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Net radiation exchange
Small object (1) in large isothermal surrounds (2)

The net radiation leaving this surface is

𝑞net = 𝜎𝜀(𝑇1)𝑇4
1 − 𝜎𝛼(𝑇1, 𝑇2)𝑇4

2 (1)

Total hemispherical emissivity and absorptivity

𝜀(𝑇1) =
1
𝜎𝑇4

1
∫
∞

0
𝛼(𝜆, 𝑇1)𝑒𝜆,𝑏(𝑇1) 𝑑𝜆

𝛼(𝑇1, 𝑇2) =
1
𝜎𝑇4

2
∫
∞

0
𝛼(𝜆, 𝑇1)𝑒𝜆,𝑏(𝑇2) 𝑑𝜆

If 𝑇2 → 𝑇1 then 𝛼(𝑇1, 𝑇2) → 𝜀(𝑇1), but …
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Non-gray error
Linearization about 𝑇1 for small temperature differences

The slope as 𝑇2 → 𝑇1 is different when 𝑑𝛼/𝑑𝑇2 ≠ 0.

𝛼(𝑇1, 𝑇2) 𝑇4
2 ≈ 𝛼(𝑇1, 𝑇1) 𝑇4

1 +
𝑑
𝑑𝑇2

(𝛼(𝑇1, 𝑇2) 𝑇4
2 )
|||
𝑇1
(𝑇2 − 𝑇1)

= 𝜀(𝑇1) 𝑇4
1 + 4𝑇3

1 [𝜀(𝑇1) +
𝑇1
4

𝑑𝛼
𝑑𝑇2

|||
𝑇1
] (𝑇2 − 𝑇1)

Thus,

𝑞net ≈ 4𝜎𝑇3
1 [𝜀(𝑇1) +

𝑇1
4

𝑑𝛼
𝑑𝑇2

|||
𝑇1
] (𝑇1 − 𝑇2) (2)

For a gray (or black) surface, 𝑑𝛼/𝑑𝑇2 = 0, so: 𝑞net ≈ 4𝜎𝜀(𝑇1) 𝑇3
1 Δ𝑇.
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Background
External and internal emissivities

DK Edwards (1932–2009)
UCLA 1959-1981, UCI 1981-1991
ASME Heat Transfer Memorial
Award (1973)

In his work on radiative property
measurements, he studied the
failure of gray-body
approximations at even small Δ𝑇

Edwards suggested the internal radiation
fractional function for linearizing net heat
flux between surfaces at small Δ𝑇. Appears
in several textbooks by Edwards and his
coworkers.

Internal to a spacecraft: small Δ𝑇

External to a spacecraft: large Δ𝑇
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Internal Fractional Function
Linearization about 𝑇1 for small temperature differences

Edwards defined the internal total hemispherical emissivity as

𝜀𝑖(𝑇1) ≡ lim
𝑇2→𝑇1

𝜀(𝑇1)𝜎𝑇4
1 − 𝛼(𝑇1, 𝑇2)𝜎𝑇4

2
𝜎𝑇4

1 − 𝜎𝑇4
2

= lim
𝑇2→𝑇1

∫
∞

0
𝛼(𝜆, 𝑇1)

𝜕
𝜕𝑇2

𝑒𝜆,𝑏(𝑇2) 𝑑𝜆

4𝜎𝑇3
2

(3)

Thus, when 𝑇2 is not too much different from 𝑇1

𝑞net ≈ 𝜀𝑖(𝑇1) 4𝜎𝑇3
1 (𝑇1 − 𝑇2) (4)

with

𝜀𝑖(𝑇) = 1
4𝜎𝑇3 ∫

∞

0
𝛼(𝜆, 𝑇)

𝜕𝑒𝜆,𝑏
𝜕𝑇 𝑑𝜆 = ∫

1

0
𝛼(𝜆, 𝑇) 𝑑𝑓𝑖(𝜆𝑇) (5)

where the internal fractional function is

𝑓𝑖(𝜆𝑇) ≡
1

4𝜎𝑇3 ∫
𝜆

0

𝜕𝑒𝜆,𝑏
𝜕𝑇 𝑑𝜆 (6)
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External Fractional Function
What we usually called the radiation fractional function

The fraction of blackbody radiation between wavelengths of 0 and 𝜆 is

𝑓(𝜆𝑇) = 1
𝜎𝑇4 ∫

𝜆

0
𝑒𝜆,𝑏 𝑑𝜆

= 1 − 90
𝜋4 𝜁(𝑐2/𝜆𝑇, 4) (7)

where 𝜁(𝑋, 𝑠) is the incomplete zeta function. (Details in paper.)

