractor [152]. The

40-dimensional state vector 𝑢 := [𝑥1, · · · , 𝑥40]
𝑇 evolves according to the following set

of odes [180, 152]

𝑑𝑥𝑘

𝑑𝑡
= (𝑥𝑘+1 − 𝑥𝑘−2)𝑥𝑘−1 − 𝑥𝑘 + 𝑠, 𝑘 = 1, · · · , 40, (4.25)

where, 𝑠, the parameter of interest, denotes an external driving force. The first term

on the right hand side of equation 4.25 represents nonlinear advection and the second

term represents a viscous damping force. The components of the state vector are

periodic in the sense that 𝑥𝑘 = 𝑥40+𝑘, 𝑘 ∈ N. We define our objective function

𝐽(𝑢(𝑡)) to be the mean of the components of 𝑢, i.e.,

𝐽(𝑢(𝑡)) = (1/40)
40∑︁
𝑘=1

𝑥𝑘(𝑡).

We use the value 𝑠 = 8.0 for the forcing term, at which the system has been shown

to exhibit chaotic behavior [152]. Time integration of the primal system of equations

4.25 is performed using a fourth order Runge-Kutta scheme with a timestep of 0.01

time units. The distribution of each component of the state vector for this system is
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known from the literature [267] to converge to a Gaussian and the time average of

𝐽 approximately becomes a linearly varying function with 𝑠, on long-time evolution.

The slope of 𝜇𝑠(𝐽) vs. 𝑠 estimated from our computations and previous work [152] is

0.096.

In Fig. 4-4, we report the squared bias and the variance of the estimator 𝜃T𝜏,𝑁 as

a function of 𝜏 . The total cost, 𝑇 , is set at 104 time units across different values of 𝜏 .

The values of 𝜇𝑠(𝜃𝜏,𝑁) and 𝜇𝑠(𝜃
2
𝜏,𝑁) are computed as sample means and used in the

approximation of the bias and variance (denoted by v̂ar(𝜃𝜏,𝑁) in Fig. 4-4 to indicate

the approximation as a sample mean) terms, identical to our description in section

4.4.1 for the Lorenz ’63 system. From Fig. 4-4, we can see that the variance follows

our model assumptions in section 4.3.2; we find that the variance is exponential in

𝜏 at the rate ≈ 4, which is close to twice the leading Lyapunov exponent reported

in the literature [152, 267]. From Fig. 4-4, ignoring initial transients, it can be seen

that the bias term does not show an exponential convergence, not even locally in the

vicinity of 1/𝜆1 ≈ 0.5. As a result, our local analysis to produce a rough estimate

under our model assumptions, as we did in section 4.4.1, is not applicable in this case.

This implies that the rate of convergence is worse than our model in 4.3.2 (for any 𝑟)

since the bias falls slower than the assumed exponential. One can argue that the mean

squared error (sum of the squared bias and the variance) is low in absolute value for 𝜏

near 0.5 deeming the ES estimator to be reasonably accurate and therefore practically

applicable, although the asymptotic rate of convergence in 𝜏 may be low. However,

note that the rate of convergence is an objective function-independent measure of

the ES estimator – the mean squared error may be coincidentally within required

accuracy for a choice of 𝜏 , for this particular objective function. Thus, it is reasonable

to conclude that the ES method is infeasible for the Lorenz ’96 model.

4.4.3 Chaotic flow over an airfoil

In this example, we discuss the numerical simulation of an unsteady, chaotic flow

around a two-dimensional airfoil. So far, we have assessed the convergence of the ES

method by observing the trends in the bias and variance of 𝜃𝜏,𝑁 in low-dimensional
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Figure 4-5: Tangent density field 𝑣𝜌 at time 𝑡 = 78 𝑐/𝑎∞.

systems. Our numerical results were informative enough to predict the rate of conver-

gence while simultaneously being within the limits of practical computation, owing

to the low dimensionality of the systems considered in sections 4.4.1 and 4.4.2. In

contrast, in a typical chaotic CFD simulation, it would not be practical to numeri-

cally estimate the bias and variance trends of 𝜃𝜏,𝑁 . We will thus attempt to predict

the convergence trend using a single finite-difference solution (that can be used to

compute one sample of 𝜃𝜏,𝑁 ). Our goal is to use a physics-based approach that elim-

inates the need for a rich 𝜃𝜏,𝑁 dataset. We consider the NACA 0012 airfoil at the

Reynolds number 𝑅𝑒∞ = 2400 and Mach number 𝑀∞ = 0.2 at an angle of attack

𝛼 = 20∘. Although the flow physics in three-dimensional turbulent flows is more

complex, the two-dimensional airfoil case we consider exhibits the phenomena of stall

and flow separation that are responsible for the chaotic behavior. For an extensive

analysis of the Lyapunov spectrum and its dependence on the numerical discretiza-

tion for this problem, see [101, 222]. The primal system is the set of compressible

Navier-Stokes equations, which is discretized in space using a third-order Hybridiz-

able Discontinuous Galerkin (HDG) method [100, 99] with the Lax-Friedrichs-type
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Figure 4-6: Time evolution of 𝐿2 norm of the tangent fields corresponding to the
density 𝜌 (top) and 𝑥-momentum 𝜌𝑢 (bottom).

stablization matrix in [98]. The computational domain spans ∼ 10−20 chord lengths

away from the airfoil and is partitioned using an O-grid with 35280 isoparametric tri-

angular elements. The use of a large computational domain is customary in external

aerodynamics to reduce the change in the effective angle of attack induced by the

missing vortex upwash. The state vector 𝑢 is defined to be the set of coefficients in

the basis function representation of the density, the components of the momenta and

the energy, at all elements in the computational domain. Our objective function 𝐽

is the lift coefficient and the parameter of interest 𝑠 is the freestream Mach number,

𝑀∞. A three-stage, third-order diagonally-implicit Runge-Kutta (DIRK) method [5]

is used for the temporal discretization. A no-slip, adiabatic wall boundary condition

is imposed on the airfoil surface, and the characteristics-based, non-reflecting bound-

ary condition in [100, 99] is used on the outer boundary. The spin-up time before

the sensitivity computation is performed is 𝑡 = 10, 000 𝑐/𝑎∞, where 𝑎∞ denotes the

far-field speed of sound and 𝑐 is the chord length. We note that the chosen spin-up

time is one order of magnitude larger than the time required for the convergence of

time-averaged flow quantities [101]. At the spin-up time, we reset 𝑡 = 0 and all the
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results below are indicated with respect to this new initial time.

Since a tangent solver is not available typically in CFD codes, the tangent pertur-

bation fields denoted by 𝑣(𝑡) are computed non-intrusively with regard to the primal

solver using a finite difference approximation (FDA). The parameter perturbation

has a magnitude of 𝜖 = 10−6. Fig. 4-5 shows the sensitivity field of the fluid density

with respect to the perturbation in the freestream Mach number at time 𝑡 = 78 𝑐/𝑎∞.

This quantity, denoted in Fig. 4-6 as 𝑣𝜌, can be used to compute a single sample of

𝜃FD𝜏,𝑁 . The airfoil, much smaller in size than the computational domain, is annotated

in Fig. 4-5. Entropy and acoustic waves are generated on the outer boundary at

𝑡 = 0 due to the 𝑀∞ perturbation. From the entropy wavefront shown in Fig. 4-5,

one observes that the entropy wave does not reach the airfoil yet at 𝑡 = 78𝑐/𝑎∞. The

time evolution of the 𝐿2 norm of the tangent fields corresponding to the density, 𝑣𝜌,

and the 𝑥-momentum, 𝑣𝜌𝑢, are shown in 4-6. As we discussed in section 4.4.1, finite

difference sensitivities tend to saturate with time as opposed to tangent and adjoint

sensitivities which keep increasing exponentially. This is due to the finite difference

sensitivities having an upper bound proportional to 1/𝜖, since the supremum of the

objective function over phase space is a finite value independent of time. As indi-

cated in Fig. 4-6, the entropy wave reaches the airfoil at 𝑡 ∼ 115 𝑐/𝑎∞. By this

time, the sensitivity fields already saturate. We can estimate by extrapolation that

‖𝑣𝜌‖ , ‖𝑣𝜌𝑢‖ > 105 if computed using the tangent equation, at 𝑡 = 115 𝑐/𝑎∞.

One expects the bias in the ES estimator to be non-negligible for trajectory lengths

shorter than 𝑡 = 115 𝑐/𝑎∞. That is, the sensitivities must be computed at least until

the time the information about the perturbation propagates to the airfoil, in order

for the average sensitivity of the lift to converge to its true value. In other words,

convergence of the bias requires the entropy wave to reach the airfoil and thus 𝜏

must be larger than 𝜏 * := 115 𝑐/𝑎∞. In order to predict the cost of the ES method,

let us make the optimistic assumptions that at 𝜏 *, the bias term is close to zero

and that the CLT holds for the variance. A random tangent field is at least ∼ 105

in magnitude at 𝜏 * implying that the variance at 𝜏 * would be 𝒪(1010). Therefore,

under the CLT assumption, which we have shown to be too optimistic in our previous
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Figure 4-7: Left: Adjoint field corresponding to the density, labelled rhoa in the
colormap, at 𝑡* = 0.35. Right: The 𝐿2 norm of the adjoint vector field, 𝑦, for the
Navier-Stokes system in section 4.4.4 as a function of time.

examples in sections 4.4.1 and 4.4.2, one would require on the order of 1010 samples

for an 𝒪(1) mean squared error. Solving the primal and the perturbation equations

on the order of 10 billion times for trajectories of lengths 𝜏 * would be computationally

infeasible. This example illustrates that the much shorter timescale of divergence of

the adjoint/tangent fields, compared to that of the convergence of the bias, leads to

computational intractability of the ES method.

4.4.4 Turbulent flow over a turbine vane

As a final example, we consider an implicit LES of turbulent flow around a highly

loaded turbine nozzle guide vane performed by Talnikar et al. [257]. Our simulations

approximate the aero-thermal experimental investigations of turbine guide vanes in

a linear cascade arrangement at the von Karman Institute for Fluid Dynamics [17].

The linear cascade is approximated in the simulation domain using periodic bound-

ary conditions in the transverse and spanwise directions. The spanwise extent, is

restricted to 0.15 times the chord length, which has been numerically verified to be

sufficient to capture the turbulent flow physics. The Reynolds number of the flow is

106. The isentropic Mach number computed with respect to the static pressure at the

outlet is 0.9. Isothermal boundary condition is used on the surface of the vane. The
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fluid achieves transonic speeds as it flows over the surface of the vane, transitioning

to turbulence on the suction side.

The primal problem is a compressible Navier-Stokes system as in 4.4.3, solved here

using a second order finite volume scheme [257]. A strong stability-preserving third

order Runge-Kutta scheme is used for time integration and a weighted essentially

non-oscillatory scheme [173] is used for shock capturing. The mesh is generated by

uniformly extruding a two-dimensional hybrid structured/unstructured mesh in the

spanwise direction.

The long-time averaged objective of interest is the mass-flow averaged pressure

loss coefficient on a plane 0.25 chord lengths downstream of the trailing edge of the

vane. The reduction in stagnation pressure loss is due to mixing in the turbulent

wake and the formation of a boundary layer on the surface of the vane. Sensitivities

(computed using the adjoint method) are calculated with respect to Gaussian-shaped

source term perturbations to the system dynamics centered 0.3 chord lengths up-

stream from the leading edge of the vane in the axial direction. The time variable, 𝑡*,

is nondimensionalized with respect to the flow-through time, which is the duration

of the time taken for fluid flow from the inlet to outlet. In 4-7 (left), we show the

adjoint field corresponding to the density, denoted by rhoa, at 𝑡* = 0.35. 4-7 (right)

shows the 𝐿2 norm of the adjoint field, denoted by 𝑦, as a function of 𝑡*. From the

growth of the adjoint vectors in 4-7, we can estimate the leading Lyapunov exponent

for the flow to be ∼ 46 in nondimensional units. The time taken for the entropy

wave of the adjoint solution to reach the source of the perturbation (the propagation

direction of the adjoint solution is reversed with respect to the primal flow) is & 0.5

time units. From 4-7, we can see that the adjoint solution has diverged by 10 orders

of magnitude by this time.

The reason for the rapid divergence is the high angle of attack of the flow onto the

vane surface which causes the Mach wave of the adjoint solution to propagate with a

maximum speed of Mach 1.9 upstream in the axial direction. The entropy wave, in

comparison, has a lower maximum speed of Mach 0.9, which is equal to the flow speed.

The adjoint diverges quickly once the Mach wave reaches the turbulent boundary layer
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region close to the trailing edge of the vane on the suction side, as shown in 4-7. But

the bias in the adjoint computed over an ensemble of trajectories can be expected to

decline only for trajectory lengths & 0.5 time units, which is approximately the time

required for the entropy wave to reach the vane leading edge. Similar to the flow over

the airfoil presented in section 4.4.3, the lower speed of propagation of the entropy

wave from the inlet makes the ES method infeasible in this problem.

Equipped with the estimate of the Lyapunov exponent and the timescale of con-

vergence of the bias, we predict the cost of the ES method in this case. As in section

4.4.3, let us assume the best case scenario for both the bias and the variance terms.

Suppose the bias has negligible magnitude at 0.5 time units and that the CLT as-

sumption is valid. Since the true variance would be on the order of 1020 at 𝑡* = 0.5,

we would require 𝒪(1020) samples in order to reduce the variance of 𝜃A0.5,𝑁 and con-

sequently, the mean squared error to 𝒪(1). To roughly estimate the computational

power required, we need about 10 teraFLOPS for 12 hours for a single adjoint simula-

tion up to 𝑡* = 0.5; this means approximately 1015 exaFLOPS for 12 hours would be

needed for convergence. This is beyond the computational capabilities achievable in

the near future. To conclude our discussion, even though the source of perturbations

is close to the leading edge of the vane, turbulence at a high Reynolds number makes

the timescale of the growth of perturbations much shorter than the time required for

the propagation of the information about the perturbation through entropy waves. As

a result, since the number of samples required for convergence increases exponentially

at best with time, the ES method becomes computationally intractable.

Before closing, we remark on the differences between this example and the previous

one in section 4.4.3. Although the timescale discrepancy argument supplied to rule

out the applicability is the same in the two examples, the appearance of such a

discrepancy is attributed to rather different reasons. In the airfoil flow, one could

have argued that the particular choice of the parameter perturbation prolonged the

timescale for the decay of the bias, leading to the divergence of the tangent/adjoint

within that timescale. That situation is typical in an external flow, where parameters

we can influence are at the farfield, spatially separated from quantities of interest.
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The flow over the turbine vane in this section, on the other hand, is an internal flow

where the flow physics (the slowness of the mean flow compared to the Mach wave)

was responsible for the inapplicability of the ES method, rather than the limited

choice of controllable parameters.

4.5 Discussion and comments

From the optimistic analysis presented in section 4.3 and the numerical examples

considered in the previous section, one can conclude that the ES method cannot

be a universal chaotic sensitivity analysis method, owing to its computational cost.

The main basis for this conclusion is that the ES estimator’s bias often decays at a

longer timescale than the inverse of the largest Lyapunov exponent, which dictates its

variance. The analyses and the examples do not preclude however, cases where this

timescale discrepancy is not large enough to make the ES method computationally

impractical. This leads to the question of whether one can choose specific objective

functions and parameters, that are dissimilar to the examples in section 4.4, so as to

yield better scenarios for the application of the ES method. Here we provide a closer

examination of this difficult and problem-specific question; we draw upon connections

between signature timescales, that could guide us in the determination of the edge

cases for the method’s applicability.

As noted in section 4.3, in uniformly hyperbolic systems that we consider here, the

decay of correlations is exponential. Using the Collet-Eckmann conjecture, we argued

that the rate of the bias decay (= 𝛾1) is similar to the rate of correlation decay. This

argument is also exemplified, in addition to our heuristic explanation considering only

stable perturbations in section 4.3.2, through alternative derivations of Ruelle’s re-

sponse formula that have appeared in a few works in the dynamical systems literature

([49, 28]; see also Chapter 7 or proposition 8.1 of [118] for a computable modifica-

tion of Ruelle’s formula in discrete-time systems). The thrust of these alternative

formulations is that one can replace the computation of Ruelle’s formula which, in its

original form (Eq. 4.8) is a time integral with an exponentially increasing variance,
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with a computation that has bounded variance at all times. These formulae have the

convergence of a typical Monte Carlo estimator (at the rate of 1/
√
𝑁), independent

of the objective function, and the bias in these formulae decay as the time correla-

tions in the system. This implies that, supposing 𝜃𝜏,𝑁 behaved like a Monte Carlo

estimator for a specific objective function (or only slightly worse, as in the Lorenz ’63

case), the bias decay rate is still bounded above by the correlation decay rate.

It seems unintuitive that there exists a connection between the two timescales.

After all, the two exponential rates, of the decay of correlations and that of the

Lyapunov exponents, represent disconnected chaotic phenomena, namely, the rate of

loss of information carried by state functions, and local expansion of infinitesimal

perturbations, respectively. Nevertheless, several works have verified this connection

in low-dimensional uniformly hyperbolic dynamics (see [246, 198] for recent work).

In fact, numerical studies in disparate turbulent flows such as drift wave turbulence

in plasma [217] and in fluid convection [244], also confirm that the correlations decay

slower than (1/𝜆1). Given the validity of the chaotic hypothesis in many turbulent

flows, there is reason to expect this connection between the two timescales, that can

be rigorously shown to hold only in mathematical toy models, to also manifest itself

in general turbulent flows.

At the same time, the rate of correlation decay depends on the observables con-

sidered; this is why one cannot exclude the existence of objective function-parameter

pairs that lead to fast convergence of 𝜃𝜏,𝑁 , even though the decay of correlations for

the system as a whole is at a slower rate than 𝜆1 (i.e., even if the above conjecture

holds). The decay rate of correlations for a chaotic system is generally determined as

the average decay between two functions belonging to a broad function class (such as

the set of continuously differentiable functions of the state). There exist observables

correlations between which decay at a faster rate than that given by this signature

rate of the system. The correlation time at which the bias converges is rather difficult

to predict a priori. In accordance with the approach of this work which isolates ex-

treme scenarios, we can take the autocorrelation times of the worst-case observables

(or the ones with notably slow decay rates) as a crude approximation of the upper
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bound on the bias decay time. In the event that this upper bound is smaller than the

inverse of the largest Lyapunov exponent, we can expect the ES method to behave

at least as well as a Monte Carlo estimator.

In aeroacoustics, an important application area where RANS modeling is inade-

quate and turbulence-resolving LES/DNS is resorted to, farfield noise (away from a

nozzle) caused by a turbulent jet is often used as an objective function. In such a

scenario, a wealth of spectral studies (for brevity, we refer only to a few recent works

on modelling turbulent jets [241, 43, 105]) have found that the energy-carrying spa-

tial Fourier modes (of lower wave number) appear as large-scale structures with high

spatial coherence. This also translates into high coherence in time or equivalently, a

slow decay of time correlations of streamwise observables – this being corroborated

by more sophisticated mechanisms of turbulent structure transit than the oft-used

Taylor’s hypothesis of frozen turbulence (among the vast body of work on space-time

correlations in turbulent flow, we point the reader to some comprehensive reviews

in [132, 230, 137] that detail this point). So, in this case, we can take the integral

timescales reported for farfield streamwise measurements as the worst-case estimate

for the bias decay time. Similarly, in turbulent boundary layers, integral timescales

associated with the intermittent or outer regions of the flow can be taken as an upper

bound since very near-wall regions exhibit faster decay of correlations. In the case

that the slowest rate of correlation decay estimated as the inverse of this upper bound,

is still larger than the largest Lyapunov exponent, the ES method could be practical.

Given an objective function of interest and a fixed set of parameters, one might in

practice, benefit from knowing the decay of correlations from thorougly documented

computational DNS/LES datasets or experimental observations for the appropriate

type of flow (for example, see [105, 241, 43] for the case of jets and [202, 36, 20] for the

case of turbulent boundary layers). In this regard, the availability of space correlation

data, which are more naturally obtained and commonly reported in computational

studies, should also prove to be sufficient for estimation purposes since they can be

transformed approximately to time-correlation data. If an estimate of the largest

Lyapunov exponent is also available, one needs to simply compare the timescales and

164



use the results of section 4.3 to predetermine if the ES method would be applicable.

Ultimately, these heuristic predictions based on prior knowledge of timescales can

only help us identify the corner cases of applicability (or the lack thereof) of the ES

method. We contend that it is more likely to encounter undecidable cases and close

this discussion with such an example that appears in Rayleigh-Bénard convection.

Sirovich et al. [244] have shown that the correlation time defined as the time it takes

for the streamwise velocity autocorrelations to drop to its first minimum, is on the

same order of magnitude as the largest Lyapnov exponent. Interestingly, our numer-

ical results for the Lorenz ’63 system (section 4.4.1), which is a mathematical model

for Rayleigh-Bénard convection, is also in line with this finding – the rate of decay

of the bias and the largest (and only) positive Lyapunov exponent are both 𝒪(1). In

such a scenario, the practitioner may choose to rely on alternative methods (such as

[206, 185, 37] or Chapter 7) in order to avoid incurring the cost of solving an enormous

number of tangent or adjoint equations without being to establish convergence.

4.6 Conclusion

To compute sensitivities with respect to design parameters, of statistically stationary

quantities in chaotic systems, ensemble methods appear to be an appealing solu-

tion; they are both conceptually simpler and easier to implement than fluctuation-

dissipation-based [185] and shadowing-based [211] methods, all of which are, more-

over, still under active development. However, the present work has shown that Eyink

et al.’s [96] results revealing poor convergence of ensemble computations in the Lorenz

’63 system, is more widely representative of convergence trends in general chaotic sys-

tems. The present work deals with estimating a theoretical upper bound on the rate of

convergence of an ensemble sensitivity, agnostic to the objective function-parameter

pair.

For this, the most optimistic assumptions are made on the bias and variance as-

sociated with the ensemble sensitivity (ES) estimator, under the mathematical sim-

plification of uniform hyperbolicity. We show that, with the integration time, in the
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best case, the bias decays exponentially at a problem-dependent rate and the variance

increases exponentially at the rate of twice the largest Lyapunov exponent. Assuming

these optimistic bounds, the computational cost of the ES method, in theory, still

scales exponentially with the mean squared error. The ratio of the bias decay rate to

the leading Lyapunov exponent of the system, is the single most influential parameter

that determines the feasibility of the method.

Our numerical results for the Lorenz ’63 system show that the optimistic model

proposed for the least mean squared error is only locally applicable. The upper

bound on the rate of convergence is 0.5, concurring with Eyink et al.’s [96] results.

The 40-variable Lorenz ’96 system serves as an example of a low-dimensional attrac-

tor for which the asymptotic convergence is remarkably slow. Although the rate of

convergence is poor for this system, the mean squared error magnitudes were low

at a reasonable computational cost, for the chosen objective function. This suggests

that one may encounter, in practice, objective functions for which the ensemble sen-

sitivities are within a specified accuracy, at an affordable computational cost. In

the numerical simulations of chaotic fluid flow we consider, we obtain optimistic esti-

mates on the rate of convergence which hold true for a general objective function. Our

results indicate that the flow physics imposes an upper bound on the rate of conver-

gence. Altogether, the present numerical evidence suggests the following: even under

the optimistic assumption of exponential decay of the bias, the cost of exponential

sampling of an expensive primal problem can make the ES method infeasible in prac-

tical applications, for a general objective function-parameter pair. However, there

may exist objective function and parameter choices that lead to a smaller timescale

discrepancy between the bias decay and the variance increase – this could lead to a

faster convergence than the estimate of the upper bound.
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Chapter 5

Computing linear response to

unstable perturbations

In this chapter, we present a computable reformulation of Ruelle’s linear response

formula for chaotic systems. The new formula achieves an error convergence of the

order 𝒪(1/
√
𝑁) using 𝑁 phase points. The reformulation is based on splitting the

overall sensitivity into that to stable and unstable components of the perturbation.

The unstable contribution to the sensitivity is regularized using ergodic properties

and the hyperbolic structure of the dynamics. Numerical examples of uniformly

hyperbolic attractors are used to validate the formula against a naïve finite-difference

calculation; sensitivities match closely, with far fewer sample points required by the

new formulation.

This chapter contains an early version of the space-split sensitivity or S3 algorithm,

to be introduced in the next chapter. This pre-S3 version computes linear response

exactly when a) the chaotic system is purely expanding and there is no stable manifold

and b) in rare [130](see also Chapter 19 of [154]) uniformly hyperbolic attractors in

which stable and unstable subspaces are differentiable; typically these subspaces are

only Hölder continuous on the phase space. The pre-S3 algorithm presented in this

chapter yields accurate results in uniformly hyperbolic systems with one-dimensional

unstable manifolds that obey these restrictive assumptions. Moreover, the treatment

of the unstable contribution in this chapter is an alternative to the same in Chapter
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7, which contains a more general version of the S3 algorithm. Since the assumption

of differentiability leads to an easier formulation, we treat systems with arbitrary-

dimensional unstable manifolds in this chapter, in contrast to the next two chapters,

which deal with one-dimensional unstable manifolds. This chapter is also available

online as a prepint at [62]. Finally, if reading the thesis in order, the reader may wish

to keep the introduction, which has been retained to keep this chapter self-contained.

5.1 Introduction

Given a dynamical model, how much do the outputs change in response to small

changes in input parameters? The computational aspect of this common question,

which arises across science and engineering, entails the mature discipline of sensitivity

analysis. Using numerical simulations or experimental observations of dynamical sys-

tems, the computed responses or sensitivities have enabled multidisciplinary design

optimization, uncertainty quantification and parameter estimation in diverse non-

chaotic models (see [219, 52] for recent surveys in aerodynamic systems). Sensitivity

analysis in chaotic systems, however, still remains nascent. This is because tradi-

tional sensitivity computation is done through linear perturbation methods including

tangent or adjoint equations, and automatic differentiation, but these are inherently

unstable in chaotic systems [206, 271]. More sophisticated techniques are needed to

calculate the long-term effects of parameter changes in chaotic systems. Some of them

are being actively investigated as of this writing, and face challenges such as lack of

convergence guarantees or prohibitive computational cost. In this work, we develop

an alternative method1 for addressing some of these challenges. We propose a formula

for differentiating statistical averages in chaotic systems to parameter perturbations,

in a way that is amenable to computation. We postpone until section 5.2 the precise

definition of the statistical response we aim to compute and the desired qualities of a

computational solution.

Currently, the more sophisticated approaches to chaotic sensitivity computation

1a preliminary version of the derivation of the method has appeared in [60]

168



include a) the ensemble sensitivity method b) shadowing-based approaches and c)

perturbation methods on the transfer operator. The non-intrusive least squares shad-

owing (NILSS) method (see [37, 211], and [271] for the different versions of NILSS)

computes a shadowing perturbation that remains bounded in a long time window

under the tangent dynamics. However, the sensitivity computed by using the shad-

owing tangent solution is not guaranteed to be an unbiased estimate of the true

sensitivity [38]. This is because while ergodic averages converge for almost every tra-

jectory, there are measure zero subsets of the attractor (e.g. unstable periodic orbits

[120]) on which they do not converge. We therefore seek an alternative that does not

rely on computations along a single trajectory that is not guaranteed to be typical.

The Lea-Allen-Haine ensemble sensitivity method [96] suggests a work-around to the

exponentially diverging sensitivities computed by the conventional tangent/adjoint

methods, by truncating the tangent/adjoint equations at a short time, and taking a

sample of average of many such short-time sensitivities. But, although these sample

averages converge in the infinite time limit, they are prohibitively expensive because

the variance of tangent/adjoint solutions increases exponentially with time ([69]).

In a recent work, Crimmins and Froyland [81] have developed a new Fourier ana-

lytic method for constructing the Sinai-Ruelle-Bowen or SRB measures, the invariant

probability distributions perturbations of which we are interested in, of uniformly

hyperbolic dynamics on tori. They construct a matrix representation of perturbed

transfer operators that are quasi-compact on certain anisotropic Banach spaces (see

[118] for uniformly hyperbolic systems in particular, and [28] for a recent review). Us-

ing this matrix representation, the leading eigenvector, which is the SRB measure, is

then approximated. Although equipped with a strong theoretical basis, this method

would be overkill for our purpose, since we do not need to construct the SRB measure,

but only compute the sensitivity of a given expectation with respect to it. Moreover,

methods based on perturbations of the transfer operator such as [81, 185] typically

have a computational cost that scales poorly with the problem dimension since they

either involve Markov partitions (specific discretizations of the attractor) or need a

number of basis functions to approximate the eigendistribution (the SRB measure)
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that scales with the dimension. Another recent method [166] computes sensitivities

by solving an adjoint equation as a boundary value problem on periodic orbits, al-

though questions surrounding the convergence of the computed sensitivity to the true

sensitivity (like in the shadowing methods) must be investigated further.

The strategy developed in this chapter deviates from that of all the above-mentioned

methods. However, like ensemble sensitivity methods, it builds upon Ruelle’s formula.

While ensemble sensitivity suffers from the unbounded variance of the unstable con-

tribution to the overall sensitivity, our new formulation splits the contributions and

performs a finite-sample averaging of tangent equation solutions only for the stable

contribution. The unstable contribution is manipulated through integration-by-parts

and using the statistical stationarity (measure preservation) of the system to yield a

computation that does not use unstable tangent solutions. Since both parts of the

sensitivity are computed through sampling on generic flow trajectories, the problem

of the computed sensitivities corresponding to atypical trajectories, which shadowing-

based methods are vulnerable to, is averted. The chapter is organized as follows. In

the next section, we give the problem setting and state results from dynamical sys-

tems theory that are used in the derivation of pre-S3. Our main results are stated in

5.3, and the derivation of the pre-S3 formula follows in 5.4. An interpretation of the

unstable contribution, as derived in pre-S3, is presented in 5.5, and some comments

on its computational details can be found in 5.6. Numerical examples demonstrating

a naïve implementation of the pre-S3 formula are reported in 5.7, and the conclusions

follow in 5.8.

5.2 Problem statement

In this section, we define the output quantity of interest for pre-S3 computation.

Where they are used, we provide a brief description of concepts from ergodic the-

ory and dynamical systems, in order to make this a self-contained presentation for

computational scientists from different fields.
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5.2.1 The primal dynamics

Our primal system is a 𝐶3 diffeomorphism 𝜙𝑠, on a 𝑑-dimensional compact manifold

𝑀 , parameterized by a set of parameters 𝑠,

𝑢𝑛+1 = 𝜙𝑠(𝑢𝑛), 𝑛 ∈ Z, 𝑢𝑛 ∈𝑀. (5.1)

In a numerical simulation, 𝑢𝑛 ∈𝑀 represents a solution state (a 𝑑-dimensional vector)

at time 𝑛 and the transformation 𝜙𝑠 can be thought of as advancing by one timestep.

For simplicity, 𝑠 is assumed to be a scalar. Without loss of generality, we take 𝑠 = 0 to

be the reference value and the map 𝜙0 is simply written as 𝜙, without the superscript.

The state vector 𝑢𝑛, 𝑛 ∈ Z+ is a function of the initial state 𝑢0; explicitly, 𝑢𝑛 = 𝜙𝑛(𝑢0),

where the subscript 𝑛 ∈ Z+ in 𝜙𝑠
𝑛 refers to an 𝑛-time composition of 𝜙𝑠, and 𝜙𝑠

0 is

the identity map on 𝑀 . We also use the notation 𝜙−𝑛, 𝑛 ∈ Z+ to denote the inverse

transformation (𝜙)−1 composed with itself 𝑛 times; that is, 𝜙−𝑛(𝑢𝑛) = 𝑢0.

5.2.2 Ensemble and ergodic averages

We assume that the dynamics 𝜙𝑠 preserves an ergodic, physical probability measure 𝜇𝑠

of an SRB-type (see [281] for an introduction to SRB measures), which gives us a sta-

tistical description of the dynamics. In particular, expectations with respect to 𝜇𝑠 can

be observed as infinitely long time averages along trajectories: if 𝑓 ∈ 𝐿1(𝜇𝑠) is a scalar

function, then lim𝑁→∞(1/𝑁)
∑︀𝑁−1

𝑛=0 𝑓(𝜙𝑠
𝑛(𝑢)) = ⟨𝑓, 𝜇𝑠⟩, 𝑢 Lebesgue-a.e on the basin

of attraction. The superscript 𝑠 in 𝜇𝑠 emphasizes the dependence of the SRB measure

on the parameter; simply 𝜇, without the superscript, refers to the SRB measure at

𝑠 = 0. The ensemble average or the expectation of 𝑓 with respect to 𝜇𝑠, ⟨𝑓, 𝜇𝑠⟩, is a

distributional pairing of 𝑓 with 𝜇𝑠: the integral of 𝑓 on the phase space weighted by

𝜇𝑠. We sometimes use the shorter notation ⟨𝑓⟩𝑠, and without the superscript at 𝑠 = 0,

to denote the same quantity. The infinite time average, called the ergodic average,

is the more natural form of ⟨𝑓⟩𝑠 from the computational/experimental standpoint,

since it can be obtained by numerical evaluation/measurements of 𝑓 along trajecto-

ries. In practice the ergodic average is computed up to a large 𝑁 and this is used to
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approximate the ensemble average ⟨𝑓⟩𝑠 – by ergodic average, we mean this long but

finite time average, in the remainder of this work.

5.2.3 Quantity of interest

We are interested in determining the sensitivity of the ensemble average of an objective

function 𝐽 ∈ 𝒞2(𝑀), ⟨𝐽⟩𝑠, to 𝑠: 𝑑𝑠⟨𝐽⟩𝑠 = ⟨𝐽, 𝜕𝑠𝜇𝑠⟩. The regularity of 𝐽 , along with

other assumptions on the dynamics which we detail where they appear, are such that

the linear response formula of Ruelle [232, 234] is satisfied. The objective function

𝐽 can also explicitly depend on 𝑠, and assuming that 𝐽 is continuously differentiable

with respect to 𝑠, the quantity of interest 𝑑𝑠⟨𝐽⟩𝑠 = ⟨𝜕𝑠𝐽, 𝜇𝑠⟩ + ⟨𝐽, 𝜕𝑠𝜇𝑠⟩. As we will

see however, in a chaotic system, the mathematical or algorithmic difficulty lies in

computing the derivative of the SRB measure in the second term, and not in the

first, which can be computed as an ergodic average, assuming the function 𝜕𝑠𝐽(𝑢, 𝑠)

is known. Thus from now on we ignore the first term and develop an algorithm for

⟨𝐽, 𝜕𝑠𝜇𝑠⟩, which is nontrivial to compute – we describe precisely why, in the next

section.

5.2.4 Ruelle’s formula and its computational inefficiency

To introduce Ruelle’s formula, let the matrix-valued function 𝐷𝜙 : 𝑀 → 𝐺𝐿(𝑑)2 give

us the Jacobian matrix of the transformation 𝜙. Here 𝐷 refers to the derivative with

respect to phase space; so, the Jacobian at 𝑢, 𝐷𝜙(𝑢), is a map from the tangent space

of 𝑀 at 𝑢, denoted as 𝑇𝑢𝑀 , to 𝑇𝜙(𝑢)𝑀 . We now introduce a more succinct notation

for the tangent operator in the following definition.

Definition 1. The tangent operator 𝒯 (𝑢, 𝑛) : 𝑇𝑢𝑀 → 𝑇𝜙𝑛(𝑢)𝑀 is a linear operator

(a matrix) for each 𝑛 ∈ Z and is defined as the derivative of 𝜙𝑛 with respect to the

state vector 𝑢, evaluated at 𝑢. By this definition, it can be written as Jacobian matrix

2𝐺𝐿(𝑑) is the set of all invertible matrices of dimension 𝑑× 𝑑.
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products, as follows,

𝒯 (𝑢, 𝑛) :=

{︃ 𝐷𝜙(𝜙𝑛−1(𝑢)) · · ·𝐷𝜙(𝑢), 𝑛 > 0

(𝐷𝜙(𝜙𝑛(𝑢)))−1 · · · (𝐷𝜙(𝜙−1(𝑢)))−1, 𝑛 < 0

Id, 𝑛 = 0.

From the linear response theory that was rigorously developed by Ruelle [232, 234],

we have the following formula for the sensitivity of interest,

𝑑⟨𝐽⟩𝑠

𝑑𝑠

⃒⃒⃒
𝑠=0

=
∞∑︁
𝑛=0

⟨𝐷(𝐽 ∘ 𝜙𝑛(·)) ·𝑋(·), 𝜇⟩, (5.2)

where 𝑋(𝑢) := 𝜕𝑠𝜙
𝑠(𝜙−1(𝑢)) denotes the vector field corresponding to parameter

perturbation. Here 𝐷𝐽 refers to the derivative of 𝐽 with respect to the phase space.

For brevity, we adopt the subscript notation also with scalar and vector fields, as

explained below:

1. if 𝑓 : 𝑀 → R is a scalar field, 𝑓𝑛 is used to denote the function 𝑓 ∘ 𝜙𝑛.

2. The derivative of 𝑓𝑛 = 𝑓 ∘ 𝜙𝑛, evaluated at a 𝜇-typical point 𝑢, is denoted as

𝐷𝑓𝑛(𝑢) := 𝐷(𝑓 ∘𝜙𝑛)(𝑢). On the other hand, (𝐷𝑓)𝑛 refers to the derivative of

𝑓 evaluated at 𝑢𝑛 = 𝜙𝑛(𝑢), where again 𝑢 is a 𝜇-typical point.

3. if 𝑉 is a vector field, then 𝑉𝑛(𝑢) ∈ 𝑇𝜙𝑛(𝑢)𝑀 denotes its value at 𝑢𝑛: 𝑉𝑛(𝑢) :=

𝑉 (𝑢𝑛).

Using this notation, the integrand in the 𝑛th summand of Ruelle’s formula (Eq. 5.2)

can be written as 𝐷(𝐽 ∘ 𝜙𝑛) ·𝑋 = 𝐷𝐽𝑛 ·𝑋. Note that 𝐷𝐽𝑛 ·𝑋 = (𝐷𝐽)𝑛 · 𝒯 (·, 𝑛)𝑋,

is the instantaneous sensitivity of 𝐽𝑛 = 𝐽 ∘ 𝜙𝑛 to an infinitesimal perturbation to 𝑢

along 𝑋(𝑢). So, the 𝑛-th summand is the ensemble sensitivity of the function 𝐽𝑛.

In a chaotic system, the integrand exhibits exponential growth 𝜇-a.e. The reason is

that, by the definition of chaos, the norm of an infinitesimal perturbation to a 𝜇-a.e.

initial condition 𝑢, along a direction 𝑋(𝑢), asymptotically grows exponentially with

time, for almost every 𝑋(𝑢). More clearly, at 𝑢 𝜇-a.e., for almost every tangent vector

173



𝑋(𝑢) ∈ 𝑇𝑢𝑀 , where ‖·‖ indicates the Euclidean norm in R𝑑,

lim sup
𝑛→∞

log ‖𝒯 (𝑢, 𝑛)𝑋(𝑢)‖
𝑛

> 0.

For a generic 𝐽 , |𝐷(𝐽 ∘ 𝜙𝑛) ·𝑋| (|·| denotes the Euclidean norm on R) shows the

same asymptotic trend as ‖𝒯 (𝑢, 𝑛)𝑋(𝑢)‖, that is, the integrand in Ruelle’s formula,

denoted as 𝐿𝑛(𝑢) := (𝐷𝐽)𝑛 · 𝒯 (𝑢, 𝑛) 𝑋(𝑢) grows exponentially in norm, with 𝑛, at

almost every 𝑢. This makes Ruelle’s formula inefficient to evaluate directly, because

the number of samples required to accurately obtain the 𝑛th term in the series, grows

rapidly with 𝑛. It is worth noting that despite the pointwise exponential growth,

since Ruelle’s formula converges, i.e., the series in Eq. 5.2 converges, the ensemble

averages ⟨𝐿𝑛⟩ tend to 0 as 𝑛→∞, due to cancellations in phase space.

The pointwise exponential growth of the sensitivities is however manifest in the

variance of the direct approximation of the formula, which has been shown to be

computationally intractable in practical examples [69, 96]. Specifically, evaluating

the series upto 𝑁 , the variance of
∑︀𝑁

𝑛=0 𝐿𝑛, grows exponentially with 𝑁 , at almost

every 𝑢. As illustrated by previous numerical results [69, 96], this leads to the least

mean squared error achievable at a given computational cost, to reduce poorly with

the cost, usually much worse than in a typical Monte Carlo simulation.

5.3 Main contributions

The main contribution of this chapter is a reformulation of Ruelle’s formula ( Eq.5.2)

into a different ensemble average that provably converges like a typical Monte Carlo

computation. That is, the error in the 𝑁 -term ergodic average approximation of the

alternative ensemble average asymptotically declines as 𝒪(1/
√
𝑁).

Remark 1. Technically, the error convergence, by applying the law of the iterated log-

arithm [84, 174], is 𝒪(
√

log log𝑁/
√
𝑁), but we ignore the less significant

√
log log𝑁

throughout this chapter (see Chapters 7 and 9 for a more detailed error analysis of

the S3 algorithm).
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The reformulation relies on the following result, which we also prove: the effect of

an unstable perturbation on the ensemble average of an objective function is captured

by its time correlation with a certain, bounded function. The formal statement is as

follows.

Theorem 1. Given an unstable covariant Lyapunov vector 𝑉 𝑖, 1 ≤ 𝑖 ≤ 𝑑𝑢, there

exist bounded scalar functions 𝑔𝑖 such that for any 𝐽 ∈ 𝐶2(𝑀),

∞∑︁
𝑛=0

⟨𝐷(𝐽 ∘ 𝜙𝑛) · 𝑉 𝑖, 𝜇⟩ =
∞∑︁
𝑛=0

⟨𝐽 ∘ 𝜙𝑛 𝑔𝑖, 𝜇⟩. (5.3)

While the proof is delayed until 5.4.4, here we mention the foremost implication

of the above theorem for computation. Since the explanation in 5.2.4 applies to any

unstable perturbation field, the left hand side of 5.3 does not yield a Monte Carlo

computation. On the other hand, the ergodic average approximation of the right

hand side does. That is, the rate of convergence would be −1/2, independent of

the system dimension, for the right hand side. Moreover, since the right hand side

enables an ergodic average approximation, a discretization of the phase space, which

is impractical in high-dimensional systems, is not required.

The main result of this chapter, a computable realization of Ruelle’s formula,

follows as a corollary to Theorem 1, and can be stated as follows:

Corollary 1. In uniformly hyperbolic systems, Ruelle’s formula in Eq. 5.2 is equiv-

alent to the following sum of two exponentially converging series,

𝑑⟨𝐽⟩𝑠

𝑑𝑠

⃒⃒⃒
𝑠=0

=
∞∑︁
𝑛=0

⟨𝐷(𝐽 ∘ 𝜙𝑛) ·𝑋s, 𝜇⟩+
∞∑︁
𝑛=0

⟨𝐽 ∘ 𝜙𝑛 𝑔, 𝜇⟩, (5.4)

where 𝑔 ∈ 𝐿∞(𝜇), and 𝑋 = 𝑋u + 𝑋s is the decomposition of 𝑋 along the unstable

and stable Oseledets spaces respectively.

The regularized expression that is Eq. 5.4, is referred to as the pre-space-split

sensitivity or pre-S3 formula. We briefly explain how Corollary 1 is obtained, and

direct the reader to 5.4 for a complete presentation. We first split Ruelle’s formula
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(Eq. 5.2) into two terms by decomposing the vector field 𝑋 into its unstable and

stable components. The first term in Eq. 5.4 directly results from this splitting.

As shown in 5.4.2, it leads to an efficient Monte Carlo computation and hence is

left unchanged. The other term however, which contains the contribution from the

unstable perturbation 𝑋u, needs modification. First, it is further split into 𝑑𝑢 terms

by writing 𝑋u in the basis of the unstable covariant Lyapunov vectors or CLVs,

𝑉 𝑖, 1 ≤ 𝑖 ≤ 𝑑𝑢. Assuming that each of the 𝑑𝑢 series is well-defined, each is modified

by using Theorem 1.

Before we proceed with the derivation of Eq. 5.4, we close this section by discussing

the advantages offered by the new formula in Eq. 5.4. The first advantage is of course

the Monte Carlo convergence of the new formula, while no such guaranteed problem-

independent convergence rate can be ascribed to the direct evaluation of the original

formula in Eq. 5.2. Secondly, the pre-S3 algorithm, an efficient implementation of Eq.

5.4 the details of which are deferred to a future work, only uses information obtained

along trajectories, and therefore does not exhibit a direct scaling with the problem

dimension. Thirdly, since Eq. 5.4 is an equivalent restatement of Ruelle’s formula,

the convergence of Eq. 5.4 to the true sensitivity is immediate from the convergence

of Ruelle’s formula [232].

5.4 Derivation of the pre-S3 formula

Our goal is to find an alternative representation of the formula 5.2 that can be easily

computed. For this, we begin by splitting the parameter perturbation vector 𝑋

into its stable and unstable components, along stable and unstable Oseledets spaces,

denoted by 𝐸s and 𝐸u respectively. The motivation for splitting 𝑋 becomes clear

when we define the subspaces. The reader is referred to Chapter 4 of [16] for a

detailed exposition on Oseledets multiplicative ergodic theorem (MET); here we use

the two-sided version of the theorem for the cocycle 𝒯 , with the assumptions explained

below. Oseledets MET gives us a direct sum decomposition (the so-called Oseledets

splitting) 𝑇𝑢𝑀 = 𝐸1(𝑢)⊕· · ·⊕𝐸𝑑(𝑢), 𝑢 𝜇−a.e., into subspaces of different asymptotic
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exponential growth. The subspaces 𝐸𝑖(𝑢), assumed here to be one-dimensional, have

the following properties:

1. covariance property: for each 𝑖 = 1, 2, · · · , 𝑑, 𝒯 (𝑢, 1)𝐸𝑖(𝑢) = 𝐸𝑖(𝜙(𝑢)).

2. exponential growth/decay: there exist real numbers 𝜆𝑖, 𝑖 = 1, · · · , 𝑑 such that

𝑣 ∈ 𝐸𝑖(𝑢) ̸= 0 ∈ R𝑑 implies that lim𝑛→±∞
1

𝑛
log ‖𝒯 (𝑢, 𝑛)𝑣‖ = 𝜆𝑖.

The asymptotic rates 𝜆𝑖, which are called the Lyapunov exponents (LEs), are assumed

to be, for simplicity, nonzero and distinct, and indexed in decreasing order, i.e.,

𝜆1 > 𝜆2 > · · · > 𝜆𝑑. Suppose 𝑑𝑢 is the number of positive LEs. The unstable

subspace 𝐸u is defined as 𝐸u := ⊕𝑑𝑢
𝑖=1𝐸

𝑖(𝑢). As noted in 5.2.4, a chaotic system

by definition has 𝑑𝑢 > 0, and a nontrivial unstable subspace, consisting of nonzero

vectors at 𝜇−a.e. phase point. The stable subspace is defined as 𝐸s := ⊕𝑑
𝑖=𝑑𝑢+1𝐸

𝑖.

5.4.1 Ruelle’s formula split along Oseledets spaces

The unit vectors along 𝐸𝑖 are denoted as 𝑉 𝑖 and are also called the covariant Lyapunov

vectors (CLVs). Suppose 𝑋 in the CLV basis (span of the 𝑉 𝑖s) can be expressed as

𝑋(𝑢) :=
∑︀𝑑

𝑖=1 𝑎
𝑖(𝑢)𝑉 𝑖(𝑢). We write 𝑋u and 𝑋s to represent the decomposition

of 𝑋 along 𝐸u and 𝐸s respectively, i.e., 𝑋u(𝑢) =
∑︀𝑑𝑢

𝑖=1 𝑎
𝑖(𝑢)𝑉 𝑖(𝑢) and 𝑋s(𝑢) =∑︀𝑑

𝑖=𝑑𝑢+1 𝑎
𝑖(𝑢)𝑉 𝑖(𝑢). Then, we can rewrite Ruelle’s formula (Eq.5.2) as,

𝑑⟨𝐽⟩𝑠

𝑑𝑠

⃒⃒⃒
𝑠=0

=
∞∑︁
𝑛=0

⟨𝐷(𝐽 ∘ 𝜙𝑛) ·𝑋s, 𝜇⟩+
∞∑︁
𝑛=0

⟨𝐷(𝐽 ∘ 𝜙𝑛) ·𝑋u, 𝜇⟩. (5.5)

The first term on the right hand side of the split formula (Eq.5.5) will henceforth be

referred to as the stable contribution (denoted using the subscript “stable”) and the

second term as the unstable contribution (denoted using the subscript “unstable”) to

the overall sensitivity. The motivation for the split is that the stable contribution can

now be computed as if the system were not chaotic, using a stable tangent equation

that is developed below.
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5.4.2 Derivation of the stable contribution

The stable contribution can be written as

⟨𝐽, 𝜕𝑠𝜇𝑠|𝑠=0⟩stable =
∞∑︁
𝑛=0

⟨𝐷(𝐽 ∘ 𝜙𝑛) ·𝑋s, 𝜇⟩ =
∞∑︁
𝑛=0

⟨(𝐷𝐽)𝑛 · 𝒯 (·, 𝑛)𝑋s, 𝜇⟩. (5.6)

Now we develop a stable iterative procedure for the above expression, that satisfies

our constraint of a Monte Carlo convergence, under the assumption of uniform hy-

perbolicity – a simplifying assumption on the dynamics that gives uniform rates of

decay of perturbations along 𝐸s and 𝐸u forward and backward in time respectively.

To wit, in a uniformly hyperbolic system, there exist constants 𝐶, 𝜆 > 0 such that

‖𝒯 (𝑢, 𝑛)𝑋s(𝑢)‖ ≤ 𝐶𝑒−𝜆𝑛 ‖𝑋s(𝑢)‖, for all 𝑛 ∈ Z+ and for 𝑢 𝜇-a.e. Such a uniform de-

cay also applies backward in time to perturbations along 𝐸u, i.e., ‖𝒯 (𝑢,−𝑛)𝑋u(𝑢)‖ ≤

𝐶𝑒−𝜆𝑛 ‖𝑋u(𝑢)‖, for all 𝑛 ∈ Z+, and for 𝑢 𝜇-a.e., with the same constants 𝐶, 𝜆 > 0.

Under the assumption that 𝜙 is uniformly hyperbolic on 𝑀 , and the assumption

that ‖𝐷𝐽‖ , ‖𝑋s‖ ∈ 𝐿∞(𝜇), at 𝜇 almost every 𝑢, |𝐷𝐽(𝜙𝑛(𝑢)) · 𝒯 (𝑢, 𝑛)𝑋s(𝑢)| ≤

𝐶𝑒−𝜆𝑛 ‖𝐷𝐽‖∞ ‖𝑋s‖∞, where ‖𝑓‖∞ := inf {𝛼 : 𝜇{𝑢 ∈𝑀 : |𝑓(𝑢)| > 𝛼} = 0} for a scalar

function 𝑓 : 𝑀 → R; when 𝑉 is a vector field, ‖𝑉 ‖∞ is defined similarly with |𝑓(𝑢)|

replaced with ‖𝑉 (𝑢)‖. In other words, the 𝐿∞-norm of the integrand in Eq. 5.6 is

exponentially decreasing with 𝑛.

5.4.3 Computation of the stable contribution

As a result of the exponentially decaying summation, truncation at a small num-

ber of terms provides a good approximation. We suggest the following method that

uses a tangent equation, to compute the stable contribution in practice, since a tan-

gent solver is usually available. We introduce the stable tangent equation, named so

for using only the stable component of the perturbation but otherwise resembling a
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conventional tangent equation,

𝜁s𝑖 = 𝐷𝜙(𝑢𝑖−1)𝜁
s
𝑖−1 + 𝑋s

𝑖 , 𝑖 = 0, 1, · · · , 𝑁 − 1

𝜁s−1 = 0 ∈ R𝑑. (5.7)

We can show that using the solutions of the above stable tangent equation, the stable

contribution can be approximated as,

⟨𝐽, 𝜕𝑠𝜇𝑠|𝑠=0⟩stable ≈
1

𝑁

𝑁−1∑︁
𝑛=0

𝐷𝐽(𝑢𝑛) · 𝜁s𝑛. (5.8)

In 1, we show, under the assumption of uniform hyperbolicity, that the error in the

above approximation decays as 𝒪(1/
√
𝑁).

5.4.4 The unstable contribution: an ansatz

In this section, we derive a regularized expression for the unstable contribution defined

in Eq. 5.5. Denoting the components of 𝑋 along the 𝑖th CLV by the scalar field 𝑎𝑖,

we can write 𝑋u :=
∑︀𝑑𝑢

𝑖=1 𝑎
𝑖𝑉 𝑖. Thus, the unstable contribution from Eq. 5.5 can be

written as,

⟨𝐽, 𝜕𝑠𝜇𝑠|𝑠=0⟩unstable =
∞∑︁
𝑛=0

𝑑𝑢∑︁
𝑖=1

⟨𝐷(𝐽 ∘ 𝜙𝑛) · 𝑎𝑖𝑉 𝑖, 𝜇⟩, (5.9)

with the underlying assumption that the series in Eq. 5.9 converges for each 𝑖 ≤ 𝑑𝑢.

We first informally motivate the ensuing derivation of a mollified expression for Eq.

5.9. The integrand can be viewed as a linear functional 𝑙𝑛 : 𝐸u(𝑢) → R, evalu-

ated at 𝑉 𝑖(𝑢), and defined by 𝑙𝑛(𝑉 (𝑢)) := 𝑎𝑖(𝑢)(𝐷𝐽)𝑛 · 𝒯 (𝑢, 𝑛)𝑉 (𝑢), 𝑉 (𝑢) ∈ 𝐸u(𝑢).

Recall that although 𝑙𝑛 may be bounded for a finite 𝑛, the bound is an exponen-

tially increasing function making the evaluation of ⟨𝑙𝑛(𝑉 𝑖)⟩ computationally infea-

sible. In particular, at 𝜇-a.e. 𝑢, there exists an 𝑁(𝑢) such that |𝑙𝑛(𝑉 (𝑢))| ≤

‖𝑎𝑖‖∞ ‖𝐷𝐽‖∞ 𝑐 𝑒𝜆1𝑛 ‖𝑉 (𝑢)‖, for all 𝑛 ≥ 𝑁(𝑢). On the other hand, due to the con-

vergence of Ruelle’s formula, the ensemble average ⟨𝑙𝑛(𝑉 )⟩ declines asymptotically at
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least when 𝑉 = 𝑉 𝑖, 𝑖 ≤ 𝑑𝑢. Since we ultimately want to compute ⟨𝑙𝑛(𝑉 𝑖)⟩ as opposed

to the pointwise values of 𝑙𝑛(𝑉 𝑖), we propose the following ansatz for the unstable

contribution, for some 𝑌 𝑖,𝑛 ∈ 𝐸u*, the dual of 𝐸u –

⟨𝐽, 𝜕𝑠𝜇𝑠|𝑠=0⟩unstable =
∞∑︁
𝑛=0

𝑑𝑢∑︁
𝑖=1

⟨𝑉 𝑖 · 𝑌 𝑖,𝑛, 𝜇⟩. (5.10)

In particular, we require that the vector field 𝑌 𝑖,𝑛 is bounded for all 𝑛 and additionally

such that
⃒⃒⃒∑︀𝑑𝑢

𝑖=1⟨𝑌 𝑖,𝑛 · 𝑉 𝑖⟩
⃒⃒⃒
exponentially decreases with 𝑛. Then, if the central limit

theorem holds for the integrand above, the heuristic expression in Eq. 5.10 leads to a

desired Monte Carlo algorithm via ergodic averaging. Essentially, the ansatz chosen

to satisfy our computational constraints suggests a vector field 𝑌 𝑖,𝑛 that captures the

overall sensitivity of 𝐽𝑛 to perturbations along 𝑉 𝑖. It is important that the pointwise

values of 𝑙𝑛(𝑉 𝑖) are not matched. The reason is, whenever for a finite 𝑛 depending

on 𝑢, 𝑙𝑛 is a bounded linear functional on 𝐸u(𝑢), the uniqueness of 𝑌 𝑖,𝑛(𝑢) ∈ 𝐸u*(𝑢)

from Riesz representation theorem gives 𝑌 𝑖,𝑛(𝑢) = 𝑎𝑖(𝑢)𝐷𝐽𝑛(𝑢). As a result, 𝑌 𝑖,𝑛 does

not satisfy our requirements anymore and the original problem of large variances of

ergodic averages has not been solved. Thus, we may require that 𝑙𝑛(𝑉 𝑖(𝑢)) not equal

𝑉 𝑖(𝑢) · 𝑌 𝑖,𝑛(𝑢) at each 𝑢 and only that ⟨𝑙𝑛(𝑉 𝑖)⟩ = ⟨𝑉 𝑖 · 𝑌 𝑖,𝑛⟩, at each 𝑛.

Reformulation of the unstable contribution

In this section, beginning with the original expression in Eq. 5.5, we derive a new

expression for the unstable contribution, holding Eq. 5.10 as a motivation. From Eq.

5.5, fixing an 𝑖 ≤ 𝑑𝑢, and isolating the 𝑛-th summand,

⟨𝑎𝑖 𝐷(𝐽 ∘ 𝜙𝑛) · 𝑉 𝑖, 𝜇⟩ = ⟨𝐷(𝑎𝑖𝐽 ∘ 𝜙𝑛) · 𝑉 𝑖, 𝜇⟩ − ⟨(𝐽 ∘ 𝜙𝑛)𝐷𝑎𝑖 · 𝑉 𝑖, 𝜇⟩. (5.11)

First, assuming each 𝑎𝑖 is differentiable along 𝐸𝑖, Eq. 5.11 is valid. This is a rather

restrictive assumption. It means that stable and unstable subspaces are differentiable

functions of the phase space, a condition that is generally violated [130]. Incidentally,

in the special case we consider later in this thesis, that of a one-dimensional unstable
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manifold, the stable subspace is differentiable in the phase space (see e.g. Chapter 19

of [154]). In this case, since the stable component, 𝑋𝑠, is differentiable on the one-

dimensional unstable manifold, so is 𝑋𝑢 because 𝑋 is differentiable by assumption.

The second term in Eq. 5.11 is a time correlation at time 𝑛, between the functions

𝐽 and 𝐷𝑎𝑖 · 𝑉 𝑖. If both these functions are assumed to be continuous, then the

correlation between them decays exponentially in time [74]. That is, the second term

would approach its mean exponentially fast, for some 𝛾 ∈ (0, 1):

⃒⃒
⟨(𝐽 ∘ 𝜙𝑛)𝐷𝑎𝑖 · 𝑉 𝑖, 𝜇⟩ − ⟨𝐽, 𝜇⟩⟨ 𝐷𝑎𝑖 · 𝑉 𝑖, 𝜇⟩

⃒⃒
∼ 𝒪(𝛾𝑛). (5.12)

In fact, if 𝑋 is assumed to be smooth,
∑︀𝑑𝑢

𝑖=1⟨𝐷𝑎𝑖 · 𝑉 𝑖⟩ = 0 (this result is proved in

Theorem 3.1(b) of [232]). It then follows that
⃒⃒⃒
⟨𝐽 ∘ 𝜙𝑛

∑︀𝑑𝑢
𝑖=1𝐷𝑎𝑖 · 𝑉 𝑖⟩

⃒⃒⃒
exponentially

decreases in 𝑛, and hence the vector field 𝑌 𝑖,𝑛
1 := −𝐽 ∘𝜙𝑛 𝐷𝑎𝑖 potentially forms a part

of 𝑌 𝑖,𝑛. The restatement in Eq. 5.11 therefore confines the problematic derivative

to the first term in Eq. 5.11. We can now focus our attention on the first term to

obtain the remainder of 𝑌 𝑖,𝑛. Applying measure preservation of 𝜙 on the first term,

we obtain, for some 𝑘 ∈ N,

⟨𝐷(𝑎𝑖𝐽 ∘ 𝜙𝑛) · 𝑉 𝑖, 𝜇⟩ = ⟨(𝐷(𝑎𝑖𝑘 𝐽𝑛+𝑘))𝑘 · 𝑉 𝑖
𝑘 , 𝜇⟩, (5.13)

where we have adopted the succinct notation 𝐽𝑘 to denote the function 𝐽 ∘ 𝜙𝑘; we

neglect writing the subscript when 𝑘 = 0. The motivation for using measure preserva-

tion forward in time becomes clear in the subsequent steps. Some intuitive reasoning

can be immediately made however: 𝑌 𝑖,𝑛 is a vector field that captures the ensemble

average of the directional derivative of 𝐽𝑛 := 𝐽 ∘ 𝜙𝑛, without matching the pointwise

derivatives. As a next step, we use the covariance of 𝑉 𝑖 to express the integrand

in Eq. 5.13 as a linear functional on 𝑉 𝑖(𝑢) since we want to obtain part of 𝑌 𝑖,𝑛(𝑢).
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Putting 𝑘 = 1,

⟨𝐷(𝑎𝑖𝐽𝑛) · 𝑉 𝑖, 𝜇⟩ = ⟨(𝐷(𝑎𝑖1 𝐽𝑛+1))1 ·
𝒯 (𝑢, 1)𝑉 𝑖

𝑧𝑖
, 𝜇⟩ = ⟨𝐷(𝑎𝑖1 𝐽𝑛+1) ·

𝑉 𝑖

𝑧𝑖
, 𝜇⟩,

(5.14)

where we have introduced 𝑧𝑖(𝑢) := ‖𝒯 (𝑢, 1)𝑉 𝑖(𝑢)‖, and used the chain rule to go from

the second expression to the third. Note that ⟨log |𝑧𝑖|, 𝜇⟩ = 𝜆𝑖, and in a uniformly

hyperbolic system ‖𝑧𝑖‖∞ > 𝑒𝜆/𝐶. In order to take full advantage of the downscaling

offered by the 𝑧𝑖, we again rewrite the integrand in the following way that is valid

because 𝑧𝑖 is differentiable along 𝐸𝑖:

⟨𝐷(𝑎𝑖𝐽𝑛) · 𝑉 𝑖, 𝜇⟩ = ⟨𝐷(𝑎𝑖1 𝐽𝑛+1/𝑧
𝑖) · 𝑉 𝑖, 𝜇⟩ − ⟨𝐽𝑛+1𝑎

𝑖
1𝐷(1/𝑧𝑖) · 𝑉 𝑖, 𝜇⟩. (5.15)

One advantage of rewriting is immediately clear – an infinite sum of the second term

over 𝑛, to obtain the unstable contribution, is well-posed. This is because, similar

to the second term in Eq. 5.11, this term is in the form of a time correlation. The

other advantage in Eq. 5.15 is that it can be used iteratively to evaluate the left hand

side, making the integrand asymptotically smaller in norm. We now develop such an

iterative procedure by first noticing that Eq. 5.15 is valid for any bounded function

𝐽 . Indeed since ‖(𝑎𝑖1𝐽𝑛+1)/(𝑎𝑖𝑧𝑖)‖∞ ≤ ‖𝐽‖∞ ‖1/𝑧𝑖‖∞ ≤ 𝐶𝑒−𝜆 ‖𝐽‖∞, (𝑎𝑖1𝐽𝑛+1)/(𝑎𝑖𝑧𝑖)

is also a bounded function and thus can replace 𝐽𝑛 on the left hand side of Eq. 5.15.

Doing this replacement we obtain,

⟨𝐷(𝑎𝑖1𝐽𝑛+1/𝑧
𝑖) · 𝑉 𝑖, 𝜇⟩ = ⟨𝐷(𝑎𝑖2 𝐽𝑛+2/(𝑧𝑖1𝑧

𝑖)) · 𝑉 𝑖, 𝜇⟩ − ⟨𝑎
𝑖
2𝐽𝑛+2

𝑧𝑖1
𝐷(1/𝑧𝑖) · 𝑉 𝑖, 𝜇⟩.

(5.16)

Note that (𝑧𝑖1𝑧
𝑖)(𝑢) = ‖𝒯 (𝑢, 2)𝑉 𝑖(𝑢)‖; for notational convenience we introduce the

scalar function 𝑦𝑖,𝑘(𝑢) := ‖𝒯 (𝑢, 𝑘)𝑉 𝑖(𝑢)‖ = Π𝑘−1
𝑗=0𝑧

𝑖
𝑗(𝑢), 𝑘 ∈ N. Now Eq. 5.15 can be

used as a base for recursion by substituting for the first term on its right hand side
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using Eq. 5.16. Thus Eq. 5.15 becomes,

⟨𝐷(𝑎𝑖𝐽𝑛) · 𝑉 𝑖, 𝜇⟩ = ⟨𝐷
(︂
𝑎𝑖2 𝐽𝑛+2

𝑦𝑖,2

)︂
· 𝑉 𝑖, 𝜇⟩ −

2∑︁
𝑘=1

⟨𝑎
𝑖
𝑘𝐽𝑛+𝑘𝑧

𝑖

𝑦𝑖,𝑘
𝐷(1/𝑧𝑖) · 𝑉 𝑖, 𝜇⟩. (5.17)

Now the recursion can be continued by obtaining an expression for the first term on

the right hand side of Eq. 5.17, by using (𝑎𝑖2𝐽𝑛+2)/(𝑎𝑖𝑦𝑖,2) in place of 𝐽𝑛 and so on.

We obtain the following expression in the infinite limit of applying this recursion,

⟨𝐷(𝑎𝑖𝐽𝑛) · 𝑉 𝑖, 𝜇⟩ = lim
𝑘→∞
⟨𝐷(𝑎𝑖𝑘 𝐽𝑛+𝑘/𝑦

𝑖,𝑘) · 𝑉 𝑖, 𝜇⟩ −
∞∑︁
𝑘=1

⟨𝑎
𝑖
𝑘𝐽𝑛+𝑘𝑧

𝑖

𝑦𝑖,𝑘
𝐷(1/𝑧𝑖) · 𝑉 𝑖, 𝜇⟩.

(5.18)

In lemma 1, we show that the limit in the first term in Eq. 5.18 is 0. In fact, the result

that is proved is that for a sequence of bounded functions 𝑓𝑛 which goes to 0 pointwise

almost everywhere, the sequence of ensemble averages of directional derivatives along

the unstable directions also converges to 0. On applying measure preservation to each

summand in the second term of Eq. 5.18, we obtain a series of time correlations of a

function 𝐽 with another bounded function, so that Eq. 5.18 becomes,

⟨𝐷(𝑎𝑖𝐽𝑛) · 𝑉 𝑖, 𝜇⟩ = −
∞∑︁
𝑘=1

⟨
𝑎𝑖𝐽𝑛𝑧

𝑖
−𝑘

𝑦𝑖,𝑘−𝑘

𝐷(1/𝑧𝑖−𝑘)−𝑘 · 𝑉 𝑖
−𝑘, 𝜇⟩. (5.19)

The second term in the equation above is a converging series because the 𝐿∞ norms

of the integrands are exponentially decreasing with 𝑘. More clearly, we have at 𝜇-a.e.

𝑢 that⃒⃒⃒⃒
⃒𝑎𝑖𝐽𝑛𝑧𝑖−𝑘

𝑦𝑖,𝑘−𝑘

(𝐷(1/𝑧𝑖−𝑘))−𝑘 · 𝑉 𝑖
−𝑘

⃒⃒⃒⃒
⃒ ≤ ⃦⃦𝑎𝑖⃦⃦∞ ‖𝐽‖∞ ⃦⃦𝐷(1/𝑧𝑖) · 𝑉 𝑖

⃦⃦
∞

𝑧𝑖−𝑘

𝑦𝑖,𝑘−𝑘

≤ 𝐶 ′𝑒−𝜆(𝑘−1),

(5.20)

and hence ⃦⃦⃦⃦
⃦𝑎𝑖𝐽𝑛𝑧𝑖−𝑘

𝑦𝑖,𝑘−𝑘

(𝐷(1/𝑧𝑖−𝑘))−𝑘 · 𝑉 𝑖
−𝑘

⃦⃦⃦⃦
⃦
∞

≤ 𝐶 ′𝑒−𝜆(𝑘−1).

Thus by dominated convergence applied to the sequence 𝑔𝑗, 𝑗 = 1, 2, · · · of bounded
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functions,

𝑔𝑗 := −
𝑗∑︁

𝑘=1

𝑧𝑖−𝑘

𝑦𝑖,𝑘−𝑘

(𝐷(1/𝑧𝑖−𝑘))−𝑘 · 𝑉 𝑖
−𝑘,

we obtain that 𝑔𝑖 := lim𝑗→∞ 𝑔𝑖𝑗 is also a bounded function and that Eq. 5.18 becomes,

⟨𝐷(𝑎𝑖𝐽𝑛) · 𝑉 𝑖, 𝜇⟩ = −⟨𝑎𝑖𝐽𝑛
(︁ ∞∑︁

𝑘=1

𝑧𝑖−𝑘

𝑦𝑖,𝑘−𝑘

(𝐷(1/𝑧𝑖−𝑘))−𝑘 · 𝑉 𝑖
−𝑘

)︁
, 𝜇⟩ = ⟨𝑎𝑖𝐽𝑛 𝑔𝑖, 𝜇⟩. (5.21)

By assumption, the summation over 𝑛 of the left hand side of Eq. 5.21 converges. This

implies, since the series on the right hand side must also converge, that lim𝑛→∞⟨𝑎𝑖𝐽𝑛𝑔𝑖, 𝜇⟩ =

0. On the other hand, this limit must be equal to ⟨𝐽, 𝜇⟩⟨𝑎𝑖𝑔𝑖, 𝜇⟩ since time correla-

tions must decay to 0 on hyperbolic attractors. Thus, we have ⟨𝑎𝑖𝑔𝑖, 𝜇⟩ = 0 since

this is true for any bounded function 𝐽 that satisfies the assumption that the series∑︀∞
𝑛=0⟨𝐷(𝑎𝑖𝐽𝑛) ·𝑉 𝑖, 𝜇⟩ converges. The derivation of Eq.5.21 and showing that 𝑔𝑖 ∈ 𝐿∞

complete the proof of 1. Finally, note that the ansatz from section 5.4.4 is also valid.

To see this, take

𝑌 𝑖,𝑛
2 = −

∞∑︁
𝑘=1

𝑎𝑖𝑘𝐽𝑛+𝑘𝑧
𝑖

𝑦𝑖,𝑘
𝐷(1/𝑧𝑖),

and set 𝑌 𝑖,𝑛 = 𝑌 𝑖,𝑛
1 + 𝑌 𝑖,𝑛

2 .

5.4.5 Computation of the unstable contribution

To complete the derivation of a regularized unstable contribution, we can rewrite the

first term in Eq. 5.11 by using the expression derived in Eq. 5.21. Thus, we obtain

the following regularized unstable contribution,

⟨𝐽, 𝜕𝑠𝜇𝑠|𝑠=0⟩unstable =
∞∑︁
𝑛=0

(︁
⟨𝐽𝑛

𝑑𝑢∑︁
𝑖=1

𝑎𝑖𝑔𝑖, 𝜇⟩ −
𝑑𝑢∑︁
𝑖=1

⟨𝐽𝑛𝐷𝑎𝑖 · 𝑉 𝑖, 𝜇⟩
)︁

=
∞∑︁
𝑛=0

⟨𝐽𝑛
𝑑𝑢∑︁
𝑖=1

(𝑎𝑖𝑔𝑖 −𝐷𝑎𝑖 · 𝑉 𝑖), 𝜇⟩. (5.22)

In order to compute the unstable contribution in the form above, we resort to

ergodic approximation of the ensemble average. Since we expect the time correlation
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between the bounded function 𝑔 :=
∑︀𝑑𝑢

𝑖=1 𝑎
𝑖𝑔𝑖−𝐷𝑎𝑖 ·𝑉 𝑖 and 𝐽 to decay exponentially

in a uniformly hyperbolic system, the summation over 𝑛 would converge (to within

machine precision of the true unstable contribution) with a small number of terms,

when compared to 𝑁 , the trajectory length used for an ergodic average approximation

of each term. Thus, the computational time for the unstable contribution is roughly

equal to that for evaluating 𝑔 along 𝑁 points. The function 𝑔𝑖 is naturally in the form

of an iteration and thus can be obtained along a trajectory, by solving the following

set of 𝑑𝑢 scalar equations, 1 ≤ 𝑖 ≤ 𝑑𝑢, setting 𝛽𝑖
−1 = 0,

𝛽𝑖
𝑘+1 = 𝛽𝑖

𝑘/𝑧
𝑖
𝑘 + 𝐷(1/𝑧𝑖𝑘) · 𝑉 𝑖

𝑘 , 𝑘 = 0, 1, · · · . (5.23)

The solutions 𝛽𝑖
𝐾 , 𝐾 ∈ Z+, approximate the scalar function 𝑔𝑖, asymptotically. That

is, for large 𝐾, 𝑔𝑖(𝜙𝐾(𝑢)) ≈ −𝛽𝑖
𝐾 . Using this approximation of 𝑔𝑖 and a finite

difference approximation of 𝐷𝑎𝑖 · 𝑉 𝑖, we can obtain the function 𝑔 along a primal

trajectory starting from a 𝜇-typical phase point 𝑢. Then, the numerical approximation

of the unstable contribution is the following ergodic average,

𝑑⟨𝐽⟩
𝑑𝑠 unstable

≈ 1

𝑁

𝑀∑︁
𝑛=0

𝑁−1∑︁
𝑖=0

𝐽(𝑢𝑛+𝑖)𝑔(𝑢𝑖). (5.24)

Ignoring the numerical errors in the computation of 𝑔, 2 shows that the error in the

approximation above decays as 𝒪(1/
√
𝑁). This completes the proof of 1.

5.5 Interpretation of the unstable contribution

In the previous section, we rewrote each term of Ruelle’s formula, which represents

the ensemble average of an unstable derivative, ⟨𝐷𝐽𝑛 · 𝑋u⟩, as a time correlation

integral ⟨𝐽𝑛 𝑔, 𝜇⟩ where 𝑔 was a bounded distribution that we obtained through an

iterative procedure. In this section, we provide physical intuition for 𝑔 by relating it

to the change in the SRB measure due to a perturbation along 𝑋u.

We start with the simple case in which the SRB measure is absolutely continuous
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with respect to Lebesgue measure on the whole manifold 𝑀 . For the derivation of

an pre-S3 formula that assumes the existence of a density on the whole manifold,

see [70]. Examples of systems where this is true include expanding dynamics on

compact attractors that have no stable submanifolds. In these cases, the volume

element 𝑑𝜇 = 𝜌𝑑𝑢, where 𝑑𝑢 = |𝑑𝑥1 · · · 𝑑𝑥𝑑| is the standard volume element, for some

smooth function 𝜌 : 𝑀 → R+. Then, integration by parts of each term of the unstable

contribution according to Ruelle’s formula, can be performed as follows,

⟨𝐷(𝐽 ∘ 𝜙𝑛) ·𝑋u, 𝜇⟩ =

∫︁
𝑀

div(𝐽 ∘ 𝜙𝑛 𝑋
u) 𝜌 𝑑𝑢−

∫︁
𝑀

𝐽 ∘ 𝜙𝑛 div𝑋u 𝜌 𝑑𝑢

=

∫︁
𝑀

div(𝜌 𝐽 ∘ 𝜙𝑛 𝑋
u) 𝑑𝑢−

∫︁
𝑀

(𝐽 ∘ 𝜙𝑛)
(︁𝐷𝜌

𝜌
·𝑋u + div(𝑋u)

)︁
𝜌 𝑑𝑢.

(5.25)

By Stokes theorem, the first term in Eq. 5.25 is a boundary integral that gives the

flux of the vector field 𝑋u at the boundary of 𝑀 , which is 0. Thus, in this case, the

function 𝑔 ≡ −(𝐷𝜌 ·𝑋u/𝜌 + div(𝑋u)). Hence, 𝑔𝜌 = −div(𝜌𝑋u). Roughly speaking,

Eq. 5.25 captures the average of the function 𝐽𝑛 multiplied by the change in the

probability distribution. Hence, this definition of 𝜌𝑔 matches our intuition since

locally, the perturbation 𝑋u stretches the standard volume (𝑑𝑢) by 𝑔𝜌 = −div(𝜌𝑋u).

Moreover, as derived in section 5.4, it is easy to see that ⟨𝑔, 𝜇⟩ =
∫︀
𝑔𝜌 𝑑𝑢 = 0.

Now consider the more general case where the SRB measure is not absolutely con-

tinuous on the whole manifold. Although the derivation of Eq. 5.25 is not valid, an in-

terpretation of the unstable contribution can be made using a similar argument. First

we choose a measurable partition, say 𝜉, such that each partition element 𝜉(𝑢) that

contains 𝑢 lies within the local unstable manifold at 𝑢. Since conditional measures of

SRB measures along unstable manifolds are absolutely continuous, (see [169, 76] for

constructions of measurable partitions and disintegration of SRB measures), we can

write the conditional measure of 𝜇 on 𝜉(𝑢) as 𝜌𝑢(𝑤)𝑑𝑤 for some function 𝜌𝑢, where

𝑑𝑤 = |𝑑𝑥1 · · · 𝑑𝑥𝑑𝑢| is the standard Euclidean volume element in 𝑑𝑢 dimensions. In

coordinates, at any 𝑤 ∈ 𝜉(𝑢), 𝑋u(𝑤) can be written as 𝑋u(𝑤) =
∑︀𝑑𝑢

𝑘=1 𝑣
𝑘(𝑤)𝜕𝑥𝑘

,

for some scalar functions 𝑣𝑘. Using such a disintegration of the SRB measure, each
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term of the unstable contribution will then have the following form, taking 𝑎𝑖 = 1 for

simplicity,

⟨𝐷(𝐽 ∘ 𝜙𝑛) ·𝑋u, 𝜇⟩ =

∫︁
𝑀/𝜉

∫︁
𝜉(𝑢)

𝑑𝑢∑︁
𝑘=1

𝑣𝑘(𝑤)
𝜕𝐽 ∘ 𝜙𝑛

𝜕𝑥𝑘

𝜌𝑢(𝑤) 𝑑𝑤 𝑑𝜇̂, (5.26)

where 𝜇̂ is the factor measure defined as the pushforward of 𝜇 under the projection

map 𝜋 : 𝑀 → 𝜉, which maps a phase point 𝑢 to 𝜉(𝑢), hence: 𝜇̂ = 𝜇 ∘ 𝜋−1 [76]. From

this point, we can treat the 𝑑𝑢-dimensional inner integral analogously to the previous

case of the expanding map. In particular, we can apply integration by parts to the

inner integral, and analogous to Eq. 5.25, we obtain,

⟨𝐷(𝐽 ∘ 𝜙𝑛) ·𝑋u, 𝜇⟩ = −
∫︁
𝑀/𝜉

∫︁
𝜉(𝑢)

𝐽 ∘ 𝜙𝑛

(︁ 𝑑𝑢∑︁
𝑘=1

𝑣𝑘
𝜕𝜌𝑢
𝜕𝑥𝑘

)︁
𝑑𝑤 𝑑𝜇̂

−
∫︁
𝑀/𝜉

∫︁
𝜉(𝑢)

𝐽 ∘ 𝜙𝑛

𝑑𝑢∑︁
𝑘=1

𝜕𝑣𝑘

𝜕𝑥𝑘

𝜌𝑢(𝑤) 𝑑𝑤 𝑑𝜇̂. (5.27)

Here, again we obtain an integral representing a flux term on the boundaries of 𝜉(𝑢),

the integral over 𝑢 of which is 0, due to cancellations [234]. Then, comparing with

Eq. 5.22, we can see that

𝑔𝜌𝑢 ≡ −
𝑑𝑢∑︁
𝑘=1

(𝑣𝑘
𝜕𝜌𝑢
𝜕𝑥𝑘

+
𝜕𝑣𝑘

𝜕𝑥𝑘

𝜌𝑢) = −
𝑑𝑢∑︁
𝑘=1

𝜕𝑣𝑘𝜌𝑢
𝜕𝑥𝑘

,

which is again a divergence of 𝜌𝑢𝑋
u on pieces of unstable manifolds. While this

provides an intuitive interpretation of 𝑔, it does not lead to a straightforward compu-

tation since the densities on the unstable manifolds, denoted 𝜌𝑢 above, are unknown.

This justifies resorting to an iterative procedure that we did in section 5.4, since the

formula in 5.22 only makes use of known quantities computed along trajectories. The

other primary motive that Eq. 5.22 fulfills is that the algorithm must not involve

discretization of the phase space, but remain a Monte Carlo method of computing

integrals, which have convergence rates that are independent of the dimension of the

phase space.
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5.6 Comments on pre-S3 computation

Revisiting the sketch of the proof in 5.3, the first term of Eq. 5.4 appears as is from

the split Ruelle’s formula in Eq. 5.5. Piecing together all the work carried out in 5.4.4,

an exponentially converging, regularized expression for the unstable contribution, the

second term of Eq. 5.5, is crystallized into Eq.5.22. Putting these two contributions

together in Eq. 5.5 completes the proof of 1. Moreover, the error in the ergodic

approximation of Eq. 5.22 decays as 𝒪(1/
√
𝑁) using an 𝑁 -term ergodic average:

this follows from 2. Thus, combining this result with 1, the overall pre-S3 formula

has an error that decays as a typical Monte Carlo integration, as we sought.

We now briefly discuss a naïve implementation of the pre-S3 formula, postponing

an efficient algorithmic implementation (see [60] for a superficial report in the case

𝑑𝑢 = 1) to a future work. Using a generic initial condition 𝑢 sampled according to 𝜇 on

the attractor, a primal trajectory of length 𝑁 , chosen large enough for convergence of

ergodic averages, is obtained from the solution of Eq. 5.1. Along the primal trajectory,

we use Ginelli et al.’s algorithm (see [114] for the algorithm and [213] for more details

and a new convergence proof) to obtain 𝑉 𝑖
𝑛, 0 ≤ 𝑛 ≤ 𝑁 − 1, 1 ≤ 𝑖 ≤ 𝑑𝑢. Additionally,

we also apply Ginelli et al.’s algorithm to the adjoint cocycle (dual of 𝒯 ) to obtain a

set of adjoint CLVs, also normalized at each 𝑢, and denoted as 𝑊 𝑖
𝑛, 0 ≤ 𝑛 ≤ 𝑁 − 1,

1 ≤ 𝑖 ≤ 𝑑𝑢. Note that since 𝐸s(𝑢) ⊥ 𝐸u*(𝑢), 𝑋s ·𝑊 𝑖 = (𝑋 − 𝑋u) ·𝑊 𝑖 = 0. This

fact is used in order to obtain the stable and unstable components 𝑋u
𝑛 and 𝑋s

𝑛 along

a trajectory.

To realize the stable contribution in practice, the iterative equation referred to as

the stable tangent equation (Eq. 5.7) is used, as suggested in 5.4.3. For the unstable

contribution, Eq. 5.22 is computed as an ergodic average. For the computation of each

𝑔𝑖, Eq. 5.23 is used as suggested in 5.4.5. In the numerical examples discussed below,

we use both analytical expressions and approximate finite difference calculations to

obtain 𝑧𝑖 and 𝐷(1/𝑧𝑖) · 𝑉 𝑖, along trajectories. An algorithm for computation of

derivatives of scalar functions along CLVs will be discussed in a future work, along

with an adjoint (reverse-mode) algorithm for pre-S3, in the interests of serving a
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high-dimensional parameter space.

Before we close this section, we comment on the uniform hyperbolicity assumption.

Firstly, note that the assumption has been used to obtain the desired error conver-

gence of both the stable and unstable contribution; the split of Ruelle’s formula itself

does not require uniform hyperbolicity. In particular, in the stable contribution, we

used the uniform rates of contraction of stable vectors, in 1. In the unstable contri-

bution derivation (i.e., in proving 1), and in fact in Ruelle’s linear response formula

itself, we use the existence of an SRB measure, which is guaranteed on a compact

uniformly hyperbolic attractor. To obtain the error convergence of the unstable con-

tribution, we used exponential decay of correlations and the CLT, which only hold

on a hyperbolic attractor, for Hölder continuous functions of some positive Hölder

exponent. (see [175] and section 6 of [280]). While the function 𝐽 is in 𝐶2 and hence

in a Hölder class, we have only shown boundedness of 𝑔𝑖, but assumed exponential

decay of correlations with 𝐽 . However, if the two functions satisfy the finite first

moment condition of Chernov (see Corollary 1.7 of [74]), the assumption of CLT and

exponential decay of correlations would be valid. Moreover, besides these caveats, the

assumption of uniform hyperbolicity itself could appear restrictive enough to affect

the applicability of our results to high-dimensional dynamical systems encountered in

practice. In this regard, it is worth mentioning that in a widely accepted hypothesis

due to Gallovotti and Cohen ([108], see also [233] for more comments on this hypothe-

sis), many fluid systems, and more generally, statistical mechanical models, behave as

if they were uniformly hyperbolic. Several recent studies also provide supportive evi-

dence, wherein numerical methods that, strictly speaking, assume some hyperbolicity

for their derivation and convergence, work well in high-dimensional real-life models

(see [73] for an example from climate dynamics and [208] for a turbulent fluid flow

simulation).
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Figure 5-1: Comparison of the sensitivities computed with pre-S3 to finite-difference
for the solenoid map in Section 5.7.1. (a) 𝐽 is a set of two-variable nodal basis
functions along 𝑟 and 𝜃 axes. (b) 𝐽𝜃 is a set of nodal basis functions along 𝜃 axis.

5.7 Numerical examples

5.7.1 Smale-Williams solenoid map

The Smale-Williams solenoid map is a classic example of low-dimensional hyperbolic

dynamics. It is a three-dimensional map given by 𝜙𝑠(𝑢) = [𝑠1 +
𝑟 − 𝑠1

4
+

cos(𝜃)

2
, 2𝜃+

𝑠2
4

sin(2𝜋𝜃),
𝑧

4
+

sin 𝜃

2
]𝑇 , where 𝑢 := [𝑟, 𝜃, 𝑧]𝑇 in cylindrical coordinates. The attractor

is a subset of the solid torus at the reference values of 𝑠1 = 1.4 and 𝑠2 = 0. The

probability distribution on the attractor is an SRB distribution [232, 281] that has a

density on the unstable manifolds. In this map, 𝑟 and 𝑧 directions form a basis for the

stable subspace at each point (and the orthogonal 𝜃 direction forms a basis for the ad-

joint unstable subspace). Applying a perturbation to 𝑠1 causes a stable perturbation,

i.e., the unstable contribution is zero, since it affects only the 𝑟 coordinate. On the

other hand, perturbing 𝑠2 leads to a nonzero unstable contribution. A set of nodal

basis functions along 𝑟 and 𝜃 is chosen to be the objective function. We use a naïve

implementation of the pre-S3 algorithm presented in 5.6. In order to validate the pre-

S3 computation, we compare the sensitivities (𝑑⟨𝐽⟩/𝑑𝑠2) with finite-difference results

generated using 10 billion Monte Carlo samples on the attractor. The sensitivities to
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Figure 5-2: Comparison of the sensitivities of the nodal basis functions along the 𝜃
and 𝜑 axes to the parameter 𝑠2 obtained for the Kuznetsov-Plykin attractor using (a)
finite difference and (b) the pre-S3 algorithm.

the parameter 𝑠2 are shown in Figure 1(a). In Figure 1(b), the objective function is

a set of nodal basis functions along the 𝜃 direction. From Figures 1(a,b), we see close

agreement between the sensitivities computed with (a more general version of) pre-S3

and, finite-difference results, thus validating both the stable and unstable parts of the

pre-S3 algorithm.

5.7.2 Kuznetsov-Plykin map

As a second test case for pre-S3, we consider the Kuznetsov-Plykin map as defined by

[160], which describes a sequence of rotations and translations on the surface of the

three-dimensional unit sphere. The two parameters we choose to vary are 𝑠1 := 𝜖 and

𝑠2 := 𝜇, which are defined by [160]. The map is given by 𝜙𝑠
𝑛+1(𝑢) = 𝑓−1,−1 ∘ 𝑓1,1(𝑢)

where 𝑢 = [𝑥1, 𝑥2, 𝑥3]
𝑇 ∈ R3. For the function 𝑓·,· and further details regarding

the hyperbolicity of the system, the reader is referred to [160]. The probability

distribution on the attractor again is again of SRB type, with the existence of a

density along the unstable manifolds. We again use a naïve implementation of the

pre-S3 formula to compute the sensitivities as in the case of the solenoid map in

Section 5.7.1. The objective function 𝐽 is a set of nodal basis functions along the

𝜃 and 𝜑 spherical coordinate axes. The finite-difference sensitivities were computed
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with the central difference around the reference value of 𝑠2 = 1 by means of 10

billion independent samples on the attractor. The results from pre-S3 agree well with

finite-difference sensitivities as shown in Figure 5-2.

5.8 Conclusions

We have presented a tangent space-split sensitivity formula to compute the derivatives

of statistics to system parameters in chaotic dynamical systems. The algorithm to

implement the formula requires the computation of a basis for the tangent and adjoint

unstable subspaces along a long trajectory. The stable contribution to the overall sen-

sitivity can be efficiently computed by a conventional tangent/adjoint computation

just as in nonchaotic systems. The unstable contribution has been rederived to be

expressed as ergodic average that yields a Monte Carlo convergence. The numerical

examples described in Section 5.7 satisfy the simplifying assumptions of uniform hy-

perbolicity and the strong differentiability of the stable and unstable subspaces, which

is satisfied since both examples have one-dimensional unstable subspaces (Corollary

19.2.1 of [154]). They show close agreement with finite-difference results, serving as

a proof-of-concept for the new formulation. In order to make the new formulation

applicable to a high-dimensional problem, more work is needed toward an efficient

implementation, particularly for the terms in Eq. 5.23. In Chapter 7, we derive a

different decomposition of Ruelle’s formula that does not assume the differentiability

of CLVs in all directions. In fact, we do not use CLVs, which require a backward itera-

tion to compute, but rather just an orthogonal unstable subspace, which only requires

a forward pass to compute. Thus, we proceed, in Chapters 7 and 8, to a more general

as well as a more computationally efficient algorithm : the S3 algorithm, although we

shall restrict ourselves to uniformly hyperbolic systems with one-dimensional unstable

manifolds.
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5.9 Appendix

Proposition 1. The error in an 𝑁-term ergodic approximation using the stable tan-

gent equation 5.7, of the stable contribution, decays as 𝒪(1/
√
𝑁). That is,

𝑒𝑁 :=

⃒⃒⃒⃒
⃒𝑑⟨𝐽⟩𝑑𝑠 stable

− 1

𝑁

𝑁−1∑︁
𝑛=0

𝐷𝐽(𝑢𝑛) · 𝜁s𝑛

⃒⃒⃒⃒
⃒ ≤ 𝑐s/

√
𝑁, 𝑐s > 0.

Proof. It is easy to check that 𝜁s𝑛 :=
∑︀𝑛

𝑖=0 𝒯 (𝑢𝑖, 𝑛 − 𝑖)𝑋s
𝑖 satisfies Eq. 5.7. So the

approximation to the stable contribution can be written, for some 𝑀 ≤ 𝑁 − 1 as,

where
∑︀𝑗

𝑖 = 0 if 𝑖 > 𝑗,

1

𝑁

𝑁−1∑︁
𝑛=0

𝑛∑︁
𝑖=0

𝐷𝐽(𝑢𝑛) · 𝒯 (𝑢𝑖, 𝑛− 𝑖)𝑋s
𝑖 =

1

𝑁

𝑁−1∑︁
𝑛=0

𝑛∑︁
𝑖=𝑛−𝑀

𝐷𝐽(𝑢𝑛) · 𝒯 (𝑢𝑖, 𝑛− 𝑖)𝑋s
𝑖

− 1

𝑁

𝑀−1∑︁
𝑛=0

−1∑︁
𝑖=𝑛−𝑀

𝐷𝐽(𝑢𝑛) · 𝒯 (𝑢𝑖, 𝑛− 𝑖)𝑋s
𝑖 +

1

𝑁

𝑁−1∑︁
𝑛=𝑀+1

𝑛−𝑀−1∑︁
𝑖=0

𝐷𝐽(𝑢𝑛) · 𝒯 (𝑢𝑖, 𝑛− 𝑖)𝑋s
𝑖 .

Thus,

𝑒𝑁 ≤

⃒⃒⃒⃒
⃒ 1

𝑁

𝑀−1∑︁
𝑛=0

𝑀−𝑛∑︁
𝑖=1

𝐷𝐽(𝑢𝑛) · 𝒯 (𝑢−𝑖, 𝑛 + 𝑖)𝑋s
−𝑖

⃒⃒⃒⃒
⃒+

⃒⃒⃒⃒
⃒ 1

𝑁

𝑁−1∑︁
𝑛=𝑀+1

𝑛−𝑀−1∑︁
𝑖=0

𝐷𝐽(𝑢𝑛) · 𝒯 (𝑢𝑖, 𝑛− 𝑖)𝑋s
𝑖

⃒⃒⃒⃒
⃒

+

⃒⃒⃒⃒
⃒𝑑⟨𝐽⟩𝑑𝑠 stable

− 1

𝑁

𝑁−1∑︁
𝑛=0

𝑛∑︁
𝑖=𝑛−𝑀

𝐷𝐽(𝑢𝑛) · 𝒯 (𝑢𝑖, 𝑛− 𝑖)𝑋s
𝑖

⃒⃒⃒⃒
⃒ .

Under the uniform hyperbolicity assumption, we know that ‖𝒯 (𝑢, 𝑛)𝑋s(𝑢)‖ ≤ 𝐶𝑒−𝜆𝑛.

Moreover, we assume that ‖𝐷𝐽‖ , ‖𝑋s‖ are bounded functions. Hence, where 𝛾 :=∑︀∞
𝑖=0 𝑒

−𝜆𝑖,

𝑒𝑁 ≤
𝐶𝛾2 ‖𝐷𝐽‖∞ ‖𝑋s‖∞

𝑁
+

𝐶 ′𝛾𝑒−𝜆(𝑀+1)(𝑁 − (𝑀 + 1)) ‖𝐷𝐽‖∞ ‖𝑋s‖∞
𝑁

+

⃒⃒⃒⃒
⃒𝑑⟨𝐽⟩𝑑𝑠 stable

− 1

𝑁

𝑁−1∑︁
𝑛=0

𝑛∑︁
𝑖=𝑛−𝑀

𝐷𝐽(𝑢𝑛) · 𝒯 (𝑢𝑖, 𝑛− 𝑖)𝑋s
𝑖

⃒⃒⃒⃒
⃒ . (5.28)

To obtain an upper bound for the third term, again we use the uniform hyper-

bolicity assumption. So, the integrand in the 𝑛th summand of the stable contri-
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bution (Eq. 5.5) satisfies ‖(𝐷𝐽)𝑛 · 𝒯 (·, 𝑛)𝑋s‖∞ ≤ 𝐶 ‖𝐷𝐽‖∞ ‖𝑋s‖∞ 𝑒−𝜆𝑛. Hence⃦⃦⃦∑︀𝑀
𝑛=0(𝐷𝐽)𝑛 · 𝒯 (·, 𝑛)𝑋s

⃦⃦⃦
∞
≤ 𝐶 ‖𝐷𝐽‖∞ ‖𝑋s‖∞ 𝛾, for any 𝑀 and by dominated con-

vergence,
∑︀∞

𝑛=0(𝐷𝐽)𝑛 · 𝒯 (·, 𝑛)𝑋s ∈ 𝐿1(𝜇), and the stable contribution can be written

as,

𝑑⟨𝐽⟩
𝑑𝑠 stable

= ⟨
∞∑︁
𝑖=0

(𝐷𝐽)𝑖 · 𝒯 (·, 𝑖)𝑋s, 𝜇⟩.

Thus the third term in Eq. 5.28 has the following bound,⃒⃒⃒⃒
⃒𝑑⟨𝐽⟩𝑑𝑠 stable

− 1

𝑁

𝑁−1∑︁
𝑛=0

𝑛∑︁
𝑖=𝑛−𝑀

𝐷𝐽(𝑢𝑛) · 𝒯 (𝑢𝑖, 𝑛− 𝑖)𝑋s
𝑖

⃒⃒⃒⃒
⃒

≤

⃒⃒⃒⃒
⃒⟨

𝑀∑︁
𝑖=0

(𝐷𝐽)𝑖 · 𝒯 (·, 𝑖)𝑋s, 𝜇⟩ − 1

𝑁

𝑁−1∑︁
𝑛=0

𝑛∑︁
𝑖=𝑛−𝑀

𝐷𝐽(𝑢𝑛) · 𝒯 (𝑢𝑖, 𝑛− 𝑖)𝑋s
𝑖

⃒⃒⃒⃒
⃒

+ 𝐶𝛾 ‖𝐷𝐽‖∞ ‖𝑋
s‖∞ 𝑒−𝜆𝑀 , (5.29)

where the second term on the right hand side of Eq. 5.29 again uses uniform hyper-

bolicity. Applying measure preservation in each of the integrals in the first term of

Eq. 5.29,⃒⃒⃒⃒
⃒𝑑⟨𝐽⟩𝑑𝑠 stable

− 1

𝑁

𝑁−1∑︁
𝑛=0

𝑛∑︁
𝑖=𝑛−𝑀

𝐷𝐽(𝑢𝑛) · 𝒯 (𝑢𝑖, 𝑛− 𝑖)𝑋s
𝑖

⃒⃒⃒⃒
⃒

≤

⃒⃒⃒⃒
⃒⟨

𝑀∑︁
𝑖=0

𝐷𝐽 · 𝒯 (𝜙−𝑖(·), 𝑖)𝑋s
−𝑖, 𝜇⟩ −

1

𝑁

𝑁−1∑︁
𝑛=0

𝑛∑︁
𝑖=𝑛−𝑀

𝐷𝐽(𝑢𝑛) · 𝒯 (𝑢𝑖, 𝑛− 𝑖)𝑋s
𝑖

⃒⃒⃒⃒
⃒

+ 𝐶𝛾 ‖𝐷𝐽‖∞ ‖𝑋
s‖∞ 𝑒−𝜆𝑀 . (5.30)

The integrand in 5.30 is continuous on 𝑀 since 𝒯 (𝑢, 𝑛) : 𝐸s(𝑢) → 𝐸s(𝑢𝑛) is a

continuous map and, 𝐷𝐽(𝑢) : 𝑇𝑢𝑀 → R and 𝑋s : 𝑀 → 𝐸s are continuous by

assumption. Then we expect that
∑︀𝑁

𝑖=0𝐷𝐽 · 𝒯 (𝜙−𝑖, 𝑖)𝑋
s
−𝑖 obeys the central limit
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theorem [74]. Using this in Eq. 5.30, Eq. 5.28, gives, letting 𝑀 → 𝑁 − 1,

𝑒𝑁 ≤
𝐶𝛾2 ‖𝐷𝐽‖∞ ‖𝑋s‖∞

𝑁
+

var[
∑︀𝑁

𝑛=0 𝐷𝐽𝑛 ·𝑋s]√
𝑁

+ 𝐶𝛾 ‖𝐷𝐽‖∞ ‖𝑋
s‖∞ 𝑒−𝜆(𝑁−1) ∈ 𝒪(1/

√
𝑁).

(5.31)

Lemma 1. If the pointwise limit of a sequence of bounded functions {𝑓𝑛}∞𝑛=0 ⊂ 𝐿1(𝜇)

vanishes, i.e., lim𝑛→∞ 𝑓𝑛(𝑢) = 0, 𝑢 𝜇− a.e., then the sequence ⟨𝐷𝑓𝑛 · 𝑉, 𝜇⟩ converges

to 0, when 𝑉 is an unstable vector field differentiable along 𝐸u.

Proof. Let 𝜉 be a measurable partition of 𝑀 such that for 𝜇-a.e. 𝑢, the element of

the partition containing 𝑢, denoted 𝜉(𝑢), is contained in a local unstable manifold of

𝑢, i.e., 𝜉(𝑢) ⊂ 𝑊 𝑢(𝑢). We assume a 𝜉 constructed according to Ledrappier-Young’s

Lemma 3.1.1 [169], and also use the Lyapunov-adapted coordinates introduced there.

In a neighborhood of each 𝑢, let Φ𝑢 : 𝑀 → [−𝛿, 𝛿]𝑑𝑢 ⊕ [−𝛿, 𝛿]𝑑𝑠 be the adapted

coordinate system such that 𝐸u(𝑢), 𝐸s(𝑢) are identified with R𝑑𝑢 ,R𝑑𝑠 respectively.

Ledrappier-Young prove the existence of a measurable function 𝛿 depending on 𝑢 in

order for 𝜉 to be a measurable partition of 𝑀 ; note however that in our more specific

case of a uniformly hyperbolic compact attractor, we can choose a 𝛿 independently

of 𝑢 (see section 6.2 of [154]).

Furthermore, the image of 𝑊 𝑢(𝑢) under Φ𝑢 is a neighborhood of the origin in

R𝑑𝑢 , i.e., the last 𝑑𝑠 coordinates of Φ𝑢(𝑊 𝑢(𝑢)) are 0. Let the image of 𝜉(𝑢) under

this map be 𝐵𝑢 ⊂ [−𝛿, 𝛿]𝑑𝑢 . If 𝑥1, · · · , 𝑥𝑑𝑢 are Euclidean coordinate functions in

R𝑑𝑢 , the pushforward of 𝑉 |𝜉(𝑢)(𝑤) ∈ 𝐸u(𝑤) through Φ𝑢 can be expressed as 𝑉 (𝑤) =∑︀𝑑𝑢
𝑘=1 𝑣𝑘(𝑥)𝜕𝑥𝑘

, 𝑤 ∈ 𝜉(𝑢), and 𝑥 = Φ𝑢(𝑤), for differentiable functions 𝑣𝑘 : 𝐵𝑢 → R.