The external total hemispherical emissivity is

𝜀(𝑇) = ∫
1

0
𝛼(𝜆, 𝑇) 𝑑𝑓(𝜆𝑇)

From these relationships, one can show that

𝑓𝑖(𝜆𝑇) − 𝑓(𝜆𝑇) = 𝐹(𝑋) = 15
4𝜋4

𝑋4

𝑒𝑋 − 1
(8)

where 𝑋 ≡ 𝑐2/𝜆𝑇.
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𝑓𝑖(𝜆𝑇) − 𝑓(𝜆𝑇) = 𝐹(𝑋)

𝑋 = 𝑐2/𝜆𝑇

EXTERNAL AND INTERNAL RADIATION FRACTIONS
The fraction of blackbody radiation between wavelengths of

0 and λ is

f (λT) =
1
σT4

∫ λ

0
eλ,b dλ (8)

= 1 −
15
π4

∫ c2/λT

0

t3

et − 1
dt (9)

= 1 −
90
π4 ζ(c2/λT,4) (10)

ζ(X, s) is the incomplete zeta function (see derivation in Appendix
A). Edwards [1,4,5] refers to f as the external radiation fraction.
The distinct internal radiation fractional function, fi(λT), arises
from a linearization that allows ε(Ts) and α(Ts,Te) to be com-
bined, as described next.

Edwards [1] defines the internal hemispherical emissivity
such that

εi(T1) ≡ lim
T2→T1

σε(T1)T4
1 − σα(T1,T2)T4

2

σT4
1 − σT4

2
(11)

Because the numerator and denominator both go to zero in the
limit, L’Hôpital’s rule (or Taylor expansion) is required:

εi(T1) = lim
T2→T1

∫∞
0 α(λ,T1)

∂
∂T2

eλ,b(T2) dλ

4σT3
2

(12)

=

∫∞

0
α(λ,T1)

[
1

4σT3
1

∂

∂T2
eλ,b(T2)

����
T1

]
dλ (13)

Thus, when T2 is not too much different from T1

qnet ≈ ε
i(T1) 4σT3

1 (T1 − T2) (14)

with

εi(T) =
1

4σT3

∫∞

0
α(λ,T)

∂eλ,b
∂T

dλ =
∫ 1

0
α(λ,T) dfi(λT) (15)

where the internal radiation fractional function is

fi(λT) ≡
1

4σT3

∫ λ

0

∂eλ,b
∂T

dλ (16)

L’Hôpital’s rule simply compares the slopes of the numerator
and denominator in the limit, so Eqns. (7) and (14) are identical
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n

FIGURE 1. INTERNAL AND EXTERNAL RADIATION FRACTIONAL
FUNCTIONS AND THEIR DIFFERENCE

statements, as a change of variables and integration by parts of
Eqn. (13) shows.

Equation (15) stands in contrast to the external total hemi-
spherical emissivity, which from Eqns. (1) and (8) maybe written

ε(T) =
1
σT4

∫∞

0
α(λ,T)eλ,b(T) dλ =

∫ 1

0
α(λ,T) df (λT) (17)

From these relationships, one can show that

fi(λT) − f (λT) = F(X) =
15
4π4

X4

eX − 1
(18)

where X ≡ c2/λT . The functions f , fi , and F are plotted as a
function of λT in Fig. 1.

The numerical implementation is described in Appendix B.

DIFFERENCE BETWEEN EXTERNAL AND INTERNAL
EMISSIVITIES

We now derive an upper bound on the difference of these two
emissivities.