Since 𝜉(𝑢) is a measurable partition, we can apply disintegration of 𝜇 on 𝜉, which

gives for some measurable set 𝐸 that 𝜇(𝐸) =
∫︀
𝑀/𝜉

∫︀
𝜉(𝑢)

1𝐸(𝑤) 𝑑𝜇𝜉(𝑢)(𝑤)𝑑𝜇̂(𝜉(𝑢))

[76, 281]. Here the conditional measures of 𝜇 on 𝜉(𝑢) are denoted as 𝜇𝜉(𝑢) and the

factor measure on the quotient space 𝑀/𝜉 is denoted as 𝜇̂. Given that 𝜇 is an SRB

measure of 𝜙, the conditional measure 𝜇𝜉(𝑢) is absolutely continuous with respect to

𝑑𝑢-dimensional volume measure, at 𝜇 almost every 𝑢; let the corresponding probability
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density function be denoted by 𝜌𝑢 : 𝐵𝑢 → R+. Using this setup, each term of the

sequence of our interest is, where 𝑑𝑥 = |𝑑𝑥1 · · · 𝑑𝑥𝑑𝑢| is the standard 𝑑𝑢-dimensional

volume element, and 𝑓𝑛 := 𝑓𝑛 ∘ Φ𝑢,

⟨𝐷𝑓𝑛 · 𝑉, 𝜇⟩ =

∫︁
𝑀/𝜉

∫︁
𝐵𝑢

𝑑𝑢∑︁
𝑘=1

𝑣𝑘(𝑥)
𝜕𝑓𝑛
𝜕𝑥𝑘

(𝑥) 𝜌𝑢(𝑥) 𝑑𝑥 𝑑𝜇̂. (5.32)

Rewriting the integrand we obtain,

⟨𝐷𝑓𝑛 · 𝑉, 𝜇⟩ =

∫︁
𝑀/𝜉

∫︁
𝐵𝑢

𝑑𝑢∑︁
𝑘=1

𝜕

𝜕𝑥𝑘

(𝑓𝑛 𝑣𝑘 𝜌𝑢) 𝑑𝑥 𝑑𝜇̂

−
∫︁
𝑀/𝜉

∫︁
𝐵𝑢

𝑓𝑛

𝑑𝑢∑︁
𝑘=1

𝜕(𝜌𝑢𝑣𝑘)

𝜕𝑥𝑘

𝑑𝑥 𝑑𝜇̂. (5.33)

The first term goes to zero at each 𝑛 due to cancellations along the boundaries of

𝐵𝑢 at different 𝑢s [234]. To see this, choose a finite cover ∪𝑙≤𝑟𝜉(𝑢𝑙) ⊃ 𝑀 and take

a partition of unity supported on each 𝐵𝑢𝑙
= Φ𝑢𝑙

(𝜉(𝑢𝑙)) so that the integrals on the

boundaries of 𝐵𝑢𝑙
are 0. Using dominated convergence, the second term converges to

0 as 𝑛→∞ at 𝜇 almost every 𝑢. Hence lim𝑛→∞⟨𝐷𝑓𝑛 · 𝑉, 𝜇⟩ = 0.

Lemma 2. The approximate formula Eq.5.24 for the unstable contribution has an er-

ror that decays as 𝒪(1/
√
𝑁): 𝑒𝑁,𝑀 :=

⃒⃒⃒
⟨𝐽, 𝜕𝑠𝜇𝑠⟩unstable − (1/𝑁)

∑︀𝑀
𝑛=0

∑︀𝑁−1
𝑖=0 𝐽(𝑢𝑛+𝑖)𝑔(𝑢𝑖)

⃒⃒⃒
≤

𝑐u/
√
𝑁, as 𝑀 → 𝑁 , for some 𝑐u > 0.

Proof. Suppose that the central limit theorem applies to the function
∑︀𝑀

𝑛=0 𝐽 ∘ 𝜙𝑛 𝑔.

Then, we can say that, for a sufficiently large 𝑁 ,⃒⃒⃒⃒
⃒ 1

𝑁

𝑁−1∑︁
𝑖=0

𝑀∑︁
𝑛=0

𝐽(𝑢𝑛+𝑖)𝑔(𝑢𝑖)− ⟨
𝑀∑︁
𝑛=0

𝐽 ∘ 𝜙𝑛 𝑔, 𝜇⟩

⃒⃒⃒⃒
⃒ ≤ 𝑐1√

𝑁
. (5.34)

Further assuming that the decay of correlations between 𝐽 ∘𝜙𝑛 and 𝑔 is exponentially

fast, we have, for every 𝑛 ∈ Z+,

|⟨𝐽 ∘ 𝜙𝑛𝑔, 𝜇⟩ − ⟨𝐽⟩⟨𝑔⟩| ≤ 𝑐2𝛾
𝑛, 0 ≤ 𝛾 < 1. (5.35)
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Since we have already shown in the main text (5.4.5) that ⟨𝑔⟩ = 0, Eq. 5.35 gives

|⟨𝐽 ∘ 𝜙𝑛𝑔, 𝜇⟩| ≤ 𝑐2𝛾
𝑛. Thus, considering the sequence of functions ℎ𝑚 :=

∑︀𝑚
𝑛=0 𝐽 ∘

𝜙𝑛 𝑔,

|⟨ℎ𝑚, 𝜇⟩| ≤ 𝑐2

𝑚∑︁
𝑛=0

𝛾𝑛 ≤ 𝑐2/(1− 𝛾). (5.36)

Thus, {ℎ𝑚} ∈ 𝐿1(𝜇) and ‖ℎ𝑚‖1 ≤ 𝑐2/(1 − 𝛾), and so by dominated covergence

theorem, we have that,
∑︀∞

𝑛=0⟨𝐽 ∘ 𝜙𝑛 𝑔, 𝜇⟩ = ⟨
∑︀∞

𝑛=0 𝐽 ∘ 𝜙𝑛 𝑔, 𝜇⟩. Then, again using

Eq. 5.35, we have⃒⃒⃒⃒
⃒

∞∑︁
𝑛=0

⟨𝐽 ∘ 𝜙𝑛 𝑔, 𝜇⟩ − ⟨
𝑀∑︁
𝑛=0

𝐽 ∘ 𝜙𝑛 𝑔, 𝜇⟩

⃒⃒⃒⃒
⃒ ≤ 𝑐2𝛾

𝑀/(1− 𝛾). (5.37)

Finally,

𝑒𝑁,𝑀 ≤

⃒⃒⃒⃒
⃒ 1

𝑁

𝑁−1∑︁
𝑖=0

𝑀∑︁
𝑛=0

𝐽(𝑢𝑛+𝑖)𝑔(𝑢𝑖)− ⟨
𝑀∑︁
𝑛=0

𝐽 ∘ 𝜙𝑛 𝑔, 𝜇⟩

⃒⃒⃒⃒
⃒+

⃒⃒⃒⃒
⃒

∞∑︁
𝑛=0

⟨𝐽 ∘ 𝜙𝑛 𝑔, 𝜇⟩ − ⟨
𝑀∑︁
𝑛=0

𝐽 ∘ 𝜙𝑛 𝑔, 𝜇⟩

⃒⃒⃒⃒
⃒ ,

(5.38)

which using Eq. 5.34 and Eq. 5.37 gives,

𝑒𝑁,𝑀 ≤ 𝑐2𝛾
𝑀/(1− 𝛾) +

𝑐1√
𝑁
. (5.39)

Taking the limit 𝑀 → 𝑁 , this results in 𝑒𝑁,𝑁 ∈ 𝒪(1/
√
𝑁).
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Chapter 6

Computing the curvature of

one-dimensional unstable manifolds

Covariant Lyapunov vectors or CLVs span the expanding and contracting directions

of perturbations along trajectories in a chaotic dynamical system. Due to efficient

algorithms to compute them that only utilize trajectory information, they have been

widely applied across scientific disciplines, principally for sensitivity analysis and pre-

dictions under uncertainty. In this paper, we develop a numerical method to compute

the directional derivatives of the first CLV along its own direction; the norm of this

derivative is also the curvature of one-dimensional unstable manifolds. Similar to

the computation of CLVs, the present method for their derivatives is iterative and

analogously uses the second-order derivative of the chaotic map along trajectories,

in addition to the Jacobian. We validate the new method on a super-contracting

Smale-Williams Solenoid attractor. We also demonstrate the algorithm on several

other examples including smoothly perturbed Arnold Cat maps, and the Lorenz’63

attractor, obtaining visualizations of the curvature of each attractor. Furthermore,

we reveal a fundamental connection of the derivation of the CLV self-derivative com-

putation with an efficient computation of linear response of chaotic systems. This

chapter, with minimal modification, has been published at [65], and a preprint of this

chapter can be found at [63].
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6.1 Introduction

Linear response refers to the linear change in the long-term or statistical behavior of a

dynamical system, as a result of a small parameter perturbation. In chaotic systems, a

linear response formula was developed by Ruelle [232][234], which is rigorously proved

for uniformly hyperbolic systems, the simplest setting in which a chaotic attractor can

occur. Linear response has been observed in practical chaotic systems wherein dissi-

pative dynamics dominate [275][208][71][142]. A unique ergodic stationary physical

probability distribution, known as an SRB measure [281], is achieved on uniformly

hyperbolic attractors. Linear response gives us a quantitative estimate of the deriva-

tive of the SRB measure with respect to system parameters, using information only

from the unperturbed system.

This statistical derivative can enable typical applications of sensitivity analy-

sis, such as uncertainty quantification, design, optimization and control problems

in chaotic systems. These applications are currently limited in chaotic systems be-

cause the computation of linear response, through Ruelle’s theoretical formula, re-

mains a challenging problem. Some new numerical methods are being actively de-

veloped as of this writing ([62][206]; see also Chapter 7) in which Ruelle’s formula is

transformed into a well-conditioned ergodic-averaging computation; other promising

methods include shadowing-based methods [273][206], and approximate evaluations

of Ruelle’s response using fluctuation-dissipation theorems extended to SRB-type

measures [1][182][2].

In this work, we develop a numerical method for derivatives on the unstable mani-

fold of certain quantities fundamental to linear response. These derivatives are needed

for an efficient computation of a regularized version of Ruelle’s formula. Focusing on

one-dimensional unstable manifolds, the proposed numerical method gives the deriva-

tive of the unstable Covariant Lyapunov Vector (CLV) [159] along its own direction.

As a byproduct, we obtain the unstable derivative of the local expansion factor of the

unstable CLV, and this quantity appears in the computation of linear response.

We expect the CLV self-derivatives computed in this paper, which describe the
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curvature of the attractor manifold, to be applicable beyond linear response. CLVs

are specific bases for tangent spaces along a trajectory, characterized by Lyapunov

exponents. Ginelli et al.’s [114] efficient algorithm to compute CLVs has led to several

applications of Lyapunov analysis in engineering, in both deterministic and stochastic

chaotic systems. These applications include uncertainty quantification, data assimila-

tion and forecasting, across a range of disciplines such as numerical weather prediction

and aerospace engineering ([32], [208], [228], [142]; see [54] for a survey of applications

of Lyapunov analysis).

The numerical method we develop in this work for the directional derivatives

of CLVs in their respective directions is henceforth known as the differential CLV

method. We shall refer to these derivatives as CLV self-derivatives. In the case of a

one-dimensional unstable manifold, the CLV corresponding to the largest Lyapunov

exponent is the unit tangent vector field along the unstable manifold. The norm of

this CLV self-derivative is hence also the curvature of the unstable manifold.

The connection we reveal with linear response is via a byproduct of the differential

CLV method: the unstable derivative of the local expansion factors of the unstable

CLVs. This derivative is a key ingredient in an iterative computation of a fundamen-

tal quantity intimately connected to linear response. This quantity, which we refer

to as the logarithmic density gradient, indicates how the SRB measure changes along

unstable manifolds in the attractor. More precisely, in the case of one-dimensional

unstable manifolds, which is the focus of this paper, this quantity is the unstable

derivative of the logarithm of the SRB density on the unstable manifold. This con-

nection shows one potential application of the recursive method developed in this

paper: the computation of linear response in chaotic systems.

The outline of the subsequent sections is as follows. In section 6.2, we briefly

summarize the theory of CLVs and establish the setting we derive our results in:

uniformly hyperbolic attractors. The differential CLV method is derived in section

6.3; while the main steps are in section 6.3.3, notational setup and the intuition

for the steps are developed in the prior subsections. We validate the method using

a super-contracting Solenoid map in section 6.4.1. Further numerical experiments
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demonstrating the method on the Lorenz’63 attractor, a volume-preserving perturbed

Cat map, a dissipative perturbed Cat map, and the Hénon map are in sections 6.4.2,

6.4.3, 6.4.4 and 6.4.5 respectively. The implication of the method for the computation

of linear response is discussed in section 6.5. We summarize our results and conclude

in section 6.6.

6.2 Problem setup, definitions and review of Covari-

ant Lyapunov Vectors

The dynamical system studied in this paper is the iterative application of a smooth

(𝐶3) self-map 𝜙 : M→M of a domain M, which is a compact subset of R𝑚. We write

𝜙𝑛 to denote an 𝑛-time composition of 𝜙; that is, 𝜙𝑛 = 𝜙 ∘𝜙𝑛−1, 𝑛 ∈ Z+, where 𝜙0 is

the identity function on R𝑚. The iterates under 𝜙, or the points along orbits of the

dynamical system, are represented using the following subscript notation: if 𝑥 ∈ M,

𝑥𝑛 := 𝜙𝑛𝑥; 𝑥0 is simply written as 𝑥, which we use to denote an arbitrary phase point.

A similar notation is also adopted for scalar or vector-valued functions or observables.

If 𝑓 is an observable, 𝑓𝑛 := 𝑓 ∘𝜙𝑛. The derivative with respect to the state is denoted

as 𝑑 and the partial derivative operators, with respect to the Euclidean coordinate

functions 𝑥1, 𝑥2, · · · , 𝑥𝑚 are written as 𝜕1, 𝜕2, · · · , 𝜕𝑚, respectively. For instance, if

𝑓 : M→ R is a scalar-valued observable, the derivative 𝑑𝑓 evaluated at 𝑥 is given by

𝑑𝑓(𝑥) = [𝜕1𝑓(𝑥), · · · , 𝜕𝑑𝑓(𝑥)]𝑇 . Using the notation introduced, an application of the

chain rule would be as follows:

(𝑑𝑓𝑛)𝑇 = ((𝑑𝑓)𝑛)𝑇 𝑑𝜙𝑛.

Finally, we assume the existence of an ergodic, physical, invariant measure for 𝜙,

known as the SRB measure and denoted 𝜇. As a result, ergodic (Birkhoff) av-

erages of observables in 𝐿1(𝜇) converge to their expectations with respect to 𝜇:

lim𝑁→∞(1/𝑁)
∑︀𝑁−1

𝑛=0 𝑓𝑛(𝑥) = ⟨𝑓, 𝜇⟩ for Lebesgue-a.e. 𝑥 ∈ M. Note that such a mea-

sure is guaranteed to exist [281] in the uniformly hyperbolic setting, which we discuss
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in section 6.2.2.

6.2.1 Tangent dynamics

In order to introduce covariant Lyapunov vectors (CLVs), whose derivatives are the

subject of this paper, we briefly discuss the asymptotic behavior of tangent dynamics

in chaotic systems. We refer to as tangent dynamics the linear evolution of pertur-

bations under the Jacobian matrix, 𝑑𝜙. The Jacobian matrix evaluated at an 𝑥 ∈M

is denoted 𝑑𝜙𝑥. Denoting the tangent space at 𝑥 as 𝑇𝑥M, 𝑑𝜙𝑛
𝑥 is a map from 𝑇𝑥M

to 𝑇𝑥𝑛M. Given a tangent vector 𝑣0 ∈ 𝑇𝑥M, we denote its iterate under the tangent

dynamics at time 𝑛 as 𝑣𝑛 ∈ 𝑇𝑥𝑛M. That is, 𝑣𝑛 = 𝑑𝜙𝑛
𝑥𝑣0. Intuitively, if a perturbation

of norm 𝒪(𝜖) is applied at 𝑥 along 𝑣0, up to first order in 𝜖, the deviation from the

original orbit starting at 𝑥, after time 𝑛, is along 𝑣𝑛. In other words,

𝑣𝑛 = lim
𝜖→0

𝜙𝑛(𝑥 + 𝜖𝑣0)− 𝑥𝑛

𝜖
= 𝑑𝜙𝑛

𝑥𝑣0. (6.1)

In practice, the above equation for the tangent dynamics is solved iteratively, along

a reference orbit {𝑥𝑛}, since using the chain rule, 𝑑𝜙𝑛
𝑥 = 𝑑𝜙𝑥𝑛−1 · · · 𝑑𝜙𝑥, and hence

𝑣𝑛+1 = 𝑑𝜙𝑥𝑛𝑣𝑛. A classical result in nonlinear dynamics, known as the Oseledets

multiplicative ergodic theorem (OMET) [16] deals with the asymptotic behavior of

𝑣𝑛 as 𝑛→∞, in ergodic systems. The OMET implies the following: at 𝜇-a.e. 𝑥 ∈M,

the tangent space splits as a direct sum, 𝑇𝑥M = ⊕𝑝
𝑖=1𝐸

𝑖
𝑥, 𝑝 ≤ 𝑚, where 𝐸𝑖

𝑥 are 𝑑𝜙-

invariant subspaces in the sense that 𝑑𝜙𝑥𝐸
𝑖
𝑥 = 𝐸𝑖

𝜙𝑥. This splitting is based on the

asymptotic, exponential growth/decay rates of tangent dynamics in the subspaces 𝐸𝑖
𝑥.

More precisely, for 𝜇-a.e. 𝑥 ∈ M, if 𝑣𝑖0 ∈ 𝐸𝑖
𝑥, its norm under the tangent dynamics

grows/decays exponentially at a rate that converges to a constant. The limits

𝜆𝑥,𝑖 := lim
𝑛→∞

1

𝑛
log

(︂
‖𝑣𝑖𝑛‖
‖𝑣𝑖0‖

)︂
, (6.2)

1 ≤ 𝑖 ≤ 𝑝, are known as the Lyapunov exponents (LEs). Since 𝜙 is an ergodic map

with respect to 𝜇, the LEs are constants independent of 𝑥, for 𝜇-a.e. 𝑥; we denote the
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LEs 𝜆𝑖, in descending order as 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑝. In our setting, 𝜙 is a chaotic map,

which means that 𝜆1 > 0. Let 𝑑𝑢 be the number of positive LEs, and 𝑑𝑠 = 𝑝 − 𝑑𝑢

be the number of negative LEs. Then, 𝐸𝑢
𝑥 := ⊕𝑑𝑢

𝑖=1𝐸
𝑖
𝑥 is called the unstable subspace

of 𝑇𝑥M. In other words, the unstable subspace 𝐸𝑢
𝑥 is the set of tangent vectors that

asymptotically decay exponentially in norm under tangent dynamics backward in

time; by definition, the unstable subspaces at points on a chaotic orbit are non-

empty. This sensitivity to perturbations is the so-called butterfly effect that defines

chaotic systems.

Similarly, the set of tangent vectors that asymptotically decay exponentially in

norm under the tangent dynamics, make up the stable subspace, denoted 𝐸𝑠
𝑥 :=

⊕𝑝
𝑖=𝑑𝑢+1𝐸

𝑖
𝑥 = 𝑇𝑥M∖𝐸𝑢

𝑥 . If each 𝐸𝑖 is one-dimensional and 𝑝 = 𝑚, the covariant

Lyapunov vectors or CLVs, denoted as 𝑉 𝑖 in this paper, are unit vector fields along

𝐸𝑖. That is, CLVs satisfy the following properties at 𝜇-a.e. 𝑥:

• The covariance property:

𝑑𝜙𝑥𝑉
𝑖
𝑥 ∈ 𝐸𝑖

𝑥1
. (6.3)

Since by definition 𝑉 𝑖
𝑥 is a unit vector, we introduce a scalar function 𝑧·,𝑖 : M→

R+ defined as 𝑧𝑥,𝑖 := ‖𝑑𝜙𝑥𝑉
𝑖
𝑥‖ , to indicate the local stretching or contraction

factor of the 𝑖th CLV. Hence, the covariance property of the 𝑖th CLV can be

expressed as

𝑑𝜙𝑥𝑉𝑥,𝑖 = 𝑧𝑥,𝑖𝑉
𝑖
𝑥1
. (6.4)

• The 𝑖th CLV grows/decays asymptotically on an exponential scale, at the rate

𝜆𝑖, and, in addition, is invariant under time-reversal:

𝜆𝑖 := lim
𝑛→±∞

1

𝑛
log
⃦⃦
𝑑𝜙𝑛

𝑥𝑉
𝑖
𝑥

⃦⃦
. (6.5)
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6.2.2 Uniform hyperbolicity

We consider an idealized class of chaotic systems known as uniformly hyperbolic

systems, which are characterized by uniform expansions and contractions of tangent

vectors. In uniformly hyperbolic systems, there exist constants 𝑐 > 0 and 𝜆 ∈ (0, 1)

such that, at every point 𝑥 ∈ M, i) every stable tangent vector 𝑣 ∈ 𝐸𝑠
𝑥 satisfies:

‖𝑑𝜙𝑛
𝑥𝑣‖ ≤ 𝑐 𝜆𝑛 ‖𝑣‖, and ii) every unstable tangent vector 𝑣 ∈ 𝐸𝑢

𝑥 satisfies: ‖𝑑𝜙−𝑛
𝑥 𝑣‖ ≤

𝑐 𝜆𝑛 ‖𝑣‖, for all 𝑛 ∈ N. As a result, in these systems, there exists an upper (lower)

bound that is independent of the base point 𝑥, on the slowest contracting (stretching)

factors among 𝑧𝑥,𝑖. In particular, defining 𝐶 := 𝑐𝜆, we have 𝑧𝑥,𝑖 ≥ (1/𝐶), 1 ≤ 𝑖 ≤ 𝑑𝑢

and 𝑧𝑥,𝑖 ≤ 𝐶, 𝑑𝑢 + 1 ≤ 𝑖 ≤ 𝑑. From the definition of the LEs (Eq. 6.5), it is also clear

that they are the ergodic (Birkhoff) averages of the stretching/contraction factors:

⟨𝑧·,𝑖, 𝜇⟩ := lim
𝑁→∞

1

𝑁

𝑁−1∑︁
𝑛=0

log 𝑧𝑥𝑛,𝑖 = 𝜆𝑖, 𝑥 ∈M 𝜇− a.e. (6.6)

6.2.3 Examples

A simple example of a uniformly hyperbolic system is Arnold’s Cat map, a smooth

self-map of the surface of the torus (T2 ≡ R2/Z2):

𝜙([x1, x2]
𝑇 ) =

⎡⎣2 1

1 1

⎤⎦⎡⎣x1

x2

⎤⎦ mod 1. (6.7)

This is a linear hyperbolic system, i.e., the Jacobian matrix of the map is a constant

in phase space and has eigenvalues other than 1. In this simple example, the CLVs

and the stretching/contracting factors, are also independent of the phase point. The

logarithm of the eigenvalues of the constant Jacobian matrix, are the LEs of this map:

𝜆1 = log |(3 +
√

5)/2| and 𝜆2 = log |(3 −
√

5)/2|. It is also clear that 𝐸1 = 𝐸𝑢 and

𝐸2 = 𝐸𝑠 are one-dimensional subspaces spanned by 𝑉 1 and 𝑉 2, the eigenvectors of

the Jacobian matrix at eigenvalues of 𝑒𝜆1 and 𝑒𝜆2 respectively. Moreover, 𝑧1 and 𝑧2

are also constant on R2/Z2: 𝑧1 = 𝑒𝜆1 , and 𝑧2 = 𝑒𝜆2 . Further, the SRB measure for

this map is the Lebesgue measure on R2/Z2.
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Since the Jacobian matrix is symmetric, the CLVs 𝑉 1 and 𝑉 2 are everywhere

orthogonal to each other, but it is worth noting that this is a special case. In a

generic uniformly hyperbolic system, it is only true that the angle between the CLVs

is uniformly bounded away from zero. The perturbed Cat maps treated later have

additive perturbations to the Cat map above that are smooth functions on the torus.

Two types of smooth perturbations are considered later, both designed to produce

non-uniform behavior of the CLVs. Both perturbed Cat maps are still uniformly

hyperbolic, and differ in whether or not the resulting maps are area-preserving, in

order to represent the two distinct cases of conservative (symplectic) and dissipative

chaos.

6.2.4 Lack of differentiability of 𝐸𝑢 and 𝐸𝑠

On hyperbolic sets, it is known that 𝐸𝑢 and 𝐸𝑠 are Hölder-continuous functions

of phase space, in a sense clarified in Appendix section 6.7.1. When the Hölder

exponent 𝛽, from Appendix section 6.7.1, equals 1, we have Lipschitz continuity, but

this is indeed rare. Several examples (see [130] and references therein) have been

constructed in which 𝛽 is made to be arbitrarily small at almost all phase points,

even in 𝐶∞ maps. In rare cases, 𝐸𝑢 and 𝐸𝑠 are continuously differentiable when a

certain bunching condition ([130], or section 19.1 of [154]) is satisfied by the LEs.

Revisiting the examples, the perturbed Cat maps discussed above belong to the

rare category of maps with continuously differentiable stable/unstable subspaces. In

fact, it can be shown that all uniformly hyperbolic maps on compact sets of dimension

2 belong to this category (see Corollary 19.1.11 of [154]). While it would be typical of

a higher-dimensional map, even when uniformly hyperbolic, to show non-smoothness

of the stable and unstable subspaces, we have chosen to work with two-dimensional

examples in this paper for easy visualization of the subspaces, which are lines in these

maps.
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6.2.5 Derivatives of CLVs in their own directions

While the CLVs may lack differentiability on M, they have directional derivatives in

their own directions. In fact, it can be shown that these directional derivatives, which

we refer to here as CLV self-derivatives, are themselves Hölder continuous with the

same exponent 𝛽 (see Remark in the proof of Theorem 19.1.6 of [154]). To wit, in

two-dimensional uniformly hyperbolic systems, examples of which are considered in

this paper, both partial derivatives (along coordinate directions) of the CLVs exist,

and hence the CLVs have directional derivatives in all directions. The purpose of

this paper, however, is to numerically compute directional derivatives of CLVs along

their respective directions in a general uniformly hyperbolic system, regardless of

their differentiability in phase space. Thus, we compute the CLV self-derivatives,

without using the partial derivatives along coordinate directions, which may not exist.

The CLV self-derivatives are denoted by 𝑊 𝑖
𝑥 ∈ 𝑇𝑥𝑇𝑥M ≡ R𝑚. They are defined

using curves 𝒞𝑥,𝑖 : [−𝜖𝑥, 𝜖𝑥] → M with the properties: i) 𝒞𝑥,𝑖(0) = 𝑥, ii) 𝒞 ′𝑥,𝑖(𝑡) =

𝑉 𝑖(𝒞𝑥,𝑖(𝑡)), ∀ 𝑡 ∈ [−𝜖𝑥, 𝜖𝑥], as

𝑊 𝑖
𝑥 := lim

𝑡→0

𝑉 𝑖
𝒞𝑥,𝑖(𝑡) − 𝑉 𝑖

𝑥

𝑡
. (6.8)

For example, in the case of a 1-dimensional unstable manifold, the curve 𝒞𝑥,1, coincides

with a local unstable manifold at 𝑥. Further discussion on the definition of 𝑊 𝑖 based

on these curves, is postponed until section 6.3.1. Here we explain the existence of

these curves. The vector fields 𝑉 𝑖, 1 ≤ 𝑖 ≤ 𝑑𝑢 are infinitely smooth on an open

set in a local unstable manifold, and likewise, 𝑉 𝑖, for 𝑑𝑢 + 1 ≤ 𝑖 ≤ 𝑑 are infinitely

smooth on an open set in a local stable manifold. As a result, due to the existence

and uniqueness theorem, the flow of vector field 𝑉 𝑖, denoted by the curve 𝒞·,𝑖 exists

and is uniquely defined, for some 𝜖· > 0, justifying the definition in Eq. 6.8.

Given 𝑇𝑥M, 𝑇𝑥𝑇𝑥M ≡ R𝑚, we write all vectors in these spaces in Euclidean coor-

dinates. The output of the numerical method to be developed, 𝑊 𝑖, are 𝑑-dimensional

vector fields consisting of component-wise directional derivatives of 𝑉 𝑖.
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6.2.6 Computations along trajectories

Before we delve into the differential CLV method, we note that 𝑊 𝑖, being self-

derivatives of CLVs, are naturally defined along trajectories, just like the CLVs. Thus,

we seek a trajectory-based iterative procedure to compute them. We assume as input

to the method the map, its Jacobian and second-order derivative, all computed along

a long, 𝜇-typical trajectory. The CLVs that need to be differentiated are also assumed

as input, along the trajectory. To compute the CLVs, a standard algorithm such as

Ginelli et al.’s algorithm [114] can be used. This is an iterative procedure involving

repeated QR factorizations of nearby subspaces to the one that is spanned by the

required CLVs. For Ginelli et al.’s algorithm, the reader is referred to [114] and [213]

for its convergence with respect to trajectory length; for other algorithms that involve

LU factorizations instead of QR, we refer to [159].

Besides using the computed CLVs as input, the differential CLV method we de-

velop here for 𝑊 𝑖 does not follow Ginelli et al.’s or other algorithms for the compu-

tation of CLVs, primarily because the vector fields 𝑊 𝑖 do not satisfy the covariance

property. But the method resembles the latter algorithms in being iterative and

trajectory-based. One advantage of trajectory-based computation is that we exploit

for fast convergence (this aspect again being similar to the CLV computation algo-

rithms) the hyperbolic splitting of the tangent space. This will be clear at the end of

the next section in which we give a step-by-step derivation.

6.3 An algorithm to compute the directional deriva-

tives of CLVs in their own directions

In this section, we derive a numerical method to determine the quantity of interest,

𝑊 𝑖, which is defined in Eq. 6.8. In particular, fixing a reference trajectory 𝑥, 𝑥1, · · · ,

we develop an iterative scheme that converges asymptotically to vectors 𝑊 𝑖
𝑛 := 𝑊 𝑖

𝑥𝑛
,

under certain conditions (Appendix 6.8), starting from an arbitrary guess for 𝑊 𝑖
0 :=

𝑊 𝑖
𝑥 ∈ R𝑚. The derivation results in the following iteration, valid for 1 ≤ 𝑖 ≤ 𝑑𝑢, 𝑛 ∈
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Z+, and guaranteed to converge when 𝑖 = 1:

𝑊 𝑖
𝑛+1 =

(︁
𝐼 − 𝑉 𝑖

𝑛+1(𝑉
𝑖
𝑛+1)

𝑇
)︁𝑑2𝜙(𝑥𝑛) : 𝑉 𝑖

𝑛 𝑉 𝑖
𝑛 + 𝑑𝜙(𝑥𝑛)𝑊 𝑖

𝑛

𝑧2𝑛,𝑖
. (6.9)

The iteration mainly uses the chain rule and the covariance property of 𝑉 𝑖, in a

convenient set of coordinate systems centered along each 𝜇-typical trajectory. These

trajectory-based coordinates help us uncover each term on the right hand side of Eq.

6.9.

6.3.1 Change of coordinates and associated notation

Fix a 𝜇-typical point 𝑥 ∈ M, and consider again the curves 𝒞𝑥,𝑖, 1 ≤ 𝑖 ≤ 𝑑, which

were introduced to define 𝑊 𝑖 in Eq. 6.8. To reiterate, the curves 𝒞𝑥,𝑖 : [−𝜖𝑥, 𝜖𝑥] →

M are such that i) 𝒞𝑥,𝑖(0) = 𝑥 and ii) 𝒞 ′𝑥,𝑖(𝑡) = 𝑉 𝑖(𝒞𝑥,𝑖(𝑡)), for all 𝑡 ∈ [−𝜖𝑥, 𝜖𝑥].

There exists a measurable function 𝑥 → 𝜖𝑥 that defines the extent of the curves

so that such a coordinate change, from [−𝜖𝑥, 𝜖𝑥]𝑚 to a neighborhood of 𝑥, exists

and is additionally differentiable. This follows from an assertion proved in standard

stable-unstable manifold theory: a closed 𝜖𝑥 Euclidean ball around the origin in R𝑑𝑢

(R𝑑𝑠) has an embedding into a local unstable (stable) manifold at 𝑥. These pointwise

coordinate systems are referred to as Lyapunov charts or adapted coordinates in the

theoretical literature ([154] Ch. 6, [169]).

In writing Eq. 6.8, we made a particular choice of adapted coordinates. We

chose coordinate functions that are adapted specifically to the CLVs, as opposed to

any other basis of 𝑇𝑥M, in the following sense. At each 𝑥, the image of the 𝑖th

Euclidean basis vector 𝑒𝑖, under the differential of the coordinate change, is 𝑉 𝑖. More

intuitively, we have chosen adapted coordinates such that the 𝑖th Euclidean coordinate

axis corresponds, under these coordinate changes, to points that are perturbations

along 𝑉 𝑖. Thus, our quantity of interest, can be written, by definition of CLV-adapted

coordinates, as

𝑊 𝑖
𝑥 =

𝑑

𝑑𝑡
(𝑉 𝑖 ∘ 𝒞𝑥,𝑖)(0). (6.10)
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6.3.2 The map in adapted coordinates

Now we introduce the transformation induced by 𝜙 : M → M on the CLV-adapted

coordinates on R𝑚. To do that, we fix an 𝑖 ≤ 𝑑𝑢 and focus on the relationship

between the curves 𝒞𝑥1,𝑖 : [−𝜖𝑥1 , 𝜖𝑥1 ] → M and 𝜙 ∘ 𝒞𝑥,𝑖 : [−𝜖𝑥, 𝜖𝑥] → M. Define

𝑓𝑥,𝑖 := (𝒞𝑥1,𝑖)
−1∘𝜙∘𝒞𝑥,𝑖, noting that this definition makes sense at a point 𝑡 ∈ [−𝜖𝑥, 𝜖𝑥]

whenever 𝜙(𝒞𝑥,𝑖(𝑡)) lies in the image of 𝒞𝑥1,𝑖. The function, 𝑥→ 𝜖𝑥, which determines

the size of the local unstable manifold at each 𝑥, can be chosen such that orbits of

𝑓−𝑛
𝑥,𝑖 := 𝑓−1

𝑥𝑛,𝑖
∘ · · · ∘ 𝑓−1

𝑥1,𝑖
∘ 𝑓−1

𝑥,𝑖 , 𝑛 ∈ Z+ (6.11)

are well-defined at almost every 𝑥, for 1 ≤ 𝑖 ≤ 𝑑𝑢, within local unstable manifolds

centered along the backward 𝜙-orbit. Clearly, 0 is a fixed point of 𝑓𝑛
𝑥,𝑖 for all 𝑛 ∈ Z,

and corresponds to the 𝜙-orbit · · · , 𝑥−1, 𝑥, 𝑥1, 𝑥2, · · · , . Intuitively, if an orbit of 𝑓𝑥,𝑖

excluding the fixed point, say
{︀
𝑡𝑛 := 𝑓𝑛

𝑥,𝑖(𝑡)
}︀
, exists, it means that 𝒞𝑥𝑛,𝑖(𝑡𝑛) lies in

sufficiently small local unstable manifolds of 𝑥𝑛, at each 𝑛. The sizes of the local

unstable manifolds can be controlled in order for such orbits to be well-defined (in

particular, see Lemma 2.2.2 of [169]).

To summarize, we make a specific choice of 𝑥 → 𝜖𝑥 such that the curves 𝒞𝑥𝑛,𝑖 at

each 𝑛 lie inside a local unstable manifold at 𝑥𝑛, and are tangent to 𝑉 𝑖
𝑛 := 𝑉 𝑖

𝑥𝑛
. This

allows us to obtain expressions for the derivative of a CLV 𝑉 𝑖
𝑛+1 with respect to 𝑉 𝑖

𝑛,

which will in turn enter into the computation of 𝑊 𝑖. In particular, using CLV-adapted

coordinates, a suitable map 𝑥→ 𝜖𝑥, as described above, and the definition of 𝑓𝑥,𝑖,

(𝑑𝑓𝑥,𝑖/𝑑𝑡)(0) = 𝑧𝑥,𝑖. (6.12)

Now we usefully relate the iterates through 𝜙 of the differential operator on M corre-

sponding to the vector field 𝑉 𝑖, and its analog on R: 𝑑/𝑑𝑡, along the trajectory lying

in the unstable manifold of 𝑥𝑛. In particular, for the function 𝑉 𝑖, when combined
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with Eq. 6.10, and Eq. 6.12,

𝑑 (𝑉 𝑖 ∘ 𝜙 ∘ 𝒞𝑥,𝑖)
𝑑𝑡

(0) =
𝑑 (𝑉 𝑖 ∘ 𝒞𝑥1,𝑖 ∘ 𝑓𝑥,𝑖)

𝑑𝑡
(0)

= 𝑧𝑥,𝑖 𝑊
𝑖
𝑥1
. (6.13)

6.3.3 Computation of unstable CLV self-derivatives

Starting from Eq. 6.13, and by definition of CLVs (Eq. 6.4)

𝑊 𝑖
𝑥1

=
1

𝑧𝑥,𝑖

𝑑

𝑑𝑡

(︃
𝑑𝜙𝒞𝑥,𝑖 𝑉

𝑖
𝒞𝑥,𝑖

𝑧𝒞𝑥,𝑖,𝑖

)︃
(0) (6.14)

=
1

𝑧2𝑥,𝑖

𝑑

𝑑𝑡

(︀
𝑑𝜙𝒞𝑥,𝑖

)︀
(0) 𝑉 𝑖

𝑥 +
1

𝑧2𝑥,𝑖
𝑑𝜙𝑥

𝑑

𝑑𝑡
(𝑉 𝑖

𝒞𝑥,𝑖)(0)

+ 𝑉 𝑖
𝑥1

𝑑

𝑑𝑡

(︂
1

𝑧𝒞𝑥,𝑖,𝑖

)︂
(0) (6.15)

By Eq. 6.10, we can write the second term above as (1/𝑧𝑥,𝑖)
2 𝑑𝜙𝑥 𝑊

𝑖
𝑥. The first term

can be written using the chain rule in terms of the 𝑚×𝑚×𝑚 second-order derivative

of 𝜙, which is a bilinear form denoted as 𝑑2𝜙. Let the elements of the second-order

derivative of the map be indexed such that 𝑑2𝜙[𝑖, 𝑗, 𝑘] = 𝜕𝑘𝜕𝑗𝜙𝑖, and let 𝑑2𝜙 : 𝑏

indicate the 𝑚 ×𝑚 matrix resulting from taking the dot product of the last axis of

𝑑2𝜙 and the vector 𝑏. Then, Eq. 6.15 becomes

𝑊 𝑖
𝑥1

=
1

𝑧2𝑥,𝑖
𝑑2𝜙𝑥 : 𝑉 𝑖

𝑥 𝑉 𝑖
𝑥 +

1

𝑧2𝑥,𝑖
𝑑𝜙𝑥 𝑊 𝑖

𝑥

+ 𝑉 𝑖
𝑥1

𝑑

𝑑𝑡

(︂
1

𝑧𝒞𝑥,𝑖,𝑖

)︂
(0) (6.16)
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6.3.4 The differential CLV method: iterative orthogonal pro-

jections

The differentiation in the third term in Eq. 6.16, carried out explicitly gives,

𝑑

𝑑𝑡

(︂
1

𝑧𝒞𝑥,𝑖,𝑖

)︂
(0) = − 1

2𝑧3𝒞𝑥,𝑖,𝑖

𝑑

𝑑𝑡

(︁
(𝑑𝜙𝒞𝑥,𝑖 𝑉

𝑖
𝒞𝑥,𝑖)

𝑇𝑑𝜙𝒞𝑥,𝑖 𝑉
𝑖
𝒞𝑥,𝑖

)︁
(0)

= −(𝑑𝜙𝑥 𝑉 𝑖
𝑥)𝑇

𝑧3𝑥,𝑖

(︁
𝑑2𝜙𝑥 : 𝑉 𝑖

𝑥 𝑉 𝑖
𝑥 + 𝑑𝜙𝑥 𝑊 𝑖

𝑥

)︁
= −

(𝑉 𝑖
𝑥1

)𝑇

𝑧2𝑥,𝑖

(︁
𝑑2𝜙 : 𝑉 𝑖

𝑥𝑉
𝑖
𝑥 + 𝑑𝜙𝑥 𝑊 𝑖

𝑥

)︁
. (6.17)

Substituting Eq. 6.17 into Eq. 6.16, we see that Eq. 6.16 simply projects out the

component along the 𝑉 𝑖
𝑥1

direction. That is,

𝑊 𝑖
𝑥1

=
(︁
𝐼 − 𝑉 𝑖

𝑥1
(𝑉 𝑖

𝑥1
)𝑇
)︁(︃𝑑2𝜙𝑥 : 𝑉 𝑖

𝑥 𝑉 𝑖
𝑥 + 𝑑𝜙𝑥 𝑊 𝑖

𝑥

𝑧2𝑥,𝑖

)︃
, (6.18)

where 𝐼 is the 𝑚×𝑚 Identity matrix. That is, the CLV self-derivatives are orthogonal

to the corresponding CLVs. Before the orthogonal projection, the component along 𝑉 𝑖

is given by Eq. 6.17, which indicates the change of (the reciprocal of) the expansion

factor 𝑧·,𝑖 along 𝑉 𝑖. This is a fundamental quantity that influences the unstable

derivative of the conditional density of the SRB measure on the unstable manifold,

and will be denoted

𝛼𝑥,𝑖 :=
𝑑

𝑑𝑡

(︂
1

𝑧𝒞𝑥,𝑖,𝑖

)︂
(0).

We will henceforth refer to Eq. 6.17 as the differential expansion equation, and see

its connection to linear response in section 6.5.

Now, Eq. 6.18 can be marched forward in time recursively by replacing 𝑊 𝑖
𝑥1

with

𝑊 𝑖
𝑥2

, and 𝑊 𝑖
𝑥 with 𝑊 𝑖

𝑥1
. Fixing an 𝑥, we use the subscript notation, e.g. 𝑊 𝑖

𝑛 := 𝑊 𝑖
𝑥𝑛
,

and start from a random initial vector ∈ R𝑚 as a guess for 𝑊 𝑖
0 := 𝑊 𝑖

𝑥. The following
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iteration is proposed as the differential CLV method to obtain 𝑊 𝑖
𝑛, 𝑛 ∈ Z+, 1 ≤ 𝑖 ≤ 𝑑𝑢

𝑊 𝑖
𝑛+1 =

(︁
𝐼 − 𝑉 𝑖

𝑛+1(𝑉
𝑖
𝑛+1)

𝑇
)︁(︃(𝑑2𝜙)𝑛 : 𝑉 𝑖

𝑛 𝑉 𝑖
𝑛 + (𝑑𝜙)𝑛 𝑊 𝑖

𝑛

𝑧2𝑛,𝑖

)︃
. (6.19)

In Appendix section 6.8, we show that the above equation always converges asymptot-

ically at an exponential rate when 𝑖 = 1. For other indices 1 < 𝑖 ≤ 𝑑𝑢, the convergence

is under certain conditions on the LEs. Thus, from here on, we restrict ourselves to

chaotic attractors with one-dimensional unstable manifolds, where we know the dif-

ferential CLV method converges asymptotically. It is worth noting, in the context of

linear response computation (section 6.5), that the differential expansion/contraction

equation (Eq. 6.17) is also effectively time-evolved in order to compute the projec-

tion term in the differential CLV method (Eq. 6.19). Thus, we obtain the scalars 𝛼𝑛,𝑖

along a trajectory as a byproduct.

Remark 2. Note that the entire procedure above was derived for the unstable CLV

self-derivatives. For the stable ones, we must apply the same procedure with time

reversal since the stable and unstable CLVs are the same, except their roles are ex-

changed upon time reversal. That is, when 𝑑𝑢 + 1 ≤ 𝑖 ≤ 𝑚, we must apply the above

iterative procedure (Eq. 6.19) by replacing 𝜙 with the inverse map, 𝜙−1. Analogously,

our numerical procedure converges when using 𝜙−1, as shown in Appendix section 6.8,

for 𝑖 = 𝑚 – for the self-derivative of the most stable CLV.

Remark 3. The differential CLV method may be viewed as a fast computation,

exploiting dynamical information, of the extrinsic curvature of lower-dimensional

smooth manifolds (in this chapter, we focus on local one-dimensional unstable man-

ifolds) embedded in a Euclidean space. Related are computations of derivatives on

Grassmanian manifolds consisting of lower-dimensional linear subspaces of Euclidean

spaces that appear to be useful for geometric insight into dynamical systems prob-

lems arising in different contexts, such as in deep neural networks and reduced-order

stochastic models [220, 97].
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6.4 Numerical results implementing the differential

CLV method

In this section, we implement the differential CLV algorithm discussed in the previous

section to several examples of low-dimensional chaotic attractors, some of which were

introduced in section 6.2. In every example, the unstable subspace is one-dimensional

(a line) and numerical estimates of 𝑊 1 are shown. The Python code for the imple-

mentation, along with the files needed to generate the plots in this section, can be

found at [57].

6.4.1 Validation against analytical curvature of the Solenoid

map

The Smale-Williams Solenoid map produces a well-known example of a uniformly

hyperbolic attractor that is contained in a solid torus. We consider a two-parameter

Solenoid map, which in cylindrical coordinates, is written as follows:

𝜙([𝑟, 𝑡, 𝑧]𝑇 ) =

⎡⎢⎢⎢⎣
𝑠0 + (𝑟 − 𝑠0)/𝑠1 + (cos 𝑡)/2

2𝑡

𝑧/𝑠1 + (sin 𝑡)/2

⎤⎥⎥⎥⎦ . (6.20)

Clearly, the parameter 𝑠1 is a contraction factor along the 𝑟 and 𝑧 directions. In

the limit 𝑠1 → ∞, the attractor of the map, henceforth referred to as the super-

contracting Solenoid attractor, becomes a space curve. It is described by the following

curve parameterized by the coordinate 𝑡, expressed in Cartesian coordinates:

𝛾(𝑡) :=

⎡⎢⎢⎢⎣
x1,𝑛+1

x2,𝑛+1

x3,𝑛+1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣

(︂
𝑠0 +

cos 𝑡

2

)︂
cos 2𝑡(︂

𝑠0 +
cos 𝑡

2

)︂
sin 2𝑡

sin 𝑡

2

⎤⎥⎥⎥⎥⎥⎦ , (6.21)
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Figure 6-1: Comparison of the x1, x2, x3 components of 𝑉 1 computed analytically
(orange circles) and numerically (blue crosses), for the super-contracting Solenoid
map

Figure 6-2: Comparison of the x1, x2, x3 components of 𝑊 1 computed analytically
(orange circles) and numerically (blue crosses), for the super-contracting Solenoid
map.

215



Figure 6-3: The vector field 𝑉 1 is shown for the Solenoid map. The color represents
‖𝑊 1‖, which is the curvature of the attractor.

where 𝑡 = arctan(x2,𝑛/x1,𝑛). As an aside, note that in the 𝑡 direction, the map

is simply a linear expanding map, and hence the 𝑡 component of the state vector

has a uniform probability distribution in [0, 2𝜋). We fix 𝑠0 at 1 throughout. The

one-dimensional unstable manifold is given by the curve 𝛾(𝑡) defined in Eq. 6.21.

Then, the tangent vector field to the curve, 𝛾′(𝑡), must be along 𝑉 1(𝛾(𝑡)). This

is verified numerically in Figure 6-1, where the numerically computed vector field

𝑉 1 agrees closely with the unit tangent vector field 𝛾′(𝑡)/‖𝛾′(𝑡)‖: in each of the

subfigures, the components of the two vector fields lie superimposed on each other.

Consequently, the acceleration along the curve 𝛾(𝑡), 𝜕𝛾′(𝑡)𝛾
′(𝑡), must be in the direction

of 𝑊 1(𝛾(𝑡)). In particular, the acceleration in the direction of the unit tangent vector,

𝜕𝛾′(𝑡)/‖𝛾′(𝑡)‖(𝛾
′(𝑡)/‖𝛾′(𝑡)‖), must match 𝑊 1(𝛾(𝑡)). This is also clearly seen numerically.

In Figure 6-2, each component of the two vector fields 𝜕𝛾′/‖𝛾′‖(𝛾
′/‖𝛾′‖), computed

analytically, and 𝑊 1, computed numerically using Eq. 6.19, are seen to coincide.

Thus, the norms of the two vector fields are of course in close agreement as well, as

can be seen in Figure 6-3. Both the analytically computed norm ‖𝜕𝛾′/‖𝛾′‖(𝛾
′/‖𝛾′‖)‖,

and the numerically computed ‖𝑊 1‖ are shown as a colormap on the vector field

𝑉 1 = 𝛾′(𝑡)/‖𝛾′(𝑡)‖. The plots in Figure 6-3 are, a fortiori, a visualization of the
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Figure 6-4: Orbit points of the Lorenz system shown on the x1-x3 plane, at 𝑇1 = 18
(left) and at 𝑇2 = 20 (right), colored according to the distance from their centroid
normalized by the centroid 𝑧-coordinate. The initial conditions were 10001 equi-
spaced points on the short line segment joining (-0.01,0,1) and (0.01,0,1).

curvature of the one-dimensional unstable manifold 𝛾(𝑡). The final results of the

analytical curvature calculations are provided in Appendix section 6.7.2.

6.4.2 Numerical verification of the curvature of the Lorenz

attractor

Next we consider the well-known Lorenz’63 system [179], given by the following system

of ODEs:

𝑑

𝑑𝑡

⎡⎢⎢⎢⎣
x1

x2

x3

⎤⎥⎥⎥⎦ = 𝐹 ([x1, x2, x3]
𝑇 ) :=

⎡⎢⎢⎢⎣
10(x2 − x1)

x1(28− x3)− x2

x1x2 −
8x3

3

⎤⎥⎥⎥⎦ . (6.22)

The map 𝜙 is defined here to be a time-discretized form of the above system of

ODEs. In particular, we use a second-order Runge-Kutta scheme with a time step of

𝛿𝑡 = 0.01. The map 𝜙(𝑥) = 𝑥1, is the time-integrated solution after time 𝛿𝑡, starting

from 𝑥 := [x1, x2, x3]
𝑇 ∈ R3. The Lorenz’63 map defined this way has the following

Lyapunov exponents: 𝜆1 ≈ 0.9, 𝜆2 ≈ 0 and 𝜆3 ≈ −14.6. The unstable manifold,
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Figure 6-5: Comparison between 𝑉 1 from an iteration of the tangent dynamics (shown
in orange) and 𝑉 1 from finite difference of the primal trajectories (in blue). The first
column shows the components of 𝑉 1 at time 𝑇1 = 18 and the second column at
𝑇2 = 20. The first, second and third rows show the x1, x2, x3 components of 𝑉 1

respectively.
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Figure 6-6: Comparison between 𝑊 1 from the differential CLV method (shown in
orange) and 𝑊 1 from finite difference (in gray). The first column shows the compo-
nents of 𝑊 1 at time 𝑇1 = 18 and the second column at 𝑇2 = 20. The first, second
and third rows show the x1, x2, x3 components of 𝑊 1 respectively.
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which is tangent to the CLV corresponding to 𝜆1, is one-dimensional. There is a

one-dimensional center manifold tangent to the right hand side of the ODE, 𝐹 . This

corresponds to 𝜆2 ≈ 0, i.e., since clearly 𝐹 (𝑥1) ≈ 𝑑𝜙𝑥𝐹 (𝑥), the tangent vector roughly

parallel to 𝐹 (𝑥) ∈ 𝑇𝑥R3 does not show exponential growth or decay under the tangent

dynamics. Thus, this map is not uniformly hyperbolic as per the description in section

6.2.2. Rather, it is a partially hyperbolic system –a generalization of a uniformly hy-

perbolic system that allows a center direction – in which the center-unstable manifold

is two-dimensional and tangent to span {𝐹}⊕𝐸𝑢. The Lorenz attractor nevertheless

mimics the statistical behavior of a uniformly hyperbolic attractor. For instance,

the central limit theorem holds for Hölder continuous observables and an SRB-type

invariant distribution exists [13].

In Figure 6-4, we numerically calculate the one-dimensional unstable manifold at

𝑥 := (0, 0, 1) of the Lorenz attractor. We populate the small line segment connecting

[-0.01,0,1] and [0.01,0,1] with 10001 equi-spaced initial conditions. In Figure 6-4,

these points are shown after time evolution for time 𝑇1 = 18 or 𝑛1 = 1800 steps (on

the left) and 𝑇2 = 20 or 𝑛2 = 2000 steps (on the right). The points that are a small

distance from one another at all times up to the indicated times are considered orbits

within local unstable manifolds of the reference orbit {𝑥𝑛}.

Along these selected orbits, we use the following finite difference approximation

to compute 𝑉 1:

𝑉 1(𝑦𝑛) ≈ 𝑥𝑛 − 𝑦𝑛
‖𝑥𝑛 − 𝑦𝑛‖

. (6.23)

The 3 components 𝑉 1
x𝑖

, 𝑖 = 1, 2, 3 obtained this way are shown in gray in Figure 6-5; to

avoid confusing these scalar fields with 𝑉 1(𝑥𝑛), we do not use the shorthand notation,

in this section, for 𝑉 1(𝑥𝑛), which refers to the first CLV at the phase point 𝑥𝑛. The

scalar fields 𝑉 1
x𝑖

match match closely the results, shown in orange, of a more typical

method of computing the first CLVs. This second method to compute 𝑉 1(𝑥𝑛) uses

only the trajectory 𝑥, 𝑥1, · · · , 𝑥𝑛 and the tangent dynamics along this trajectory, and

works as follows: randomly initialize 𝑣(𝑥) and propagate the tangent dynamics with
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repeated normalization.

𝑣(𝑥𝑛+1) = 𝑑𝜙(𝑥𝑛)𝑣(𝑥𝑛), (6.24)

𝑣(𝑥𝑛+1)←− 𝑣(𝑥𝑛+1)/‖𝑣(𝑥𝑛+1)‖. (6.25)

Carrying this out for 𝑛 ∈ Z+, similar to a power iteration method for the computa-

tion of the dominant eigenvector of a matrix, yields a unit vector 𝑣(𝑥𝑛) that aligns

with 𝑉 1(𝑥𝑛). As confirmed in Figure 6-5, this procedure is equivalent to the above-

mentioned finite difference procedure, as long as 𝑦𝑛 is in a small neighborhood of 𝑥𝑛,

for the length of the trajectory considered.

Having visualized 𝑉 1 along trajectories, we now compute 𝑊 1 using our differen-

tial CLV method in section 6.3. To test its correctness, we also compute 𝑊 1 using a

finite difference method as follows. As usual, let the reference trajectory along which

we require to compute 𝑊 1 be 𝑥, 𝑥1, · · · , 𝑥𝑁 , and assume that we know the CLVs

𝑉 1(𝑥), 𝑉 1(𝑥1), · · · , 𝑉 1(𝑥𝑁). Let 𝑦, 𝑦1, · · · , 𝑦𝑁 and 𝑟, 𝑟1, · · · , 𝑟𝑁 be two other trajecto-

ries that are at most a distance of 𝒪(1) away from the reference trajectory, at each

of the 𝑁 time steps. Then, according to our preceding discussion,

𝑉 1(𝑦𝑛) ≈ −𝑉 1(𝑥𝑛) ≈ 𝑥𝑛 − 𝑦𝑛
‖𝑥𝑛 − 𝑦𝑛‖

. (6.26)

At each 𝑛, we rescale 𝑦𝑛 and 𝑟𝑛 along 𝑉 1(𝑥𝑛) to obtain the two points i) 𝑦𝑛 =

𝑥𝑛+𝜖𝑦𝑛𝑉
1(𝑦𝑛), ii) 𝑟𝑛 = 𝑥𝑛+𝜖𝑟𝑛𝑉

1(𝑟𝑛). Then, we can approximately compute 𝑊 1(𝑥𝑛)

as

𝑊 1(𝑥𝑛) ≈ (𝑟𝑛 − 𝑥𝑛)/𝜖𝑟𝑛 − (𝑦𝑛 − 𝑥𝑛)/𝜖𝑦𝑛
‖𝑟𝑛 − 𝑦𝑛‖

. (6.27)

In Figure 6-6, we plot the three components of 𝑊 1: 𝑊 1
x1
,𝑊 1

x2
,𝑊 1

x3
computed using

the above procedure in gray and the same quantity computed using the differential

CLV algorithm in section 6.3 in orange. The closeness of the two results indicates the

correctness of our algorithm. It is also a numerical verification of the fact that 𝑉 1 is

differentiable along itself in this system, even though it is only partially hyperbolic.
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6.4.3 Qualitative verification on a perturbed cat map

We consider a smoothly perturbed Cat map (PCM) (see section 6.2.3) due to Sli-

pantschuk et al. [245]. The PCM [245] was designed to be an analytic, area-

preserving, uniformly hyperbolic map of the torus, whose spectral properties can

be computed analytically. The PCM is given by

𝜙([x1, x2]) =

⎡⎣2 1

1 1

⎤⎦⎡⎣x1

x2

⎤⎦+

⎡⎣Ψ𝑠1,𝑠2(x1)

Ψ𝑠1,𝑠2(x1)

⎤⎦ , (6.28)

where

Ψ𝑠1,𝑠2(𝑦) := (1/𝜋) arctan
(︁
𝑠1 sin(2𝜋𝑦 − 𝑠2)/(1− 𝑠1 cos(2𝜋𝑦 − 𝑠2))

)︁
is a perturbation whose maximum magnitude is controlled by the parameter 𝑠1 and

the location of the maximum, by 𝑠2. Clearly, the original Cat map is recovered at

𝑠1 = 0. As in the Cat map, the sum of the LEs is 0 but their values are sensitive to

the parameters, with lesser sensitivity to 𝑠2 when compared to 𝑠1. Unlike the Cat

map, the CLVs are no longer uniform in phase space and are also not orthogonal

to each other. In Figure 6-7, we show the vector fields 𝑉 1 and 𝑉 2 computed at

𝑠1 = 0.75 and 𝑠2 = 0.2. Notably, non-zero values of 𝑠1 create a curvature in the CLVs,

which is again non-uniform in space. We compute the self-derivative of the unstable

CLV using our differential CLV method in section 6.3. By construction, the method

produces a vector field 𝑊 1 that is orthogonal to 𝑉 1. The norm of the computed

vectors, ‖𝑊 1‖, is shown signed according to its orientation with respect to 𝑉 1. In

particular, in Figure 6-8, we plot ‖𝑊 1 × 𝑉 1‖ as a colormap on the vector field 𝑉 1.

Figure 6-8 is a qualitative representation of the fact that ‖𝑊 1‖ is the curvature of

the unstable manifold, which is everywhere tangent to the plotted vector field 𝑉 1.

The 𝑉 1 self-derivative 𝑊 1 is the acceleration of a particle moving with the velocity

field 𝑉 1. This intuitive picture is mirrored by Figure 6-8, in which ‖𝑊 1‖ is higher in

regions of velocity changes than where the velocity appears rather uniform (e.g. in

a thin strip around the diagonal of the square). The regions of similar magnitude of
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Figure 6-7: The vector fields 𝑉 1 (left) and 𝑉 2 (right) are shown for the PCM at
𝑠1 = 0.75, 𝑠2 = 0.2.

Figure 6-8: The vector field 𝑉 1 is shown for the PCM at 𝑠1 = 0.75, 𝑠2 = 0.2. The
color represents the values of ‖𝑊 1× 𝑉 1‖, which equals the norm of ‖𝑊 1‖ multiplied
by a sign representing the orientation with respect to 𝑉 1.

223



acceleration but of opposite sign, reflect the symmetry in the velocity field 𝑉 1 about

𝑥1 = 𝑥2, and moreover indicate the opposite directions of the turns made in those

regions by traveling particles.

6.4.4 Qualitative verification on the volume-decreasing per-

turbed Cat

While the PCM was an example of a symplectic uniformly hyperbolic system, now

we consider a dissipative uniformly hyperbolic map. We introduce another perturbed

Cat map, with smooth nonlinear perturbations that cause the resulting map to be

volume-decreasing. The norm of the perturbations is controlled by a set of four

parameters 𝑠 = [𝑠0, 𝑠1, 𝑠2, 𝑠3]
𝑇 and the unperturbed Cat map (the original Anosov

Cat) is recovered at 𝑠 = [0, 0, 0, 0]. The map, referred to as the dissipative Cat map

or DCM hereafter, is defined as follows:

𝜙([x1, x2]
𝑇 ) =

⎡⎣2 1

1 1

⎤⎦⎡⎣x1

x2

⎤⎦+

⎛⎝𝑠0

⎡⎣𝑣0
𝑣1

⎤⎦+ 𝑠1

⎡⎣𝑣2
𝑣3

⎤⎦⎞⎠ sin(2𝜋𝑉 2 · 𝑥)/𝑐

+

⎛⎝𝑠2

⎡⎣𝑣0
𝑣1

⎤⎦+ 𝑠3

⎡⎣𝑣2
𝑣3

⎤⎦⎞⎠ sin(2𝜋𝑉 1 · 𝑥)/𝑐 (6.29)

where 𝑉 2 := [𝑣0, 𝑣1]
𝑇 = [5,−8]𝑇 ∈ R2 is a rational approximation of the stable CLV

of the unperturbed Cat map. Similarly, 𝑉 1 := [𝑣2, 𝑣3]
𝑇 = [8, 5]𝑇 ∈ R2 is a rational

approximation of the unstable CLV of the unperturbed Cat map. The constant

𝑐 serves to normalize the perturbations and is set to 𝑐 = 2𝜋(𝑣20 + 𝑣21). The four

parameters together determine the norm and direction of the perturbation. In Figure

6-9, 𝑉 1 in plotted in each case of turning on just one of the four parameters, in

order to isolate its effects. Each subfigure reflects the effect of a single parameter on

𝑉 1, in comparison to the unperturbed Cat map (in which 𝑉 1 is roughly parallel to

the line 𝑉 1). For instance, when 𝑠 = [1, 0, 0, 0]𝑇 , a perturbation is applied along the

direction 𝑉 2, which is approximately along the stable direction of the DCM. The norm

of this perturbation varies sinusoidally with the orientation along the approximately
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Figure 6-9: The vector field 𝑉 1 is shown for the DCM at different parameter choices.
The parameters not indicated are set to 0 in each case.
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Figure 6-10: The vector field 𝑉 1 is shown for the DCM, colored according to
‖𝑊 1 × 𝑉 1‖. The parameters not indicated as 1 are set to zero in each case.

stable direction, 𝑉 2. As can be seen in the top-left of Figure 6-9, the CLV 𝑉 1 is

rather uniform in its own direction but shows a striated pattern in the perpendicular

direction, roughly along 𝑉 2. As another example, the bottom-left subfigure shows

𝑉 1 at 𝑠 = [0, 0, 1, 0]𝑇 . From Eq. 6.29, we know that 𝑠2 being non-zero introduces a

perturbation, along 𝑉 2, whose norm varies in the approximately unstable direction,

𝑉 1. This is portrayed in the figure, wherein 𝑉 1 appears as waves, which are seen

traveling approximately along 𝑉 2 but the amplitudes of the waves clearly vary in

the perpendicular, approximately unstable direction. Turning on the parameter 𝑠1

exchanges the roles of 𝑉 1 and 𝑉 2 when compared to when 𝑠2 is non-zero. From the

top-right subfigure in which the effect of 𝑠1 is shown, we can see that there is no

noticeable curving of the unstable manifold since the perturbation is aligned with the

unstable direction. Finally, the effect of a non-zero 𝑠3 is depicted in the bottom-right

of Figure 6-9. Here we see the compression and expansion of unstable manifolds in

the unstable direction since a perturbation non-uniform in the unstable direction is

applied along the unstable direction.

226



With this understanding of the effect of each parameter, we expect that 𝑉 1 would

show a smaller sensitivity, in its own direction, when the norm of the perturbation is

uniform along 𝑉 1. This is the case when 𝑠2, 𝑠3 are set to 0. This intuition is confirmed

by the numerical results obtained on using the differential CLV method. As shown

in Figure 6-10, when either 𝑠0 = 1 or 𝑠1 = 1, and the other 3 parameters are set to

0, we see that the numerically computed 𝑊 1 has a smaller norm, when compared to

the other cases.

On the bottom row in Figure 6-10 are the vector fields 𝑊 1 when either 𝑠2 or

𝑠3 are set to 1 and the rest to 0. In these cases, the norm of the perturbation

varies along the approximately unstable direction, and this is clearly reflected in the

higher (when compared to the other two cases) magnitudes of 𝑊 1. In addition,

the variation in 𝑊 1 itself, which gives information about the second-order derivative

of 𝑉 1, is also consistent with our expectations. For instance, 𝑊 1 shows a marked

variation along 𝑉 1 when 𝑠2 = 1 (bottom-left of Figure 6-10). This can be explained

by the applied perturbations being sinusoidal in the direction of 𝑉 1, giving rise to a

harmonic functions for the higher-order derivatives along 𝑉 1 as well. Finally, when

𝑠3 = 1, (bottom-right of Figure 6-10), it is easy to observe that, qualitatively, the

density of the lines 𝑉 1 is reflected in the magnitudes of 𝑊 1. This is not a coincidence,

as we shall see in section 6.5. There, we describe that 𝑊 1 is indirectly related to

the variation in the density of the SRB measure on the unstable manifold, due to

perturbations along 𝑉 1. Now we can see that especially the 𝑠3 = 1 case provides

a visualization consistent with this theoretical insight. Particularly, the pronounced

variation in the unstable direction (bottom-right, Figure 6-10), mirrors the changes

in probability density on the unstable manifold, which is qualitatively measured by

the closeness of the 𝑉 1 lines in Figure 6-9.
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Figure 6-11: The CLV 𝑉 1 on the henon attractor. Inset is the CLV field in a neigh-
borhood of the fixed point ≈ (0.63, 0.19).

6.4.5 Numerical results on the Hènon map

As our final example, we consider the classical Hènon attractor. The Hènon map is

the canonical form for a two-dimensional area-decreasing quadratic map [135]:

𝜙([x1, x2]
𝑇 ) =

⎡⎣x2 + 1− 𝑠0x
2
1

𝑠1x1

⎤⎦ . (6.30)

Taking the parameters 𝑠0 and 𝑠1 at their standard values of 𝑠0 = 1.4 and 𝑠1 = 0.3,

we obtain the Hènon attractor, on which the CLVs are shown in Figure 6-11. At

these parameter values, the Hénon attractor is nonhyperbolic due to the presence of

tangencies between the stable and unstable manifolds [12]. On this map, we apply

the differential CLV method we derived in section 6.3, and the resulting 𝑊 1 is shown

in Figure 6-12. The CLVs may not be differentiable everywhere, as seen by the large

magnitudes of the numerically computed 𝑊 1 at the sharp turns in the attractor. In

Figure 6-13, we dissect the derivatives further to investigate the issue of differentia-

bility numerically. In each subfigure, the vector field 𝑉 1 is plotted colored according

to ‖𝑊 1‖; at the points at which ‖𝑊 1‖ is not in the range indicated by the colormap,

𝑉 1 is shown using thin black lines. From the top row of Figure 6-13, it is clear that

‖𝑊 1‖ < 0.1 for the relatively straight portions of the attractor and the points on the

right, curved side of the attractor, still have a curvature less than 1. On the bottom

row, the more rounded portions of the attractor, as expected, have a higher curvature
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Figure 6-12: The vector field 𝑉 1 is shown for the Hènon map. The color represents
the 𝑉 1 self-derivative norm, ‖𝑊 1‖.

Figure 6-13: The vector field 𝑉 1 is shown for the Hènon map. The color represents
‖𝑊 1‖, the curvature of the unstable manifold.
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when compared to the previous cases. On the bottom-right, we see that only the

corners and turns have ‖𝑊 1‖ higher than 100. Among these points, the variation in

the curvature, ‖𝑊 1‖, is over six orders of magnitude, with the sharp corners having

the highest curvatures. In this case, our numerical method for 𝑊 1 acts as an indica-

tor for the lack of differentiability at some points. At least in two dimensions, this

also turns out to be a detector for uniform hyperbolicity, based on our discussion in

section 6.2.4.

6.5 An application of CLV derivatives to statistical

linear response

A landmark result in the theory of uniformly hyperbolic systems due to Ruelle

([232][234] ; [118] contains a modern proof of the result) is the smooth response

of their statistics to parameter perturbations. Here we briefly describe this result,

called the linear response formula, and draw a connection between the formula and

Eq. 6.17, which is the differential expansion equation.

Consider a family of uniformly hyperbolic maps 𝜙𝑠 ∈ 𝐶3(M), where 𝑠 is a small

parameter around 0. Let the reference map 𝜙0 be written simply as 𝜙, and 𝑉 be

a smooth vector field such that 𝜙𝑠 = 𝜙 + 𝑠𝑉 up to first order in 𝑠. Let the SRB

measure of 𝜙𝑠 be 𝜇𝑠: that is, 𝜇𝑠 is a 𝜙𝑠-invariant probability distribution on M such

that for any continuous scalar observable 𝐽 , the ergodic average starting from a 𝑥 ∈M

Lebesgue-a.e., lim𝑁→∞(1/𝑁)
∑︀𝑁−1

𝑛=0 𝐽(𝜙𝑛
𝑠 (𝑥)) = ⟨𝐽, 𝜇𝑠⟩.

Ruelle’s linear response theory [232][234] proves the existence of the statistical

response to parameter changes, ⟨𝐽, 𝜕𝑠𝜇𝑠⟩, in uniformly hyperbolic systems, including

expressing this quantity as an exponentially converging series, which is known as lin-

ear response formula. The quantity ⟨𝐽, 𝜕𝑠𝜇𝑠⟩ represents the derivative with respect

to 𝑠 of ergodic averages or equivalently ensemble averages of observables with respect

to the SRB measure, and is of immense interest in practical applications. The statis-

tical sensitivity ⟨𝐽, 𝜕𝑠𝜇𝑠⟩ is useful for sensitivity analysis, uncertainty quantification,
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model selection etc, in every scientific discipline from climate studies [228][185] to

aerodynamic fluid flows [208][142][71]. The linear response formula [232][234] is as

follows:

⟨𝐽, (𝜕𝑠𝜇𝑠)
⃒⃒⃒
0
⟩ =

∞∑︁
𝑛=0

⟨𝑑(𝐽 ∘ 𝜙𝑛) · 𝑉, 𝜇0⟩. (6.31)

Although the above series is exponentially converging, previous works [69][96] sug-

gest that it is computationally infeasible to calculate the series in its original form

when 𝑉 has a non-zero component in 𝐸𝑢, especially in high-dimensional practical

systems. This is because the integrand in each term increases exponentially with 𝑛:

|𝑑(𝐽 ∘ 𝜙𝑛) · 𝑉 | ∼ 𝒪(exp(𝜆1𝑛)), for almost every perturbation 𝑉 , which will have a

non-zero component along 𝑉 1. If each term in the series is regularized by an integra-

tion by parts, the resulting form of the linear response formula is more amenable to

computation.

For a simple illustration, we consider the case of one-dimensional unstable man-

ifolds, and fix the smooth perturbation field to be 𝑉 = 𝑎 𝑉 1, which has a scalar

component, 𝑎, along the unstable CLV. Applying integration by parts to Eq. 6.31

on the unstable manifold [232][234] (see also Appendix section 6.8.1), and then using

the fact that ergodic averages converge to ensemble averages for Lebesgue-a.e. 𝑥,

⟨𝐽, (𝜕𝑠𝜇𝑠)
⃒⃒⃒
0
⟩ = −

∞∑︁
𝑘=0

lim
𝑁→∞

1

𝑁

𝑁−1∑︁
𝑛=0

𝐽(𝑥𝑘+𝑛) (𝑎(𝑥𝑛) 𝑔(𝑥𝑛) + 𝑏(𝑥𝑛)) (6.32)

where

• 𝜌0 is the density of the conditional distribution of 𝜇0 on unstable manifolds

[281];

• 𝑔(𝑥) :=
1

𝜌0(𝑥)

𝑑(𝜌0 ∘ 𝒞𝑥,1)(𝑡)
𝑑𝑡

⃒⃒⃒
𝑡=0

, is the logarithmic density gradient function;

and,

• 𝑏(𝑥) :=
𝑑(𝑎 ∘ 𝒞𝑥,1)(𝑡)

𝑑𝑡

⃒⃒⃒
𝑡=0

, is the derivative of 𝑎 along unstable manifolds.

The computational infeasibility of Ruelle’s original expression in Eq. 6.31 is overcome
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by Eq. 6.32, as it results from regularization through integration by parts. That is, the

ergodic averaging computation, listed in Eq. 6.32, follows the central limit theorem,

with an error convergence as 𝒪(1/
√
𝑁), when computed along an orbit of length 𝑁 .

To compute Eq. 6.32, we must determine the two functions 𝑔 and 𝑏 along orbits. The

derivative 𝑏 can be computed at any 𝑥𝑛 as 𝑏(𝑥𝑛) = (𝑉 1
𝑛 )𝑇 (𝑑𝑉 )𝑛 𝑉 1

𝑛 ; to derive this

expression, we use the fact that 𝑊 1 · 𝑉 1 = 0, which follows from Eq. 6.19. Now, the

only other unknown is the fundamental quantity – the logarithmic density gradient

denoted 𝑔. Using the fact that 𝜙 preserves 𝜇0, it can be shown that (see section

4 of [62] for an alternative derivation and [247] for an intuitive description of 𝑔 on

one-dimensional unstable manifolds) 𝑔 satisfies the following iterative equation along

trajectories:

𝑔𝑛+1 =
𝑔𝑛
𝑧𝑛,1

+ 𝛼𝑛,1. (6.33)

In the above equation, we use the shorthand notation 𝑔𝑛 := 𝑔(𝑥𝑛) and 𝑧𝑛,1 := 𝑧𝑥𝑛,1,

fixing any 𝜇0-typical 𝑥. Thus, Eq. 6.33 is an iterative formula that can be used

to compute 𝑔 along orbits. It uses differential expansion equation (Eq. 6.17) for

the second term on the right hand side. The values of 𝑔 along a typical orbit, thus

computed, are used in Eq. 6.32 to obtain the desired sensitivity.

6.6 Conclusion

In this work, we have derived a numerical method, called the differential CLV method,

to compute the derivatives of Covariant Lyapunov Vectors along their own directions:

the CLV self-derivatives. These directional derivatives exist in smooth uniformly hy-

perbolic systems with compact attractors. The differential CLV method converges

asymptotically at an exponential rate in the case of the CLV self-derivatives corre-

sponding to the largest and smallest Lyapunov exponents. We demonstrate the appli-

cation of the differential CLV method on a variety of systems with one-dimensional

unstable manifolds including a quasi-hyperbolic attractor (Lorenz’63) and a non-
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hyperbolic attractor (Hénon). In the two-dimensional uniformly hyperbolic systems

considered, including perturbations of the Cat map, our method provides rich visu-

alizations of the curvature of the one-dimensional unstable manifold. A byproduct

of the differential CLV method, without the orthogonal projection step (Eq. 6.19),

known as the differential expansion equation (Eq. 6.17), is fundamentally linked to

the statistical linear response of a chaotic attractor. The link is through its utility

to compute the divergence of perturbations on the unstable manifold, with respect

to the SRB measure conditioned on unstable manifolds. This connection makes the

differential expansion derivatives concretely useful for efficiently differentiating statis-

tics with respect to system parameters in uniformly hyperbolic systems. It must be

explored in a future work how the differential CLV method can be made to have

unconditional asymptotic convergence for the self-derivatives of all CLVs, as opposed

to only the most unstable and the most stable CLVs, which are treated in this work.

With this generalization, the second-order tangent equations presented in this paper

can spawn applications to sensitivity analysis in chaotic systems, and beyond.

6.7 Appendix

6.7.1 The lack of differentiability of CLVs

In general, we say that a subspace 𝐸 is Hölder continuous on M if there exist constants

𝐾, 𝛿 > 0 and 𝛽 ∈ (0, 1] such that ‖𝐸𝑥 − 𝐸𝑦‖* ≤ 𝐾 ‖𝑥− 𝑦‖𝛽 , whenever 𝑥, 𝑦 ∈ M are

such that ‖𝑥− 𝑦‖ ≤ 𝛽. As mentioned in section 6.2.4, the subspaces 𝐸𝑢, 𝐸𝑠 are

Hölder continuous spaces with an 𝛽 that is rarely equal to 1. The reader is referred to

classical texts such as [154] (Chapter 19) or [130] for a detailed exposition on Hölder

structures on hyperbolic sets.

There, the norm ‖·‖* uses an adapted coordinate system such as the one in-

troduced in section 6.3.1. The set of Hölder continuous functions themselves, is

independent of the coordinate system, however. The norm ‖·‖* used in the above

references (e.g. in Theorem 19.1.6 of [154]), for our particular choice of adapted co-
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ordinates introduced in 6.3.1, results in the following definitions, which are exactly

what one might expect. Suppose ‖𝑥− 𝑦‖ ≤ 𝛿, and 𝑄𝑥, 𝑄𝑦 are matrix representations

of the CLV basis whose 𝑖th columns respectively are 𝑉 𝑖
𝑥 , 𝑉

𝑖
𝑦 . Then,

⃦⃦
𝐸𝑢

𝑥 − 𝐸𝑢
𝑦

⃦⃦
* :=

‖𝑄𝑥[:, 1 : 𝑑𝑢]−𝑄𝑦[:, 1 : 𝑑𝑢]‖ where the norm on the right hand side is a matrix norm

on R𝑚×𝑑𝑢 , say the induced 2-norm. Here we have again used programmatic notation:

given a matrix 𝐴, 𝐴[:, 𝑖 : 𝑗] refers to the columns of 𝐴 from 𝑖 to 𝑗, limits included. Sim-

ilarly, for 𝐸𝑠,
⃦⃦
𝐸𝑠

𝑥 − 𝐸𝑠
𝑦

⃦⃦
* := ‖𝑄𝑥[:, 𝑑𝑢 + 1 : 𝑑]−𝑄𝑦[:, 𝑑𝑢 + 1 : 𝑑]‖ . Consistent with

these definitions, for a one-dimensional 𝐸𝑖, we have
⃦⃦
𝐸𝑖

𝑥 − 𝐸𝑖
𝑦

⃦⃦
:=
⃦⃦
𝑉 𝑖
𝑥 − 𝑉 𝑖

𝑦

⃦⃦
, which

is simply the 2-norm on R𝑚.

6.7.2 Computations on the super-contracting Solenoid attrac-

tor

The super-contracting Solenoid attractor is the curve 𝛾 : [0, 2𝜋]→ R3 (defined in Eq.

6.21) parameterized by a single parameter 𝑡. Since we have a closed form expression

for the one-dimensional attractor, we can compute its tangent vector field, as:

𝑑𝛾

𝑑𝑡
=

⎡⎢⎢⎢⎣
−2𝑟1(𝑡) sin 2𝑡− (sin 𝑡 cos 2𝑡)/2

2𝑟1(𝑡) cos 2𝑡− (sin 𝑡 sin 2𝑡)/2
cos 𝑡

2

⎤⎥⎥⎥⎦ , (6.34)

where

𝑟1(𝑡) =

(︂
𝑠0 +

cos 𝑡

2

)︂
.

As explained in section 6.4.1, 𝑉 1(𝑡) = 𝛾′(𝑡)/ ‖𝛾′(𝑡)‖ . Further, we analytically calculate

that

𝜕𝛾′(𝑡)/‖𝛾′(𝑡)‖ (𝛾′(𝑡)/‖𝛾′(𝑡)‖) =
1

2

⎡⎢⎢⎢⎣
−(193 cos 𝑡 + 392 cos 2𝑡 + 267 cos 3𝑡 + 68 cos 4𝑡 + 6 cos 5𝑡 + 36)/𝑐1

−(189 sin 𝑡 + 392 sin 2𝑡 + 267 sin 3𝑡 + 68 sin 4𝑡 + 6 sin 5𝑡)/𝑐1

−(19 sin 𝑡 + 8 sin 𝑡 cos 𝑡 + 2 sin 𝑡 cos 2𝑡− 2 sin 2𝑡 cos 𝑡)/(𝑐1/2)

⎤⎥⎥⎥⎦
[︁
− sin 2𝑡/𝑟1 cos 2𝑡/𝑟1 0

]︁ 𝛾′(𝑡)

‖𝛾′(𝑡)‖
(6.35)
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where

𝑐1 := 2(16 cos 𝑡 + 2 cos 2𝑡 + 19)3/2.

In Figures 6-3 and 6-2, we observe that the vector field 𝑊 1 computed using the differ-

ential CLV method (Eq. 6.19), matches almost exactly against the above expression

in Eq. 6.35.

6.8 Convergence of the differential CLV method

In this section, we show that convergence of Eq. 6.19 is guaranteed when 𝑖 = 1.

Moreover, the asymptotic convergence is exponentially fast. Fix a reference trajectory

𝑞, 𝑞1, · · · ,, and use the notation 𝑓𝑛 to denote 𝑓(𝑥𝑛). Let 𝑊 𝑖,𝑊 𝑖
1, · · · and 𝑊̃ 𝑖, 𝑊̃ 𝑖

1, · · ·

be two sequences of vectors generated by iterating Eq. 6.19. Then, from Eq. 6.19,

⃦⃦⃦
𝑊 𝑖

𝑛 − 𝑊̃ 𝑖
𝑛

⃦⃦⃦
=

1∏︀𝑛−1
𝑚=0 𝑧

2
𝑚,𝑖

⃦⃦⃦⃦
⃦
𝑛−1∏︁
𝑚=0

(︁
(𝐼 − 𝑉 𝑖

𝑚+1(𝑉
𝑖
𝑚+1)

𝑇 ) (𝑑𝜙)𝑚

)︁
(𝑊 𝑖 − 𝑊̃ 𝑖)

⃦⃦⃦⃦
⃦ . (6.36)

We can apply Oseledets MET to the cocycle Coc(𝑥𝑚, 𝑛) =
∏︀𝑛−1

𝑘=0(𝐼−𝑉 𝑖
𝑚+𝑘+1(𝑉

𝑖
𝑚+𝑘+1)

𝑇 )(𝑑𝜙)𝑚+𝑘,

and to the Jacobian cocycle to obtain the following asymptotic inequality. In par-

ticular, using the relationship Eq. 6.6, we get that for every 𝜖 > 0, there exists an

𝑁 ∈ N such that for all 𝑛 ≥ 𝑁 ,

⃦⃦⃦
𝑊 𝑖

𝑛 − 𝑊̃ 𝑖
𝑛

⃦⃦⃦
=

1∏︀𝑛−1
𝑚=0(𝑧

𝑖
𝑚)2

⃦⃦⃦⃦
⃦
𝑛−1∏︁
𝑚=0

(︁
(𝐼 − 𝑉 𝑖

𝑚+1(𝑉
𝑖
𝑚+1)

𝑇 )(𝐷𝜙)𝑚

)︁
(𝑊 𝑖 − 𝑊̃ 𝑖)

⃦⃦⃦⃦
⃦

≤ 𝑒−2𝑛(𝜆𝑖−𝜖) 𝑒𝑛(𝜔𝑖+𝜖)
⃦⃦⃦
𝑊 𝑖 − 𝑊̃ 𝑖

⃦⃦⃦
. (6.37)

In the above inequality 6.37, 𝜔𝑖 := max𝑗 ̸=𝑖,1≤𝑗≤𝑑𝑢 𝜆𝑗. Thus, asymptotic exponential

convergence is guaranteed whenever 2𝜆𝑖 ≥ 𝜔𝑖, which is of course true when 𝑖 = 1.

6.8.1 Regularization of Ruelle’s formula

Here we briefly describe the derivation of Eq. 6.32 from Ruelle’s formula (Eq. 6.31).

The reader is referred to Ruelle’s original papers [232][234], or to [62] for an alternative
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derivation of a regularized response to unstable perturbations. In the case of one-

dimensional unstable manifolds, which is the focus of this paper, we can obtain Eq.

6.32 by the following sequence of steps:

• Disintegration of the SRB measure on the unstable manifolds. Let Ξ be a

partition of M subordinate to the unstable manifold [169], and let 𝜌0 be the

conditional density of the SRB measure on elements of Ξ. Then, disintegration

results in the following expression for the (𝑛th term in the) linear response to

the unstable perturbation 𝑎𝑉 1,

⟨𝑑(𝐽 ∘ 𝜙𝑛) · 𝑎 𝑉 1, 𝜇0⟩ =

∫︁
M/Ξ

∫︁
Ξ(𝑥)

(︁
𝑑(𝐽 ∘ 𝜙𝑛) · 𝑎 𝑉 1

)︁
∘ 𝒞𝑥,1(𝑡) 𝜌0 ∘ 𝒞𝑥,1(𝑡) 𝑑𝑡 𝑑𝜇̂0(𝑥)

(6.38)

=

∫︁
M/Ξ

∫︁
Ξ(𝑥)

𝑎 ∘ 𝒞𝑥,1(𝑡)
𝑑(𝐽 ∘ 𝜙𝑛 ∘ 𝒞𝑥,1)

𝑑𝑡
(𝑡) 𝜌0 ∘ 𝒞𝑥,1(𝑡) 𝑑𝑡 𝑑𝜇̂0(𝑥).

(6.39)

In the above expression, Ξ(𝑥) is the element of Ξ containing 𝑥, and the quotient

measure of the SRB measure on 𝑀/Ξ is denoted 𝜇̂0.

• Applying integration by parts on the inner integral, we obtain,

⟨𝑑(𝐽 ∘ 𝜙𝑛) · 𝑎 𝑉 1, 𝜇0⟩ =

∫︁
M/Ξ

∫︁
Ξ(𝑥)

𝑑
(︀
(𝑎 𝜌0 𝐽 ∘ 𝜙𝑛) ∘ 𝒞𝑥,1

)︀
𝑑𝑡

(𝑡) 𝑑𝑡 𝑑𝜇̂0(𝑥) (6.40)

−
∫︁
M/Ξ

∫︁
Ξ(𝑥)

𝐽 ∘ 𝜙𝑛 ∘ 𝒞𝑥,1(𝑡)
(︁ 𝑎 ∘ 𝒞𝑥,1(𝑡)
𝜌0 ∘ 𝒞𝑥,1(𝑡)

𝑑(𝜌0 ∘ 𝒞𝑥,1)
𝑑𝑡

(𝑡)

(6.41)

+
𝑑(𝑎 ∘ 𝒞𝑥,1)

𝑑𝑡
(𝑡)
)︁
𝜌0 ∘ 𝒞𝑥,1(𝑡) 𝑑𝑡 𝑑𝜇̂0(𝑥). (6.42)

The first term on the right hand side of the above equation vanishes, as noted

by Ruelle [232][234] for arbitrary dimensional unstable manifolds in Theorem

3.1(b). Applying the divergence theorem on the first term, we obtain integrals

over boundaries of the partition elements, which incur cancellations in the

outer integral.
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• Using the definitions of 𝑏 and 𝑔 in the above equation, we obtain

⟨𝑑(𝐽 ∘ 𝜙𝑛) · 𝑎 𝑉 1, 𝜇0⟩ = −⟨𝐽 ∘ 𝜙𝑛
(︁
𝑎 𝑔 + 𝑏

)︁
, 𝜇0⟩. (6.43)

Eq. 6.32 is now obtained when we rewrite the above ensemble average as an

ergodic average.

237



238



Chapter 7

Space-split sensitivity algorithm for

one-dimensional unstable manifolds

Our earlier attempt at the computation of the Ruelle’s formula (Chapter 5) and our

numerical procedure to differentiate the first CLV in the previous chapter culminate

in the space-split sensitivity or the S3 algorithm in this chapter. The S3 algorithm

transforms Ruelle’s formula into a well-conditioned ergodic-averaging computation.

The decomposition of Ruelle’s formula, and its subsequent transformation, are differ-

ent from that obtained by stable-unstable splitting of the perturbation field, which is

used in Chapter 5. The main motivation for deriving a new decomposition of Ruelle’s

formula, henceforth called the S3 decomposition, is its differentiability on the unsta-

ble manifold, which is lacking for the stable-unstable splitting of the perturbation

field. This differentiabillity on the unstable manifold of the two resulting vector fields

that arise from the S3 decomposition is key to deriving an efficient, trajectory-based

computation.

The S3 decomposition is based on the idea of repeatedly orthogonalizing the con-

ventional tangent equation. One of the resulting terms, which in an abuse of termi-

nology is again called the stable contribution, can be computed using a regularized

tangent equation, similar to in a non-chaotic system. The remaining term, known as

the unstable contribution, is regularized and converted into an efficiently computable

ergodic average.

239



In this process, we develop new algorithms, which may be useful beyond linear

response, to compute the unstable derivatives of the regularized tangent vector field

and the unstable direction. We prove that the S3 algorithm, which combines these

computational ingredients that enter the stable and unstable contributions, converges

like a Monte Carlo approximation of Ruelle’s formula. The algorithm presented here

is hence a first step toward full-fledged applications of sensitivity analysis in chaotic

systems, wherever such applications have been limited due to lack of availability

of long-term sensitivities. The background (section 7.2), targeted at computational

scientists from across disciplines, aims at concisely providing the mathematical pre-

liminaries concerning dynamical systems and ergodic theory used in this thesis. This

chapter is part of a submitted work [67].

7.1 Introduction

We say that a parameterized family of dynamical systems obeys linear response when

the infinite-time averages or ergodic averages of its smooth observables vary differen-

tiably with the parameter. It was shown by Ruelle [232][234] that uniformly hyper-

bolic maps, which are mathematical idealizations of chaotic attractors, follow linear

response; Proposition 8.1 of [118] is a simplified proof using modern transfer operator

techniques. Rigorous proofs of linear response have since been extended to uniformly

hyperbolic flows [235], partially hyperbolic systems [85], dissipative stochastic systems

[126], stochastically perturbed uniformly hyperbolic systems [181] and even to a larger

class of stochastic systems with possibly non-hyperbolic unperturbed dynamics [106],

certain nonuniformly hyperbolic systems [44] and intermittent systems [29][25][21].

From the statistical physics point of view, linear response theory has been found to

be robust in high-dimensional systems [277][276], and has been usefully applied to

chaotic systems across disciplines including climate models [228][223][50], biological

systems (see [55] for a review of linear response in neuronal networks) and turbulent

flows in engineering systems [71][37][208][257].

Linear response of a chaotic system quantifies the proportional change in its long-
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term statistical behavior in response to small parameter perturbations. Apart from

providing phenomenological understanding, this measure of long-term sensitivity is

immensely useful in practical chaotic systems, which are often high-fidelity numerical

simulations, for computational applications such as optimization, uncertainty quan-

tification and parameter selection [83][37][41][71]. Particularly in climate science,

theoretical as well as computational studies of violations of linear response and the

presence of arbitrarily large linear responses [183][186][73][236] are crucial to gain a

better understanding of intermittencies and climate tipping points [18], which are

active areas of research.

Ruelle [232][234] established a formula for linear response or the derivative of

ergodic averages with respect to parameters. However, a direct evaluation of this

formula typically shows a poor convergence rate and is computationally impractical,

as previous works have shown [69][96]. This poor convergence is due to the exponen-

tial growth of infinitesimal perturbations – the so-called butterfly effect – which is

the defining characteristic of chaotic systems. Due to the butterfly effect, the sensi-

tivity of a state at a time 𝑛 into the future, to an infinitesimal perturbation to the

current state in almost any direction, grows exponentially with 𝑛. Now, infinitesimal

parameter perturbations may be thought of infinitesimal perturbations to each state

applied in different tangent directions. Thus, along any trajectory, the sensitivity

to an infinitesimal parameter perturbation also grows exponentially. However, the

average of the sensitivities across all trajectories is a bounded quantity at all times.

This ensemble-averaged sensitivity is, in fact, exponentially decreasing with time in

uniformly hyperbolic systems, and Ruelle’s formula for linear response is a series

summation of these ensemble-averaged sensitivities. But, ensemble averaging expo-

nentially growing quantities is a computationally challenging task that shows poor

convergence.

Traditionally, sensitivities in a dynamical system are estimated by using tangent

or adjoint equation solutions, or through automatic differentiation. Since all these

methods time-evolve infinitesimal perturbations about a reference trajectory, the sen-

sitivities they compute grow exponentially along any trajectory. Hence, conventional
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methods for sensitivity analysis have long been recognized as unsuitable in chaotic

systems for computing linear response. Some methods circumvent the problem of

exponentially growing sensitivities to compute a bounded value for linear response,

but they may exhibit a bias [166][206]. One such method is least-squares shadow-

ing [271][211], in which the shadowing lemma (see e.g. Chapter 18 of [154]) is used

to compute sensitivities along a shadowing orbit. However, since shadowing orbits

may be nonphysical, i.e., ergodic averages along shadowing orbits may not converge

to ensemble averages, the sensitivities computed by least-squares shadowing are not

guaranteed to converge to linear response [61][209].

Moreover, the direct evaluation of Ruelle’s formula may also be thought of as

an adaptation of conventional tangent/adjoint-based sensitivity computations for

chaotic systems. This direct evaluation, known as the ensemble sensitivity approach

[168][96], involves taking a sample average of sensitivities computed by conventional

tangent/adjoint methods. However, as we noted earlier, the number of samples

needed, to reduce the variance in the exponentially growing sensitivities and com-

pute linear response accurately, makes this approach computationally infeasible. In

blended response algorithms [1], the ensemble sensitivity approach for short-time sen-

sitivities is blended with a fluctuation-dissipation theorem-based approximation of the

long-term sensitivities. This approximation is however adhoc since the densities of

the SRB measure on unstable manifolds may not follow the fluctuation-dissipation

theorem-based approximation, even though linear response holds.

The purpose of this chapter is a rigorous computation of linear response in chaotic

dynamical systems. We remark that using transfer operator techniques, a rigorous

computation of linear response has been developed before, but it has been restricted

to low-dimensional expanding maps [22]. Our aim is to develop a numerical method

to evaluate Ruelle’s formula that is scalable to high-dimensional practical systems.

For this reason, we seek a method to compute Ruelle’s formula that is provably

convergent and is a computable ergodic average, which does not involve discretization

of the phase space. The latter property of trajectory-based computation ensures that

the convergence is that of a Monte Carlo computation of Ruelle’s formula, at a rate
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independent of the system dimension.

In this chapter, we develop the space-split sensitivity or the S3 method, which

is a scalable, efficient and rigorous computation of linear response. We prove that

S3 provably converges in uniformly hyperbolic systems, and the convergence rate is

similar to a typical Monte Carlo integration. We focus on uniformly hyperbolic sys-

tems with one-dimensional unstable manifolds, but design S3 keeping in mind future

extensions to systems that have an unstable manifold of arbitrary dimension. To

derive S3, we prove a decomposition of Ruelle’s formula, which is differentiable on

the unstable manifold, into stable and unstable contributions to the overall sensitiv-

ity. Although we refer to the resulting components of linear response as stable and

unstable contributions, note that this is not a stable-unstable splitting of the param-

eter perturbation vector field (Chapter 5), which is known to not be differentiable

on the unstable manifold [221][130]. We develop recursive algorithms to compute the

ingredients of both these components.

The plan for the chapter is as follows. In section 7.2, we introduce Ruelle’s linear

response formula and provide the mathematical background for its decomposition and

subsequent evaluation via the S3 algorithm. Section 7.3 is a concise statement of the

main contributions of this chapter: two theorems concerning the S3 decomposition

and evaluation, and the S3 algorithm. In section 7.4, we derive the S3 decomposition

of Ruelle’s formula. The computation of the stable contribution that results from

the decomposition is discussed in 7.4.3. An alternative expression of the unstable

contribution is derived in section 7.4.4, whose computation is tackled in section 7.5.

The validation of S3 on perturbed Baker’s maps is presented in section 7.6. The

proofs of the two main theorems are split between sections 7.7 and 7.8. Section 7.7

proves the existence of the S3 decomposition and its differentiability in the unstable

direction, while section 7.8 completes the proof of convergence of the S3 algorithm.

In section 7.9, we summarize our contributions and present a roadmap for extending

the present algorithm to systems with higher-dimensional unstable manifolds.

243



7.2 Preliminaries and problem setup

Consider a parameterized family 𝜙𝑠 : 𝑀 →𝑀 of 𝐶3 diffeomorphisms of a Riemannian

manifold 𝑀, which we consider to be specified as a subset of R𝑚. Let 𝑠 be a scalar

parameter that can take a small range of values around a reference value, say 𝑠0.

Corresponding to infinitesimal parameter perturbations at 𝑠0, we define a vector field

𝜒, whose value at 𝑥 ∈𝑀 is given by 𝜒𝑥 := 𝜕𝑠𝜙𝑠(𝜙
−1
𝑠 𝑥, 𝑠0).

Suppose 𝜙𝑠 exhibits linear response at the reference value 𝑠0, which we associate

with the unperturbed dynamics. This means that the parametric derivative of long-

term averages of 𝜙𝑠 exists at the reference value 𝑠0. Thus, at any 𝑠 = 𝑠0 + 𝛿𝑠 close

to 𝑠0, up to first order in 𝛿𝑠, the long-term averages of 𝜙𝑠 can be expressed using

information associated only to the dynamics 𝜙𝑠0 . Let 𝐽 ∈ 𝐶2(𝑀) be an observable of

interest, e.g. a lift or a drag in a numerical simulation of a turbulent flow. We are

interested in a quantitative determination of how the long-term average of 𝐽 responds

to infinitesimal perturbations in 𝑠, at 𝑠0, i.e., to perturbations in the direction 𝜒.

7.2.1 Ergodic theory and linear response

The infinite-time average of 𝐽 is defined as ⟨𝐽⟩(𝑥) := lim𝑁→∞(1/𝑁)
∑︀𝑁−1

𝑛=0 (𝐽∘𝜙𝑛
𝑠 )(𝑥, 𝑠),

for 𝑥 ∈ 𝑀. A probability distribution over the states on 𝑀, 𝜇𝑠 is stationary or 𝜙𝑠-

invariant, when 𝜇𝑠(𝜙
−1
𝑠 𝐴) = 𝜇𝑠(𝐴), for any Borel subset 𝐴 ⊆ 𝑀. When 𝜇𝑠 is an

ergodic, 𝜙𝑠-invariant, physical probability distribution for 𝜙𝑠, infinite-time averages,

also known as ergodic averages, are equal to expectations with respect to 𝜇𝑠, at

Lebesgue almost every 𝑥 in the basin of attraction of 𝜙𝑠. The expectation or ensem-

ble average of an observable 𝐽 with respect to 𝜇𝑠, which is the Lebesgue integral with

respect to the distribution 𝜇𝑠, is written as ⟨𝐽, 𝜇𝑠⟩.

That is, in ergodic systems, ⟨𝐽⟩(𝑥, 𝑠) is independent of 𝑥 – it is only a function

of 𝑠 – and equal to ⟨𝐽, 𝜇𝑠⟩ at almost every 𝑥 in a set of full Lebesgue measure.

The quantity we wish to compute is linear response at 𝑠0, which is the parametric

derivative of the ergodic/ensemble average, 𝑑𝑠|𝑠0⟨𝐽, 𝜇𝑠⟩. When 𝐽 explicitly depends

on 𝑠 and the dependence is smooth, 𝑑𝑠⟨𝐽, 𝜇𝑠⟩ = ⟨𝐽, 𝜕𝑠𝜇𝑠⟩ + ⟨𝜕𝑠𝐽, 𝜇𝑠⟩. The second
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term, ⟨𝜕𝑠𝐽, 𝜇𝑠⟩ is simply an ergodic/ensemble average of 𝜕𝑠𝐽, which can be computed,

using its definition, along almost every orbit:

⟨𝜕𝑠|𝑠0𝐽, 𝜇𝑠0⟩ = lim
𝑁→∞

(1/𝑁)
𝑁−1∑︁
𝑛=0

(𝜕𝑠𝐽)(𝜙𝑛
𝑠0
𝑥, 𝑠0),

for Lebesgue almost every 𝑥 on 𝑀. Since this does not pose a computational challenge,

we neglect the explicit dependence of 𝐽 on 𝑠, and focus on the first term, 𝑑𝑠|𝑠0⟨𝐽, 𝜇𝑠⟩ =

⟨𝐽, 𝜕𝑠|𝑠0𝜇𝑠⟩. From here on, we denote linear response at 𝑠0 simply as ⟨𝐽, 𝜕𝑠𝜇𝑠⟩, for

brevity.

7.2.2 Tangent dynamics

The tangent space at 𝑥 ∈𝑀 , denoted 𝑇𝑥𝑀 , is the space of all infinitesimal perturba-

tions to 𝑥, which can be identified with R𝑚. A vector field on 𝑀 , which is a direction

of infinitesimal perturbation to the state at each point on 𝑀 , can be considered as a

map from 𝑀 to R𝑚. If 𝑣 is a vector field and 𝑥 ∈ 𝑀 , then 𝑣𝑥 ∈ 𝑇𝑥𝑀 ≡ R𝑚 denotes

the value of the vector field at 𝑥. Fixing 𝑠 at its reference value, we denote 𝜙 the map

𝜙𝑠0 . Similarly, we refer to the distribution 𝜇𝑠0 simply as 𝜇.