ε − εi =

∫ 1

0
α(λ,T) df (λT) −

∫ 1

0
α(λ,T) dfi(λT) (19)

=

∫∞

0
α(λ,T)

dF
dX

dX (20)

=

∫ Xz

0
α(λ,T)

dF
dX

dX +
∫∞

Xz

α(λ,T)
dF
dX

dX (21)

where X = Xz is the finite zero point of dF/dX , Xz = 3.92069
(see Appendix C). The function dF/dX is positive for X < Xz

3 Copyright © 2018 by ASME

𝑋𝑧 = 3.92⋯
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Difference between external and internal emissivities

𝜀 − 𝜀𝑖 = ∫
1

0
𝛼(𝜆, 𝑇) 𝑑𝑓(𝜆𝑇) − ∫

1

0
𝛼(𝜆, 𝑇) 𝑑𝑓𝑖(𝜆𝑇) = ∫

∞

0
𝛼(𝜆, 𝑇)𝑑𝐹𝑑𝑋 𝑑𝑋

= ∫
𝑋𝑧

0
𝛼(𝜆, 𝑇)𝑑𝐹𝑑𝑋 𝑑𝑋 + ∫

∞

𝑋𝑧

𝛼(𝜆, 𝑇)𝑑𝐹𝑑𝑋 𝑑𝑋

where 𝑑𝐹/𝑑𝑋 = 0 at 𝑋𝑧 = 3.92069. Because 𝑑𝐹/𝑑𝑋 > 0 for 𝑋 < 𝑋𝑧 and < 0 for
𝑋 > 𝑋𝑧:

𝜀 − 𝜀𝑖 ⩽ ∫
𝑋𝑧

0

𝑑𝐹
𝑑𝑋 𝑑𝑋 = 𝐹(𝑋𝑧) if 𝜀 − 𝜀𝑖 > 0, and

𝜀𝑖 − 𝜀 ⩽ ∫
𝑋𝑧

∞

𝑑𝐹
𝑑𝑋 𝑑𝑋 = 𝐹(𝑋𝑧) if 𝜀𝑖 − 𝜀 > 0

Evaluating
||𝜀 − 𝜀𝑖|| ⩽ 0.18400 (9)
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Model surfaces: Switch between 𝛼(𝜆) = 0 and 𝛼(𝜆) = 1 at
𝑋𝑧 = 𝑐2/𝜆𝑧𝑇 = 3.92069
Emissivities evaluated numerically

Case 1: 300 K surface, black for 𝜆𝑧 ⩽ 12.23 µm, but reflective on other
wavelengths.

𝜀 = 0.4177, 𝜀𝑖 = 0.6017, and 𝜀𝑖 − 𝜀 = 0.1840 (10)

Case 2: 300 K surface, black for 12.23 µm ⩽ 𝜆𝑧, but reflective on other
wavelengths:

𝜀 = 0.5823, 𝜀𝑖 = 0.3983, and 𝜀 − 𝜀𝑖 = 0.1840 (11)

In both cases 𝛼(𝑇1, 𝑇2) is a strong function of 𝑇2.
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Linearization of 𝑞net about 𝑇1 is less accurate than for 𝑇𝑚
Consider 𝑞net for a black surface: 𝑇1, eqn. (32); 𝑇𝑚, eqn. (33). 𝑇𝑚 = (𝑇1 + 𝑇2)/2
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FIGURE 2. TOTAL ABSORPTIVITY FOR BOTH OF THE EXAMPLE
SURFACES, α(300 K, T2)

and negative for X > Xz , and 0 < α(λ,T) 6 1. Thus we can form
two bounds on the difference:

ε − εi 6

∫ Xz

0

dF
dX

dX = F(Xz) if ε − εi > 0, and (22)

εi − ε 6

∫ Xz

∞

dF
dX

dX = F(Xz) if εi − ε > 0 (23)

A simple calculation shows that

F(Xz) =
15
π4 X3

z e−Xz = 0.18400 (24)

In other words,

��ε − εi �� 6 0.18400 (25)

The value of Xz corresponds to

(λT)z =
14387.77
3.92069

= 3699.70 µm·K (26)

At 300 K, the wavelength λz = 12.2323 µm.
The following two extreme examples are designed to illus-

trate these bounds. First, suppose that we have a 300 K surface
that is black for λ 6 12.2323 µm, but perfectly reflective on other
wavelengths. Numerical integration of Eqns. (15) and (17) yields:

ε = 0.4177, εi = 0.6017, and εi − ε = 0.1840 (27)
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FIGURE 3. LINEARIZATION ERROR FOR A BLACK SURFACE
ABOUT T1 OR ABOUT Tm

If we instead have a 300 K surface that is black for 12.2323 µm 6
λ, but perfectly reflective on other wavelengths:

ε = 0.5823, εi = 0.3983, and ε − εi = 0.1840 (28)

In the first case, εi is 44% greater than ε; in the second case, εi
is 32% less than ε.