The matrix 𝑑𝜙𝑛 gives the pushforward of a vector field by 𝜙𝑛. That is, 𝑤 = 𝑑𝜙𝑛𝑣 if

𝑤𝜙𝑛𝑥 = 𝑑𝜙𝑛
𝑥 𝑣𝑥. We write 𝑑𝜙1 simply as 𝑑𝜙. In the context of computations, we often

fix a particular reference trajectory, say {𝑥𝑛}, where each 𝑥𝑛 is sampled according to

𝜇. We denote values of a vector field 𝑣 along the reference trajectory using 𝑣𝑛 := 𝑣𝑥𝑛

for short; similarly, we write (𝑑𝜙)𝑛 to denote the value of 𝑑𝜙 at 𝑥𝑛. The homogeneous

tangent equation tracks the pushforward by 𝜙𝑛 along a fixed trajectory,

𝑢𝑛+1 = (𝑑𝜙)𝑛 𝑢𝑛, 𝑛 ∈ Z+. (7.1)

At every iteration of the homogeneous tangent equation, starting with 𝑢0 ̸= 0 ∈ R𝑚,

the vector field 𝑢 is updated to 𝑑𝜙 𝑢. When we add a source term to Eq. 7.1, we

refer to the resulting equation as the inhomogeneous tangent equation. For example,

when the source term is the parameter perturbation field, 𝜒 := (𝜕𝑠𝜙𝑠)(𝜙
−1
𝑠0
·, 𝑠0), the
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inhomogeneous tangent equation is the conventional tangent equation that is standard

in sensitivity analysis,

𝑢𝑛+1 = (𝑑𝜙)𝑛𝑢𝑛 + 𝜒𝑛+1. (7.2)

In this tangent equation, at every iteration, the vector field 𝑢 is updated to 𝑑𝜙𝑢+𝜒. In

tangent sensitivity analysis, the parametric derivative of time-averages, 𝜕𝑠(1/𝑁)
∑︀𝑁−1

𝑛=0 (𝐽∘

𝜙𝑛
𝑠 )(𝑥0, 𝑠0), is usually computed using inhomogeneous tangent solutions (Eq. 7.2) as

1

𝑁

𝑁−1∑︁
𝑛=0

𝜕𝑠(𝐽 ∘ 𝜙𝑛
𝑠 )(𝑥0, 𝑠0) =

1

𝑁

𝑁−1∑︁
𝑛=0

𝑑𝐽(𝑥𝑛) · 𝑢𝑛.

Everywhere, 𝑑 denotes the gradient operator in R𝑚. For example, in the above

equation, 𝑑𝐽(𝑥𝑛) = (𝑑𝐽)𝑛 ∈ T*
𝑥𝑛
𝑀 ≡ R𝑚 refers to the gradient of 𝐽 evaluated at the

point 𝑥𝑛.

7.2.3 Chaotic systems

The Oseledets multiplicative ergodic theorem (OMET) says that the homogeneous

tangent solutions (Eq. 7.1) grow/decay asymptotically. Further, this asymptotic

growth/decay is exponential at a finite number of rates, called the Lyapunov expo-

nents, which, in our setting of ergodic systems, are independent of the starting point

𝑥0, at 𝜇𝑠 almost every 𝑥0. We denote them in descending order as 𝜆1 > 𝜆2 > ... > 𝜆𝑝,

with 𝑝 ≤ 𝑑. A chaotic system, by definition, exhibits at least one positive Lyapunov

exponent.

The tangent space at 𝜇-almost every point 𝑥 ∈ 𝑀 has a direct sum decomposi-

tion, 𝑇𝑥𝑀 = ⊕𝑖≤𝑝𝐸
𝑖
𝑥, with the subspace 𝐸𝑖

𝑥 of tangent vectors having the asymptotic

growth/decay rate 𝜆𝑖. In other words, every tangent vector 𝑣𝑥 belonging to the sub-

space 𝐸𝑖
𝑥 is such that lim𝑛→∞(1/𝑛) log ‖𝑑𝜙𝑛

𝑥 𝑣𝑥‖ = 𝜆𝑖. At 𝜇-almost every 𝑥0, almost

every choice of 𝑢0 ∈ R𝑚 will have a non-zero component on the tangent subspace

corresponding to the largest positive Lyapunov exponent. Hence, in chaotic systems,

homogeneous tangent solutions starting from every initial condition 𝑢0 grow expo-
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nentially in time. That is, for almost every 𝑢0 = 𝑢(𝑥0), ‖𝑢𝑛‖ ∼ 𝒪(𝑒𝜆1𝑛), with 𝜆1 > 0,

for large 𝑛. The exponent 𝜆1, which determines the asymptotic growth factor of the

tangent solutions, is the largest among the Lyapunov exponents.

7.2.4 Uniform hyperbolicity

In this chapter, we consider our 𝐶3 diffeomorphism 𝜙 : 𝑀 → 𝑀 to be equipped

with a compact, invariant, hyperbolic attractor Λ, which contains a one-dimensional

unstable manifold. That is, Λ is a compact set and 𝜙(Λ) = Λ. We say Λ is a hyperbolic

set for 𝜙 if there exist constants 𝐶 > 0 and 𝜆 ∈ (0, 1) such that, at every point 𝑥 ∈𝑀,

the tangent space 𝑇𝑥𝑀 has a direct sum decomposition 𝑇𝑥𝑀 = 𝐸𝑢
𝑥 ⊕ 𝐸𝑠

𝑥, where

• 𝐸𝑢
𝑥 and 𝐸𝑠

𝑥 are 𝜙−invariant, or covariant, subspaces. That is, 𝑑𝜙𝑥(𝐸𝑢
𝑥) = 𝐸𝑢

𝜙(𝑥)

and 𝑑𝜙𝑥(𝐸𝑠
𝑥) = 𝐸𝑠

𝜙(𝑥).

• 𝐸𝑢
𝑥 is the 1-dimensional unstable subspace consisting of all 𝑣 ∈ 𝑇𝑥𝑀 such that

‖𝑑𝜙𝑛
𝑥 𝑣‖ ≤ 𝐶 𝜆𝑛 ‖𝑣‖ , (7.3)

for all 𝑛 ∈ Z−, and,

• 𝐸𝑠
𝑥 is the (𝑚− 1)-dimensional stable subspace consisting of all 𝑣 ∈ 𝑇𝑥𝑀 such

that

‖𝑑𝜙𝑛
𝑥 𝑣‖ ≤ 𝐶 𝜆𝑛 ‖𝑣‖ (7.4)

for all 𝑛 ∈ Z+.

Throughout, we use the shorthand 𝑑𝜙𝑥 to write the differential of 𝜙 at 𝑥, which is

a linear map from 𝑇𝑥𝑀 , the tangent space at 𝑥, to 𝑇𝜙𝑥𝑀 , the tangent space at 𝜙𝑥.

Using the standard basis of R𝑚, 𝑑𝜙𝑥 can be represented as an 𝑚×𝑚 matrix.

Notation 1. For convenience, we write 𝑓𝑥 to denote a scalar, vector or tensor field

𝑓 evaluated at the point 𝑥 ∈𝑀.
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7.2.5 The SRB measure

An ergodic, 𝜙𝑠−invariant, physical measure, also known as an SRB measure [281],

is guaranteed to exist in our setting of uniformly hyperbolic systems. Apart from

𝜙𝑠−invariance, we use the ergodicity of the map 𝜙𝑠 with respect to 𝜇𝑠, which implies

that there is no subset of the attractor, other than itself, that is invariant under

the dynamics and has full 𝜇𝑠 measure. We also employ the physicality of the SRB

measure. This means that ergodic averages starting from Lebesgue-a.e. initial condi-

tion chosen in an open set containing the attractor converge to expected values with

respect to 𝜇𝑠.

We also exploit exponential decay of correlations with respect to the SRB measure

enjoyed by observables in uniformly hyperbolic systems [74][175][280]. This means

that, for two Hölder continuous observables 𝐽 and 𝑓 , there is some 𝑐 > 0 and 𝛿 ∈

(0, 1) so that |⟨𝐽 ∘ 𝜙𝑛 𝑓⟩ − ⟨𝐽⟩⟨𝑓⟩| ≤ 𝑐 𝛿𝑛, for all 𝑛 ∈ Z+. In the S3 algorithm, we

often deal with Hölder continuous functions that have zero expectation, in which

case, we use |⟨𝐽 ∘ 𝜙𝑛 𝑓⟩| ≤ 𝑐 𝛿𝑛. As a result of exponential decorrelation, Hölder

observables also satisfy the central limit theorem (CLT), and the law of the iterated

logarithm, which implies that for almost every 𝑥 ∈𝑀, the error in the 𝑁 -time ergodic

average of a Hölder observable 𝐽 declines as 𝒪(
√

log log𝑁/
√
𝑁): |(1/𝑁)

∑︀𝑁−1
𝑛=0 𝐽𝜙𝑛𝑥−

⟨𝐽⟩| ≤ 𝑐
√

log log𝑁/
√
𝑁, for large 𝑁 and some 𝑐 > 0. The iterated logarithmic

factor,
√

log log𝑁, does not significantly alter the convergence rate of ergodic averages

from −0.5, like a Monte Carlo estimation of ⟨𝐽⟩. Thus, in this chapter, we write the

error convergence of ergodic averages (of Hölder observables) as 𝒪(1/
√
𝑁), where the

iterated logarithmic factor is implicit.

Further, we use the fact that the SRB measure, although typically singular with

respect to Lebesgue measure on R𝑚, has absolutely continuous conditional measures

on the unstable manifold. We shall next elaborate on this property as used in the

derivation of the S3 algorithm (section 7.3.1).
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7.2.6 Parameterization of unstable manifolds

The unstable subspace is tangent to the local unstable manifolds. Given an 𝜖 > 0, a

local unstable manifold at an 𝑥 ∈ Λ, 𝑈𝑥,𝜖, contains points whose backward orbits lie

𝜖-close to the backward orbit of 𝑥. That is,

𝑈𝑥,𝜖 =
{︁
𝑥′ ∈𝑀 : ‖𝑥−𝑛 − 𝑥′

−𝑛‖ ≤ 𝜖, ∀ 𝑛 ∈ Z+; lim
𝑛→∞

‖𝑥−𝑛 − 𝑥′
−𝑛‖ = 0

}︁
.

Since 𝐸𝑢
𝑥 are one-dimensional subspaces, the local unstable manifolds are also one-

dimensional. According to the stable-unstable manifold theorem (see e.g. Theorem

6.2.8 of [154], [89]), the local unstable manifolds are embedded images of Euclidean

spaces of the same dimension, which in this case are real lines.

In this chapter, we work with a particular 𝐶1 parameterization of local unstable

manifolds. Let Ξ be a measurable partition of Λ, and let Ξ𝑥 denote the element

of the partition containing 𝑥. At each 𝑥, we can choose an 𝜖 depending on 𝑥 so

that Ξ𝑥 contains a local unstable manifold at every 𝑥. We choose a parameterization

Φ𝑥 : [−𝜖𝑥, 𝜖𝑥]→ Ξ𝑥 that satisfies the following properties:

1. Φ𝑥(0) = 𝑥

2. 𝑑𝜉Φ
𝑥(𝜉) = 𝑞𝑥′ , where Φ𝑥(𝜉) = 𝑥′, for all 𝑥′ in the image of Φ𝑥.

Here 𝑞𝑥′ ∈ 𝑇𝑥′𝑀 is the unit vector in the one-dimensional tangent subspace 𝐸𝑢
𝑥′ .

From 2., it follows that
⃦⃦
𝑑𝜉Φ

𝑥(Φ𝑥−1(𝑥′))
⃦⃦

= 1, for all 𝑥′ in the image of Φ𝑥. Hence

we refer to the pointwise coordinate maps Φ𝑥 as the unit speed parameterization of

local unstable manifolds.

7.2.7 Iterative differentiation on the unstable manifold

The orbits of 𝜙−1 starting in Ξ𝑥 generate corresponding orbits on the real line by this

parameterization. More concretely, we define the dynamics on the real line, through

the map (𝜙𝑥)−1 :=
(︁

Φ(𝜙−1𝑥)
)︁−1

∘𝜙−1∘Φ𝑥. We frequently use the following relationship

that can be derived using the chain rule, where 𝑑𝜉 denotes differentiation with respect
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to the coordinate 𝜉:

𝑑𝜉 (𝜙𝑥)−1 (𝜉) =
1

𝛼𝑥′
, (7.5)

Here Φ𝑥(𝜉) = 𝑥′, and 𝛼 is the scalar field that represents the local expansion factor.

Definition 2. We define a scalar field 𝛼 : 𝑀 → R+ to capture the local expansion of

unstable tangent vectors. At each 𝑥 ∈𝑀,

𝛼𝑥 = ‖𝑑𝜙𝜙−1𝑥𝑞𝜙−1𝑥‖. (7.6)

Notice that the derivative of (𝜙𝑥)−1 with respect to the unstable coordinate 𝜉

does not depend on the base point of the coordinate system, 𝑥. This fact is crucial

to the derivation of the S3 algorithm, where we prominently differentiate scalar and

vector fields “on unstable manifolds” of a reference orbit. We now describe what

this differentiation means in this chapter, and a formula useful for performing this

differentiation recursively.

Let 𝑥0 ∈𝑀 be a fixed 𝜇-typical point whose forward orbit serves as the reference

orbit for our computation. Let 𝑓 : 𝑀 → R be a scalar field, and ℎ be the scalar

field that represents the derivative of 𝑓 on the unstable manifold. We define this

function, using our coordinate systems centered on {𝑥𝑛} as follows, ℎ𝑥′
𝑛

:= 𝑑𝜉(𝑓 ∘

Φ𝑥𝑛)((Φ𝑥𝑛)−1(𝑥′
𝑛)), for some 𝑥′

𝑛 ∈ Ξ𝑥𝑛 .

Now suppose we wish to compute ℎ recursively along an orbit; the situation where

such a computation arises in the S3 algorithm is discussed in section 7.5. To compute

the values ℎ𝑥𝑛 using {ℎ𝑥𝑚}𝑚<𝑛 , we use the following iteration that in turn uses Eq.

7.5,

𝑑𝜉(𝑓 ∘ 𝜙 ∘ Φ𝑥)(0) = 𝑑𝜉(𝑓 ∘ Φ𝜙𝑥 ∘ 𝜙𝜙𝑥)(0)

= ℎ𝜙𝑥 𝛼𝜙𝑥. (7.7)

We sometimes use the notation 𝜕𝜉𝑓 to denote ℎ, which we simply refer to as the

unstable derivative of 𝑓 .
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7.2.8 Conditional density of the SRB measure on unstable

manifolds

An important property of the SRB measure, which guarantees its physicality, is its

absolute continuity along unstable manifolds [281]. To define this property, we must

introduce conditional densities of the SRB measure on the unstable manifold, which

we denote 𝜌. We may define the function 𝜌 using our parameterization {Φ𝑥} and

disintegration to yield a family of functions {𝜌𝑥} . It is worth noting that changes to

the parameterization only affect the normalization constant of the densities 𝜌𝑥. By

the disintegration of SRB measure [169][76] on the measurable partition Ξ , there exist

i) a family of conditional measures denoted 𝜇𝑥, at 𝜇-a.e. 𝑥 ∈ 𝑀, that are supported

on Ξ𝑥, and ii) a quotient measure 𝜇̂ on 𝑀/Ξ, such that, for all Borel subsets 𝐴 ⊆𝑀,

𝜇(𝐴) =

∫︁
𝑀/Ξ

𝜇𝑥(𝐴 ∩ Ξ𝑥) 𝑑𝜇̂(𝑥). (7.8)

An aside on the notation used henceforth: a phase point 𝑥 ∈ 𝑀 that appears in the

superscript indicates the point at which our pointwise coordinate system is centered;

this is distinct from its appearance on a subscript, which always means evaluation

of a scalar/vector field at 𝑥. Let 𝜈𝑥 be the normalized pushforward of the Lebesgue

measure (uniform probability distribution) on [0, 1], by Φ𝑥. The absolute continuity

property of the SRB measure on the unstable manifold means that the conditional

measure 𝜇𝑥 is absolutely continuous with respect to 𝜈𝑥. Thus, a scalar function 𝜌𝑥 can

be defined as the probability density of 𝜇𝑥. In particular, the unnormalized density 𝜌𝑥u

of 𝜇𝑥 has been derived by Pesin [218][148] to be,

𝜌𝑥u(𝑥′) :=
∞∏︁
𝑘=0

𝛼𝜙−𝑘𝑥

𝛼𝜙−𝑘𝑥′
, (7.9)

where the local expansion factor 𝛼 is as defined in Eq. 7.6.

Definition 3. The probability density of conditional SRB measures on the unstable

manifold is defined as 𝜌𝑥(𝑥′) = 𝜌𝑥u(𝑥′)/𝜌𝑥, for 𝑥′ ∈ Ξ𝑥, where 𝜌𝑥 :=
∫︀
Ξ𝑥

𝜌𝑥u(𝑥′) 𝑑𝜈𝑥(𝑥′),

is the normalization constant.
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Using the above definition of the density, the disintegration of the SRB measure

on the unstable manifold (Eq. 7.8) gives, for any smooth observable 𝑓 ,

⟨𝑓⟩ =

∫︁
𝑀/Ξ

∫︁
Ξ𝑥

𝑓(𝑥′) 𝜌(𝑥′) 𝑑𝜈𝑥(𝑥′) 𝑑𝜇̂(𝑥). (7.10)

7.2.9 Linear response of uniformly hyperbolic systems

Ruelle [232][234] showed that linear response holds and is given by the following

formula in uniformly hyperbolic attractors,

⟨𝐽, 𝜕𝑠𝜇𝑠⟩ =
∞∑︁
𝑘=0

⟨𝑑(𝐽 ∘ 𝜙𝑘) · 𝜒, 𝜇⟩, (7.11)

where, as usual, we have dropped the subscript on 𝜙 and 𝜇 to indicate their respective

values at 𝑠 = 𝑠0. According to Ruelle’s formula (7.11), linear response or the paramet-

ric derivative of statistics, is a series summation of ensemble averages. The sensitivity

of the function 𝐽 ∘ 𝜙𝑘 to the parameter perturbation 𝜒 is given by 𝑑(𝐽 ∘ 𝜙𝑘) · 𝜒, and

the 𝑘th term in Ruelle’s formula is an ensemble average of this instantaneous sensi-

tivity. With probability 1, the instantaneous sensitivity, 𝑑(𝐽 ∘ 𝜙𝑘) · 𝜒, grows in norm

exponentially with 𝑘 since 𝜒 almost surely has a non-zero component in 𝐸𝑢. But, due

to cancellations over phase space, the ensemble average is bounded at all 𝑘. Further,

the convergence of Ruelle’s series implies that the ensemble average of instantaneous

sensitivities decreases asymptotically with time and converges to zero.

Numerically, the direct evaluation of Ruelle’s formula (7.11) involves approximat-

ing each ensemble average (each term in the series) as a sample average of instanta-

neous sensitivities. These instantaneous sensitivities are, in turn, computed by using

the conventional tangent equation (section 7.2.2) or when the dimension of the pa-

rameter space is large, using the adjoint equation [211][96][69]. One may also use

automatic differentiation in the forward and reverse mode to approximate the tan-

gent and adjoint solutions respectively. However, the resulting sensitivity from any

linear perturbation method increases exponentially with 𝑘 at the rate of the largest

Lyapunov exponent, 𝜆1; hence considering the sample average of the sensitivities as
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a random variable, its variance increases as 𝒪(𝑒2𝜆1𝑘). Thus, the number of samples

needed to approximate the integral accurately rapidly increases with 𝑘. On the other

hand, thresholding the series computation (Eq. 7.11) at a small value of 𝑘 to reduce

the variance introduces a bias. This bias-variance trade-off has been analyzed in pre-

vious works [96][69], and the direct evaluation of Ruelle’s formula rendered infeasible

in practical systems.

7.3 Main results: S3 decomposition and computa-

tion of Ruelle’s response formula

The two key ideas that enable an efficient, rigorous computation of Ruelle’s for-

mula are i) a particular decomposition of the perturbation field 𝜒 that splits Ruelle’s

formula into stable and unstable contributions, and ii) the development of iterative,

ergodic-averaging evaluations of these two components. The first main result concerns

the specific decomposition of a given parameter perturbation that we show enables

an efficient computation.

Theorem 2. A differentiable vector field 𝜒 has a sequence of decompositions 𝜒 =

𝑎𝑛 𝑞 + (𝜒 − 𝑎𝑛 𝑞), where 𝑞 is the unit vector field tangent to the one-dimensional

unstable manifold, such that

1. the sequence of vector fields, {𝑣𝑛}𝑛∈Z+ that satisfies

𝑣𝑛+1
𝑥 := 𝑑𝜙𝜙−1𝑥𝑣

𝑛
𝜙−1𝑥 + (𝜒𝑥 − 𝑎𝑛+1

𝑥 𝑞𝑥), 𝑥 ∈𝑀,𝑛 ∈ Z+, (7.12)

with 𝑣0 being any bounded vector field that is differentiable on the unstable

manifold, converges uniformly; the sequence of scalar fields {𝑎𝑛} is chosen to

orthogonalize 𝑣𝑛 to the unstable manifold: 𝑣𝑛𝑥 · 𝑞𝑥 = 0, at all 𝑥 ∈𝑀 and for all

𝑛 ∈ Z+;

2. the sequence {𝑎𝑛} is differentiable on the unstable manifold and uniformly

converging; and,
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3. the sequence of unstable derivatives of {𝑎𝑛}, namely, {𝑏𝑛 := 𝜕𝜉𝑎
𝑛} converges

uniformly.

Let the limits of the sequences we introduced in Theorem 2 be denoted as follows:

𝑎 := lim𝑛→∞ 𝑎𝑛, 𝑣 := lim𝑛→∞ 𝑣𝑛 and 𝑏 := lim𝑛→∞ 𝑏𝑛. From Theorem 2-2. and 2-3.,

the scalar field 𝑏 is the unstable derivative of 𝑎, i.e., 𝑏 = 𝜕𝜉𝑎. We use the sequence {𝑣𝑛}

to split Ruelle’s formula into two computable infinite series. Fixing some finite 𝐾 that

controls the accuracy of the implementation, the S3 decomposition can be construed

as a sequence of decompositions of 𝜒 into 𝜒 = (𝑎𝐾−𝑘 𝑞) + (𝜒− 𝑎𝐾−𝑘 𝑞), 0 ≤ 𝑘 < 𝐾,

wherein the former component is tangent to the unstable manifold. This gives the

following decomposition, which converges to Ruelle’s formula, as 𝐾 →∞,

⟨𝐽, 𝜕𝑠𝜇𝑠⟩ = lim
𝐾→∞

𝐾−1∑︁
𝑘=0

⟨𝑑(𝐽 ∘ 𝜙𝑘) · (𝜒− 𝑎𝐾−𝑘 𝑞), 𝜇⟩+ lim
𝐾→∞

𝐾−1∑︁
𝑘=0

⟨𝑑(𝐽 ∘ 𝜙𝑘) · 𝑎𝐾−𝑘 𝑞, 𝜇⟩.

(7.13)

We refer to the first term on the right hand side as the stable contribution, and the

second as the unstable contribution to the overall sensitivity. In section 7.4, we use

Theorem 2 to show that the stable and unstable contributions can be alternatively

expressed in the following forms that are amenable to their computation.

⟨𝐽, 𝜕𝑠𝜇𝑠⟩ = ⟨𝑑𝐽 · 𝑣, 𝜇⟩ − lim
𝐾→∞

𝐾−1∑︁
𝑘=0

⟨𝐽 ∘ 𝜙𝑘 (𝑎𝐾−𝑘 𝑔 + 𝑏𝐾−𝑘), 𝜇⟩, (7.14)

where we have introduced the logarithmic density gradient 𝑔, which is defined, for

𝑥 ∈ Ξ𝑥′ , as

𝑔𝑥 :=
1

𝜌𝑥′(𝑥)

𝑑(𝜌𝑥
′ ∘ Φ𝑥′

)

𝑑𝜉
((Φ𝑥′

)−1(𝑥)). (7.15)

The intuition for the S3 decomposition is developed in section 7.4, and the proof

of Theorem 2 is presented in section 7.7.
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7.3.1 The S3 algorithm

The S3 algorithm is an efficient, rigorous computation of the above split Ruelle’s

formula (Eq. 7.14). The computation of the different ingredients of this new formula

as an efficient ergodic average is the other major contribution of this chapter. In

particular, we develop iterative algorithms to compute 𝑣, 𝑔 and 𝑏 along trajectories.

Before we detail the S3 algorithm, we recall an important notation used throughout

this chapter.

Notation 2. When a 𝜇-typical phase point 𝑥0 ∈ 𝑀 is fixed, the subscript 𝑛 applied

to a scalar function or a vector field, denoted 𝑓 , refers to its corresponding value at

𝑥𝑛. That is, when 𝑥0 ∈𝑀 is fixed, 𝑓𝑛 := 𝑓𝜙𝑛𝑥0 = 𝑓𝑥𝑛 .

The S3 algorithm is as follows:

1. Obtain a long primal trajectory 𝑥−𝐾′ , · · · , 𝑥𝑁−1, where 𝑥𝑛+1 = 𝜙𝑥𝑛, −𝐾 ′ ≤

𝑛 ≤ (𝑁 − 1), with 𝑥−𝐾′ chosen 𝜇-a.e.

2. Obtain, at each point 𝑥𝑛, the unit tangent vector to the unstable manifold, 𝑞𝑛.

The following procedure converges exponentially in 𝑛 to the true value of 𝑞𝑛.

Solve the homogeneous tangent equation with repeated normalization. That

is, solve

𝛼𝑛+1 𝑞𝑛+1 = (𝑑𝜙)𝑛 𝑞𝑛, 𝑛 = −𝐾 ′, · · · , 0, 1, · · · , (7.16)

with 𝑞0 being set to a random vector in R𝑚, and 𝛼𝑛+1 = ‖(𝑑𝜙)𝑛 𝑞𝑛‖.

3. Solve for 𝑣𝑛 the following inhomogeneous tangent equation, which repeatedly

projects 𝑣𝑛 out of the unstable subspace,

𝑣𝑛+1 = (𝑑𝜙)𝑛 𝑣𝑛 + 𝜒𝑛+1 − 𝑎𝑛+1𝑞𝑛+1, 𝑛 = −𝐾 ′, · · · , 0, 1, · · · , (7.17)

where 𝑎𝑛+1 is such that 𝑣𝑛+1 · 𝑞𝑛+1 = 0. The initial condition 𝑣−𝐾′ is set to

0 ∈ R𝑚. This equation is henceforth called the regularized tangent equation.
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The error in the solutions 𝑣𝑛 when compared to the true value of the vector

field 𝑣 (Theorem 2) decreases exponentially with 𝑛 (as shown in Lemma 3).

4. Solve the following second-order tangent equation for 𝑝𝑛, starting with 𝑝−𝐾′ =

0 ∈ R𝑚,

𝑝𝑛+1 =
(𝑑2𝜙)𝑛(𝑞𝑛, 𝑞𝑛) + (𝑑𝜙)𝑛𝑝𝑛

𝛼2
𝑛+1

, 𝑛 = −𝐾 ′, · · · , 0, 1, · · · , (7.18)

The solutions 𝑝𝑛 converge exponentially with 𝑛 to the true values of the vector

field 𝑝 along the orbit (Lemma 4).

5. Solve the following recursive second-order tangent equation for 𝑦𝑛, for each

𝑛 ∈ Z+,

𝑦𝑛+1 =
(𝑑2𝜙)𝑛(𝑞𝑛, 𝑣𝑛) + (𝑑𝜙)𝑛𝑦𝑛

𝛼𝑛+1

+ (𝑑𝜒)𝑛+1 𝑞𝑛+1 (7.19)

− 𝑐𝑛+1𝑞𝑛+1 − 𝑎𝑛+1𝑝𝑛+1, 𝑛 = −𝐾 ′, · · · , 0, · · · ,

where the scalar 𝑐𝑛+1 is found using the relationship 𝑦𝑛+1 ·𝑞𝑛+1 = −𝑣𝑛+1 ·𝑝𝑛+1.

This relationship follows from taking the unstable derivative of 𝑣𝑛+1 ·𝑞𝑛+1 = 0.

The 𝑦𝑛 and 𝑐𝑛 computed using this procedure also converge exponentially with

𝑛 to their true values, as shown in Lemma 6 and 7 respectively.

6. Compute the unstable contribution as the following ergodic average:

⟨𝐽, 𝜕𝑠𝜇𝑠⟩u ≈ −
1

𝑁

𝐾−1∑︁
𝑘=0

𝑁−1∑︁
𝑛=0

𝐽𝑛+𝑘𝑐𝑛. (7.20)

7. Compute the stable contribution as the following ergodic average:

⟨𝐽, 𝜕𝑠𝜇𝑠⟩s ≈
1

𝑁

𝑁−1∑︁
𝑛=0

(𝑑𝐽)𝑛 · 𝑣𝑛. (7.21)

8. The output of the S3 algorithm is the sum of the stable and unstable contri-

butions, ⟨𝐽, 𝜕𝑠𝜇𝑠⟩u + ⟨𝐽, 𝜕𝑠𝜇𝑠⟩s.

256



The following theorem establishes the convergence of the above S3 algorithm.

Theorem 3. The ergodic averages in Eq. 7.20 and Eq. 7.21 converge to the unstable

and stable contributions respectively. In particular,

1. for 𝜇-a.e. 𝑥0 and for almost every 𝑞0,

⟨𝐽, 𝜕𝑠𝜇𝑠⟩u = − lim
𝐾→∞

lim
𝑁→∞

𝐾−1∑︁
𝑘=0

1

𝑁

𝑁−1∑︁
𝑛=0

𝐽𝑛+𝑘 𝑐𝑛; (7.22)

2. And, for 𝜇-a.e. 𝑥0,

⟨𝐽, 𝜕𝑠𝜇𝑠⟩s = lim
𝑁→∞

1

𝑁

𝑁−1∑︁
𝑛=0

(𝑑𝐽)𝑛 · 𝑣𝑛. (7.23)

We prove Theorem 3 in section 7.8. The efficiency of the S3 algorithm in compar-

ison to a direct evaluation of Ruelle’s formula (Eq. 7.11) stems from the following.

The integrand in Ruelle’s original series increases in norm exponentially with 𝑘. This

makes the ergodic averaging approximation of the integral computationally ineffi-

cient, as we noted in section 7.2.9. By contrast, the norm of the integrand in the S3

modification of the formula (Eq. 7.14) is uniformly bounded in both the stable and

unstable contributions. Thus, efficient ergodic-averaging approximations are possible

for the S3 formula (Eq. 7.14).

7.4 Derivation and computation of the S3 formula

In this section and the next, we describe the S3 decomposition of Ruelle’s formula

(Eq. 7.13), the derivation of its regularized form (Eq. 7.14), and the computation of

the latter. In order to derive an efficient computation of Ruelle’s formula, we split

Ruelle’s formula into two parts, using a particular decomposition of the vector field.

The contribution to the overall sensitivity made by the unstable component, which is

aligned with 𝑞, is called the unstable contribution; the remaining term is the stable

contribution (Eq. 7.13).
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However, we do not decompose 𝜒 into its stable and unstable components. That is,

although 𝑎𝑞 ∈ 𝐸𝑢 clearly, 𝑎 is not chosen such that 𝜒−𝑎𝑞 belongs to 𝐸𝑠. Instead, the

scalar field 𝑎 is chosen so as to be differentiable on the unstable manifold and such that

both the stable and unstable contributions lead to well-conditioned computations.

The significance of the differentiability of 𝑎 on the unstable manifold will be clear in

the derivation below.

7.4.1 Regularizing tangent equation solutions

The S3 decomposition can be motivated as a means of regularizing the solutions of

a conventional tangent equation. Fixing a reference orbit {𝑥𝑛}𝑛∈Z+ , consider the

conventional tangent equation (Eq. 7.2), which is a recursive equation for 𝑢𝑛 :=

(𝜕𝑠𝜙
𝑛
𝑠 )(𝑥0, 𝑠), starting from 𝑢0 = 0 ∈ R𝑚. As noted in section 7.2.2, this equation

gives the evolution of a tangent vector corresponding to the parameter perturbation

along a fixed trajectory, {𝑥𝑛}𝑛∈Z+ . By construction (Eq. 7.2), we can see that 𝑢𝑛 =∑︀𝑛−1
𝑘=0(𝑑𝜙𝑘)𝑛−𝑘 𝜒𝑛−𝑘. By definition of chaos (section 7.2.3), ‖𝑑𝜙𝑘

𝑥𝜒𝑥‖ ∼ 𝒪(𝑒𝜆1𝑘), for

almost every 𝑥 ∈ 𝑀, and almost every perturbation 𝜒𝑥 ∈ R𝑚. Hence, for large 𝑛,

‖𝑢𝑛‖ ∼ 𝒪(𝑒𝜆1𝑛) for almost every perturbation 𝜒. On the other hand, if we projected

out the unstable component of the tangent solution at each timestep, the solution

does not exhibit exponential growth. That is, the following iteration is stable

𝑣𝑛+1 = (𝑑𝜙)𝑛𝑣𝑛 + (𝜒𝑛+1 − 𝑎𝑛+1𝑞𝑛+1), (7.24)

where 𝑎𝑛+1 is such that 𝑣𝑛+1 · 𝑞𝑛+1 = 0, for all 𝑛 ∈ Z+. That is, the solution 𝑣𝑛 of

the above tangent equation along with the repeated projections out of the unstable

subspace, is in 𝐸𝑢⊥
𝑥𝑛

at each 𝑛. We refer to the solutions {𝑣𝑛} as regularized tangent

solutions. With this stable iterative procedure as the motivation, we derive a splitting

of Ruelle’s formula. One part of the split formula – the stable contribution – will be

computed using the regularized tangent solution, Eq. 7.24.
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7.4.2 Alternative expression of the stable contribution

In the regularized tangent equation (Eq. 7.24), a tangent vector is projected out of the

unstable subspace at every iteration. At every 𝑥 ∈ 𝑀, we introduce the orthogonal

projection operator, 𝒫𝑥, to refer to this operation.

Notation 3. Let 𝒫𝑥 : 𝑇𝑥𝑀 → 𝑇𝑥𝑀 denote the linear operator that projects a tangent

vector onto the hyperplane orthogonal to 𝐸𝑢
𝑥 . If 𝑞𝑥 is a unit vector in 𝐸𝑢

𝑥 , then for any

𝑣𝑥 ∈ 𝑇𝑥𝑀 , 𝒫𝑥 𝑣𝑥 := (𝐼 − 𝑞𝑥𝑞
𝑇
𝑥 )𝑣𝑥. Applying 𝒫𝑥 to every point on 𝑀 would result in a

linear operator, hereafter denoted 𝒫, on vector fields of 𝑀 .

Using this notation, we can reproduce the operations performed by solving Eq.

7.24, by considering a sequence of vector fields {𝑣𝑛} that satisfies the following recur-

rence relation,

𝑣𝑛+1 = 𝒫(𝑑𝜙 𝑣𝑛 + 𝜒), 𝑛 ∈ Z+. (7.25)

We also introduce a sequence of scalar fields which denote the components on the

unstable subspace that are projected out every iteration. That is, let {𝑎𝑛} be a

sequence of scalar fields given by,

𝑎𝑛+1 := 𝑞𝑇 (𝑑𝜙 𝑣𝑛 + 𝜒). (7.26)

In Lemma 3, we show that the sequence {𝑣𝑛} converges uniformly, starting from any

bounded vector field 𝑣0; the limit of this sequence is denoted 𝑣. The uniform conver-

gence of {𝑣𝑛} implies the uniform convergence of the scalar field {𝑎𝑛}, as we show in

Lemma 5; the limit of this sequence is denoted 𝑎. Using these results and uniform

hyperbolicity, we prove the following alternative formula for the stable contribution

in Proposition 3:

⟨𝐽, 𝜕𝑠𝜇𝑠⟩s := lim
𝐾→∞

𝐾−1∑︁
𝑘=0

⟨𝑑(𝐽 ∘ 𝜙𝑘) · (𝜒− 𝑎𝐾−𝑘 𝑞), 𝜇⟩

= ⟨𝑑𝐽 · 𝑣, 𝜇𝑠⟩. (7.27)
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7.4.3 Computation of the stable contribution

That is, the series summation representing the stable contribution is simply an en-

semble average of 𝑑𝐽 · 𝑣, an inner product of two bounded vector fields. That is, for

𝑥0 chosen 𝜇-a.e.,

⟨𝐽, 𝜕𝑠𝜇𝑠⟩ = lim
𝑁→∞

1

𝑁

𝑁−1∑︁
𝑛=0

(𝑑𝐽)𝑛 · 𝑣𝑛. (7.28)

The values of the vector field 𝑣 along the reference orbit are approached by the

regularized tangent solution (Eq. 7.24). Without loss of generality, we effect starting

the recursive Eq. 7.25 from a zero vector field, by choosing 𝑣−𝐾′ = 0 ∈ R𝑚, at the

point 𝑥−𝐾′ . For a large run-up time 𝐾 ′, the solution at 0, 𝑣0 and 𝑎0 are already close to

the true values of 𝑣 and 𝑎 at 𝑥0. The solutions thus produced by long-time evolution

of the regularized tangent equation (Eq. 7.24) become exponentially more accurate,

and are used to evaluate the stable contribution as per Eq. 7.28. In practice, we

solve the regularized tangent equation (Eq. 7.24) over an orbit of a long but finite

length 𝑁 . This computes an approximation of the limit on the right hand side up to

a finite 𝑁. Proposition 3 shows that such a computation of the stable contribution

converges to its true value (Eq. 7.27) as 𝑁 → ∞; the asymptotic error convergence

is as 𝒪(1/
√
𝑁), ignoring log factors.

7.4.4 Alternative expression of the unstable contribution

Recall that the unstable contribution is the sensitivity due to the perturbation along

the unstable subspace,

⟨𝐽, 𝜕𝑠𝜇𝑠⟩u = lim
𝐾→∞

𝐾−1∑︁
𝑘=0

⟨𝑑(𝐽 ∘ 𝜙𝑘) · 𝑎𝐾−𝑘 𝑞, 𝜇⟩. (7.29)

As noted in section 7.2.9, the integrand in the 𝑘th term of the above series, 𝑑(𝐽 ∘𝜙𝑘) ·

𝑎𝐾−𝑘 𝑞, increases exponentially in norm with 𝑘. Thus, rather than a direct evaluation,

we apply integration by parts on the unstable manifold, which moves the derivative
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away from the time-dependent term 𝐽 ∘ 𝜙𝑘.

Before we integrate by parts, we apply disintegration (Eq. 7.10) of the SRB

measure to rewrite the unstable contribution,

⟨𝐽, 𝜕𝑠𝜇𝑠⟩u := lim
𝐾→∞

𝐾−1∑︁
𝑘=0

⟨𝑎𝐾−𝑘 𝑑(𝐽 ∘ 𝜙𝑘) · 𝑞, 𝜇⟩

= lim
𝐾→∞

𝐾−1∑︁
𝑘=0

∫︁
𝑀/Ξ

∫︁
𝐵𝑥

𝑎𝐾−𝑘 ∘ Φ𝑥(𝜉)
𝑑(𝐽 ∘ 𝜙𝑘 ∘ Φ𝑥)

𝑑𝜉
(𝜉) 𝜌𝑥 ∘ Φ𝑥(𝜉) 𝑑𝜉 𝑑𝜇̂(𝑥), (7.30)

where 𝐵𝑥 := Φ𝑥−1(Ξ𝑥). When compared to Eq. 7.10, we have additionally used a

change of variables, 𝑥′ → 𝜉, in the inner integral. Since ‖Φ𝑥′(𝜉)‖ = 1, by construction,

this change of variables does not introduce a multiplicative factor in the integrand.

Now applying integration by parts on the inner integral, the 𝑘th term on the right

hand side of Eq. 7.30 becomes,

∫︁
𝑀/Ξ

∫︁
𝜕𝐵𝑥

𝑑((𝑎𝐾−𝑘 𝐽 ∘ 𝜙𝑘 𝜌𝑥) ∘ Φ𝑥)

𝑑𝜉
𝑑𝜉 𝑑𝜇̂(𝑥)

−
∫︁
𝑀/Ξ

∫︁
𝐵𝑥

𝐽 ∘ 𝜙𝑘 ∘ Φ𝑥
(︁𝑑(𝑎𝐾−𝑘 ∘ Φ𝑥)

𝑑𝜉
+

𝑎𝐾−𝑘 ∘ Φ𝑥

𝜌 ∘ Φ𝑥

𝑑(𝜌𝑥 ∘ Φ𝑥)

𝑑𝜉

)︁
(𝜌𝑥 ∘ Φ𝑥)𝑑𝜉 𝑑𝜇̂(𝑥).

(7.31)

The first term in the above equation vanishes due to cancellations on the bound-

aries of 𝐵𝑥 for different 𝑥 (Theorem 3.1(b) in [232][234]; see also [148]). Changing

variables back to 𝑥′, we obtain the following regularized expression for the unstable

contribution,

⟨𝐽, 𝜕𝑠𝜇𝑠⟩u = − lim
𝐾→∞

∑︁
𝑘<𝐾

∫︁
𝑀/Ξ

∫︁
Ξ𝑥

𝐽 ∘ 𝜙𝑘(𝑥′)
(︁𝑑(𝑎𝐾−𝑘 ∘ Φ𝑥)

𝑑𝜉
((Φ𝑥)−1(𝑥′))

+
𝑎𝐾−𝑘(𝑥′)

𝜌𝑥(𝑥′)

𝑑(𝜌𝑥 ∘ Φ𝑥)

𝑑𝜉
((Φ𝑥)−1(𝑥′))

)︁
𝜌𝑥(𝑥′) 𝑑𝜈𝑥(𝑥′) 𝑑𝜇̂(𝑥), (7.32)

We introduce the logarithmic density gradient function [247][210],

𝑔𝑥(𝑥′) :=
1

𝜌𝑥(𝑥′)

𝑑(𝜌𝑥 ∘ Φ𝑥)

𝑑𝜉
((Φ𝑥)−1(𝑥′)). (7.33)
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As we show in section 7.5.2, 𝑔𝑥 does not depend on 𝑥, and hence we denote the

density gradient simply as 𝑔. We also introduce the scalar field sequence 𝑏𝑘 defined as

𝑏𝑘𝑥 := 𝑑𝜉(𝑎
𝑘∘Φ𝑥)(0) to denote the unstable derivative of 𝑎𝑘, deferring the (constructive)

proof of its uniform convergence until Lemma 7. This leads us to the following

expression for the unstable contribution,

⟨𝐽, 𝜕𝑠𝜇𝑠⟩𝑢 = − lim
𝐾→∞

𝐾−1∑︁
𝑘=0

⟨𝐽 ∘ 𝜙𝑘(𝑔 𝑎𝐾−𝑘 + 𝑏𝐾−𝑘), 𝜇⟩. (7.34)

Recall that we compute 𝑎𝑘 iteratively along a typical trajectory as part of the

stable contribution computation (section 7.4.2). We are now left with the computa-

tion of 𝑔 and 𝑏𝑘 along the trajectory. These are tackled in section 7.5.2 and 7.5.3

respectively. In a recent work [210], Ni addresses the computation of the divergence

on the unstable manifold (analogous to the function 𝑔 described above), where the

differentiation is performed on a set of shadowing coordinates that are tied to the

parameter perturbation. This is part of an algorithm to compute linear response that

uses a different decomposition from the present chapter, into shadowing and unstable

directions.

7.5 Computing derivatives along unstable manifolds

In the previous section, we obtained a regularized expression for the unstable contri-

bution. That is, the integrand in the regularized expression, Eq. 7.34, is uniformly

bounded – the uniform boundedness of the scalar field sequences
{︀
𝑎𝑘
}︀

and
{︀
𝑏𝑘
}︀

and

the boundedness of 𝑔 are proved in Lemma 5, 7 and 8 respectively. The question

still remains how we can compute the unknown scalar fields 𝑔 and 𝑏. For both these

computations, we require second-order unstable derivatives, which we discuss next.
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7.5.1 Iteratively computing the curvature of the unstable man-

ifold

The function Φ𝑥′
(𝜉) is an arclength travelled by a particle on a local unstable manifold

of 𝑥′, starting from 𝑥′. The particle travels with unit speed, and its instantaneous

velocity at time 𝜉 is 𝑞Φ𝑥′ (𝜉). Its acceleration field is given by 𝑤𝑥′
:= 𝑑2𝜉Φ

𝑥′
(𝜉). We derive

a recursive equation satisfied by this family, by starting with a differentiation with

respect to 𝜉 of the definition of 𝛼 (Eq. 7.6),

𝛼2
𝜙𝑥 𝛾

𝜙𝑥′

𝜙𝑥 = (𝑑𝜙𝑥𝑞𝑥)𝑇
(︀
𝑑𝜙𝑥𝑤

𝑥′

𝑥 + 𝑑2𝜙𝑥(𝑞𝑥, 𝑞𝑥)
)︀
. (7.35)

Here 𝛾𝑥′
𝑥 := 𝑑𝜉(𝛼 ∘ Φ𝑥′

)((Φ𝑥′
)−1𝑥) is the unstable derivative of 𝛼; 𝑑2𝜙𝑥 is the bilinear

form that returns a tangent vector ∈ 𝑇𝜙𝑥𝑀 ; it can be written as an 𝑚×𝑚×𝑚 tensor

consisting of component-wise partial derivatives of the Jacobian 𝑑𝜙𝑥. In deriving Eq.

7.35, we have used the chain rule in Eq. 7.7. Now differentiating the statement of

covariance of the unstable subspace (section 7.2.4), 𝛼𝜙𝑥𝑞𝜙𝑥 = 𝑑𝜙𝑥𝑞𝑥,

𝛼𝜙𝑥𝛾
𝑥′

𝜙𝑥𝑞𝜙𝑥 + 𝛼2
𝜙𝑥𝑤

𝜙𝑥′

𝜙𝑥 = 𝑑𝜙𝑥𝑤
𝑥′

𝑥 + 𝑑2𝜙𝑥(𝑞𝑥, 𝑞𝑥). (7.36)

Substituting Eq. 7.35 into Eq. 7.36, and using the definition of 𝛼,

𝑤𝜙𝑥′

𝜙𝑥 =
1

𝛼2
𝜙𝑥

(︀
𝐼 − 𝑞𝜙𝑥𝑞

𝑇
𝜙𝑥

)︀ (︁
𝑑𝜙𝑥𝑤

𝑥′

𝑥 + 𝑑2𝜙𝑥(𝑞𝑥, 𝑞𝑥)
)︁
, (7.37)

where 𝐼 is the 𝑚 ×𝑚 identity matrix. The above equation represents the following

relationship between elements of the family of vector fields, {𝑤𝑥},

𝑤𝜙𝑥 = 𝒫 𝑑𝜙 𝑤𝑥 + 𝑑2𝜙(𝑞, 𝑞)

𝛼2
. (7.38)

In Lemma 4, we show that any bounded sequence {𝑤𝑛} of vector fields that satisfies,

𝑤𝑛+1 = 𝒫 𝑑𝜙 𝑤𝑛 + 𝑑2𝜙(𝑞, 𝑞)

𝛼2
(7.39)
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converges uniformly to a unique vector field 𝑤. Hence, the family {𝑤𝑥} does not

depend on the parameterization centers, and simply denotes a single vector field,

which we call 𝑤. Reconsidering Eq. 7.35,

𝛾𝜙𝑥′

𝜙𝑥 =
𝑞𝑇𝜙𝑥
𝛼𝜙𝑥

(︀
𝑑𝜙𝑥𝑤𝑥 + 𝑑2𝜙𝑥(𝑞𝑥, 𝑞𝑥)

)︀
, (7.40)

it is clear that the family of scalar fields {𝛾𝑥} is also independent of the parameteri-

zation. We henceforth write 𝛾 = 𝜕𝜉𝛼, to denote the unstable derivative of the scalar

field 𝛼.

Similarly, the scalar fields 𝑑𝜉(𝑎∘Φ𝑥) and 𝑑𝜉(log 𝜌𝑥∘Φ𝑥) can be attained as limits of

(exponentially) uniformly converging sequences of scalar fields, as proved in Lemma

7 and Lemma 8 respectively. Thus, by the same argument as we used for {𝑤𝑥},

these limits are independent of the parameterization centers and are denoted simply

𝑏 := 𝜕𝜉𝑎 and 𝑔 := 𝜕𝜉 log 𝜌𝑥 respectively.

The curvature of a local unstable manifold is the magnitude of the acceleration

experienced by a particle travelling at unit speed. That is, the curvature of the

unstable manifold at 𝑥 is ‖𝑤𝑥‖. From Eq. 7.35, it is clear that the computation of

the curvature and that of 𝛾 go hand in hand. To compute both 𝑤 and then using

Eq. 7.35, 𝛾, along a typical trajectory, we solve the second-order tangent equation

derived above (Eq. 7.39) iteratively along the trajectory. In practice, we assume

𝑤0
0 := 𝑤0

𝑥0
= 0 at some 𝜇-typical 𝑥0 and iterate Eq. 7.39. Such a computation

converges exponentially with 𝑛 to the true value of 𝑤𝑛 due to Lemma 4. At each

step of the recursion, the value of 𝛾𝑛, which is computed through Eq. 7.35 using the

computed values of 𝑤𝑛, also becomes exponentially more accurate. These values of

𝛾𝑛 along the orbit {𝑥𝑛} are used to obtain 𝑔 along the orbit, as we shall discuss in

the next subsection.

From Eq. 7.39, we can also infer that the vector field 𝑤 is orthogonal to 𝑞 (i.e., the

acceleration of a particle on a local unstable manifold is perpendicular to its velocity).

Visualizations of the unstable manifold curvatures obtained from the norms of 𝑤𝑛

computed as above are shown for classical hyperbolic attractors in [63].
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7.5.2 Iterative formula for unstable derivatives of SRB density

In a previous work [247], we provide an intuitive explanation of the density gradient 𝑔

as well as its computation in one-dimensional expanding maps of the interval, where

the global unstable manifold is the background manifold 𝑀 . In the present setting

of a one-dimensional unstable manifold, we see that our derivation leads to a similar

computation of 𝑔 as in 1D expanding maps. From our expression for the SRB density

(Eq. 3), we find that for 𝑥 ∈ Ξ𝑥′ ,

𝜌𝑥
′

𝑥 = 𝜌𝜙
−1𝑥′

𝜙−1𝑥

𝛼𝑥′

𝛼𝑥

𝜌𝜙
−1𝑥′

𝜌𝑥′ . (7.41)

We recall that phase points appearing on superscripts indicate the centers of our

coordinate system Φ𝑥 (section 7.2.6), while on subscripts, they indicate evaluations

of the function (e.g., in Eq. 7.41, the scalar functions 𝜌𝑥
′ and 𝜌𝜙

−1𝑥′ are evaluated at

𝑥 and 𝜙−1𝑥 respectively). Taking logarithm and differentiating Eq. 7.41 with respect

to 𝜉 on the unstable manifold at 𝑥, using the definition (Eq. 7.33) of the density

gradient 𝑔𝑥,

𝑔𝑥
′

𝑥 =
𝑔𝜙

−1𝑥′

𝜙−1𝑥

𝛼𝑥

− 1

𝛼𝑥

𝑑(𝛼 ∘ Φ𝑥′
)

𝑑𝜉
((Φ𝑥′

)−1(𝑥))

=
𝑔𝜙

−1𝑥′

𝜙−1𝑥

𝛼𝑥

− 𝛾𝑥
𝛼𝑥

. (7.42)

To derive the first term on the right hand side, we have also used the chain rule for our

parameterization (Eq. 7.7) and the scalar field 𝛾 introduced in the previous subsec-

tion. Now, in Lemma 8, we show that starting from any bounded scalar function ℎ0,

and considering any bounded function 𝑟, the following recursion converges uniformly,

ℎ𝑛+1
𝜙𝑥 =

ℎ𝑛
𝑥

𝛼𝜙𝑥

+ 𝑟𝜙𝑥. (7.43)

Since the sequence of functions
{︀
𝑔𝜙

𝑛𝑥
}︀0
𝑛=−∞ in Eq. 7.42 satisfies this same recursion,

the family of functions {𝑔𝑥} must indeed be a single function independent of 𝑥. Hence,
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we omit the superscript 𝑥, and simply denote the density gradient 𝑔. Thus, Eq. 7.42

can be rewritten as follows, fixing some 𝜇-typical reference orbit {𝑥𝑛}:

𝑔𝑛+1 =
𝑔𝑛

𝛼𝑛+1

− 𝛾𝑛+1

𝛼𝑛+1

. (7.44)

This iterative equation exponentially converges (Lemma 8), with 𝑛, to the true value

of 𝑔𝑛 := 𝑔(𝑥𝑛), along almost every orbit. In practice, we start the computation with

an arbitrary initialization.

7.5.3 Iterative computation of the scalar field 𝑏

Having completely prescribed a computation for 𝑔, the only unknown we are left with

in computing the unstable contribution (Eq. 7.34) is the scalar field 𝑏. We describe

a procedure, involving 𝑤, and a new second-order tangent equation. This latter

second-order tangent solution exponentially approaches the vector field representing

the unstable derivative of 𝑣. In order to derive this equation, recall that the vector

field 𝑣 is the limit of a sequence {𝑣𝑛} described in Eq. 7.25. The sequence {𝑣𝑛} is

differentiable in the unstable direction, if we start with a differentiable vector field 𝑣0.

In Lemma 6, we show that the sequence of these derivatives, denoted {𝑦𝑛} , converges

uniformly. Since {𝑣𝑛} also converges uniformly, the limit 𝑦 of the sequence {𝑦𝑛} is

the unstable derivative of 𝑣.

Thus, it is valid to differentiate the regularized tangent equation (Eq. 7.24) in the

unstable direction. Taking this derivative, we obtain that the vector field 𝑦 satisfies

the following equation, along a fixed 𝜇−typical orbit {𝑥𝑛}𝑛∈Z+

𝛼𝑛+1𝑦𝑛+1 = (𝑑𝜙)𝑛𝑦𝑛 + (𝑑2𝜙)𝑛(𝑞𝑛, 𝑣𝑛)

+ 𝛼𝑛+1(𝑑𝜒)𝑛+1 𝑞𝑛+1 − 𝛼𝑛+1𝑏𝑛+1𝑞𝑛+1 − 𝛼𝑛+1𝑎𝑛+1𝑤𝑛+1. (7.45)

As usual, we have used the chain rule for differentiating on unstable manifolds (Eq.

7.7) and the differentiability of 𝑑𝜙 and 𝜒 on 𝑀 . We have suppressed the parame-

terization centers on the superscripts because the unstable derivatives 𝑦 and 𝑏 are
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limits of uniformly converging series, and hence we can invoke the same argument

as in sections 7.5.1 and 7.5.2 to show their independence from the parameterization.

Using Lemma 6, we can argue that the iteration above converges to the true value of

the vector 𝑦𝑛 as 𝑛→∞, starting with an arbitrary value for 𝑦0. In order to compute

the above recursion, we must know the value of 𝑏 along the trajectory. However, it is

possible to close this system of equations for 𝑦𝑛+1 and 𝑏𝑛+1 by differentiating in the

unstable direction, the definition of 𝑎𝑛+1.

Recall that the regularized tangent solutions 𝑣𝑛 are orthogonal to 𝑞𝑛 and 𝑎𝑛 are

chosen so as to enforce this orthogonality. From Eq. 7.24, we get,

𝑎𝑛+1 = 𝑞𝑛+1 · ((𝑑𝜙)𝑛𝑣𝑛 + 𝜒𝑛+1) . (7.46)

Differentiating the above equation in the unstable direction,

𝛼𝑛+1𝑏𝑛+1 =
(︀
(𝑑2𝜙)𝑛(𝑣𝑛, 𝑞𝑛) + (𝑑𝜙)𝑛𝑦𝑛 + 𝛼𝑛+1(𝑑𝜒𝑛+1𝑞𝑛+1)

)︀
· 𝑞𝑛+1

+ 𝛼𝑛+1𝑤𝑛+1 · ((𝑑𝜙)𝑛𝑣𝑛 + 𝜒𝑛+1) . (7.47)

By comparing Eq. 7.47 with the inner product of Eq. 7.45 with 𝑞𝑛+1, we see that

𝑦𝑛+1 · 𝑞𝑛+1 = −𝑤𝑛+1 · ((𝑑𝜙)𝑛𝑣𝑛 + 𝜒𝑛+1). (7.48)

By using the orthogonality 𝑤𝑛+1 · 𝑞𝑛+1 = 0, which follows from Eq. 7.37, on Eq. 7.24,

we obtain 𝑤𝑛+1 · 𝑣𝑛+1 = 𝑤𝑛+1 · ((𝑑𝜙)𝑛𝑣𝑛 + 𝜒𝑛+1). Thus, we can further simplify Eq.

7.48 to obtain the constraint,

𝑦𝑛+1 · 𝑞𝑛+1 = −𝑤𝑛+1 · 𝑣𝑛+1. (7.49)

Thus, we have two equations (Eq. 7.45 and Eq. 7.49) from which the two unknowns

𝑏𝑛+1 and 𝑦𝑛+1 are solved for. Without loss of generality, we start the iteration in Eq.

7.45 with 𝑦0 = 0 ∈ R𝑚. Then, by Lemma 6 and Lemma 7, this iterative procedure

yields exponentially accurate values of both 𝑦𝑛 and 𝑏𝑛 along a trajectory.
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7.5.4 Computation of the unstable contribution

We now assemble the components computed in the previous subsections together to

form the unstable contribution, which we recall from Eq. 7.34,

⟨𝐽, 𝜕𝑠𝜇𝑠⟩u = − lim
𝐾→∞

𝐾−1∑︁
𝑘=0

⟨𝐽 ∘ 𝜙𝑘
(︀
𝑎𝐾−𝑘𝑔 + 𝑏𝐾−𝑘

)︀
, 𝜇⟩. (7.50)

We shall assume a strong form of exponential correlation decay (section 7.2.5) by

which, for a Hölder continuous field 𝑙 with ⟨𝑙⟩ = 0, there exists a 𝑐 > 0 such that

|⟨(𝐽 ∘ 𝜙𝑛) 𝑙, 𝜇⟩| ≤ 𝑐𝜆𝑛‖𝑙‖, for all 𝑛. Under this assumption,

⃒⃒⃒⃒
⃒
𝐾−1∑︁
𝑘=0

(︀
⟨𝐽 ∘ 𝜙𝑘

(︀
𝑎𝐾−𝑘𝑔 + 𝑏𝐾−𝑘

)︀
, 𝜇⟩ − ⟨𝐽 ∘ 𝜙𝑘 (𝑎𝑔 + 𝑏) , 𝜇⟩

)︀⃒⃒⃒⃒⃒ ≤ 𝐾 ‖𝑔‖𝑐 𝑐1 𝜆𝐾 + 𝐾 𝑐 𝑐2 𝜆
𝐾 ,

(7.51)

because there exist constants 𝑐1, 𝑐2 > 0 such that ‖𝑎𝐾−𝑘 − 𝑎‖ ≤ 𝑐1𝜆
𝐾−𝑘 and ‖𝑏𝐾−𝑘 −

𝑏‖ ≤ 𝑐2𝜆
𝐾−𝑘 according to Lemmas 5 and 7 respectively. Letting 𝐾 →∞, we conclude

that the unstable contribution may be computed as

⟨𝐽, 𝜕𝑠𝜇𝑠⟩u = −
∞∑︁
𝑘=0

⟨𝐽 ∘ 𝜙𝑘 (𝑎𝑔 + 𝑏) , 𝜇⟩. (7.52)

In practice, we need only a small number 𝐾 of terms in the series above to approximate

the unstable contribution to within a given tolerance. We fix some 𝑁 -length 𝜇−typical

orbit {𝑥𝑛} along which we compute the first 𝐾 terms above,

⟨𝐽, 𝜕𝑠𝜇𝑠⟩u ≈ −
𝐾−1∑︁
𝑘=0

1

𝑁

𝑁−1∑︁
𝑛=0

𝐽𝑛+𝑘 (𝑎𝑛𝑔𝑛 + 𝑏𝑛) . (7.53)

This computation, due to decay of correlations, converges as 𝑁 →∞ and 𝐾 →∞, in

that order. Further, the error in approximating each term of Eq. 7.50 as an 𝑁 -time

ergodic average declines as 𝒪(1/
√
𝑁) (more details in section 9.2). The complete dis-

cussion of the error convergence of the unstable contribution computation is deferred

until section 7.8.2, after the proofs of convergence of the individual computational
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components of Eq. 7.53. Here we remark that even if the equivalence between Eq.

7.52 and the unstable contribution (Eq. 7.50) does not strictly hold, the error in

approximating the unstable contribution (Eq. 7.50) by Eq. 7.53 becomes negligible

for a sufficiently long run-up time 𝐾 ′ (section 7.3.1). This is because, for large 𝐾 ′,

𝑎𝑘, 0 ≤ 𝑘 ≤ 𝐾 − 1 are all approximately equal to 𝑎 and 𝑏𝑘, 0 ≤ 𝑘 ≤ 𝐾 − 1 are all

approximately equal to 𝑏, due to Lemmas 5 and 7 respectively.

Now we summarize these individual components that lead to the computation of

the unstable contribution by Eq. 7.53. Let {𝑥𝑛}𝑁−1
𝑛=−𝐾′ be a sufficiently long finite-

length 𝜇-typical orbit. In order to compute Eq. 7.53, we need the values of 𝑎, 𝑏 and

𝑔 along the orbit. First, we note that the (approximate) values of 𝑎 along the orbit

are known from the regularized tangent solution (Eq. 7.24),

𝑎𝑛+1 = 𝑞𝑇𝑛+1((𝑑𝜙)𝑛 𝑣𝑛 + 𝜒𝑛+1). (7.54)

In section 7.5.2, we derived a recursive equation for the density gradient function,

𝑔𝑛+1 =
𝑔𝑛

𝛼𝑛+1

− 𝛾𝑛+1

𝛼𝑛+1

, (7.55)

which we begin by arbitrarily setting 𝑔−𝐾′ = 0. The scalar field 𝛾, which denotes the

unstable derivative of the expansion factor 𝛼, is evaluated along an orbit by solving for

the vector field 𝑤 (section 7.5.1). Summarizing this step here, the recursive formula

𝑤𝑛+1 =
1

𝛼2
𝑛+1

(︀
𝐼 − 𝑞𝑛+1𝑞

𝑇
𝑛+1

)︀ (︀
(𝑑𝜙)𝑛𝑤𝑛 + (𝑑2𝜙)𝑛(𝑞𝑛, 𝑞𝑛)

)︀
(7.56)

is again started with the arbitrary choice 𝑤−𝐾′ ∈ R𝑚; at each step of the recursion,

the values of 𝛾 along an orbit are set to

𝛾𝑛+1 =
𝑞𝑇𝑛+1

𝛼𝑛+1

(︀
(𝑑𝜙)𝑛𝑤𝑛 + (𝑑2𝜙)𝑛(𝑞𝑛, 𝑞𝑛)

)︀
. (7.57)

Finally, the values 𝑏𝑛 are obtained simultaneously with 𝑦𝑛 from Eq. 7.45 and Eq.

269



7.49, which are repeated here for clarity:

𝑦𝑛+1 =
(𝑑𝜙)𝑛𝑦𝑛 + (𝑑2𝜙)𝑛(𝑞𝑛, 𝑣𝑛)

𝛼𝑛+1

+ (𝑑𝜒)𝑛+1 𝑞𝑛+1 − 𝑏𝑛+1𝑞𝑛+1 − 𝑎𝑛+1𝑤𝑛+1, (7.58)

where 𝑏𝑛+1 is such that 𝑦𝑛+1 · 𝑞𝑛+1 = −𝑣𝑛+1 · 𝑤𝑛+1, at each 𝑛. Using the values of

𝑎𝑛, 𝑏𝑛 and 𝑔𝑛 obtained approximately, as outlined above, we compute an 𝑁 -sample

average of the 𝑘-lag correlation with 𝐽 , in order to compute the 𝑘th term of the

unstable contribution (Eq. 7.53). Putting this together with the stable contribution

(Eq. 7.28), we obtain the overall sensitivity. These steps are condensed into the S3

algorithm listed in section 7.3.1, with one simplification: we can eliminate the need

to compute Eq. 7.55 explicitly. To see this, let us consider Eq. 7.56 without the

projection,

𝑝𝑛+1 =
1

𝛼2
𝑛+1

(︀
(𝑑𝜙)𝑛𝑝𝑛 + (𝑑2𝜙)𝑛(𝑞𝑛, 𝑞𝑛)

)︀
(7.59)

𝑝−𝐾′ = 0 ∈ R𝑚.

Using these solutions 𝑝𝑛, Eq. 7.57 and Eq. 7.55, we find that

𝑎𝑛+1𝑤𝑛+1 = 𝑎𝑛+1𝑔𝑛+1 𝑞𝑛+1 + 𝑎𝑛+1𝑝𝑛+1.

Substituting this relationship into Eq. 7.58 leads to

𝑦𝑛+1 =
(𝑑𝜙)𝑛𝑦𝑛 + (𝑑2𝜙)𝑛(𝑞𝑛, 𝑣𝑛)

𝛼𝑛+1

+ (𝑑𝜒)𝑛+1 𝑞𝑛+1

− 𝑐𝑛+1𝑞𝑛+1 − 𝑎𝑛+1𝑝𝑛+1, (7.60)

where 𝑐𝑛+1 := (𝑎𝑛+1𝑔𝑛+1 + 𝑏𝑛+1). Notice that we only need the scalar field 𝑐, and

not 𝑏 and 𝑔 explicitly, to compute the unstable contribution and since by iterating

Eq. 7.60 we obtain 𝑐𝑛 directly, we avoid computing 𝑔 via Eq. 7.55. Since the above

equation replaces the use of 𝑤𝑛 with 𝑝𝑛, we do not need to solve for 𝑤𝑛 through Eq.
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7.56 either; rather, we just compute 𝑝𝑛 by iterating Eq. 7.59. Although we used 𝑤𝑛

in the constraint (Eq. 7.48) needed to solve for 𝑏𝑛, and now 𝑐𝑛, the constraint may

be rewritten using 𝑝𝑛 as,

𝑦𝑛+1 · 𝑞𝑛+1 = −𝑣𝑛+1 · 𝑤𝑛+1 = −𝑣𝑛+1 · 𝑝𝑛+1. (7.61)

The second equality is true because 𝑝𝑛+1 is of the form 𝑤𝑛+1 + 𝛿𝑛+1𝑞𝑛+1, for some

scalar sequence {𝛿𝑛+1} , and 𝑣𝑛+1 · 𝑞𝑛+1 = 0 by construction (Eq. 7.24).

7.6 Numerical results on perturbations of Baker’s

map

In order to validate the S3 algorithm, we consider perturbations of the standard

Baker’s map that are designed to elicit both stable and unstable contributions. Con-

sider the following self-map 𝜙𝑠 of the torus T2, where 𝑠 = [𝑠1, 𝑠2, 𝑠3, 𝑠4]
𝑇 ∈ R4,

𝜙𝑠([𝑥
(1), 𝑥(2)]𝑇 ) =

⎡⎢⎣2𝑥(1) + (𝑠1 + 𝑠2 sin(2𝑥(2))/2) sin𝑥(1) − 2𝜋⌊𝑥(1)/𝜋⌋
𝑥(2)

2
+ (𝑠4 + 𝑠3 sin𝑥(1)) sin(2𝑥(2)) + 𝜋⌊𝑥(1)/𝜋⌋

⎤⎥⎦ mod 2𝜋.

(7.62)

The standard Baker’s map is recovered at 𝑠 = 0 ∈ R4. We isolate the effect of each

parameter by illustrating the action of perturbed maps with all except one parameter

set to 0. Figure 7-1 elucidates the effect of 𝑠1 and 𝑠2. The unperturbed Baker’s map,

as shown in Figure 7-1 (top right), uniformly expands in the horizontal direction (𝑥̂(1))

and contracts in the vertical direction (𝑥̂(2)). By contrast, when the parameter 𝑠1 is

non-zero (and the other parameters are set to 0), the expansion in the 𝑥̂(1) direction

depends on 𝑥(1), resulting in a non-uniformly expanded grid as shown on the bottom

left of Figure 7-1. On the bottom right of Figure 7-1, we show the effect of the

parameter 𝑠2, from which it is clear that the expansion in the 𝑥̂(1) direction depends

nonlinearly on the 𝑥(2) coordinate.
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In Figure 7-2 (top right), the expansion and contraction by constant factors, in

the 𝑥̂(1) and 𝑥̂(2) directions respectively, by the unperturbed map, are clearly seen

from the uniform stretching and contraction of the horizontal strips on the top left.

On the bottom row, the effect of the parameters 𝑠3 and 𝑠4, acting in isolation, are

shown on the left and right respectively. From Eq. 7.62, it is clear that 𝑠3 introduces

a nonlinear variation with 𝑥(1) in the contraction along the 𝑥̂(2) direction. This is

indeed reflected in the image of the horizontal strips (top left of Figure 7-2) under the

perturbed map, which is shown on the bottom left of Figure 7-2. Finally, the bottom

right plot shows that the contraction in 𝑥̂(2) is nonuniform with respect to the 𝑥(2)

coordinate but uniform along the 𝑥(1) coordinate, as we would expect from Eq. 7.62

with 𝑠4 being the only non-zero parameter.

7.6.1 Stable and unstable subspaces

The standard Baker’s map has uniform stable and unstable subspaces, which are

aligned with 𝑥̂(2) and 𝑥̂(1) respectively, i.e., 𝐸𝑢
𝑥 ≡ 𝑥̂(1) = span

{︀
[1, 0]𝑇

}︀
and 𝐸𝑠

𝑥 ≡

𝑥̂(2) ≡ span
{︀

[0, 1]𝑇
}︀

at all 𝑥 ∈𝑀 . The perturbations of 𝑠1 and 𝑠4 do not alter these

uniform stable and unstable directions. It can be verified that the perturbation of 𝑠2

alters the stable direction while retaining 𝑥̂(1) as the unstable direction everywhere.

The perturbed map with 𝑠3 being the only non-zero parameter has a non-uniform

unstable subspace that is not parallel to 𝑥̂(1) everywhere. On the other hand, its

stable subspaces are everywhere parallel to 𝑥̂(2).

7.6.2 SRB measures of perturbed Baker’s maps

The perturbations of the Baker’s map and the original map are all uniformly hyper-

bolic. The SRB measures of the perturbed maps associated to each parameter acting

in isolation are shown in Figure 7-3. The SRB measure of the unperturbed Baker’s

map (𝑠 = 0 ∈ R4) is the Lebesgue measure on T2. However, the perturbed maps have

SRB measures that are not absolutely continuous with respect to Lebesgue on T2.

This can be visually observed in Figure 7-3, where, in every case, the distribution
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Figure 7-1: Top left: the domain T2 covered by rectangles. The other figures show
the application of Baker’s map at 𝑠 = 0 ∈ R4 (top right), 𝑠 = [0.2, 0, 0, 0]𝑇 (bottom
left) and 𝑠 = [0, 0.2, 0, 0] (bottom right) on the gridded top left figure.
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Figure 7-2: Top left: the domain T2 covered by rectangles. The other figures show
the application of Baker’s map at 𝑠 = 0 ∈ R4 (top right), 𝑠 = [0, 0, 0.2, 0]𝑇 (bottom
left) and 𝑠 = [0, 0, 0, 0.2] (bottom right) on the gridded top left figure.
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Figure 7-3: Each plot shows the SRB distribution achieved at the parameter values
indicated on the title.

appears non-smooth in the 𝑥̂(2) direction. In fact, the SRB distribution in each case

is absolutely continuous on the unstable manifold, which is uniform and parallel to

𝑥̂(1) in every case except the 𝑠3 perturbation. In the perturbed map with 𝑠3 being

non-zero (bottom left of Figure 7-3), the SRB measure appears smooth along its

curved unstable manifold, and rough along its stable manifold, which is uniform and

parallel to the 𝑥̂(2) direction. As noted in section 7.6.1, while the unstable manifold

of the perturbed map with 𝑠2 ̸= 0 is parallel to 𝑥̂(1) everywhere, the stable manifold

is curved around the 𝑥̂(2) direction. This picture is consistent with smoothness of the

map’s SRB measure (top right of Figure 7-3) in the 𝑥̂(1) direction and the lack of

smoothness in the vertical direction, which appears distinct from the 𝑠4 case where

the stable manifold is uniformly parallel to the 𝑥̂(2) direction.
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Figure 7-4: Ergodic average of the objective function 𝐽 = cos(4𝑥2) as a function of
𝑠4 (left) and 𝑠1 (right); the other parameters are set to 0. Sensitivities from S3 are
shown in black at select parameter values.

Figure 7-5: Ergodic average of the objective function 𝐽 = cos(4𝑥2) as a function of
𝑠4 (left) and 𝑠1 = 𝑠3 (right); the other parameters are set to 0. Sensitivities from S3
are shown in black at select parameter values.

7.6.3 Sensitivities of a smooth objective function

We make an arbitrary choice of a smooth objective function, 𝐽([𝑥(1), 𝑥(2)]𝑇 ) = cos 4𝑥(2),

and validate the parametric derivatives of its statistics computed by S3 in each per-

turbed Baker’s map. The validation results are shown in Figures 7-4 and 7-5. In

the left plot of Figure 7-4, only perturbations of 𝑠1 are considered, while other pa-

rameters are held at 0. This leads to only an unstable contribution to the sensitivity

because 𝜒𝜙𝑠𝑥 = [sin𝑥(1) 0]𝑇 which is aligned with the unstable direction 𝑥̂(1) = [1 0]𝑇

at all 𝑥. The ergodic/ensemble averages of 𝐽 are shown as a function of 𝑠1 in blue;

superimposed as black lines are the linearly extrapolated values of the S3 sensitivities

computed at many different values of 𝑠1. We see that the derivatives of the ⟨𝐽⟩ vs.

𝑠1 are closely approximated by S3. This validates the computation of sensitivities to

unstable perturbations by S3.

Similarly, we show the validation of the S3 algorithm to stable perturbations, on
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the right plot of Figure 7-4. To generate these plots, ergodic/ensemble averages of 𝐽

are computed at perturbed maps where only 𝑠4 is varied. In this case, 𝜒 is aligned

with 𝑥̂(2), which is the uniform stable direction. The S3 sensitivities, shown in black,

are perfectly tangent to the response curves ⟨𝐽⟩ vs. 𝑠4, as shown in Figure 7-4 (right).

To test S3 on maps with non-uniform stable and unstable directions, we apply the

algorithm to compute linear response in maps with non-zero 𝑠2 and 𝑠3. At a non-

zero 𝑠2 parameter, when all other parameters are held at 0, the stable manifold is

non-uniform, while the unstable manifold is uniform and tangent to 𝑥̂(1). The overall

sensitivity contains only an unstable contribution, which is verified to be correct in

Figure 7-5 (left). As a final test, we put 𝑠1 = 𝑠3 and vary this parameter, which makes

the unstable manifold curved and nonuniform. The response curves are shown (in

blue) in Figure 7-5, on which the S3 sensitivities (black), which have both non-zero

stable and unstable contributions, are plotted. Once again, the S3 derivatives are

accurate over a range of parameter values. In each case, we chose 𝐾 = 11 (terms

summed in Ruelle’s series) and 𝑁 = 500000 (samples to compute ergodic averages),

in the S3 algorithm; the blue points in each figure were ensemble averages over 160

million samples. The source code for this section that includes the implementation

of S3 on the perturbed Baker’s maps can be found at [59].

7.7 Proof of Theorem 1

In this section, we prove Theorem 2, which establishes that the S3 decomposition of

Ruelle’s formula into stable and unstable contributions (Eq. 7.14) is well-defined. We

show that the S3 decomposition exists and is differentiable on the unstable manifold.

In particular, we prove that the regularized perturbation field, 𝑣, that is the limit

of the sequence {𝑣𝑛} in Eq. 7.12, exists. This proves Theorem 2-1. The second

statement, Theorem 2-2., is shown by proving that this vector field 𝑣 is differentiable

on the unstable manifold. We then prove that the differentiability in the unstable

direction of 𝑣 implies that of the scalar field 𝑎, and hence Theorem 2-2. is proved.

First we start by proving the existence and uniqueness of 𝑣. Before we begin, we
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establish some notation for oblique projection operators on vector fields, and describe

their properties that we use in the proofs.

Notation 4. Let 𝒮𝑥 : 𝑇𝑥𝑀 → 𝑇𝑥𝑀 denote the linear operator that gives the compo-

nent of a tangent vector in 𝐸𝑠
𝑥, in a direct sum of components along 𝐸𝑢

𝑥 and 𝐸𝑠
𝑥. If

𝑣𝑥 = 𝑣𝑢𝑥 + 𝑣𝑠𝑥 where 𝑣𝑢𝑥 ∈ 𝐸𝑢
𝑥 and 𝑣𝑠𝑥 ∈ 𝐸𝑠

𝑥, then, 𝒮𝑥 𝑣𝑥 := 𝑣𝑠𝑥. Applying 𝒮𝑥 to every

point on 𝑀 would result in a linear operator on vector fields of 𝑀 , hereafter denoted

𝒮.

Remark 4. Note that 𝒫𝑥 is an orthogonal projector. Its norm is therefore 1. In

contrast, the operator 𝒮𝑥 is not an orthogonal projector; 𝒮𝑥 is uniformly bounded over

𝑀 , i.e., 𝑆 := sup𝑥∈𝑀 ‖𝒮𝑥‖ is finite.

Remark 5. It follows from their definition that both operators are idempotent, i.e.,

𝒫2 = 𝒫 and 𝒮2 = 𝒮.

Remark 6. Due to the covariance of 𝐸𝑠 and 𝐸𝑢, i.e., 𝑑𝜙𝑛
𝑥 𝐸

𝑠
𝑥 = 𝐸𝑠

𝜙𝑛𝑥 and 𝑑𝜙𝑛
𝑥 𝐸

𝑢
𝑥 =

𝐸𝑢
𝜙𝑛𝑥, the operator 𝒮 satisfies 𝑑𝜙𝑛

𝑥 𝒮𝑥 = 𝒮𝜙𝑛𝑥 𝑑𝜙
𝑛
𝑥. Operating on vector fields on 𝑀 ,

this equality leads to 𝑑𝜙𝑛 𝒮 = 𝒮 𝑑𝜙𝑛.

Remark 7. At every 𝑥 ∈𝑀, both 𝒮𝑥 and 𝒫𝑥 map 𝐸𝑢
𝑥 to 0 by their definitions. Also

by definition, for any 𝑣𝑥 ∈ 𝑇𝑥𝑀 , both 𝑣𝑥 − 𝒮𝑥 𝑣𝑥 and 𝑣𝑥 − 𝒫𝑥 𝑣𝑥 are in 𝐸𝑢
𝑥 . We thus

have 𝒫𝑥 𝑣𝑥 = 𝒫𝑥 𝒮𝑥 𝑣𝑥 and 𝒮𝑥 𝑣𝑥 = 𝒮𝑥 𝒫𝑥 𝑣𝑥. The equivalent expressions, as operators

on vector fields, are 𝒫 𝒮 = 𝒫 and 𝒮 𝒫 = 𝒮.

We now prove that a regularized perturbation field 𝑣 exists, which is the limit of

the tangent equation solved with repeated projections (section 7.4.2). We note that,

in all the proofs that follow, the constants 𝐶 and 𝜆 refer to the eponymous constants

in the definition of uniform hyperbolicity (section 7.2), and the constant 𝑆 refers to

the norm of the stable projection operator 𝒮, as defined above (Remark 4); all other

constants, such as 𝐴, 𝑐, etc. may vary from line to line.
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7.7.1 Existence and uniqueness of a regularized perturbation

field

Lemma 3. For any bounded vector field 𝜒 : 𝑀 → R𝑚, there exists a unique bounded

vector field 𝑣 on 𝑀 that satisfies

𝑣 = 𝒫
(︀
𝑑𝜙 𝑣 + 𝜒

)︀
(7.63)

Note that because 𝒫2 = 𝒫 , Eq. 7.63 implies that 𝒫𝑣 = 𝑣. In other words, at

every 𝑥 ∈𝑀 , 𝑣𝑥 is orthogonal to the one-dimensional unstable subspace 𝐸𝑢
𝑥 . Also, a

vector field 𝜒 being bounded means that sup𝑥∈𝑀 ‖𝜒𝑥‖ is finite.

Proof. We first prove existence. Let 𝑣0 = 0 be an arbitrary bounded vector field on

𝑀. Let 𝑣𝑘+1 = 𝒫
(︀
𝑑𝜙 𝑣𝑘 + 𝜒

)︀
for 𝑘 = 0, 1, . . . We will show that for each 𝑥 ∈ 𝑀 ,

{𝑣𝑘𝑥, 𝑘 = 0, 1, . . .} is a Cauchy sequence and thus converges to a limit, namely 𝑣𝑥.

From the definition of 𝑣𝑘 and the linearity of the operators involved, we have

𝑣𝑘+1−𝑣𝑘 = 𝒫𝑑𝜙(𝑣𝑘−𝑣𝑘−1) = (𝒫𝑑𝜙)𝑘(𝑣1−𝑣0). Here, we can use the relations between

𝒫 ,𝒮, and 𝑑𝜙 (See Remarks 6 and 7) to simplify the linear operator as follows. Since

𝒫 = 𝒫𝒮, (𝒫 𝑑𝜙)𝑘 = (𝒫 𝒮 𝑑𝜙)𝑘 = (𝒫 𝑑𝜙 𝒮)𝑘, where the second equality follows from

Remark 6. Now using 𝒮𝒫 = 𝒮 (Remark 7), (𝒫 𝑑𝜙)𝑘 = (𝒫 𝑑𝜙 𝒮)𝑘 = 𝒫 𝑑𝜙 (𝑑𝜙 𝒮)𝑘−1,

and finally using Remark 6, (𝒫 𝑑𝜙)𝑘 = 𝒫 𝑑𝜙 (𝑑𝜙 𝒮)𝑘−1 = 𝒫 𝑑𝜙𝑘 𝒮.

From inequality 7.4 and the uniform boundedness of ‖𝒮𝑥‖ by 𝑆 (Remark 4),

‖𝑑𝜙𝑘
𝑥 𝒮𝑥‖ ≤ 𝐶 𝜆𝑘 𝑆. Together with ‖𝒫𝑥‖ = 1, we have a uniform bound

‖(𝒫 𝑑𝜙)𝑘𝑥‖ = ‖𝒫𝜙𝑘𝑥 𝑑𝜙
𝑘
𝑥 𝒮𝑥‖ ≤ 𝐶 𝜆𝑘 𝑆 , ∀ 𝑥 ∈𝑀. (7.64)

Thus,

⃦⃦
𝑣𝑘+1
𝑥 − 𝑣𝑘𝑥

⃦⃦
=
⃦⃦

(𝒫 𝑑𝜙)𝑘𝜙−𝑘𝑥(𝑣1𝜙−𝑘𝑥 − 𝑣0𝜙−𝑘𝑥)
⃦⃦
≤ 𝐶 𝜆𝑘 𝑆

⃦⃦
𝑣1𝜙−𝑘𝑥 − 𝑣0𝜙−𝑘𝑥

⃦⃦
. (7.65)

Because 𝑣0 is bounded by definition, and 𝑣1 is bounded due to the boundedness of

𝑣0, 𝜒, and 𝑑𝜙, there exists an 𝐴 > 0 such that 𝐶 𝑆 ‖𝑣1𝑥 − 𝑣0𝑥‖ < 𝐴 for all 𝑥 ∈ 𝑀 .
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Thus, for all 𝑘 ≥ 0, and 𝑥 ∈𝑀,

⃦⃦
𝑣𝑘+1
𝑥 − 𝑣𝑘𝑥

⃦⃦
≤ 𝐴 𝜆𝑘. (7.66)

And, for all 𝑚 > 𝑛 ≥ 0,

‖𝑣𝑚𝑥 − 𝑣𝑛𝑥‖ ≤
𝑚−1∑︁
𝑘=𝑛

⃦⃦
𝑣𝑘+1
𝑥 − 𝑣𝑘𝑥

⃦⃦
≤ 𝐴

𝑚−1∑︁
𝑘=𝑛

𝜆𝑘 < 𝐴
𝜆𝑛

1− 𝜆
. (7.67)

Then, given 𝜖 > 0, choosing 𝑁 > ⌊log |𝐴/(𝜖(1 − 𝜆))|/ log |1/𝜆|⌋, for all such that

𝑚 > 𝑛 ≥ 𝑁,

‖𝑣𝑚𝑥 − 𝑣𝑛𝑥‖ ≤ 𝜖, ∀ 𝑥 ∈𝑀. (7.68)

Thus {𝑣𝑛𝑥} is a uniform Cauchy sequence, and thus the sequence {𝑣𝑛} converges

uniformly on 𝑀.

Equation 7.67, applied to 𝑛 = 0, also implies that ‖𝑣𝑚𝑥 ‖ ≤ ‖𝑣0𝑥‖ + 𝐴
1−𝜆

, for all 𝑥

and 𝑚. The limit of the Cauchy sequence thus uniformly satisfies the same bound.

We now show this limit, defined by the vector field 𝑣 as 𝑣𝑥 := lim𝑛→∞ 𝑣𝑛𝑥 , is

unique in satisfying Eq. 7.63. Suppose ∆𝑣 is a bounded vector field such that

𝑣 + ∆𝑣 also satisfies Eq. 7.63. Without loss of generality, let ∆𝑣 be bounded by

1, i.e., ‖∆𝑣𝑥‖ ≤ 1 for all 𝑥 ∈ 𝑀 . Due to the linearity of the operators involved,

∆𝑣 = 𝒫 𝑑𝜙∆𝑣, and by iteration, ∆𝑣 = (𝒫 𝑑𝜙)𝑘 ∆𝑣 for any 𝑘 ∈ N. Using Eq. 7.64,

‖(∆𝑣)𝑥‖ ≤ 𝐶 𝜆𝑘 𝑆 ‖(∆𝑣)𝜙−𝑘𝑥‖ ≤ 𝐶 𝜆𝑘 𝑆 for all 𝑥 ∈ 𝑀 . Because 𝜆 < 1 and this

inequality holds for all 𝑘, ‖∆𝑣𝑥‖ must be 0. Thus ∆𝑣 = 0. The uniqueness of 𝑣

follows.

This establishes the existence of the regularized perturbation field 𝑣, and completes

the proof of Theorem 2-1. Having shown that 𝑣 exists, we now show that it is

differentiable in the unstable direction. This differentiability is used to prove Theorem

2-2. Before this, we first show that 𝑞 is differentiable in its own direction. Although it

is known that self-derivatives of the unstable/stable subspaces exist (see, for instance,
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Remark after Lemma 19.1.7 of [154]), we include a proof here for completion.

7.7.2 Existence of self-derivative of the unstable direction

We refer to as the unstable self-derivative, the vector field 𝑤 := 𝑑2𝜉Φ
𝑥. We now show

its existence.

Lemma 4. There exists a unique, bounded vector field 𝑤 that satisfies

𝑤 = 𝒫 𝑑2𝜙(𝑞, 𝑞) + 𝑑𝜙 𝑤

𝛼2
, (7.69)

where 𝛼 := ‖𝑑𝜙 𝑞‖.

Note that, since 𝑤 = 𝒫𝑤, 𝑤 is orthogonal to 𝑞.

Proof. Consider a sequence of vector fields {𝑤𝑛} that satisfies the recurrence relation

𝑤𝑛+1 = 𝒫 𝑑2𝜙(𝑞, 𝑞) + 𝑑𝜙 𝑤𝑛

𝛼2
(7.70)

We will now show that 𝑤𝑛 is a uniformly Cauchy sequence and hence converges

uniformly. From the above recurrence relation,

𝑤𝑛+1 − 𝑤𝑛 =
1

𝛼2
𝒫 𝑑𝜙 (𝑤𝑛 − 𝑤𝑛−1), (7.71)

iterating which, gives, for all 𝑛 ∈ N

𝑤𝑛+1 − 𝑤𝑛 =
1∏︀𝑛−1

𝑘=0 𝛼
2
𝜙−𝑘·

(𝒫 𝑑𝜙)𝑛 (𝑤1 − 𝑤0). (7.72)

Then, using i) (𝒫 𝑑𝜙)𝑛 = 𝒫 𝑑𝜙𝑛 𝒮, which is shown in Lemma 3, and ii) ‖𝒫𝑥‖ = 1, at

all 𝑥 ∈𝑀,

‖𝑤𝑛+1
𝑥 − 𝑤𝑛

𝑥‖ ≤
1∏︀𝑛−1

𝑘=0 𝛼
2
𝜙−𝑘𝑥

‖𝑑𝜙𝑛
𝜙−𝑛𝑥 𝒮𝜙−𝑛𝑥(𝑤1

𝜙−𝑛𝑥 − 𝑤0
𝜙−𝑛𝑥)‖. (7.73)
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Now using i)
∏︀𝑛−1

𝑘=0 𝛼𝜙−𝑘𝑥 ≥ (1/𝐶)𝜆−𝑛, and ii) ‖𝑑𝜙𝑛
𝑥𝒮𝑥‖ ≤ 𝐶 𝜆𝑛 𝑆, for all 𝑥 ∈𝑀, both

of which follow from the definition of uniform hyperbolicity,

‖𝑤𝑛+1
𝑥 − 𝑤𝑛

𝑥‖ ≤ 𝐶3 𝜆3𝑛 𝑆 ‖𝑤1
𝜙−𝑛𝑥 − 𝑤0

𝜙−𝑛𝑥‖. (7.74)

Clearly, since the map from 𝑤0 to 𝑤1 is bounded, and by assumption 𝑤0 is bounded,

there exists a constant 𝐴 such that 𝐴 := sup𝑥∈𝑀 ‖𝑤1
𝑥−𝑤0

𝑥‖. Hence, for any 𝑚 > 𝑛 ≥ 0,

‖𝑤𝑚
𝑥 − 𝑤𝑛

𝑥‖ ≤ 𝐴 𝑆 𝐶3

𝑚−1∑︁
𝑘=𝑛

𝜆3𝑘 ≤ 𝐴 𝑆 𝐶3 𝜆3𝑛

1− 𝜆3
. (7.75)

Since the above inequality holds for all 𝑥, the sequence 𝑤𝑛
𝑥 is uniformly Cauchy and

hence converges uniformly. Let 𝑤 := lim𝑛→∞ 𝑤𝑛. To show that 𝑤 is unique, suppose

𝑤𝑛 and 𝑤̃𝑛 are two different sequences that both satisfy Eq. 7.70. Then, at every

𝑥 ∈𝑀,

‖𝑤𝑛
𝑥 − 𝑤̃𝑛

𝑥‖ ≤
1

𝛼2
𝑥

‖𝑑𝜙𝜙−1𝑥 𝒮𝜙−1𝑥 (𝑤𝑛−1
𝜙−1𝑥 − 𝑤̃𝑛−1

𝜙−1𝑥)‖ (7.76)

≤ 𝐴′𝜆3𝑛, (7.77)

where the second inequality is obtained by recursively applying the first 𝑛 times and

then applying the definition of uniform hyperbolicity as done previously. Taking the

limit 𝑛→∞ on both sides, we obtain that at every 𝑥 ∈𝑀, ‖𝑤𝑥 − 𝑤̃𝑥‖ = 0. Thus, 𝑤

is a unique vector field independent of 𝑤0.

We note that the vector field 𝑤 that satisfies Eq. 7.69 is also 𝜕𝜉𝑞. This relation-

ship can be derived by differentiating with respect to 𝜉 the following equation that

expresses the definition of the unstable CLV, 𝑞:

𝛼𝜙𝑥 𝑞𝜙𝑥 = 𝑑𝜙𝑥 𝑞𝑥. (7.78)

We derive this relationship in detail in section 7.5.1. As described in section 7.5, the

practical computation of the vector field 𝑤 involves repeated application of Eq. 7.70,
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by choosing, without loss of generality, 𝑤0
𝑥 = 0, at all 𝑥. Choosing an initial phase

point 𝑥 sampled according to 𝜇, one then obtains the values 𝑤𝑛
𝜙𝑛𝑥 along the orbit of

𝑥. As 𝑛 increases, these values exponentially approach the true value of 𝑤 along that

orbit, as the proof of Lemma 4 shows. The convergence of the numerical procedure

to compute 𝑤, which we have shown here, is needed to prove the convergence of the

method (in the S3 algorithm, section 7.3.1) to compute the unstable derivative of 𝑣.

We focus on this convergence next, which ultimately establishes the differentiability

of the S3 decomposition.

7.7.3 Convergence of the unstable projections of the regular-

ized tangent solutions

The S3 decomposition of the perturbation field 𝜒 into 𝑎 𝑞 and 𝜒− 𝑎𝑞 is differentiable

on the unstable manifolds, if 𝑦 := 𝜕𝜉𝑣 exists. To see why, we first note that the scalar

field 𝑎 is the limit of the iterative projections of the sequence 𝑣𝑛, which in practice

is obtained by solving the regularized tangent equation (Eq. 7.24). We formally

establish the existence of 𝑎 by showing that the iterative procedure used to obtain it

converges.

Lemma 5. Let {𝑎𝑛} , 𝑛 ∈ Z+, be a sequence of scalar fields determined by a sequence

of vector fields, {𝑣𝑛} , that satisfies i) 𝑣𝑛𝑥 · 𝑞𝑥 = 0, ∀ 𝑥 ∈𝑀, 𝑛 ∈ Z+, and,

𝑖𝑖) 𝑣𝑛+1 = (𝑑𝜙) 𝑣𝑛 + 𝜒− 𝑎𝑛+1𝑞, 𝑛 ∈ Z+. (7.79)

Then, {𝑎𝑛} converges uniformly.

Note that i) and ii) above constitute the iterative procedure to compute the reg-

ularized tangent solution in the S3 algorithm (section 7.3.1). The sequence {𝑣𝑛} is

identical to the sequence defined in Lemma 3.

Proof. The scalar fields 𝑎𝑛+1 are the projections of 𝑑𝜙 𝑣𝑛 + 𝜒 on 𝑞,

𝑎𝑛+1 = 𝑞𝑇 (𝑑𝜙 𝑣𝑛 + 𝜒). (7.80)
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As shown in Lemma 3, the sequence 𝑣𝑛 converges uniformly. Hence, also using the fact

that 𝜙 ∈ 𝒞3(𝑀), for every 𝜖 > 0, there exists an 𝑁 ∈ N such that for all 𝑚,𝑛 ≥ 𝑁,

‖𝑣𝑚𝑥 − 𝑣𝑛𝑥‖ <
𝜖

sup𝑥∈𝑀 ‖𝑑𝜙𝑥‖
, ∀ 𝑥 ∈𝑀. (7.81)

Hence, for all 𝑚,𝑛 ≥ 𝑁, and for all 𝑥 ∈𝑀,

|𝑎𝑚+1
𝑥 − 𝑎𝑛+1

𝑥 | ≤ ‖𝑞𝑥‖‖𝑑𝜙𝑥‖‖𝑣𝑚𝑥 − 𝑣𝑛𝑥‖

≤
(︂

sup
𝑥∈𝑀
‖𝑑𝜙𝑥‖

)︂
‖𝑣𝑚𝑥 − 𝑣𝑛𝑥‖ ≤ 𝜖. (7.82)

Thus, {𝑎𝑛} converges uniformly.

We define the limit of the sequence {𝑎𝑛} by taking the limit as 𝑛 → ∞ of Eq.

7.80,

𝑎 := lim
𝑛→∞

𝑎𝑛 = 𝑞𝑇 (𝑑𝜙 𝑣 + 𝜒), (7.83)

where 𝑣 := lim𝑛→∞ 𝑣𝑛 is as defined in Lemma 3. In other words, we have the following

relationship between 𝑎 and 𝑣,

𝜒− 𝑎𝑞 = 𝑣 − 𝑑𝜙 𝑣. (7.84)

As we have shown in Lemma 3, the limit 𝑣 is a unique vector field, independent of

the initial condition for the iteration (Eq. 7.24 or equivalently, Eq. 7.79) provided

that 𝑣0 is bounded.

7.7.4 Route to showing existence and differentiability of the

S3 decomposition

So far, we have shown that a bounded vector field 𝑣 exists that is orthogonal to the

unstable manifold, and the asymptotic solution of a regularized tangent equation (Eq.

7.24). We showed the existence of the stable contribution by proving that the scalar
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field 𝑎, which represents the component in the unstable direction in decomposing 𝜒,

is related to 𝑣 (Eq. 7.84). Further, we established that 𝑎 is achieved in the same

iterative procedure used for 𝑣.

In order to complete the proof of Theorem 2, we must show that the S3 decompo-

sition of 𝜒 is differentiable on the unstable manifold. That is, we must show that the

scalar field 𝑎 is differentiable on the unstable manifold. Lemma 4 is a result toward

this purpose. Using Eq. 7.84, we can see that if 𝑣, and hence 𝑑𝜙 𝑣 are differentiable

with respect to 𝜉, and since 𝜒 is differentiable, by assumption, in all directions, we

can then conclude that 𝑎𝑞 is differentiable in the unstable direction by Eq. 7.84.

Further, by Lemma 4, the derivative 𝑤 := 𝜕𝜉𝑞 exists. Thus, the scalar field 𝑎

is differentiable on the unstable manifold, if 𝑣 is. Therefore, it remains to show the

existence of 𝜕𝜉𝑣, in order to complete the proof of Theorem 2-1 and 2.

7.7.5 Differentiability of 𝑣 in the unstable direction

Proposition 2. The regularized perturbation field 𝑣 is differentiable on the unstable

manifold, i.e., 𝜕𝜉𝑣 exists.

We prove this proposition using the following lemma.

Lemma 6. Let {𝜁𝑛} be a uniformly exponentially converging sequence of vector fields.

That is, {𝜁𝑛} is uniformly converging such that there exists an 𝐴 > 0 for which

‖𝜁𝑛+1
𝑥 − 𝜁𝑛𝑥‖ ≤ 𝐴 𝜆𝑛, for all 𝑥 ∈𝑀, and 𝑛 ∈ Z+. Given a bounded vector field 𝑦0, the

sequence {𝑦𝑛} that satisfies the following recurrence,

𝑦𝑛+1 =
1

𝛼
𝒫 𝑑𝜙 𝑦𝑛 + 𝜁𝑛+1, ∀ 𝑛 ∈ Z+, (7.85)

converges uniformly to a unique vector field, 𝑦 := lim𝑛→∞ 𝑦𝑛.

Proof. Using the recurrence relation, for all 𝑛 ∈ N,

𝑦𝑛+1 − 𝑦𝑛 =
1

𝛼
𝒫 𝑑𝜙 (𝑦𝑛 − 𝑦𝑛−1) + (𝜁𝑛+1 − 𝜁𝑛). (7.86)
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Applying this equation iteratively,

𝑦𝑛+1 − 𝑦𝑛 =
1∏︀𝑛−1

𝑘=0 𝛼 ∘ 𝜙−𝑘
(𝒫 𝑑𝜙)𝑛(𝑦1 − 𝑦0) (7.87)

+
𝑛−1∑︁
𝑘=0

1∏︀𝑘−1
𝑗=0 𝛼 ∘ 𝜙−𝑗

(𝒫 𝑑𝜙)𝑘(𝜁𝑛−𝑘+1 − 𝜁𝑛−𝑘). (7.88)

Using i) the relation (𝒫 𝑑𝜙)𝑛 = 𝒫 𝑑𝜙𝑛𝒮 – which is derived in Lemma 3 using Remarks

6 and 7 –, ii) ‖𝒫𝑥‖ = 1, and iii)
∏︀𝑛−1

𝑘=0 𝛼𝜙−𝑘𝑥 ≥ (1/𝐶)𝜆−𝑛 at any 𝑥 ∈𝑀,

‖𝑦𝑛+1
𝑥 − 𝑦𝑛𝑥‖ ≤ 𝐶2 𝜆2𝑛 𝑆 ‖𝑦1𝜙−𝑛𝑥 − 𝑦0𝜙−𝑛𝑥‖

+ 𝐶2 𝑆
𝑛−1∑︁
𝑘=0

𝜆2𝑘‖𝜁𝑛−𝑘+1
𝜙−𝑘𝑥

− 𝜁𝑛−𝑘
𝜙−𝑘𝑥
‖. (7.89)

Now since {𝜁𝑛} is uniformly exponentially converging,

‖𝜁𝑛−𝑘+1
𝜙−𝑘𝑥

− 𝜁𝑛−𝑘
𝜙−𝑘𝑥
‖ ≤ 𝐴 𝜆𝑛−𝑘. (7.90)

Further, since 𝑦0, 𝜁1 are bounded vector fields, and 𝒫 𝑑𝜙 is bounded, 𝑦1 is a bounded

vector field. Hence, there exists some constant 𝐴1 such that for any 𝑥 ∈𝑀,

‖𝑦1𝜙−𝑛𝑥 − 𝑦0𝜙−𝑛𝑥‖ < 𝐴1. (7.91)

Using both the above relationships (7.90 and 7.91) in 7.89,

‖𝑦𝑛+1
𝑥 − 𝑦𝑛𝑥‖ ≤ 𝐶2 𝜆2𝑛 𝑆 𝐴1 + 𝐴 𝐶2 𝑆 𝜆𝑛/(1− 𝜆) ≤ 𝐴2𝜆

𝑛.