For a gray surface, Eqn. (20) gives ε − εi = 0, consistent
with Eqns. (4) and (7). The variation of the total absorptivity for
a 300 K surface irradiated by an effectively black source at T2 is
shown for both example surfaces in Fig. 2. The total absorptivity
varies significantly. The net heat exchange is discussed in detail
below.

The emissivities obtained from these examples are more gen-
eral than they may appear: the same values will be obtained for
any surface for which α(λ) switches between zero and one at Xz .
For example, from the preceding development, for the surface
black on short wavelengths

ε =

∫ λz

0
α(λ) df (λTz) =

∫ Xz

∞

df
dX

dX = f (Xz) − 0 (29)

= 1 −
90
π4 ζ(Xz,4) = 1 −

90
π4 ζ(3.92069,4) (30)

= 0.41771 (31)

Equation (18) gives εi , and the results for the long wavelength
example may be obtained by subtracting these values from unity.

LINEARIZATION ERRORS
The linearization itself produces error in calculation of the

heat flux, apart from non-gray error. To quantify this error, we

4 Copyright © 2018 by ASME
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Linearization with internal emissivity
Linearize about 𝑇𝑚 = (𝑇1 + 𝑇2)/2

Linearization accuracy is also greater for a non-gray surface when using 𝑇𝑚,
but must include temperature dependence of 𝛼(𝑇1, 𝑇2).

Linearization about 𝑇1 is just Edward’s definition: 𝑞net ≈ 𝜀
𝑖(𝑇1) 4𝜎𝑇

3
1Δ𝑇

It is a first-order, single-step, Euler approximation.

Linearization about 𝑇𝑚 is a second-order, single-step Runge-Kutta
approximation. Calculation gives (details in paper)

𝑞net ≈ 4𝜀
𝑖(𝑇𝑚) ⋅ 𝜎𝑇

3
𝑚Δ𝑇 (12)

to an accuracy of 𝐎(𝚫𝐓𝟑).
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FIGURE 4. COMPARISON OF MODELS FOR qnet (300 K SURFACE,
BLACK BELOW 12.23 µm)

may compare the linearized and exact values of qnet for a black
surface. Their ratio is

4T3
1∆T

T4
1 − T4

2
=

4T3
1

(T2
1 + T2

2 )(T1 + T2)
=

4
[1 + (T2/T1)2](1 + T2/T1)

(32)
Eqn. (32) is plotted in Fig. 3. For T2 = 320 K and T1 = 300 K, the
linearized flux is 90.5% of the exact flux. The ratio is asymptotic
to 1 − 3∆T/2T1 + 5(∆T)2/4T2

1 as ∆T → 0.
The linearization around T1 is considerably less accurate

than the traditional approach (i.e., for radiation heat transfer co-
efficients) of linearizing around Tm = (T1 + T2)/2. For that case,
the ratio is

4T3
m∆T

T4
1 − T4

2
=

4T3
m

(2T2
m + ∆T2/2)(2Tm∆T)

=
1

1 + ∆T2/4T2
m

(33)

and has errors on the order of (∆T/Tm)
2/4 [11]. At seen in Fig. 3,

this linearization is far more accurate. The reason for the greater
accuracy is that linearization about Tm is equivalent to a second-
order Runge-Kutta method, with third-order truncation error in
heat flux, while linearization about T1 is simply a forward Euler
method (see Appendix D).