Hence, for 𝑚 ≥ 𝑛 > 0, and all 𝑥 ∈𝑀,

‖𝑦𝑚𝑥 − 𝑦𝑛𝑥‖ ≤
𝑚−1∑︁
𝑘=𝑛

𝐴2𝜆
𝑘 < 𝐴2

𝜆𝑛

1− 𝜆
. (7.92)

Thus, {𝑦𝑛} is uniformly Cauchy and converges uniformly.

To see that the limit 𝑦 := lim𝑛→∞ 𝑦𝑛 is unique, let 𝑦𝑛 and 𝑦𝑛 be two different
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bounded sequences that satisfy Eq. 7.85, and converge to 𝑦 and 𝑦 respectively. Then,

𝑦𝑛 − 𝑦𝑛 =
1

𝛼
𝒫 𝑑𝜙 (𝑦𝑛−1 − 𝑦𝑛−1), (7.93)

which can be applied recursively to yield,

𝑦𝑛 − 𝑦𝑛 =
1∏︀𝑛−1

𝑘=0 𝛼 ∘ 𝜙−𝑘
(𝒫 𝑑𝜙 )𝑛(𝑦0 − 𝑦0) =

1∏︀𝑛−1
𝑘=0 𝛼 ∘ 𝜙−𝑘

𝒫 𝑑𝜙𝑛 𝒮(𝑦0 − 𝑦0). (7.94)

Since both 𝑦0 and 𝑦0 are bounded, the operator norm of 𝒮𝑥 is uniformly bounded

above, and from the definition of uniform hyperbolicity, there exists some 𝑐 > 0 such

that for all 𝑛, and all 𝑥 ∈𝑀 , we have

‖𝑦𝑛𝑥 − 𝑦𝑛𝑥‖ ≤ 𝑐 𝜆2𝑛. (7.95)

Thus, lim𝑛→∞(𝑦𝑛𝑥 − 𝑦𝑛𝑥) = 0 ∈ R𝑚 for every 𝑥 ∈𝑀. Hence, the limit 𝑦 is unique.

Now we prove Proposition 2. We set

𝜁𝑛+1 = 𝒫
(︀𝑑2𝜙(𝑞, 𝑣𝑛)

𝛼
+ 𝑑𝜒 𝑞

)︀
+ (𝜕𝜉𝒫)(𝑑𝜙 𝑣𝑛 + 𝜒), (7.96)

where the sequence {𝑣𝑛} is as defined in Lemma 3; 𝑑2𝜙𝑥(·, ·) : 𝑇𝑥𝑀 × 𝑇𝑥𝑀 → 𝑇𝜙𝑥𝑀

is a bilinear form representing the second-order derivative of 𝜙 at 𝑥 ∈ 𝑀 . In order

to apply Lemma 6, we must show that {𝜁𝑛} is a bounded, uniformly exponentially

converging sequence. First we note that the projection operator 𝒫 is differentiable

in the unstable direction. Using the matrix representation of 𝒫 , and Lemma 4, its

derivative is given by

𝜕𝜉𝒫 = −𝜕𝜉(𝑞𝑞𝑇 ) = −(𝑤𝑞𝑇 + 𝑞𝑤𝑇 ), (7.97)

from which we see that the operator norm of 𝜕𝜉𝒫 is bounded on 𝑀 . Because 𝑑𝜙 ∈

𝐶2(𝑀) by assumption, ‖𝑑𝜙𝑥‖ and ‖𝑑2𝜙𝑥‖ are also bounded on 𝑀 ; 𝜒 and 𝑑𝜒 are
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bounded by assumption. Now, the sequence {𝑣𝑛} is uniformly bounded on 𝑀 and

Z+ (∵ {𝑣𝑛} is bounded and uniformly convergent, by Lemma 3). Thus, {𝜁𝑛} defined

in Eq. 7.96 is a uniformly bounded sequence.

Now to show that {𝜁𝑛} is uniformly exponentially converging, we use its definition,

Eq. 7.96, to get

𝜁𝑛+1 − 𝜁𝑛 = 𝜕𝜉𝒫 𝑑𝜙 (𝑣𝑛 − 𝑣𝑛−1) +
𝒫
𝛼

𝑑2𝜙
(︀
𝑞, (𝑣𝑛 − 𝑣𝑛−1)

)︀
. (7.98)

Since 𝜕𝜉𝒫 , 𝑑𝜙 and 𝑑2𝜙 are bounded and ‖𝒫‖ = 1, and using Eq. 7.65, there exists

some 𝑐 > 0 such that, for all 𝑥 ∈𝑀,

‖𝜁𝑛+1
𝑥 − 𝜁𝑛𝑥‖ ≤

(︂
‖(𝜕𝜉𝒫)𝑥‖ ‖𝑑𝜙𝜙−1𝑥‖+

‖𝑑2𝜙𝑥(𝑞𝑥, ·)‖
𝛼

)︂
𝐴 𝜆𝑛 := 𝑐 𝜆𝑛. (7.99)

Thus, using the same argument following Eq. 7.65 in Lemma 3, we can show that

{𝜁𝑛} converges uniformly. Further, the limit 𝜁 := lim𝑛→∞ 𝜁𝑛 is unique, and defined

by taking the limit of Eq. 7.96,

𝜁 = 𝒫
(︀𝑑2𝜙(𝑞, 𝑣)

𝛼
+ 𝑑𝜒 · 𝑞

)︀
+ (𝜕𝜉𝒫)(𝑑𝜙 𝑣 + 𝜒). (7.100)

Therefore, {𝜁𝑛}, as defined in Eq. 7.96, is a uniformly bounded, uniformly exponen-

tially converging sequence of vector fields. Now applying Lemma 6, there exists a

unique, bounded vector field 𝑦 that satisfies

𝑦 =
𝒫 𝑑𝜙 𝑦

𝛼
+ 𝜁. (7.101)

Differentiating with respect to 𝜉 the constraint, Eq. 7.63, which is satisfied by the

regularized perturbation field 𝑣, we see that if the derivative 𝜕𝜉𝑣 exists, it must satisfy

Eq. 7.101 (replacing 𝑦), with 𝜁 defined in Eq. 7.100. Since a vector field 𝑦 that

satisfies Eq. 7.101 exists and is unique (Lemma 6), the regularized perturbation field

𝑣 is indeed differentiable. This completes the proof of 2. Further, the computation

of its derivative, using the sequence of vector fields {𝑦𝑛} used in the proof of Lemma
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6, converges exponentially along almost every trajectory. Note that the evaluation of

𝑦 along a trajectory, with 𝜁 defined in Eq. 7.100, is precisely that derived in section

7.5.3.

Recall the argument (section 7.7.4) that the differentiability (with respect to 𝜉)

of 𝑣 implies that of 𝑎. This completes the proof of Theorem 2-2., and hence the

first two parts of Theorem 2. To complete the proof of Theorem 2-3, we provide a

constructive proof of the unstable derivative 𝑏 = 𝜕𝜉𝑎. In a similar vein to Lemmas 3, 4

and 6, this proof shows that a trajectory-based computation adopted in S3 converges

exponentially, in this case, to the true values of 𝑏.

7.7.6 Convergence of the derivative of {𝑎𝑛}

We now show that the iterative algorithm for the scalar derivative 𝑏𝑛 := 𝜕𝜉𝑎
𝑛 con-

verges uniformly. Expanding Eq. 7.96 to make the appearance of 𝑏𝑛 := 𝜕𝜉𝑎
𝑛 explicit,

by using the definition of 𝑎𝑛 (Lemma 5),

𝑦𝑛+1 =
𝑑𝜙 𝑦𝑛

𝛼
+

𝑑2𝜙(𝑣𝑛, 𝑞)

𝛼
+ 𝑑𝜒 𝑞 − 𝑎𝑛+1𝑤 − 𝑏𝑛+1𝑞.

Taking inner product with 𝑞 and using 𝑤𝑥 · 𝑞𝑥 = 0 at all 𝑥 ∈𝑀 (Lemma 4),

𝑏𝑛+1 =

(︂
𝑑𝜙 𝑦𝑛

𝛼
− 𝑦𝑛+1 +

𝑑2𝜙(𝑣𝑛, 𝑞)

𝛼
+ 𝑑𝜒 𝑞

)︂
· 𝑞. (7.102)

Lemma 7. The sequence {𝑏𝑛} defined in Eq. 7.102 converges uniformly where i) the

sequence {𝑦𝑛} satisfies Eq. 7.85, and, ii) {𝑣𝑛} satisfies Eq. 7.25.

Proof. We prove that the sequence of vector fields {𝜏𝑛} given by

𝜏𝑛+1 =
𝑑𝜙 𝑦𝑛

𝛼
− 𝑦𝑛+1 +

𝑑2𝜙(𝑣𝑛, 𝑞)

𝛼
+ 𝑑𝜒 𝑞 (7.103)

converges uniformly. From the above definition, and using the linearity of 𝑑2𝜙(·, 𝑞),
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at any 𝑥 ∈𝑀, and all 𝑛 > 𝑚 ≥ 0,

‖𝜏𝑛+1
𝑥 − 𝜏𝑚+1

𝑥 ‖ ≤ ‖𝑑𝜙𝑥‖
𝛼𝑥

‖𝑦𝑛𝑥 − 𝑦𝑚𝑥 ‖+ ‖𝑦𝑛+1
𝑥 − 𝑦𝑚+1

𝑥 ‖+
‖𝑑2𝜙𝑥(𝑣𝑛𝑥 − 𝑣𝑚𝑥 , 𝑞𝑥)‖

𝛼𝑥

.

(7.104)

Recall that 𝜙 ∈ 𝐶3(𝑀) and hence ‖𝑑𝜙𝑥‖ and ‖𝑑2𝜙𝑥(·, ·)‖ are both uniformly bounded;

from uniform hyperbolicity, 1/𝛼𝑥 ≤ 𝐶𝜆, at all 𝑥 ∈ 𝑀 . Let 𝜖 > 0 be given. Using

Lemma 6, there exists an 𝑁𝑦 ∈ N such that for all 𝑥 ∈𝑀 and 𝑚,𝑛 ≥ 𝑁𝑦, ‖𝑦𝑛𝑥−𝑦𝑚𝑥 ‖ <

𝜖/(3 𝐶 𝜆 sup𝑥∈𝑀 ‖𝑑𝜙𝑥‖). Similarly, using Lemma 3, there exists an 𝑁𝑦 ∈ N such that

for all 𝑥 ∈ 𝑀 and 𝑚,𝑛 ≥ 𝑁𝑣, ‖𝑣𝑛𝑥 − 𝑣𝑚𝑥 ‖ < 𝜖/(3 𝐶 𝜆 sup𝑥∈𝑀 ‖𝑑2𝜙𝑥(𝑞, ·)‖). Choosing

𝑁 = max{𝑁𝑣, 𝑁𝑦}, for all 𝑚,𝑛 ≥ 𝑁, and all 𝑥 ∈ 𝑀, ‖𝜏𝑛𝑥 − 𝜏𝑚𝑥 ‖ ≤ 𝜖. Thus, {𝜏𝑛}

converges uniformly. Since at all 𝑥 ∈𝑀, 𝑏𝑛𝑥 = 𝜏𝑛𝑥 ·𝑞𝑥, the sequence {𝑏𝑛} also converges

uniformly. Moreover, note from 7.104 that the speed of convergence is exponential,

since both {𝑣𝑛} and {𝑦𝑛} are exponentially uniformly converging as shown in Lemmas

3 and 6 respectively. The limit is unique since,

𝑏 := lim
𝑛→∞

𝑏𝑛 = ( lim
𝑛→∞

𝜏𝑛) · 𝑞 =

(︂
𝑑𝜒 𝑞 − 𝑦 +

𝑑𝜙 𝑦 + 𝑑2𝜙(𝑣, 𝑞)

𝛼

)︂
· 𝑞. (7.105)

7.8 Proof of Theorem 2

In this section, we complete the proof of Theorem 2, which establishes the conver-

gence of the S3 algorithm (section 7.3.1). In particular, we prove that the ergodic

averages we compute in the S3 algorithm (section 7.3.1) for the stable and unstable

contributions converge to their true values.

7.8.1 Convergence of the stable contribution

Having shown the S3 decomposition is differentiable on the unstable manifold (sec-

tion 7.7), we now derive an alternative expression for the stable contribution. This
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expression leads to a direct computation of the stable contribution using the regular-

ized tangent equation (section 7.4.2). We then show that this computation converges

to the true stable contribution.

Proposition 3. The error in the stable contribution, when computed as an ergodic

average on a trajectory of length 𝑁 , converges as 𝒪(
√

log log𝑁/
√
𝑁).

Proof. Taking lim𝑚→∞ of Eq. 7.67, ‖𝑣𝑛𝑥 − 𝑣𝑥‖ < 𝐴
𝜆𝑛

1− 𝜆
, ∀ 𝑥 ∈𝑀 , 𝑛 ∈ Z+. Hence,

{𝑣𝑛} is a uniformly bounded sequence. Since 𝑑𝐽 is bounded by assumption, by

Lebesgue dominated convergence on the sequence of functions {𝑑𝐽 · 𝑣𝑛}, lim𝑛→∞⟨𝑑𝐽 ·

𝑣𝑛, 𝜇⟩ = ⟨𝑑𝐽 ·𝑣, 𝜇⟩. From Lemma 3, an explicit expression for 𝑣𝑛 starting from 𝑣0 = 0 ∈

R𝑚 is 𝑣𝑛 =
∑︀𝑛−1

𝑘=0 𝑑𝜙
𝑘(𝜒− 𝑎𝑛−𝑘𝑞). Thus, ⟨𝐽, 𝜕𝑠𝜇𝑠⟩s = lim𝑛→∞⟨𝑑𝐽 · 𝑣𝑛, 𝜇⟩ = ⟨𝑑𝐽 · 𝑣, 𝜇⟩.

Choosing a constant 𝑐 ≥ sup𝑥∈𝑀 ‖(𝑑𝐽)𝑥‖𝐴/(1− 𝜆),

|(𝑑𝐽)𝑥 · 𝑣𝑛𝑥 − (𝑑𝐽)𝑥 · 𝑣𝑥| < 𝑐 𝜆𝑛 ∀ 𝑥 ∈𝑀 , 𝑛 ∈ Z+. (7.106)

Let 𝑥 be an arbitrary point on 𝑀 chosen 𝜇-a.e. As usual, we use the shorthand

𝑓𝑛 to represent 𝑓𝑥𝑛 , the vector field 𝑓 evaluated at the point 𝑥𝑛. The error in the

𝑁 -time ergodic average is as follows,⃒⃒⃒⃒
⃒ 1

𝑁

𝑁−1∑︁
𝑛=0

(𝑑𝐽)𝑛 · (𝑣𝑛𝑛 − 𝑣𝑛)

⃒⃒⃒⃒
⃒ ≤ 𝑐

𝑁

𝑁−1∑︁
𝑛=0

𝜆𝑛 :=
𝑐1
𝑁
. (7.107)

Thus, the error in the stable contribution computation can be bounded as follows.⃒⃒⃒⃒
⃒ 1

𝑁

𝑁−1∑︁
𝑛=0

(𝑑𝐽)𝑛 · 𝑣𝑛𝑛 − ⟨𝑑𝐽 · 𝑣, 𝜇⟩

⃒⃒⃒⃒
⃒ ≤

⃒⃒⃒⃒
⃒ 1

𝑁

𝑁−1∑︁
𝑛=0

(𝑑𝐽)𝑛 · (𝑣𝑛𝑛 − 𝑣𝑛)

⃒⃒⃒⃒
⃒+

⃒⃒⃒⃒
⃒ 1

𝑁

𝑁−1∑︁
𝑛=0

(𝑑𝐽)𝑛 · 𝑣𝑛 − ⟨𝑑𝐽 · 𝑣, 𝜇⟩

⃒⃒⃒⃒
⃒

≤ 𝑐1
𝑁

+
𝑐2
√

log log𝑁√
𝑁

. (7.108)

The bound 𝑐2
√

log log𝑁/
√
𝑁 appears since (𝑑𝐽) ·𝑣 is Hölder continuous, and the law

of iterated logarithm applies to the convergence of its ergodic average [74]. Thus, we

conclude that the error in the stable contribution computation converges, with 𝑁 –

the trajectory length or the number of sample points according to 𝜇 – almost as a
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typical Monte Carlo integration,⃒⃒⃒⃒
⃒ 1

𝑁

𝑁−1∑︁
𝑛=0

(𝑑𝐽)𝑛 · 𝑣𝑛𝑛 − ⟨𝑑𝐽 · 𝑣, 𝜇𝑠⟩

⃒⃒⃒⃒
⃒ ∼ 𝒪(

√︀
log log𝑁/

√
𝑁). (7.109)

7.8.2 Convergence of the unstable contribution

We establish the convergence of the unstable contribution with the help of two lem-

mas. The first shows the convergence of the recursive formula for the logarithmic

density gradient, 𝑔. The second lemma, Lemma 7, proves the convergence of the

iterative procedure to differentiate the regularized perturbation field, 𝑣, on the un-

stable manifold. Together, these two results can be used to show that the unstable

contribution, with the computation described in the S3 algorithm (section 7.3.1),

converges.

Convergence of logarithmic density gradient

Lemma 8. Given a bounded scalar field 𝑟, there exists a unique, bounded scalar field

𝑔 that satisfies

𝑔 ∘ 𝜙 =
𝑔

𝛼 ∘ 𝜙
+ 𝑟 ∘ 𝜙, (7.110)

Note that when 𝑟 = −𝛾/𝛼, the logarithmic density gradient function satisfies Eq.

7.110.

Proof. First we show existence. Let ℎ0 : 𝑀 → R be an arbitrary bounded scalar

function. Consider the sequence of scalar functions {ℎ𝑛} which follow the recurrence

relation:

ℎ𝑛+1 ∘ 𝜙 =
ℎ𝑛

𝛼 ∘ 𝜙
+ 𝑟 ∘ 𝜙. (7.111)
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We show that this sequence converges uniformly. From the above recurrence relation,

at every 𝑥 ∈𝑀 ,

ℎ𝑛+1
𝑥 − ℎ𝑛

𝑥 =
ℎ𝑛
𝜙−1𝑥

𝛼𝑥

−
ℎ𝑛−1
𝜙−1𝑥

𝛼𝑥

. (7.112)

Applying this relation recursively, for all 𝑛 ≥ 1,

⃒⃒
ℎ𝑛+1
𝑥 − ℎ𝑛

𝑥

⃒⃒
≤ 1∏︀𝑛−1

𝑘=0 𝛼𝜙−𝑘𝑥

⃒⃒
ℎ1
𝜙−𝑛𝑥 − ℎ0

𝜙−𝑛𝑥

⃒⃒
. (7.113)

Under the assumption of uniform hyperbolicity, there exist constants 𝐶 > 0 and

𝜆 ∈ (0, 1) such that
∏︀𝑛−1

𝑘=0 𝛼𝜙−𝑘𝑥 ≥ (1/𝐶)𝜆−𝑛, for all 𝑥 ∈𝑀. Thus,

⃒⃒
ℎ𝑛+1
𝑥 − ℎ𝑛

𝑥

⃒⃒
≤ 𝐶𝜆𝑛

⃒⃒
ℎ1
𝜙−𝑛𝑥 − ℎ0

𝜙−𝑛𝑥

⃒⃒
. (7.114)

Since ℎ0 is a bounded function, and ℎ1 is also a bounded function because ℎ0 and 𝑟

are bounded, there exists 𝐴 > 0 such that |ℎ1
𝑥 − ℎ0

𝑥| ≤ 𝐴, for all 𝑥 ∈𝑀. Thus, for all

𝑖 > 𝑗 ≥ 0,

⃒⃒
ℎ𝑖
𝑥 − ℎ𝑗

𝑥

⃒⃒
≤

𝑖−1∑︁
𝑛=𝑗

⃒⃒
ℎ𝑛+1
𝑥 − ℎ𝑛

𝑥

⃒⃒
≤ 𝐴 𝐶

𝜆𝑗

1− 𝜆
. (7.115)

Hence {ℎ𝑛} is a uniformly Cauchy sequence and therefore converges uniformly. Let

𝑔 := lim𝑛→∞ ℎ𝑛. We show that this limit is unique. Let {ℎ𝑛} and {ℎ̃𝑛} be two different

sequences satisfying Eq. 7.111. Additionally, assume that both ℎ0 and ℎ̃0 are bounded

functions. Then,

|ℎ𝑛
𝑥 − ℎ̃𝑛

𝑥| ≤
|ℎ𝑛−1

𝜙−1𝑥 − ℎ̃𝑛−1
𝜙−1𝑥|

𝛼𝜙−1𝑥

, (7.116)

which by iteration, gives,

|ℎ𝑛
𝑥 − ℎ̃𝑛

𝑥| ≤
|ℎ0

𝜙−𝑛𝑥 − ℎ̃0
𝜙−𝑛𝑥|∏︀𝑛

𝑘=1 𝛼𝜙−𝑘𝑥

≤ 𝐶 𝜆𝑛 |ℎ0
𝜙−𝑛𝑥 − ℎ̃0

𝜙−𝑛𝑥|. (7.117)
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Thus |ℎ𝑛
𝑥 − ℎ̃𝑛

𝑥| → 0 as 𝑛→∞ since |ℎ0
𝜙−𝑛𝑥 − ℎ̃0

𝜙−𝑛𝑥| < const. Since this holds for all

𝑥 ∈𝑀, lim𝑛→∞ ℎ𝑛 = lim𝑛→∞ ℎ̃𝑛 = 𝑔.

We have shown that the limit 𝑔 is independent of the initial condition ℎ0. Hence,

without loss of generality, we may assume that ℎ0
𝑥 = 0 at all 𝑥 ∈𝑀, as we do in section

7.5.2. We remark that, due to the algebraic simplification introduced in section 7.5.4,

the explicit iteration of Eq. 7.111 is subsumed under the combination of Eq. 7.59

and 7.60.

Convergence of the unstable contribution computation

In the S3 algorithm, the computation of the unstable contribution is carried out as

an ergodic average. We use the results we have set up so far to show that this ergodic

average converges to the true unstable contribution. From our derivation (section

7.4.4) and the strong decay of correlations assumption (section 7.5.4), we obtain the

following regularized expression for the unstable contribution,

⟨𝐽, 𝜕𝑠𝜇𝑠⟩u = −
∞∑︁
𝑘=0

⟨𝐽 ∘ 𝜙𝑘(𝑎 𝑔 + 𝑏), 𝜇⟩. (7.118)

In order to show that our computation of the unstable contribution converges, we

first note that, due to exponential decay of correlations between Hölder continuous

functions (section 7.4.4), the above series converges. Further, we show in Lemmas

5, 7 and 8 that the convergence to the true values of 𝑎, 𝑏 and 𝑔 respectively is

exponential in each case, along any 𝜇-typical orbit. Thus, iterating the equations

for these quantities for a sufficient run-up time, we may assume that they are, up to

machine precision, equal to their true values. The convergence rate of the unstable

contribution is thus determined by that of the following 𝑁 -sample averages, at the

first few 𝑘 ∈ Z+. For almost every 𝑥, and all 𝑁 > 𝑁0,⃒⃒⃒⃒
⃒
𝐾−1∑︁
𝑘=0

(︃
⟨𝐽 ∘ 𝜙𝑘(𝑎 𝑔 + 𝑏), 𝜇⟩ − 1

𝑁

𝑁−1∑︁
𝑛=0

𝐽𝑛+𝑘 (𝑎𝑛 𝑔𝑛 + 𝑏𝑛)

)︃⃒⃒⃒⃒
⃒ ≤
√

log log𝑁
∑︀

𝑘<𝐾 𝑐𝑘√
𝑁

.

(7.119)
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The bound above is again obtained by applying the law of iterated logarithm, which

holds for Hölder continuous functions, to the ergodic average at each 𝑘.. Given 𝜖 > 0,

there exists a 𝐾 such that
⃒⃒∑︀

𝑘>𝐾⟨𝐽 ∘ 𝜙𝑘(𝑎 𝑔 + 𝑏), 𝜇⟩
⃒⃒
< 𝜖/2, due to the convergence

of 7.118. Then, choosing 𝑁 large enough such that
√

log log𝑁
∑︀

𝑘<𝐾 𝑐𝑘/
√
𝑁 < 𝜖/2,

we approximate the unstable contribution arbitrarily well,⃒⃒⃒⃒
⃒⟨𝐽, 𝜕𝑠𝜇𝑠⟩u −

𝐾−1∑︁
𝑘=0

(1/𝑁)
𝑁−1∑︁
𝑛=0

𝐽𝑛+𝑘 (𝑎𝑛 𝑔𝑛 + 𝑏𝑛)

⃒⃒⃒⃒
⃒ < 𝜖.

This numerical approximation converges to the unstable contribution as 𝑁 → ∞

followed by as 𝐾 →∞. We have already shown that the stable contribution compu-

tation has an error convergence rate of 𝒪(
√

log log𝑁/
√
𝑁) (Lemma 3). This proves

that the sum of stable and unstable contribution converges as 𝒪(
√

log log𝑁/
√
𝑁),

with the S3 algorithm implemented on an 𝑁 -length trajectory.

7.9 Discussion and conclusion

The main contribution of this chapter is a new algorithm, called space-split sensitivity

(S3), to compute linear response, or the sensitivities of statistics to parameters, in

chaotic dynamical systems. The chapter presents the derivation of S3 with Ruelle’s

linear response formula as the starting point. While Ruelle’s formula leads to an ill-

conditioned direct computation, we derive a decomposition – the S3 decomposition –

of the formula that yields a well-conditioned ergodic-averaging computation. The S3

decomposition is achieved by orthogonalizing the conventional tangent solution with

respect to the unstable subspaces along a long trajectory. This procedure yields a

regularized tangent vector field 𝑣 and a scalar field 𝑎.

The sensitivity to the unstable vector field so achieved – 𝑎𝑞 – is called the unstable

contribution. The stable contribution is the remaining linear response, and can be

calculated just as tangent sensitivities are in non-chaotic systems, but using the regu-

larized tangent solutions in place of the conventional tangent solutions. The unstable

contribution is integrated by parts on the unstable manifold to yield an expression
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in which, unlike the original form of Ruelle’s formula, the integrand is bounded at

all times. Then, exploiting the decay of correlations, this regularized formula can

be computed fast as a sum of Monte Carlo integrals. However, the problem is, we

obtain two unknown functions – the derivative of 𝑎 on the unstable manifold, and the

density gradient. The density gradient is a fundamental object whose regularity we

link, in a different study [248], to the validity of linear response [277][276].

The density gradient is the unstable derivative of the logarithmic conditional den-

sity of the SRB measure on the unstable manifold. We take the unstable derivative of

Pesin’s formula to obtain a recursive evaluation of the density gradient along a typical

trajectory. We show that starting this recursion with an arbitrary scalar field leads

to an exponential convergence to the true density gradient. A recursive procedure is

also derived for the unstable derivative of 𝑎 by combining the unstable derivatives of

𝑣 and 𝑞. The evaluation of the latter two unstable derivatives requires solving two

second-order tangent equations, which are the most computationally intensive steps

of the S3 algorithm.

Overall, the S3 algorithm computes Ruelle’s formula as a well-conditioned ergodic

average. The efficiency of the S3 algorithm stems from its decomposition of Ruelle’s

formula and its treatment of the unstable contribution. In Ruelle’s formula (Eq.

7.11), the norm of the integrand increases exponentially with 𝑛, which leads to the

ill-conditioning of the estimation of each term as an ergodic average. However, in the

unstable contribution after applying the S3 decomposition (Eq. 7.34), the norm of

the integrand does not grow with 𝑛 and hence, the estimation of the S3 formula as

an ergodic average is efficient.

An important direction of future work is to make S3 applicable to systems with

higher-dimensional unstable manifolds.
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Chapter 8

Extending S3 to Chaotic ODEs

In this chapter, we extend the S3 algorithm for linear response, developed in the

previous chapter for discrete-time systems, to ODEs. We consider chaotic ODEs

which possess attractors that have a one-dimensional unstable manifold. In compar-

ison to uniformly hyperbolic maps, which we studied in the previous chapter, the

continuous-time systems we consider here, also known as uniformly hyperbolic flows,

are complicated by the presence of a one-dimensional center subspace of the tangent

space, which is neither contracting nor expanding exponentially under the tangent

dynamics. We split Ruelle’s formula into three parts: the stable, unstable and center

contributions. The stable and unstable contributions have similar forms as in the

case of uniformly hyperbolic maps, although they are different in the present setting

of uniformly hyperbolic flows. We derive expressions and outline the computation of

the three components of linear response. An ergodic-averaging scheme, once again

with an error convergence at the rate of a typical Monte Carlo summation of Ruelle’s

response, is presented. All the notations and definitions from Chapter 7 carry over.
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8.1 Chaotic ODE

In this chapter, we consider a time-discretization of a chaotic governing equation of

the form

𝑑𝑥

𝑑𝑡
= 𝐹 (𝑥; 𝑠). (8.1)

The ODE, generated by the vector field 𝐹 , is numerically integrated in time. As

usual, we use 𝜙𝑠 to denote integration by one timestep, which is assumed to be small

enough such that 𝜙𝑠 : 𝑀 →𝑀 is a 𝐶3 function. Let 𝑓 be the unit vector field in the

tangent subspace spanned by 𝐹 i.e., 𝑓𝑥 = 𝐹𝑥/‖𝐹𝑥‖, at all 𝑥 ∈ 𝑀. We also introduce

the scalar field 𝛽 to represent the norm of the generator of the flow, 𝛽𝑥 := ‖𝐹𝑥‖.

8.2 Uniformly hyperbolic flows

The purpose of this chapter is to extend the S3 algorithm, which was presented in

chapter 7 for uniformly hyperbolic systems, to uniformly hyperbolic flows, in which

linear response also holds [235][85].

In the class of systems we consider, the tangent space at every 𝑥 ∈ 𝑀 can be

decomposed into three 𝑑𝜙−invariant or covariant subspaces, namely, i) 𝐸𝑢
𝑥 – the

unstable subspace, ii) 𝐸𝑠
𝑥 – stable subspace and iii) 𝐸𝑐

𝑥 ≡ span {𝑓} – center subspace.

Since both 𝐸𝑢
𝑥 and 𝐸𝑐

𝑥 are one-dimensional at all 𝑥, this means that, for any 𝑣 ∈ 𝑇𝑥𝑀 ,

a direct sum decomposition of the form, 𝑣 = 𝑎𝑢𝑞+ 𝑣𝑠 +𝑎𝑐𝑓 exists, where 𝑣𝑠 ∈ 𝐸𝑠
𝑥 and

𝑎𝑢 and 𝑎𝑐 are scalar components in the unstable and center directions respectively.

8.2.1 The center subspace

Considering a small fixed timestep, 𝛿𝑡, the solution map for Eq. 2.1 is approximately

𝜙𝑠 : 𝑀 →𝑀 given by,

𝜙𝑠𝑥 = 𝑥 + 𝛿𝑡𝐹 (𝑥, 𝑠). (8.2)

298



As usual, we write 𝜙𝑠0 simply as 𝜙. The tangent equation, corresponding to an in-

finitesimal perturbation of 𝑠,

𝑣𝑛+1 = 𝑑𝜙 𝑣𝑛 + 𝜒𝑛+1, (8.3)

is in the same form as in uniformly hyperbolic diffeomorphisms, where 𝜒𝑛+1 =

(𝛿𝑡)𝜕𝑠𝐹 (𝑥𝑛, 𝑠). The stable and unstable subspaces consist of uniformly exponentially

decaying tangent vectors, under 𝑑𝜙𝑛 and 𝑑𝜙−𝑛 respectively, as described in section

6.2.2. The one-dimensional center subspace is spanned by the right-hand side of the

ODE (2.1), 𝐹 . It is covariant, i.e., 𝑑𝜙𝑥𝐸
𝑐
𝑥 = 𝐸𝑐

𝜙𝑥. Further, it does not exhibit growth

or decay on the exponential scale, under the tangent dynamics. Using the covariance

of 𝐸𝑐
𝑥 and the definition of 𝛽, ‖𝑑𝜙𝑥 𝑓𝑥‖ = ‖(𝛽𝜙𝑥/𝛽𝑥) 𝑓𝜙𝑥‖ . Since 𝐹 ∈ 𝐶3(𝑀) by as-

sumption, ‖𝛽‖ := sup𝑥∈𝑀 ‖𝐹𝑥‖ is finite. We assume that ‖𝛽‖* := inf𝑥∈𝑀 ‖𝐹𝑥‖ > 0.

Then, ‖𝑑𝜙
⃒⃒
𝐸𝑐‖ := sup𝑥∈𝑀 ‖𝑑𝜙𝑥𝑓𝑥‖ ≤ ‖𝛽‖ / ‖𝛽‖* := 𝐵, is finite.

8.3 Center-Unstable projection

We define the operator 𝒫 on vector fields to project out of the center-unstable sub-

bundle. That is, for any 𝑣 ∈ 𝐸𝑢 ⊕ 𝐸𝑐, 𝒫𝑣 = 0. We describe some properties of

𝒫 .

Remark 8. Considering the decomposition 𝑣 = 𝑎𝑢𝑞 + 𝑎𝑓𝑓 +𝒮𝑣, where 𝑎𝑢 and 𝑎𝑓 are

scalar field components of 𝑣 along 𝑞 and 𝑓 respectively, 𝒫𝑣 = 𝒫𝒮𝑣 since 𝒫𝑞 = 𝒫𝑓 = 0.

As operators, 𝒫 = 𝒫𝒮.

Remark 9. For any vector field 𝑣, (𝐼 − 𝒫)𝑣 ∈ 𝐸𝑢 ⊕ 𝐸𝑐. Thus, 𝒮(𝐼 − 𝒫) = 0, or

𝒮 = 𝒮𝒫 .

Remark 10. Using the above remarks, we can simplify the operator (𝒫𝑑𝜙)𝑛 as fol-

lows. Since 𝒫 = 𝒫𝒮 (Remark 8), (𝒫𝑑𝜙)𝑛 = 𝒫𝒮𝑑𝜙 (𝒫𝑑𝜙)𝑛−1, and then using the

covariance of 𝒮, (𝒫𝑑𝜙)𝑛 = 𝒫𝑑𝜙𝒮 (𝒫𝑑𝜙)𝑛−1. Using 𝒮𝒫 = 𝒮 (Remark 9), and the

covariance of 𝒮, (𝒫𝑑𝜙)𝑛 = 𝒫𝑑𝜙2𝒮 (𝒫𝑑𝜙)𝑛−2. Repeatedly applying 𝒮𝒫 = 𝒮 and the

covariance of 𝒮, 𝑛− 2 times, we obtain, (𝒫𝑑𝜙)𝑛 = 𝒫𝑑𝜙𝑛𝒮.
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First we prove the existence of a regularized tangent solution, analogous to the

uniformly hyperbolic case (Lemma 3).

Lemma 9. For any bounded vector field 𝜒, there exists a unique, bounded vector field

𝑣 that satisfies

𝑣 = 𝒫(𝑑𝜙 𝑣 + 𝜒). (8.4)

The proof, carried out using Remark 10, is identical to that of Lemma 3 for

uniformly hyperbolic maps without the center direction. The speed of uniform con-

vergence of {𝑣𝑛} (Lemma 3) is also exponential. We convert the above lemma into a

numerical procedure for evaluating 𝑣 along a trajectory. As before, we refer to 𝑣 as

the regularized tangent solution, and we compute it by regularizing the conventional

tangent solution. Recall that, fixing a 𝜇-typical trajectory, in section 7.4.3, we derived

the following regularized tangent equation,

𝑣𝑛+1 = (𝑑𝜙)𝑛𝑣𝑛 + 𝜒𝑛+1 − 𝑎𝑛+1𝑞𝑛+1, (8.5)

where 𝑎𝑛+1 is chosen as to make 𝑣𝑛+1 · 𝑞𝑛+1 = 0. We now project out the center

direction as well by adding a term 𝑐𝑛+1𝑓𝑛+1 so that

𝑣𝑛+1 = (𝑑𝜙)𝑛𝑣𝑛 + 𝜒𝑛+1 − 𝑎𝑛+1𝑞𝑛+1 − 𝑐𝑛+1𝑓𝑛+1, (8.6)

where 𝑎𝑛+1 and 𝑐𝑛+1 are chosen so as to make 𝑣𝑛+1 · 𝑓𝑛+1 = 0, and simultaneously,

𝑣𝑛+1 · 𝑞𝑛+1 = 0. Explicitly, in field notation,

𝑐 =
𝑣+ · (𝑓 − 𝜃𝑞)

1− 𝜃2
(8.7)

𝑎 =
𝑣+ · (𝑞 − 𝜃𝑓)

1− 𝜃2
, (8.8)

where 𝑣+ := 𝑑𝜙𝑣+𝜒 and 𝜃 := 𝑞 ·𝑓. Without loss of generality, we can consider 𝑣0 = 0
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in Lemma 9. Then, we can write 𝑣𝑛 down in closed form as,

𝑣𝑛 =
𝑛−1∑︁
𝑘=0

𝑑𝜙𝑘 (𝜒− 𝑎𝑛−𝑘𝑞 − 𝑐𝑛−𝑘𝑓) =
𝑛−1∑︁
𝑘=0

𝒫𝑑𝜙𝑘 𝜒. (8.9)

Due to the exponential convergence of 𝑣𝑛, if the run-up time is sufficiently long, the

above regularized tangent equation (Eq. 8.6) evolves arbitrarily close to the true

values of 𝑣, 𝑎 and 𝑐 along a trajectory.

8.4 Stable–Unstable-Center decomposition

We propose the following decomposition of Ruelle’s formula, motivated by the regu-

larized tangent solution (Eq. 8.9)

⟨𝐽, 𝜕𝑠𝜇𝑠⟩ = lim
𝐾→∞

𝐾−1∑︁
𝑘=0

⟨𝑑(𝐽 ∘ 𝜙𝑘) · (𝑎𝐾−𝑘 𝑞 + 𝑐𝐾−𝑘 𝑓), 𝜇⟩

+ lim
𝐾→∞

𝐾−1∑︁
𝑘=0

⟨𝑑(𝐽 ∘ 𝜙𝑘) · (𝜒− 𝑎𝐾−𝑘𝑞 − 𝑐𝐾−𝑘𝑓, 𝜇⟩. (8.10)

Here the first term on the right hand side is the unstable-center contribution, while

the second is the stable contribution. Analogous to the proof in the previous chapter,

we can show that the stable contribution can be alternatively expressed as,

lim
𝐾→∞

𝐾−1∑︁
𝑘=0

⟨𝑑(𝐽 ∘ 𝜙𝑘) · (𝜒− 𝑎𝐾−𝑘𝑞 − 𝑐𝐾−𝑘𝑓, 𝜇⟩ = ⟨𝑑𝐽 · 𝑣, 𝜇⟩, (8.11)

where 𝑣 is orthogonal to 𝐸𝑢⊕ span {𝑓} . The computation left to be tackled is that of

the center-unstable contribution, which we split further into the unstable contribution

and the center contribution. The center contribution, which we turn our attention to

first, is defined as,

⟨𝐽, 𝜕𝑠𝜇𝑠⟩c = lim
𝐾→∞

𝐾−1∑︁
𝑘=0

⟨𝑑(𝐽 ∘ 𝜙𝑘) · (𝑐𝐾−𝑘 𝑓), 𝜇𝑠⟩. (8.12)
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In the above expression, the integrand, 𝑑(𝐽 ∘ 𝜙𝑘) · 𝑓 , may increase in norm, albeit

sub-exponentially. Thus, the variance of evaluating the ensemble average as a finite-

sample ergodic average of tangent solutions increases with 𝑘, since numerically, small

errors will increase in the unstable direction. Hence, we resort to evaluating an equiv-

alent expression for the center contribution, without time-evolving tangent solutions.

In particular, the ergodic average of the equivalent expression must not have a vari-

ance that increases with 𝑘.

8.5 Center contribution alternative expression

We now derive an alternative expression for the center contribution that is easier to

compute than Eq. 8.12. We may assume that iterating the regularized tangent equa-

tion for a sufficiently long run-up time ensures that the scalar field 𝑐 has converged.

Thus, we may consider the center contribution to be equivalent to the following ex-

pression, without the superscript on 𝑐,

⟨𝐽, 𝜕𝑠𝜇𝑠⟩c =
∞∑︁
𝑛=0

⟨𝑑(𝐽 ∘ 𝜙𝑛) · (𝑐𝑓), 𝜇⟩ (8.13)

=
∞∑︁
𝑛=0

⟨𝑐 (𝑑𝐽)𝜙𝑛· · (𝑑𝜙𝑛)𝑓, 𝜇⟩. (8.14)

Since the center subspace is covariant,

⟨𝐽, 𝜕𝑠𝜇𝑠⟩c =
∞∑︁
𝑛=0

⟨𝑐 𝛽𝜙𝑛·

𝛽
(𝑑𝐽)𝜙𝑛· · 𝑓𝜙𝑛·, 𝜇⟩. (8.15)

Using measure preservation, the center contribution is

⟨𝐽, 𝜕𝑠𝜇𝑠⟩c =
∞∑︁
𝑛=0

⟨ 𝑐 ∘ 𝜙
−𝑛

𝛽 ∘ 𝜙−𝑛
𝛽 𝑑𝐽 · 𝑓, 𝜇⟩. (8.16)

It is clear from the above expression and Eq. 8.7 that the integrand is uniformly

bounded. Secondly, we can evaluate the integral without explicitly propagating the

tangent dynamics of the center subspace.
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8.6 Updating the unstable contribution

We now turn our attention to the only remaining component of linear response yet

to be discussed, the unstable contribution,

⟨𝐽, 𝜕𝑠𝜇𝑠⟩u :=
∞∑︁
𝑘=0

⟨𝑑(𝐽 ∘ 𝜙𝑘) · (𝑎𝑞), 𝜇⟩. (8.17)

As with the center contribution, we have dropped the superscript on 𝑎, and this is

justified for large run-up times of the regularized tangent equation (Eq. 8.6). With

a sufficiently large run-up time, 𝑎0 ≈ 𝑎. To evaluate the unstable contribution (Eq.

8.17), we must perform integration by parts to regularize the integrand, which in Eq.

8.17, is exponentially growing in norm with 𝑘. The integration by parts is done simi-

larly to in the case of uniformly hyperbolic maps (section 7.4.4). We first disintegrate

the SRB measure on a partition of 𝑀 subordinate to the unstable manifold (Ξ in

Chapter 7). Then, we integrate by parts along each local unstable manifold. This

yields the following regularized expression for the unstable contribution,

⟨𝐽, 𝜕𝑠𝜇𝑠⟩u := −
∞∑︁
𝑘=0

⟨(𝐽 ∘ 𝜙𝑘) (𝑎 𝑔 + 𝑏) , 𝜇⟩. (8.18)

Here, as in Chapter 7, we have introduced a scalar field 𝑏 := 𝜕𝜉𝑎 to denote the

unstable derivative of 𝑎. Recall that the distribution 𝑔 is the unstable derivative of

the logarithm of the SRB density conditioned on the unstable manifolds (Eq. 7.55).

8.6.1 The existence of unstable derivatives of 𝑎 and 𝑐

The proof of existence of 𝑏 is identical to that in the uniformly hyperbolic map case.

Recall that in uniformly hyperbolic maps, we showed that the unstable derivative of

𝑣 exists, and this existence implied the existence of 𝑏. The same holds in the case of

uniformly hyperbolic flows that we consider here. From Eq. 8.8, we can see that, if

𝑣 is differentiable on the unstable manifold, so is 𝑎 since all other quantities on the

right hand side of Eq. 8.8 are differentiable on the unstable manifold.
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It remains to show that the regularized tangent vector field 𝑣 is differentiable on

the unstable manifold. To show that 𝑣 in the uniformly hyperbolic map case has

an unstable derivative, we defined a sequence {𝑦𝑛} as the unstable derivatives of

the sequence {𝑣𝑛} whose limit is 𝑣. Here we follow the same argument so that 𝑦𝑛 is

defined as the sequence of unstable derivatives of 𝑣𝑛 from Lemma 9. That is, writing

𝑣𝑛
+

:= 𝑑𝜙 𝑣𝑛 + 𝜒,

𝑦𝑛+1 := 𝜕𝜉𝑣
𝑛+1 = 𝒫𝜕𝜉𝑣𝑛

+

+ (𝜕𝜉𝒫) 𝑣𝑛
+

. (8.19)

Before we show that the above sequence {𝑦𝑛} converges uniformly, we prove that

it is well-defined for any bounded vector field sequence {𝑣𝑛} that is differentiable

in the unstable direction. If {𝑣𝑛} has unstable derivatives at each 𝑛, this means

that the first term in Eq. 8.19 is well-defined. Hence, we are left to prove that the

operator 𝒫 is differentiable in the unstable direction so that the second term in Eq.

8.19 is well-defined because then, so is the first term, whose existence can be shown

inductively from the differentiability of 𝑣0 (by assumption) and differentiability of 𝒫

in the unstable direction.

Lemma 10. 𝜕𝜉𝒫 is a bounded linear operator.

Proof. First we show that 𝒫 is differentiable in the unstable direction. Recall that 𝒫

is an orthogonal projection out of the subspace 𝐸𝑢 ⊕ 𝐸𝑐. Thus, at every 𝑥 ∈ 𝑀 , it

has the following matrix form,

𝒫𝑥 = 𝐼 −𝑄𝑥(𝑄𝑇
𝑥𝑄𝑥)−1𝑄𝑇

𝑥 , (8.20)

where 𝑄𝑥 = [𝑞𝑥 𝑓𝑥] is an 𝑚×2 matrix and 𝐼 is the 𝑚×𝑚 identity matrix. Moreover,

𝑄𝑇
𝑥𝑄𝑥 is a symmetric matrix with eigenvalues 1 − 𝜃𝑥 and 1 + 𝜃𝑥. Thus, using the

matrix 2-norm, ‖(𝑄𝑇
𝑥𝑄𝑥)‖ = max {|1− 𝜃𝑥|, |1 + 𝜃𝑥|} > 0, as long as 𝜃𝑥 = 𝑞𝑥 · 𝑓𝑥 ̸= 1.

This condition is indeed satisfied by uniformly hyperbolic flows wherein tangencies

between the stable, unstable and center spaces are precluded.

Thus, 𝑄𝑇
𝑥𝑄𝑥 is invertible at all 𝑥 ∈ 𝑀. Note that 𝑄𝑥, and hence 𝑄𝑇

𝑥𝑄𝑥, are
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differentiable in the unstable direction. Since matrix inverse is a differentiable function

on the set of invertible matrices, (𝑄𝑇
𝑥𝑄𝑥)−1 is differentiable in the unstable direction.

Since the right hand side of Eq. 8.20 is a composition of differentiable functions,

𝒫𝑥 is differentiable in the unstable direction. The linearity of 𝜕𝜉𝒫 follows from the

definition of 𝒫 , Eq. 8.20.

Having shown that 𝜕𝜉𝒫𝑥 exists at all 𝑥 ∈ 𝑀, we prove its uniform boundedness.

By Chapter 7, Lemma 4, the unstable derivative of 𝑞, 𝑤 is a bounded vector field.

The vector field 𝑓 has bounded derivatives in all directions by assumption. Hence, 𝑄,

𝑄𝑇 and 𝑄𝑇𝑄 have bounded unstable derivatives. Hence, to show that the derivative

with respect of 𝜉 of Eq. 8.20 is bounded, we only need to show that the unstable

derivative of (𝑄𝑇𝑄)−1 is bounded. But, 𝜕𝜉(𝑄
𝑇𝑄)−1 = (𝑄𝑇𝑄)−1𝜕𝜉(𝑄

𝑇𝑄)(𝑄𝑇𝑄)−1,

and 𝜕𝜉(𝑄
𝑇𝑄) is bounded. Further, (𝑄𝑇𝑄)−1 is also bounded because ‖(𝑄𝑇𝑄)−1‖ =

max {1/|1− 𝜃|, 1/|1 + 𝜃|} <∞. Thus, 𝜕𝜉(𝑄𝑇𝑄)−1 is bounded.

Lemma 11. The sequence 𝑦𝑛 converges uniformly.

Proof. Using the above lemma, we have shown that the sequence 𝑦𝑛, satisfies the

following recursive equation (same as Eq. 8.19 with 𝑣𝑛
+ expanded),

𝑦𝑛+1 = 𝒫 𝑑𝜙 𝑦𝑛

𝛼
+ 𝒫

(︂
𝑑2𝜙(𝑞, 𝑣𝑛)

𝛼
+ 𝑑𝜒 𝑞

)︂
+ 𝜕𝜉𝒫(𝑑𝜙 𝑣𝑛 + 𝜒). (8.21)

To show that this sequence converges uniformly, we use Lemma 6 from Chapter 7.

To apply this lemma, we need to show that

𝜁𝑛+1 := 𝒫
(︂
𝑑2𝜙(𝑞, 𝑣𝑛)

𝛼
+ 𝑑𝜒 𝑞

)︂
+ 𝜕𝜉𝒫(𝑑𝜙 𝑣𝑛 + 𝜒) (8.22)

is uniformly exponentially converging. Subtracting 𝜁𝑛 from 𝜁𝑛+1, and using the lin-

earity of 𝑑2𝜙, we get,

𝜁𝑛+1 − 𝜁𝑛 =
𝒫
𝛼
𝑑2𝜙(𝑞, 𝑣𝑛 − 𝑣𝑛−1) + 𝜕𝜉𝒫 𝑑𝜙 (𝑣𝑛 − 𝑣𝑛−1). (8.23)

Since 𝒫𝑥 is an orthogonal projection operator with unit norm at each 𝑥 ∈𝑀, and as

we have shown in Lemma 10, ‖(𝜕𝜉𝒫)‖ is a bounded operator, let 𝐴 > 0 be such that
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‖(𝜕𝜉𝒫)𝑥‖ < 𝐴, for all 𝑥 ∈𝑀. Then, for any 𝑛 ∈ Z+,

‖𝜁𝑛+1 − 𝜁𝑛‖ ≤ ‖𝑑
2𝜙‖
𝛼
‖𝑣𝑛 − 𝑣𝑛−1‖+ 𝐴‖𝑑𝜙‖‖𝑣𝑛 − 𝑣𝑛−1‖ (8.24)

≤ 𝑐𝜆𝑛, (8.25)

for some 𝑐 > 0, using uniform exponential convergence of {𝑣𝑛} in Lemma 9. Thus,

𝜁𝑛 is uniformly exponentially converging, and hence Lemma 6 in Chapter 7 applies.

Hence, 𝑦𝑛 is a uniformly converging sequence, and the convergence, as per Lemma 6

of Chapter 7, is exponential.

Now since {𝑣𝑛} and its unstable derivative sequence {𝑦𝑛} have been shown to be

uniformly converging, we have the relationship, 𝑦 = 𝜕𝜉𝑣, where 𝑦 and 𝑣 are the limits

of the sequences {𝑦𝑛} and {𝑣𝑛} . Finally, recall that we established this relationship,

and showed that the regularized tangent vector field 𝑣 is differentiable on the unstable

manifold, en route to our main result: the differentiability in the unstable manifold of

the scalar field 𝑎. Thus, we have now proven the existence of 𝑏, the unstable derivative

of 𝑎.

Additionally, using the same argument, we have established that the scalar field

𝑐, is also differentiable on the unstable manifold. To wit, using Eq. 8.7, the differen-

tiability of 𝑣 in the unstable direction, combined with the fact that all other objects

on the right hand side of Eq. 8.7 have unstable derivatives as well, it is clear that 𝑐

is differentiable in the unstable direction.

8.7 Differentiating the unstable projection

The unstable contribution (Eq. 8.18) is modified from that in uniformly hyperbolic

maps that we dealt with before because, since 𝑣 is modified, 𝑎 and consequently, 𝑏, are

modified. By assumption, 𝑓 is differentiable in all directions; let 𝑟 denote the unstable

derivative of 𝑓. Recall that the scalar field 𝑏 := 𝜕𝜉𝑎 is the unstable derivative of the

scalar field 𝑎 and its existence has been shown in the previous section (section 8.6.1).

We also recall that 𝛼 = ‖𝑑𝜙𝑞‖ is the expansion factor in the unstable direction and
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that 𝑤 is the unstable derivative of 𝑞. In section 8.6.1, we showed that the unstable

derivative of 𝑣 exists. Thus, it is valid to differentiate the expression for 𝑣 (Eq. 8.6)

in the unstable direction to yield,

𝑦 =
𝑑𝜙 𝑦 + 𝑑2𝜙(𝑣, 𝑞)

𝛼
+ 𝑑𝜒 𝑞 − 𝑎 𝑤 − 𝑏 𝑞 − 𝑐 𝑟 − 𝜅 𝑓, (8.26)

where, besides 𝑟 := 𝜕𝜉𝑓 , we have introduced the scalar field 𝜅 := 𝜕𝜉𝑐. Note that the

existence of 𝜅 has also been proved in section 8.6.1. There are three unknowns, 𝑦, 𝜅

and 𝑏, in the above equation. Two more equations to close the above system can be

obtained by differentiating the constraints, 𝑣 · 𝑞 = 0 and 𝑣 · 𝑓 = 0, which are true by

construction (Lemma 9). Explicitly, differentiating these constraints in the unstable

direction, we get

𝑦 · 𝑞 + 𝑣 · 𝑤 = 0 (8.27)

𝑦 · 𝑓 + 𝑣 · 𝑟 = 0. (8.28)

We set 𝑦𝑥 = 0 for some 𝜇−typical point 𝑥. Then, iterating Eq. 8.26 along the

trajectory of 𝑥, and choosing 𝑏 and 𝜅 so as to satisfy Eq. 8.27 and Eq. 8.28, we

obtain 𝑦, 𝑏 and 𝜅 along the trajectory of 𝑥. We can obtain expressions equivalent

to the constraints, Eq. 8.27 and Eq. 8.28, if we directly differentiate the explicit

expressions for 𝑎 (Eq. 8.8) and 𝑐 (Eq. 8.7) in the unstable direction. For completion,

we note the unstable derivatives,

𝑏 =
2𝜃𝜂

(1− 𝜃2)2
𝑣+ · (𝑞 − 𝜃𝑓)

+
1

1− 𝜃2

(︁
𝑣+ · (𝑤 − 𝜂𝑓 − 𝜃𝑟) + 𝑦+ · (𝑞 − 𝜃𝑓)

)︁
, (8.29)

where

𝜂 := 𝜕𝜉𝜃 = 𝑟 · 𝑞 + 𝑓 · 𝑤

𝑦+ := 𝜕𝜉𝑣
+ =

𝑑2𝜙(𝑞, 𝑣) + 𝑑𝜙 𝑦

𝛼
+ 𝑑𝜒 𝑞. (8.30)
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Similarly, differentiating the explicit expression for 𝑐 (Eq. 8.7) in the unstable direc-

tion,

𝜅 =
2𝜃𝜂

(1− 𝜃2)2
𝑣+ · (𝑓 − 𝜃𝑞)

+
1

1− 𝜃2

(︁
𝑣+ · (𝑟 − 𝜂𝑞 − 𝜃𝑤) + 𝑦+ · (𝑓 − 𝜃𝑞)

)︁
. (8.31)

8.8 The S3 algorithm for uniformly hyperbolic flows

We now collate the stable, unstable and center contributions, whose computation we

discussed in the previous sections, to elucidate the overall S3 algorithm for uniformly

hyperbolic flows. We reiterate that the algorithm below assumes that we have a one-

dimensional unstable subspace spanned by 𝑞𝑥 ∈ 𝑇𝑥𝑀 and a one-dimensional center

subspace, spanned by 𝑓𝑥 ∈ 𝑇𝑥𝑀 , at every point 𝑥 ∈𝑀.

Notation 5. When a 𝜇-typical phase point 𝑥0 ∈ 𝑀 is fixed, the subscript 𝑛 applied

to a scalar function or a vector field, denoted ℎ, is used to refer to its corresponding

value at 𝑥𝑛. That is, when 𝑥0 ∈𝑀 is fixed, ℎ𝑛 := ℎ𝜙𝑛𝑥0 = ℎ𝑥𝑛 .

Let 𝐾 ′ be a sufficiently long run-up time such that the errors in 𝑣0, 𝑎0 and 𝑐0,

when compared to the corresponding limits of these sequences, 𝑣, 𝑎 and 𝑐, are within

a specified tolerance. The S3 algorithm is as follows:

1. Obtain a long primal trajectory 𝑥−𝐾′ , · · · , 𝑥𝑁−1, where 𝑥𝑛+1 = 𝜙𝑥𝑛, −𝐾 ′ ≤

𝑛 ≤ (𝑁 − 1), with 𝑥−𝐾′ chosen 𝜇-a.e.

2. Obtain, at each point 𝑥𝑛, the unit tangent vector to the unstable manifold, 𝑞𝑛.

The following procedure converges exponentially in 𝑛 to the true value of 𝑞𝑛.

Solve the homogeneous tangent equation with repeated normalization. That

is, solve

𝛼𝑛+1 𝑞𝑛+1 = (𝑑𝜙)𝑛 𝑞𝑛, 𝑛 = −𝐾 ′, · · · , 0, 1, · · · , (8.32)

with 𝑞0 being set to a random vector in R𝑚, and 𝛼𝑛+1 = ‖(𝑑𝜙)𝑛 𝑞𝑛‖.
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3. Solve for 𝑣𝑛 the following inhomogeneous tangent equation, which repeatedly

projects 𝑣𝑛 out of the center-unstable subspace,

𝑣𝑛+1 = (𝑑𝜙)𝑛 𝑣𝑛 + 𝜒𝑛+1 − 𝑎𝑛+1𝑞𝑛+1 − 𝑐𝑛+1𝑓𝑛+1, 𝑛 = −𝐾 ′, · · · , 0, 1, · · · ,

(8.33)

where 𝑎𝑛+1 and 𝑐𝑛+1 are chosen such that 𝑣𝑛+1 · 𝑞𝑛+1 = 0 and 𝑣𝑛+1 · 𝑓𝑛+1 = 0.

The initial condition 𝑣−𝐾′ is set to 0 ∈ R𝑚. This equation is also called the

regularized tangent equation. The error in the solutions 𝑣𝑛 when compared to

the true value of the vector field 𝑣 decreases exponentially with 𝑛 (as shown

in Lemma 9).

4. Solve the following second-order tangent equation for 𝑤𝑛, starting with 𝑤−𝐾′ =

0 ∈ R𝑚,

𝑤𝑛+1 =
(︀
1− 𝑞𝑛+1𝑞

𝑇
𝑛+1

)︀ (𝑑2𝜙)𝑛(𝑞𝑛, 𝑞𝑛) + (𝑑𝜙)𝑛𝑤𝑛

𝛼2
𝑛+1

, 𝑛 = −𝐾 ′, · · · , 0, 1, · · · ,

(8.34)

The solutions 𝑤𝑛 converge exponentially with 𝑛 to the true values of the vector

field 𝑤 along the orbit (Chapter 7, Lemma 4).

5. Solve the following recursive second-order tangent equation for 𝑦𝑛, for each

𝑛 ∈ Z+,

𝑦𝑛+1 =
(𝑑2𝜙)𝑛(𝑞𝑛, 𝑣𝑛) + (𝑑𝜙)𝑛𝑦𝑛

𝛼𝑛+1

+ (𝑑𝜒)𝑛+1 𝑞𝑛+1 (8.35)

− 𝑏𝑛+1𝑞𝑛+1 − 𝑎𝑛+1𝑤𝑛+1 − 𝑐𝑛+1𝑟𝑛+1 − 𝜅𝑛+1𝑓𝑛+1, 𝑛 = −𝐾 ′, · · · , 0, · · · ,

where the scalars 𝑏𝑛+1 and 𝜅𝑛+1 is found using the relationships 𝑦𝑛+1 · 𝑞𝑛+1 =

−𝑣𝑛+1 · 𝑤𝑛+1 and 𝑦𝑛+1 · 𝑓𝑛+1 = −𝑣𝑛+1 · 𝑟𝑛+1. The 𝑦𝑛, 𝑏𝑛 and 𝜅𝑛 computed

using this procedure also converge exponentially with 𝑛 to their true values,

as follows from Lemma 6.
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6. Compute the unstable contribution as the following ergodic average:

⟨𝐽, 𝜕𝑠𝜇𝑠⟩u ≈ −
1

𝑁

𝐾−1∑︁
𝑘=0

𝑁−1∑︁
𝑛=0

𝐽𝑛+𝑘(𝑎𝑛𝑔𝑛 + 𝑏𝑛). (8.36)

7. Compute the center contribution as the following ergodic average:

⟨𝐽, 𝜕𝑠𝜇𝑠⟩c ≈
1

𝑁

𝐾−1∑︁
𝑘=0

𝑁−1∑︁
𝑛=0

(︀
𝑑𝐽
)︀
𝑛+𝑘
· 𝑓𝑛+𝑘

𝛽𝑛+𝑘 𝑐𝑛
𝛽𝑛

. (8.37)

8. Compute the stable contribution as the following ergodic average:

⟨𝐽, 𝜕𝑠𝜇𝑠⟩s ≈
1

𝑁

𝑁−1∑︁
𝑛=0

(𝑑𝐽)𝑛 · 𝑣𝑛. (8.38)

9. The output of the S3 algorithm is the sum of the stable, unstable and center

contributions, ⟨𝐽, 𝜕𝑠𝜇𝑠⟩u + ⟨𝐽, 𝜕𝑠𝜇𝑠⟩c + ⟨𝐽, 𝜕𝑠𝜇𝑠⟩s. In the limit 𝑁 → ∞ and

𝐾 →∞, in that order, the output converges to the true value of linear response

(Ruelle’s formula).

Remark 11. Note that Ruelle’s formula [235] does not assume that the flow of 𝑓 is

mixing. However, the integrability of the contribution to the sensitivity from the per-

turbation 𝜒𝑢 + 𝜒𝑐, which is different from our center-unstable contribution (see below

Theorem A of [235]), is assumed. We make an analogous time-discrete assumption

on the summability of the center-unstable contribution

|⟨𝐽, 𝜕𝑠𝜇𝑠⟩c + ⟨𝐽, 𝜕𝑠𝜇𝑠⟩u| ≤
∞∑︁
𝑘=0

⃒⃒
⟨𝑑(𝐽 ∘ 𝜙𝑘) · (𝑎𝑞 + 𝑐𝑓), 𝜇⟩

⃒⃒
=

∞∑︁
𝑘=0

⃒⃒⃒⃒
⟨(𝑑𝐽 · 𝑓) ∘ 𝜙𝑘 𝛽 ∘ 𝜙𝑘 𝑐

𝛽
, 𝜇⟩ − ⟨𝐽 ∘ 𝜙𝑘 (𝑎𝑔 + 𝑏) , 𝜇⟩

⃒⃒⃒⃒
<∞. (8.39)

Remark 12. The above summability assumption is needed for the existence of the

center and unstable contributions. The sums may have subexponential decay, since
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for Hölder observables, which appear in the correlations above, correlations do not

decay exponentially in general ([176] proves an exception in the case of smooth con-

tact Anosov flows). In other words, unlike in uniformly hyperbolic diffeomorphisms

considered in Chapter 7, the unstable and center contributions, are not, in general,

evaluated accurately with the first few terms of the series.

8.9 Numerical example: Lorenz ’63 system

The Lorenz’63 system is a three-variable reduced-order model of atmospheric convec-

tion [179]. It is a famous example of a chaotic system that first suggested that the

earth’s climate system is chaotic. The three variables x, y and z together capture

thermal convection occurring with two-dimensional motions of a fluid kept between

two parallel plates maintained at two different, constant temperatures [179]. The

Lorenz’63 system of equations is given by

𝑑x

𝑑𝑡
= −𝑠1x + 𝑠1y (8.40)

𝑑y

𝑑𝑡
= x(𝑠2 − z)− y (8.41)

𝑑z

𝑑𝑡
= xy − 𝑠3z. (8.42)

The standard parameter values are 𝑠1 = 10, 𝑠2 = 28 and 𝑠3 = 8/3. Lorenz [179]

and Saltzman [238] gave a physical interpretation of each coordinate function of the

three-dimensional state vector, 𝑥 ≡ [x, y, z]𝑇 . All three are obtained from a trun-

cated Fourier expansion of the stream function and the temperature deviation from

a temperature profile that is linear between the two plates (this is an unstable fixed

point of the dynamics corresponding to no fluid flow). The third coordinate z, in

particular, is the only one with a nonzero ergodic average, and is proportional to

the temperature deviation [179]. Note that the Lorenz’63 system has three distinct

Lyapunov exponents: one positive at ≈ 0.9, one zero, and one negative ≈ −14.6. The

center manifold, tangent to the flow direction, is one-dimensional. Our discrete time

approximation to the flow, 𝜙 is a second-order Runge-Kutta numerical solver with
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Figure 8-1: The parametric derivatives 𝑑𝑠2⟨z⟩ (left) of the Lorenz system with error
bars indicating one standard deviation. On the right, 𝑑𝑠2⟨(z− 28)2⟩ computed using
S3 at various different 𝑠2 values on the 𝑥-axis are shown as black lines. The blue points
on the right hand side subfigure are computed as ergodic averages along trajectories
of length 1.6 billion (3.2 million time units). The other two parameters 𝑠1 and 𝑠3 are
held at their standard values.

timestep size 0.002. Although the center direction of 𝜙, the numerical approximation

of the Lorenz system (Eq. 8.40), is not exactly equal to the flow direction, assuming

they are equal leads to good numerical results for the overall sensitivity at this small

timestep size.

The ensemble average ⟨z⟩ is known in the literature [168] to show an almost linear

variation, with a slope of approximately 1, in the parameter 𝑠2. To validate the S3

algorithm, we compute this derivative 𝑑𝑠2⟨z⟩ and 𝑑𝑠2⟨(z−28)2⟩ = 2𝑑𝑠2⟨z2+784−56z⟩ =

2𝑑𝑠2⟨z2⟩ − 112⟨z⟩. As shown on the left hand side of Figure 8-1, the value of 𝑑𝑠2⟨z⟩

obtained by implementing the S3 algorithm (section 8.8) is close to the known value

of 1 for a range of 𝑠2 values. The S3 linear response, shown as blue crosses, with

the blue lines indicating one standard deviation from the sample mean of 16 runs,

is calculated along an orbit of length 3.2 million (6400 time units). The results of

a second experiment with the objective function (z − 28)2 are shown on the right

hand side subfigure of Figure 8-1. We again use 3.2 million length orbits to calculate

sensitivities using S3 (section 8.8), which are linearly extrapolated and shown as black

lines. These lines closely trace the response curve ⟨(𝑧 − 28)2⟩ -vs.-𝑠2 computed by

long-time averages (over 1.6 billion length orbits), shown as blue dots. For both

objective functions, the center contribution is significant and thus, the correctness of

the S3 sensitivities validates the S3 algorithm for uniformly hyperbolic flows.
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8.10 Conclusion

In uniformly hyperbolic flows, the S3 algorithm we introduced in the previous chapter

needs to be modified to account for the presence of the center direction. We modify

the regularized tangent equation to be perpendicular to both the unstable direction

as well as the center direction. This results in two scalar fields, 𝑎 and 𝑐, which

capture the history of projections of the tangent solutions on the unstable and center

directions respectively. We derive the modified stable and unstable contributions,

and the new center contribution to the overall sensitivity. The stable contribution is,

as before, given as an ensemble average, ⟨𝑑𝐽 · 𝑣⟩, where 𝑣 is the regularized tangent

solution that belongs to (𝐸𝑢 ⊕ 𝐸𝑐)⊥.

The unstable contribution is a sum of time-correlations between 𝐽 and 𝑎𝑔 + 𝑏,

where 𝑏 is, as before, defined as the unstable derivative of 𝑎. While this expression

is the same as in the uniformly hyperbolic map case, here the scalar fields 𝑎 and

consequently 𝑏 are modified in the presence of the center direction. Furthermore,

the decay of this time series is not exponential in general. We prove that the new

regularized tangent vector field, 𝑣, is differentiable in the unstable direction and

elucidate that this implies the existence of 𝑏, and that of 𝜅, the unstable derivative

of 𝑐. We then illustrate how to efficiently evaluate 𝑏 from a second-order tangent

equation that yields the unstable derivative of 𝑣.

As in uniformly hyperbolic maps, we see that the S3 algorithm is an ergodic-

averaging scheme in which the individual components – the stable, unstable, and the

new, center contributions – can be efficiently computed using information along a

𝜇−typical trajectory.
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Chapter 9

Remarks on the S3 algorithm

In this chapter, we comment on the error convergence of the S3 algorithm detailed

in the last chapter, and its computational cost. First we describe a second numer-

ical experiment (aside from the Baker’s map considered in Chapter 7) to study the

performance of the S3 algorithm (section 7.3.1).

9.1 Perturbations of the Solenoid Map

The Smale-Williams Solenoid map is a classical example of uniform hyperbolicity on

a solid torus in R3. We introduce a class of perturbed Solenoid maps expressed below

in cylindrical coordinates:

𝜙𝑠([r, 𝜃, 𝑥
(3)]𝑇 ) =

⎡⎢⎢⎢⎣
𝑠1 + (r− 𝑠1)/4 + cos 𝜃/2

(2𝜃 + (𝑠2/4) sin(4𝜃)) mod (2𝜋)

𝑥(3)/4 + sin 𝜃/2

⎤⎥⎥⎥⎦ . (9.1)

The map can be expressed in Cartesian coordinates, denoted [𝑥(1), 𝑥(2), 𝑥(3)]𝑇 , by left

and right compositions of 𝜙𝑠 as in Eq. 9.1 with the following coordinate transforma-

tion and its inverse respectively: 𝑥(1) = r cos 𝜃, 𝑥(2) = r sin 𝜃. In Figure 9-1, we show

the effect of parameter variation on the Solenoid attractor, which is shown on the

𝑥(1)-𝑥(2) plane. The subfigures show the points on an orbit of length 2 million at the

315



Figure 9-1: The projection of the Solenoid attractor on the 𝑥(1)-𝑥(2) plane at 𝑠 = [1, 0]𝑇

(left), 𝑠 = [1, 1]𝑇 (center) and 𝑠 = [2, 0]𝑇 (right) respectively.

corresponding values of 𝑠. On the left is the attractor of the unperturbed map at the

standard value of 𝑠 = [1, 0]𝑇 . The center subfigure, at the value 𝑠 = [1, 1]𝑇 , shows a

change in the shape of the attractor due to an 𝑠2 perturbation, while the rightmost

subfigure indicates a change in the size of the attractor due to an 𝑠1 perturbation.

Qualitatively, we can also note change in the distribution of points on the perturbed

attractor. For instance, the effect of an increase in 𝑠2 is to reduce the probability of

visiting the outer rim of the attractor. Both these types of qualitative changes, i.e.,

in the position and shape of, and in the distribution on the attractor are indicative

of changes in the SRB measure and are captured precisely by the computation of

Ruelle’s formula.

Recall from Chapter 5 (or by inspecting Eq. 9.1) that the r and 𝑥(3) coordinate

directions are stable at each point. The unstable direction, however, is not aligned

with 𝜃 everywhere. Thus, an 𝑠1 perturbation corresponds to a stable vector field

𝜒 ∈ 𝐸𝑠, and an 𝑠2 perturbation has both stable and unstable components, albeit a

small stable component.

In Chapter 5, we argued that the unstable contribution to the sensitivity is 0 for an

𝑠1 perturbation because Ruelle’s formula was split by decomposing 𝜒 as 𝜒𝑢 + 𝜒𝑠. By

contrast, in the S3 algorithm, although the two terms of the split Ruelle’s formula are

called stable and unstable contributions, the perturbation vector field 𝜒 is not split

along 𝐸𝑠 and 𝐸𝑢. Hence, in this case, both contributions are non-zero for both types

of parameter perturbations although for the 𝑠1 perturbation, the stable contribution

316



Figure 9-2: The sensitivities of ⟨𝐽⟩ = ⟨𝑥(1).𝑥(1) +𝑥(2).𝑥(2)⟩ with respect to the param-
eter 𝑠1 (left) and 𝑠2 (right) computed by S3 are shown as black lines at a number of
parameter values on the ⟨𝐽⟩ vs parameter curve.

dominates, and in the 𝑠2, the unstable dominates.

It is numerically verified that the S3 algorithm computes the correct sensitivity in

both cases, as shown in Figure 9-2. The objective function, 𝐽 is arbitrarily taken to

be 𝐽 = r2 = 𝑥(1)2 +𝑥(2)2 , and the sensitivity of ⟨𝐽⟩ is computed at a range of values of

𝑠1 (𝑠2) in the left (right) of Figure 9-2. The computed S3 sensitivities closely trace the

curves ⟨𝐽⟩-vs-𝑠 (shown as blue dots) that are computed from ergodic averages using

orbits of length 160 million. The S3 sensitivities, which are linearly extrapolated and

shown as black lines, are computed along orbits of length 3.2 million at each value of

𝑠. The source code to generate S3 results on the Solenoid map can be found at [59].

9.2 Finite sample error analysis of the S3 algorithm

Recall the stable contribution from Chapter 7,

⟨𝐽, 𝜕𝑠𝜇𝑠⟩s = ⟨𝑑𝐽 · 𝑣, 𝜇⟩, (9.2)

which is practically computed as an ergodic average, (1/𝑁)
∑︀𝑁−1

𝑛=0 (𝑑𝐽)𝑥𝑛 · 𝑣𝑥𝑛 , for

an 𝑥0 chosen 𝜇-a.e. Since the convergence of the computed vector fields 𝑣𝑛 to 𝑣 is

exponential, we can assume, for a sufficiently long run-up time, that the computed

values of 𝑣 along the orbit of 𝑥0 are arbitrarily close to their true values. Thus,

we only focus on quantifying the error, 𝑒s, in the stable contribution due to a finite

number of samples, 𝑁, used in the computation of the ergodic average.
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In uniformly hyperbolic systems, the almost sure invariance principle, and its

corollaries, the central limit theorem and the law of the iterated logarithm, apply

to ergodic averages of Hölder continuous observables [84, 197]. Since both 𝑑𝐽 , by

assumption, and 𝑣, by Lemma 3, are Hölder continuous vector fields, 𝑑𝐽 · 𝑣 is also

Hölder continuous. By applying the law of the iterated logarithm, we can obtain an

almost sure upper bound for the error in the stable contribution. There exist a 𝜎s > 0

and an 𝑁0 ∈ N such that, for almost every 𝑥, 𝑁 > 𝑁0 implies

𝑒s(𝑥;𝑁) =

⃒⃒⃒⃒
⃒⟨𝐽, 𝜕𝑠𝜇𝑠⟩s − (1/𝑁)

𝑁−1∑︁
𝑛=0

(𝑑𝐽)𝑥𝑛 · 𝑣𝑥𝑛

⃒⃒⃒⃒
⃒ ≤ 𝜎s

√
2 log log𝑁√

𝑁
. (9.3)

Now recall the unstable contribution from Chapter 7:

⟨𝐽, 𝜕𝑠𝜇𝑠⟩u = −
∞∑︁
𝑛=0

⟨𝐽 ∘ 𝜙𝑛 (𝑎 𝑔 + 𝑏) , 𝜇⟩, (9.4)

which, in practice, we compute for a finite number of terms 𝐾 and a length of orbit

𝑁 as

−
𝐾−1∑︁
𝑘=0

1

𝑁

𝑁−1∑︁
𝑛=0

𝐽𝑘+𝑛 (𝑎𝑛 𝑔𝑛 + 𝑏𝑛) . (9.5)

Analogous to the discussion above on the stable contribution, the functions 𝑔, 𝑎 and

𝑏 all exhibit exponential convergence in the length of the orbit used (see Lemmas 8,

5 and 7 respectively). Hence, we may assume that the values 𝑎𝑛, 𝑔𝑛 and 𝑏𝑛 computed

by the algorithm are close to their corresponding true values for all 𝑛 ≥ 0, when

a sufficiently long run-up before the estimation of Eq. 9.5 is used. Thus, we only

explicitly discuss the error in the unstable contribution due to a finite 𝑁 and 𝐾.

That is, we now characterize the error when computing the unstable contribution

through Eq. 9.5 along an orbit of length 𝒪(𝑁 + 𝐾), which excludes the run-up time

to reduce errors in the values of 𝑎, 𝑔 and 𝑏 to within machine precision. The error in
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the unstable contribution,

𝑒u(𝑥;𝑁) ≤

⃒⃒⃒⃒
⃒∑︁
𝑘≥𝐾

⟨𝐽 ∘ 𝜙𝑘(𝑎 𝑔 + 𝑏), 𝜇⟩

⃒⃒⃒⃒
⃒+

𝐾−1∑︁
𝑘=0

⃒⃒⃒⃒
⃒⟨𝐽 ∘ 𝜙𝑘(𝑎 𝑔 + 𝑏), 𝜇⟩ − 1

𝑁

𝑁−1∑︁
𝑛=0

𝐽𝑛+𝑘(𝑎𝑛𝑔𝑛 + 𝑏𝑛)

⃒⃒⃒⃒
⃒ .

(9.6)

Since ⟨(𝑎𝑔 + 𝑏), 𝜇⟩ = 0 (Theorem 3.1(b) of [232]), and from exponential decay of

correlations of the Hölder continuous functions 𝐽 and 𝑎𝑔 + 𝑏, the first term on the

right hand side of (9.6), which is the bias in the S3 estimate (Eq. 9.5), is 𝒪(𝑒−𝛾𝐾), for

some 𝛾 > 0. To bound the second term, we can again invoke the law of the iterated

logarithm [84, 197]. There exist a 𝜎u > 0 and an 𝑁0 ∈ N such that for almost every

𝑥, 𝑁 > 𝑁0 implies

𝑒u(𝑥;𝑁) =

⃒⃒⃒⃒
⃒
𝐾−1∑︁
𝑘=0

1

𝑁

𝑁−1∑︁
𝑛=0

𝐽𝑘+𝑛 (𝑎𝑛 𝑔𝑛 + 𝑏𝑛) + ⟨𝐽, 𝜕𝑠𝜇𝑠⟩u
⃒⃒⃒⃒
⃒ ≤ 𝜎u𝐾

√
2 log log𝑁√

𝑁
+ 𝐶 𝑒−𝛾𝐾

(9.7)

Invoking the exponential decay of correlations, the bias in the S3 estimate (sum of

terms of Ruelle’s formula for 𝑘 >= 𝐾 in Eq. 9.4) will typically be small even for

small values of 𝐾, which can therefore be chosen independently of 𝑁 to restrict the

bias. Then, for a choice of constant 𝐾 independent of 𝑁, the error in the unstable

contribution is 𝒪(
√

log log𝑁/
√
𝑁). Thus, from Eq. 9.3 and Eq. 9.7, the overall

error in the S3 algorithm is 𝒪(
√

log log𝑁/
√
𝑁). In Figure 9-3, a comparison of the

error convergence of S3 against a naïve finite difference calculation is shown using the

Solenoid map (section 9.1). To generate the results shown, 𝑠1 is fixed at 1, and the

derivative of ⟨𝐽⟩ = 𝑥(1).𝑥(1) + 𝑥(2).𝑥(2) with respect to 𝑠2 is computed at 𝑠 = [1, 0]𝑇 .

The finite difference approximation calculated with 𝑁 samples is as follows,

⟨𝐽, 𝜕𝑠𝜇𝑠⟩FD =
⟨𝐽⟩𝑁([𝑠1, 𝑠2 + 𝛿𝑠])− ⟨𝐽⟩𝑁([𝑠1, 𝑠2 − 𝛿𝑠])

2𝛿𝑠
, (9.8)

where ⟨𝐽⟩𝑁(𝑠) is an 𝑁 -sample Monte Carlo estimate of ⟨𝐽⟩(𝑠). Such an estimate

can be computed either as an ergodic average along a single trajectory initialized
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Figure 9-3: Comparison of relative error in the sensitivity of ⟨𝐽⟩ to 𝑠2 at 𝑠 = [1, 0] of
the Solenoid map (section 9.1) as a function of the number of samples, between S3
and finite difference. The relative error is computed with respect to the true value,
which is taken to be the S3 derivative obtained with 𝑁 = 9.6 billion samples. The
finite difference in the parameter 𝑠2 used to calculate the derivatives is set to 0.001 in
order to obtain the red dots. The green triangles are the derivatives computed using
the S3 algorithm described in section 7.3.1. The dotted lines have a slope of -0.5.
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Lebesgue almost everywhere, or as a sample average at samples according to 𝜇 on

the attractor. To generate these plots efficiently, we do not compute ergodic averages

along a single trajectory, as such a computation is a serial operation. Rather we

sample average along multiple short trajectories in parallel, where each trajectory is

initialized with a sample according to 𝜇, which is achieved after a sufficiently long

run-up time, starting from Lebesgue a.e. After this, each trajectory, with sufficiently

long skips to allow correlation decay, can, in parallel, provide independent samples

according to 𝜇. This embarrassingly parallel operation is performed on a GPU (see

[64] for the source code) and can compute Monte Carlo estimates using 10 billion

samples in a few seconds. We observe in Figure 9-3 that the numerator of Eq. 9.8

is still overwhelmed by statistical noise, which follows the central limit theorem. As

a result, the errors in the finite difference decay as 𝒪(1/
√
𝑁), which can be seen

from the data points being well-approximated by a line with slope -0.5 (shown as a

dotted red line). However, the central difference approximation grows as 𝒪(1/𝛿𝑠). As

a result, the finite difference derivatives have much larger errors – in this case, two

orders of magnitude larger errors – than the S3 derivatives (which are shown as green

triangles), for the same number of samples. For instance, to achieve a 10% relative

error, a central finite difference with 𝛿𝑠 = 0.001 requires more than a billion samples

while the S3 algorithm shows less than 10% error even at 10,000 samples.

Note that the true value to compute relative error is taken to be the S3 derivative

obtained from a ∼ 10 billion sample computation, which is verified against the slope

of the response curve ⟨𝐽⟩-vs-𝑠2 at 𝑠2 = 0. Finally, we note that the error convergence

in S3 is as predicted by the analysis above. The dotted green line, which has a slope

equal to -0.5, well approximates the S3 data points. This concurs with the results in

this section that |𝑒u + 𝑒s| ∼ 𝒪(1/
√
𝑁), ignoring the

√
log log𝑁 term which only has

a negligible effect on the slope.
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9.3 Finite sample cost analysis of S3

In this section, we discuss the algorithmic efficiency of the S3 algorithm for differ-

entiating SRB measures with respect to parameters in uniformly hyperbolic maps

(7). For simplicity, we first consider differentiating the statistics of a scalar objective

function with respect to one parameter perturbation. We determine the time com-

plexity of the algorithm as a function of i) number of samples, 𝑁, ii) number of terms

of Ruelle’s formula computed in the unstable contribution, 𝐾, iii) dimension of the

unstable subspace, 𝑑𝑢 (𝑑𝑢 = 1 in Chapters 7 and 8) and iv) system dimension, 𝑑.

Since the memory/space complexity depends on the implementation of every piece

of the algorithm, starting from the nonlinear solver, first- and second-order tangent

solvers, we restrict ourselves to determining the time complexity. It is worth noting

that many CFD codes are highly optimized for performance on HPC clusters and

often provide tangent solvers through automatic differentiation. For implementing

custom tangent solvers (and second-order tangent solvers needed in S3) that utilize

these solutions, when such solvers are not already available, we must in addition use

checkpointing schemes [270] in order to make the S3 algorithm feasible for very high

dimensional problems. The estimate of time complexity here is also rough because we

do not assume any sparsity or structure in the Jacobian matrices and the second-order

derivative of 𝜙, which typically exists and is exploited in tensor products to obtain

better scaling with dimension. Here we discount the cost of the nonlinear solver as it

is considered a part of the input to the S3 algorithm.

First we analyze the S3 algorithm for one-dimensional unstable manifolds, which

is developed in this thesis. This algorithm is iterative with an 𝒪(𝑁 +𝐾) length loop

over a 𝜇-typical orbit obtained from the nonlinear solver. In each iteration, a number

of scalar objects and vector objects are time-evolved. Focusing on the more time-

consuming vector operations, we start by noting that one step of an inhomogeneous

tangent equation (such as the regularized tangent equation 7.25, for 𝑣), implemented

naïvely, involves a Jacobian matrix-vector multiplication, followed by vector addition,

which is 𝒪(𝑑2) operations. Another type of first-order tangent equation we solve (e.g.
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for 𝑞) is the homogeneous tangent equation, which involves only the Jacobian-vector

product, and is again 𝒪(𝑑2) operations. The number of first-order tangent equations

that must be solved for every iteration of the outer loop is 2: one for the vector

field 𝑞 and the other for 𝑣. In the case of a multi-dimensional unstable manifold (see

section 10.1), 𝑑𝑢 > 1, a set of 𝑑𝑢 equations for the forward Lyapunov vectors must

be solved instead of just one for 𝑞. Further, we must apply a QR factorization of the

𝑑 × 𝑑𝑢 matrix of solutions at every timestep (at every iterate of the loop) in order

to find an orthogonal basis for the unstable subspace at that sample point. The

computational cost of the QR algorithm, without exploiting any available structure

or sparsity, is 𝒪(𝑑𝑑2𝑢). Thus, the overall number of operations at every iteration that

involve first-order tangent solvers, assuming 𝑑𝑢 << 𝑑, is 𝒪(𝑑2𝑑𝑢), which reduces to

𝒪(𝑑2) operations for one-dimensional unstable manifolds.

A second-order tangent equation (e.g., Eq. 7.39 for 𝑤, Eq. 7.19 for 𝑦) solved

naïvely for one timestep, involves computing a bilinear form (a tensor-vector product

to form a matrix, followed by a matrix-vector product), possibly matrix-vector multi-

plications and a vector addition, which is overall 𝒪(𝑑3) operations. In the 1D unstable

manifold algorithm, we need to solve one second-order tangent equation for 𝑤 and

one for 𝑦 (see section 7.5.4). However, in the higher-dimensional unstable manifold

case (section 10.1), the number of second-order derivatives of the forward Lyapunov

vectors increases to
(︀
𝑑𝑢
2

)︀
; we also need 𝑑𝑢-many vector fields that replace the role of

𝑦: derivatives of 𝑣 in each unstable direction. Note that in this multi-dimensional

unstable manifold case, 𝑔 is also a vector of length 𝑑𝑢, as opposed to a scalar, that

must be estimated using these second-order solutions. The number of operations in-

volving second-order tangent equations that must be performed at every iteration of

the 𝑁 + 𝐾 loop is 𝒪(𝑑3𝑑2𝑢).

Thus, comparing the number of operations involving first-order and second-order

equations explicitly discussed above, in order to estimate the asymptotic time com-

plexity, we only need to examine the number of second-order tangent evolutions in

the S3 algorithm. In other words, the second-order tangent equations are the most

expensive computation in the S3 algorithm.
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The assembly of the stable contribution is straightforward since it is simply an

ergodic average (Eq. 9.2) that adds 𝑑 operations (to compute 𝑑𝐽 · 𝑣) per iteration.

In order to assemble each of the 𝐾 terms in the unstable contribution (Eq. 9.5),

an 𝑁 -sample ergodic average must be computed using all the vectors and scalars

computed within the loop, which also adds 𝒪(𝑑) operations per sample. However, 𝐾

𝑁 -length orbits are available within an 𝑁 +𝐾 length orbit, obviating the need for an

𝒪(𝑁𝐾) loop. Thus, to obtain the stable and unstable contributions, we only need

𝒪((𝑁 +𝐾)𝑑3𝑑2𝑢) operations. As discussed in section 9.2, since 𝐾 is of constant order

compared to 𝑁, the time complexity can be stated as 𝒪(𝑁𝑑3𝑑2𝑢).

9.3.1 Discrete adjoint of the S3 algorithm

Above we discussed the time complexity of the S3 algorithm to compute the deriva-

tive with respect to one system parameter of the expectation of one observable with

respect to the SRB measure. When the number of observables is increased, the al-

gorithm described in section 7.3.1 is efficient. The observable 𝐽 enters only the final

computation of the ergodic averages and hence the complexity of each iteration is in-

creased (additively) by a factor of 𝑑 that depends only on the number of observables.

Hence, the time complexity of the algorithm does not change, and remains 𝒪(𝑁𝑑3𝑑2𝑢).

Now consider increasing the number of parameters to 𝑑𝑝 > 1. We must com-

pute one vector field 𝑣 per parameter perturbation. Thus, the number of operations

involving first-order tangent equations increases to 𝒪(𝑑2𝑑𝑢 + 𝑑2𝑑𝑝). The number of

operations per iteration that involve second-order tangent equations also increases to

𝒪(𝑑3𝑑2𝑢 + 𝑑3𝑑𝑢𝑑𝑝) since each first-order regularized tangent vector field 𝑣 (and there

are 𝑑𝑝 such vector fields corresponding to 𝑑𝑝 parameter perturbations) needs to be

differentiated in 𝑑𝑢 unstable directions. Thus, the time complexity of the S3 algo-

rithm becomes 𝒪(𝑁𝑑3(𝑑2𝑢 + 𝑑𝑢𝑑𝑝)). When the number of parameters is much larger

than 𝑑𝑢, this cost can be prohibitive and thus, it is more efficient to implement a

discrete adjoint of the S3 algorithm.

That is, we isolate the steps of the S3 algorithm that depend on the parameters

and apply reverse-mode differentiation to these steps. While the derivation of the
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Forward-mode (section 7.3.1) Reverse-mode
# of 2𝑛𝑑 order tangents/adjoints 𝑑𝑢(𝑑𝑢 + 1)/2 + 𝑑𝑝𝑑𝑢 𝑑𝑢(𝑑𝑢 + 1)/2 + 𝑑𝐽

Time complexity 𝒪(𝑁𝑑3(𝑑2𝑢 + 𝑑𝑝𝑑𝑢)) 𝒪(𝑁𝑑3(𝑑2𝑢 + 𝑑𝐽𝑑𝑢))

Table 9.1: Summary of the cost of the S3 algorithm as described in section 7.3.1 and
its reverse-mode/adjoint version.

discrete adjoint is beyond the scope of this thesis, we mention that the adjoint, 𝑦*, of

the 𝑑𝑝 second-order tangent equations for 𝑦 (Eq. 7.19) are now 𝑑𝐽 first-order adjoint

equations (involving the Jacobian transpose). Here 𝑑𝐽 is the number of observables

𝐽. The adjoint of the regularized tangent equation (Eq. 7.25) is an adjoint equation

that involves a second order derivative of 𝜙:

𝑣*𝑛 = (𝑑2𝜙𝑛𝑞𝑛)𝑇𝑦*𝑛 + (𝑑𝜙)𝑇𝑛𝑣
*
𝑛+1 + (𝑑𝐽)𝑛. (9.9)

Thus, the number of first-order adjoint equations in the adjoint S3 algorithm is

𝑑𝐽 × 𝑑𝑢, and the second-order adjoint equations, such as the one in Eq. 9.9, are 𝑑𝐽

in number. Hence, the cost per timestep for the first-order equations is 𝒪(𝑑2𝑑𝐽𝑑𝑢),

and as usual, the second-order equations are the most expensive computation. Al-

though the number of second-order equations does not depend on 𝑑𝑢, the cost of

evolution is not independent of 𝑑𝑢. From Eq. 9.9, we can see that, in the case

of higher-dimensional unstable manifolds, the number of 𝑑2𝜙-vector products is 𝑑𝑢.

Hence, the cost per timestep of the second-order adjoint equations is 𝒪(𝑑3𝑑𝐽𝑑𝑢). The

cost of the second-order tangent equations, corresponding to the cross-derivatives and

self-derivatives of the forward Lyapunov vectors still remains as in the tangent S3 al-

gorithm, at 𝒪(𝑑3𝑑2𝑢). Thus, the complexity of the adjoint algorithm that gives the

derivatives of 𝑑𝐽 expectations with respect to 𝑑𝑝 parameters is 𝒪(𝑁𝑑3(𝑑2𝑢 + 𝑑𝐽𝑑𝑢)).

When 𝑑𝐽 < 𝑑𝑢𝑑𝑝, the adjoint algorithm is more efficient than the forward-mode ver-

sion in section 7.3.1, which, as described above, has a complexity of𝒪(𝑁𝑑3(𝑑2𝑢+𝑑𝑢𝑑𝑝)).

The number of second-order tangent equations, the most expensive computation in

every iteration, and the time complexity of the S3 algorithm are summarized in Table

9.1.
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Chapter 10

Summary and Future Work

The main contribution of this thesis is a new algorithm, called space-split sensitivity

(S3), to compute linear response, or the sensitivities of statistics to parameters, in

chaotic dynamical systems. The thesis presents the derivation of S3 with Ruelle’s

linear response formula [232][234] as the starting point and works exclusively with the

simplest class of chaotic systems: uniformly hyperbolic systems with one-dimensional

unstable manifolds. We first show that Ruelle’s formula leads to an ill-conditioned

direct computation (Chapter 4). To derive S3, we decompose this formula into a

stable and unstable contribution, by splitting the parameter perturbation by means of

solving a regularized tangent equation (Chapter 7). This leads to stable and unstable

contributions to the sensitivity for both of which efficient methods of evaluation are

developed. The resulting algorithm – the S3 algorithm – evaluates the stable and

unstable contribution as ergodic averages that converge like a typical Monte Carlo

integration, which has a dimension-independent error convergence rate of 𝒪(1/
√
𝑁)

(ignoring a factor logarithmic in log𝑁) with 𝑁 samples.

The ergodic-averaging computation of the unstable contribution involves novel re-

cursive procedures to estimate i) the density gradient of the SRB density conditioned

on the unstable manifold, and ii) the derivative of the one-dimensional unstable sub-

space in its own direction. The latter recursion is developed in Chapter 6. The density

gradient is a fundamental object whose regularity we link, in a different study [248],

to the validity of linear response [277][276].
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In this thesis, we also discuss an application of an existing algorithm for sensitivity

computation in chaotic systems, based on shadowing [206][211][273], to the problem

of suppressing thermoacoustic instabilities in a reduced-order model of a gas turbine.

We show, through examples (Chapter 3), that generally speaking, shadowing-based

algorithms are not guaranteed to converge to the true sensitivity, which is consistent

with the analysis done by Ni [209]. Owing to the low dimension of the unstable

subspace compared to the overall dimension of the system, the shadowing sensitivities

are accurate enough to be employed in optimization and data assimilation applications

in the considered thermoacoustic example. As shown by Ni [209], shadowing only

computes one component of Ruelle’s response – it disregards the change in the SRB

probability density on the unstable manifold due to the parameter perturbation.

The S3 algorithm, on the other hand, is a provably convergent computation of

linear response and has an efficient, scalable implementation. In Chapter 8, we extend

the S3 algorithm from the discrete-time case presented in Chapter 7 to the continuous-

time setting, which is representative of chaotic systems stemming from numerical

solutions of ODEs. Before we close, we give a brief blueprint for the extension of S3

to problems with arbitrary-dimensional unstable manifolds.

10.1 S3 extension to multi-dimensional unstable man-

ifolds

For the notations and definitions we shall use here, we refer the reader to Chapters 7

and 8. We briefly summarize the S3 decomposition and the algorithm (Chapter 7) be-

fore we discuss their multi-dimensional extensions. The S3 decomposition is achieved

by orthogonalizing the conventional tangent solution with respect to the unstable

subspaces along a long trajectory. This procedure yields a regularized tangent vector

field 𝑣 using which the scalar component, 𝑎, of the split parameter perturbation in

the unstable direction, 𝑞, is determined.

The sensitivity to the unstable vector field so achieved – 𝑎𝑞 – is called the unstable
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contribution. The stable contribution is the remaining linear response, and can be

calculated just as tangent sensitivities are in non-chaotic systems, but using the regu-

larized tangent solutions in place of the conventional tangent solutions. The unstable

contribution is integrated by parts on the unstable manifold to yield an expression

in which, unlike the original form of Ruelle’s formula, the integrand is uniformly

bounded. Then, exploiting the exponential decay of correlations, this regularized for-

mula can be computed fast as a sum of Monte Carlo integrals. However, the problem

is, we obtain two unknown functions – the derivative of 𝑎 on the unstable manifold,

and the density gradient.

The density gradient is the unstable derivative of the logarithmic conditional den-

sity of the SRB measure on the unstable manifold. We take the unstable derivative

of Pesin’s formula [148][169] to obtain a recursive evaluation of the density gradient

along a typical trajectory. We show that starting this recursion with an arbitrary

scalar field leads to an exponential convergence to the true density gradient. A re-

cursive procedure is also derived for the unstable derivative of 𝑎 by combining the

unstable derivatives of 𝑣 and 𝑞. The evaluation of the latter two unstable derivatives

requires solving two second-order tangent equations, which are the most computa-

tionally intensive steps of the S3 algorithm (see section 9.3).

Overall, the S3 algorithm computes Ruelle’s formula as a well-conditioned ergodic

average. An important direction of future work is to make S3 applicable to systems

with higher-dimensional unstable manifolds. Instead of being one-dimensional, as we

have assumed throughout Chapters 7 and 8, suppose 𝐸𝑢
𝑥 is an 𝑚𝑢 ≥ 1 dimensional

subspace at each 𝑥 ∈ 𝑀. We anticipate that the S3 algorithm then involves the

following changes, which will be pursued in a future work:

1. We must compute, e.g. using Ginelli’s algorithm [114], an orthonormal basis

for the unstable subspaces along an orbit. This more general procedure reduces

to Step 2 of the S3 algorithm (section 5.6), in the case of a 1D unstable

manifold. Let 𝑞𝑖𝑥𝑛
, 1 ≤ 𝑖 ≤ 𝑚𝑢, 1 ≤ 𝑛 ≤ 𝑁 be the resultant orthogonal tangent

vectors that span 𝐸𝑢
𝑥𝑛
, 1 ≤ 𝑛 ≤ 𝑁 .
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2. The regularized tangent equation must now be orthogonalized with respect

to the computed unstable subspaces along the trajectory, as opposed to with

respect to a single direction. This orthogonalization results in a regularized

tangent vector field 𝑣 and 𝑚𝑢 different scalar fields, 𝑎𝑖, 1 ≤ 𝑖 ≤ 𝑚𝑢, in place of

a single scalar field 𝑎. The stable contribution may be computed using 𝑣 just

as in the 1D case (Eq. 7.28).

3. The first step in treating the unstable contribution is the integration by parts

on the unstable manifold. In the multi-dimensional unstable manifold case,

the parameterization Φ𝑥 is now a map from [0, 1]𝑚𝑢 to Ξ𝑥, such that ∇𝜉Φ
𝑥𝑛(0)

maps the standard Euclidean basis vector 𝑒𝑖 in R𝑚𝑢 to 𝑞𝑖𝑥𝑛
. Using disintegration

followed by integration by parts on the 𝑚𝑢-dimensional unstable manifold

results in a regularized expression for the unstable contribution, analogous to

the 1D case (Eq. 7.32),

⟨𝐽, 𝜕𝑠𝜇𝑠⟩u = −
∞∑︁
𝑛=0

⟨𝐽 ∘ 𝜙𝑛(𝑎 · 𝑔 + divu𝑎), 𝜇⟩. (10.1)

Here 𝑎 : 𝑀 → R𝑚𝑢 and 𝑔 : 𝑀 → R𝑚𝑢 are now vector-valued functions on 𝑀.

The term divu𝑎 refers to the unstable divergence of the unstable perturbation

field
∑︀

𝑖 𝑎
𝑖𝑞𝑖. Now, analogous to the computation of 𝑎𝑔 + 𝑏 in the 1D unstable

manifold, which we tackled in this thesis, we must derive a new computation

for the derivative of 𝑎 · 𝑔 + divu𝑎. Such a computation must similarly be

recursive so that it can be efficiently carried out using information available

along an orbit.

Since we used the unstable derivatives of 𝛼, 𝑣 and 𝑞 in the computation of 𝑎𝑔+𝑏

in the 1D unstable manifold case, we expect analogous derivatives are necessary

in higher dimensions. In particular, the unstable derivatives – which are 𝑚𝑢-

dimensional gradients, i.e., partial derivatives taken with respect to each 𝜉𝑖

corresponding to 𝑞𝑖 – of 𝑣 and each 𝑞𝑖 are needed. The higher dimensional

analog of 𝛼 are the diagonal elements of the R matrix in the QR-based iterative
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computation in Ginelli’s algorithm [114]; the unstable gradient of the diagonal

elements of 𝑅 are needed. Computing these required derivatives efficiently

is the crux of this future direction that will enable the application of S3 to

systems with arbitrary dimensional unstable manifolds.

From the outline sketched above, it is amply clear that the S3 algorithm presented

here serves as an excellent starting point from which to extend to higher-dimensional

unstable manifolds. Moreover, we have proved the existence of the S3 decomposi-

tion and the convergence of the algorithm in uniformly hyperbolic systems. The

proof of convergence presented in this thesis is also readily extensible to the case of

higher-dimensional unstable manifolds. Here we have shown that both the stable and

unstable contributions to the sensitivity, computed as per the S3 algorithm, have an

error convergence that declines as a Monte Carlo computation of an ergodic average,

i.e., as 𝒪(1/
√
𝑁) along an orbit of length 𝑁. Thus, this work is the first step, with

a clear path forward for efficient extensions to arbitrary dimensional systems, toward

circumventing the poor convergence rate of Ruelle’s formula for linear response.
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