From these considerations, we see that εi will also have a
limited range of accuracy if evaluated at T1. Instead, εi should be
computed at Tm, following the analysis in Appendix D,

εi(Tm) =
1

4σT3
m

∫∞

0
α(λ,T1)

∂eλ,b
∂T

����
Tm

dλ =
∫ 1

0
α(λ,T1) dfi(λTm)

(34)
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FIGURE 5. COMPARISON OF MODELS FOR qnet (300 K SURFACE,
BLACK ABOVE 12.23 µm)

with the heat flux evaluated, to an accuracy of O(∆T3), as

qnet ≈ 4εi(Tm) · σT3
m∆T (35)

The results for heat flux are compared in Fig. 4 and 5 for the
same two example surfaces at T1 = 300 K. The charts show:

1. The gray surface approximation, ε = α, has the wrong slope
as T2 → T1, consistent with Eqn. 7. This approximation has
poor accuracy for even the smallest temperature differences.
The ratio of gray slope to exact slope is ε/εi . Using the
values from Eqn. (27) or (28), that ratio is equal to 0.69 and
1.46 for Figs. 4 and 5, respectively.

2. The approximation using εi(T1) has the correct slope as T2 →

T1, but is accurate for only a limited range of temperatures.
For the surface black on short wavelengths, with T2 = 320 K
the magnitude of the linearized flux from Eqn. (14) is 13%
less than the exact value, Eqn. (4). This case corresponds to
the seemly small temperature difference ∆T/T1 = 0.067.

3. The approximation using εi(Tm) remains accurate over a very
broad range of temperature variation, to the degree that the
curves for this equation and the exact equation are difficult
to distinguish. The charts in Fig. 4 and 5 include values as
high as ∆T/T1 = 0.33.

Although Figs. 4 and 5 use 300 K as a reference point, Eqns.
(29)–(31) show that, for a surface at Tz that switches from black
to reflective behavior at λz , both ε(Tz) and εi(Tz) are fixed. The
values of εi(Tm) = ε

i(Tz + ∆T/2) and α(Tz,Tz + ∆T) depend
additionally only upon ∆T/Tz . Hence, the trends seen will be
effectively the same at any other temperature level.

Edwards [1,4,5] and, later, Mills [7] were both very specific
in recommending to evaluate εi at T1. Edwards et al. [6] did

5 Copyright © 2018 by ASME
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Polycrystalline alumina, normal emissivity
99.5% Al2O3, 6 mm thick, 1 μm roughness, 𝑇1 = 823 K (Teodorescu and Jones, 2008)

Total, normal
𝜀𝑛 = 0.506

𝜀𝑖𝑛 = 0.404

the maximum value in emittance. Both semitransparent and

opaque regions of aluminum oxide are illustrated in [3] and

in the present work as shown in Figs. 2 and 3.

The measured normal emittance shows a maximum

(Christiansen’s point) in emittance around 10 lm, similar

to that obtained by [2, 3]. At Christiansen’s point (wave-

length) a heteropolar oxide behaves as a blackbody [3].

The directional emittance of alumina measured in the

present work is tabulated in Table 2. The polar angles

considered range between the normal to the sample surface

and 72� (near grazing) with a step increment of 12�. A

characteristic dielectric directional behavior derived from

Fresnel’s equation is represented in Fig. 4 for a refractive

index, n = 5.5 and an extinction coefficient, k = 0.

Directional emittance of an optically smooth dielectric

is described by Fresnel’s relation, and also follows Lam-

bert’s law from angles normal to the sample surface to
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Fig. 2 Spectral normal emittance of Al2O3 at 823 K. Comparison
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Fig. 3 Measured spectral normal emittance of alumina at 823 K

Table 2 Measured spectral–directional emittance of alumina at

823 K

k, lm Polar angle, deg

0� 12� 24� 36� 48� 60� 72�

2 0.156 0.156 0.156 0.151 0.139 0.130 0.118

3 0.184 0.184 0.184 0.174 0.172 0.164 0.151

4 0.244 0.244 0.244 0.237 0.231 0.222 0.205

5 0.562 0.562 0.562 0.553 0.539 0.523 0.469

6 0.796 0.796 0.796 0.789 0.772 0.751 0.671

7 0.912 0.912 0.912 0.906 0.891 0.867 0.776

8 0.953 0.953 0.953 0.948 0.936 0.912 0.824

9 0.971 0.971 0.971 0.968 0.958 0.938 0.854

10 0.979 0.979 0.979 0.977 0.968 0.945 0.840

11 0.801 0.801 0.801 0.723 0.628 0.506 0.488

12 0.466 0.466 0.466 0.450 0.434 0.353 0.411

13 0.515 0.515 0.515 0.507 0.502 0.436 0.480

14 0.516 0.516 0.516 0.512 0.514 0.464 0.509

15 0.459 0.459 0.459 0.456 0.465 0.422 0.488

16 0.461 0.461 0.461 0.457 0.469 0.433 0.510

17 0.332 0.332 0.332 0.329 0.352 0.324 0.443

18 0.535 0.535 0.535 0.533 0.550 0.545 0.632

19 0.782 0.782 0.782 0.777 0.776 0.757 0.761

20 0.777 0.777 0.777 0.772 0.767 0.732 0.722

21 0.766 0.766 0.766 0.759 0.747 0.705 0.699

22 0.406 0.406 0.406 0.404 0.416 0.387 0.500

23 0.332 0.332 0.332 0.332 0.356 0.342 0.497

24 0.478 0.478 0.478 0.479 0.487 0.501 0.624

25 0.593 0.593 0.593 0.612 0.601 0.617 0.707

Fig. 4 Directional emittance of a dielectric
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FIGURE 6. SPECTRAL NORMAL EMISSIVITY OF ALUMINA AT
823 K FROM TEODORESCU AND JONES [12]. REPRINTED BY PER-
MISSION FROM SPRINGER, J. MATER. SCI. © 2008

not specify the temperature, but without comment included an
example worked using Tm. Likewise, Czerny and Walther [2]
provide an example worked using Tm, again without comment.
The present results show clearly that only Tm should be used when
evaluating εi .

APPLICATION TO REPRESENTATIVE MATERIALS
The previous example surfaces were contrived to maximize

the differences between ε and εi . In this section, we examine the
differences for representative non-gray materials.

Alumina
Experimental data for polycrystalline alumina (99.5% Al2O3,

6 mm thick, 1 µm roughness) have been reported by Teodorescu
and Jones [12] for T = 823 K and 2 6 λ 6 25 µm. The
experimental uncertainty is 3.5%. This data is available in tabular
form on 1 µm intervals and as a chart (Fig. 6). These results are
generally consistent with other reports on polycrystalline alumina.

In this case, we first integrate the data to obtain the spectral
normal emissivity, εn. One additional data point is extrapolated,
ε(1 µm, 823 K) ≈ 0.128, because fi at 2 µm still has the finite
value 0.059; the extrapolation extends the range to fi = 0.00012.
At the other end of this spectrum, f = 0.987 at 25 µm, but
no extrapolation was done. Thus, the value for total normal
emissivity εn is thus likely to be low by ∼1%. Integration of
the discrete data by a simple trapezoidal rule yields the following
values, both at 823 K:

εn = 0.506, εin = 0.404, and εin − εn = 0.102 (36)
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FIGURE 7. COMPARISON OF MODELS FOR ALUMINA SURFACE
AT T1 = 823 K

Our interest, ultimately, lies with estimating heat exchange,
so we require the spectral hemispherical emissivity. Teodorescu
and Jones [12] also measured the spectral directional emissivity.
We have integrated those data, as described in Appendix E, to
obtain the spectral hemispherical values from 1 to 25 µm.

We consider exchange with an effectively black environment
at temperatures down to 625 K. At 625 K, f = 0.972 at 25 µm,
so that the absorptivity calculation may be low by 2% or so. The
results are shown in Fig. 7. Once again, Eqn. (35) using εi(Tm)

is in excellent agreement with the exact result, Eqn. (4).

Drude/Hagens-Ruben Metal
The Drude/Hagen-Rubens model for emissivity applies ap-

proximately to some metals in the infrared regime [5, 10, 13].
Baehr and Stephan [13] provide the following equation for the
spectral, hemispherical emissivity under this model:

ε(λ,T) = 48.70
√

re
λ

{
1 +

[
31.62 + 6.849 ln

( re
λ

) ] √re
λ

− 166.78
re
λ
+ · · ·

}
(37)

for re/λ < 5 × 10−4 Ω · cm/µm, where re(T) the electrical resis-
tivity in Ω · cm.

We consider a surface at T1 = 373 K with re = 13.1 × 10−6

Ω · cm, a value representative of platinum. At this temperature,
0.01 6 f 6 0.99 for 3.88 6 λ 6 61.3 µm and fi = 0.01 at
λ = 3.36 µm. Over this range of wavelengths, ε(λ) varies from
0.086 down to 0.022 according to Eqn. (37). We may consider
heat exchange with a surface at T2 down to 275 K; at 275 K,
f > 0.99 for λ > 83.1 µm. The integrations are therefore done
from 3 to 100 µm. Results are shown in Fig. 8.
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Polycrystalline alumina, normal emissivity
99.5% Al2O3, 6 mm thick, 1 μm roughness, 𝑇1 = 823 K (Teodorescu and Jones, 2008)

Total, normal
𝜀𝑛 = 0.506

𝜀𝑖𝑛 = 0.404

the maximum value in emittance. Both semitransparent and

opaque regions of aluminum oxide are illustrated in [3] and

in the present work as shown in Figs. 2 and 3.

The measured normal emittance shows a maximum

(Christiansen’s point) in emittance around 10 lm, similar

to that obtained by [2, 3]. At Christiansen’s point (wave-

length) a heteropolar oxide behaves as a blackbody [3].

The directional emittance of alumina measured in the

present work is tabulated in Table 2. The polar angles

considered range between the normal to the sample surface

and 72� (near grazing) with a step increment of 12�. A

characteristic dielectric directional behavior derived from

Fresnel’s equation is represented in Fig. 4 for a refractive

index, n = 5.5 and an extinction coefficient, k = 0.

Directional emittance of an optically smooth dielectric

is described by Fresnel’s relation, and also follows Lam-

bert’s law from angles normal to the sample surface to
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Fig. 2 Spectral normal emittance of Al2O3 at 823 K. Comparison

between present work and data reported by Vader et al. [1]
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Table 2 Measured spectral–directional emittance of alumina at

823 K

k, lm Polar angle, deg

0� 12� 24� 36� 48� 60� 72�

2 0.156 0.156 0.156 0.151 0.139 0.130 0.118

3 0.184 0.184 0.184 0.174 0.172 0.164 0.151

4 0.244 0.244 0.244 0.237 0.231 0.222 0.205

5 0.562 0.562 0.562 0.553 0.539 0.523 0.469

6 0.796 0.796 0.796 0.789 0.772 0.751 0.671

7 0.912 0.912 0.912 0.906 0.891 0.867 0.776

8 0.953 0.953 0.953 0.948 0.936 0.912 0.824

9 0.971 0.971 0.971 0.968 0.958 0.938 0.854

10 0.979 0.979 0.979 0.977 0.968 0.945 0.840

11 0.801 0.801 0.801 0.723 0.628 0.506 0.488

12 0.466 0.466 0.466 0.450 0.434 0.353 0.411

13 0.515 0.515 0.515 0.507 0.502 0.436 0.480

14 0.516 0.516 0.516 0.512 0.514 0.464 0.509

15 0.459 0.459 0.459 0.456 0.465 0.422 0.488

16 0.461 0.461 0.461 0.457 0.469 0.433 0.510

17 0.332 0.332 0.332 0.329 0.352 0.324 0.443

18 0.535 0.535 0.535 0.533 0.550 0.545 0.632

19 0.782 0.782 0.782 0.777 0.776 0.757 0.761

20 0.777 0.777 0.777 0.772 0.767 0.732 0.722

21 0.766 0.766 0.766 0.759 0.747 0.705 0.699

22 0.406 0.406 0.406 0.404 0.416 0.387 0.500

23 0.332 0.332 0.332 0.332 0.356 0.342 0.497

24 0.478 0.478 0.478 0.479 0.487 0.501 0.624

25 0.593 0.593 0.593 0.612 0.601 0.617 0.707

Fig. 4 Directional emittance of a dielectric
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FIGURE 6. SPECTRAL NORMAL EMISSIVITY OF ALUMINA AT
823 K FROM TEODORESCU AND JONES [12]. REPRINTED BY PER-
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not specify the temperature, but without comment included an
example worked using Tm. Likewise, Czerny and Walther [2]
provide an example worked using Tm, again without comment.
The present results show clearly that only Tm should be used when
evaluating εi .

APPLICATION TO REPRESENTATIVE MATERIALS
The previous example surfaces were contrived to maximize

the differences between ε and εi . In this section, we examine the
differences for representative non-gray materials.

Alumina
Experimental data for polycrystalline alumina (99.5% Al2O3,

6 mm thick, 1 µm roughness) have been reported by Teodorescu
and Jones [12] for T = 823 K and 2 6 λ 6 25 µm. The
experimental uncertainty is 3.5%. This data is available in tabular
form on 1 µm intervals and as a chart (Fig. 6). These results are
generally consistent with other reports on polycrystalline alumina.

In this case, we first integrate the data to obtain the spectral
normal emissivity, εn. One additional data point is extrapolated,
ε(1 µm, 823 K) ≈ 0.128, because fi at 2 µm still has the finite
value 0.059; the extrapolation extends the range to fi = 0.00012.
At the other end of this spectrum, f = 0.987 at 25 µm, but
no extrapolation was done. Thus, the value for total normal
emissivity εn is thus likely to be low by ∼1%. Integration of
the discrete data by a simple trapezoidal rule yields the following
values, both at 823 K:

εn = 0.506, εin = 0.404, and εin − εn = 0.102 (36)
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FIGURE 7. COMPARISON OF MODELS FOR ALUMINA SURFACE
AT T1 = 823 K

Our interest, ultimately, lies with estimating heat exchange,
so we require the spectral hemispherical emissivity. Teodorescu
and Jones [12] also measured the spectral directional emissivity.
We have integrated those data, as described in Appendix E, to
obtain the spectral hemispherical values from 1 to 25 µm.

We consider exchange with an effectively black environment
at temperatures down to 625 K. At 625 K, f = 0.972 at 25 µm,
so that the absorptivity calculation may be low by 2% or so. The
results are shown in Fig. 7. Once again, Eqn. (35) using εi(Tm)

is in excellent agreement with the exact result, Eqn. (4).

Drude/Hagens-Ruben Metal
The Drude/Hagen-Rubens model for emissivity applies ap-

proximately to some metals in the infrared regime [5, 10, 13].
Baehr and Stephan [13] provide the following equation for the
spectral, hemispherical emissivity under this model:

ε(λ,T) = 48.70
√

re
λ

{
1 +

[
31.62 + 6.849 ln

( re
λ

) ] √re
λ

− 166.78
re
λ
+ · · ·

}
(37)

for re/λ < 5 × 10−4 Ω · cm/µm, where re(T) the electrical resis-
tivity in Ω · cm.

We consider a surface at T1 = 373 K with re = 13.1 × 10−6

Ω · cm, a value representative of platinum. At this temperature,
0.01 6 f 6 0.99 for 3.88 6 λ 6 61.3 µm and fi = 0.01 at
λ = 3.36 µm. Over this range of wavelengths, ε(λ) varies from
0.086 down to 0.022 according to Eqn. (37). We may consider
heat exchange with a surface at T2 down to 275 K; at 275 K,
f > 0.99 for λ > 83.1 µm. The integrations are therefore done
from 3 to 100 µm. Results are shown in Fig. 8.
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Polycrystalline alumina at 𝑇1 = 823 K
𝜀𝑖(𝑇𝑚) provides much wider accuracy than 𝜀

𝑖(𝑇1)

the maximum value in emittance. Both semitransparent and

opaque regions of aluminum oxide are illustrated in [3] and

in the present work as shown in Figs. 2 and 3.

The measured normal emittance shows a maximum

(Christiansen’s point) in emittance around 10 lm, similar

to that obtained by [2, 3]. At Christiansen’s point (wave-

length) a heteropolar oxide behaves as a blackbody [3].

The directional emittance of alumina measured in the

present work is tabulated in Table 2. The polar angles

considered range between the normal to the sample surface

and 72� (near grazing) with a step increment of 12�. A

characteristic dielectric directional behavior derived from

Fresnel’s equation is represented in Fig. 4 for a refractive

index, n = 5.5 and an extinction coefficient, k = 0.

Directional emittance of an optically smooth dielectric

is described by Fresnel’s relation, and also follows Lam-

bert’s law from angles normal to the sample surface to
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Table 2 Measured spectral–directional emittance of alumina at

823 K

k, lm Polar angle, deg

0� 12� 24� 36� 48� 60� 72�

2 0.156 0.156 0.156 0.151 0.139 0.130 0.118

3 0.184 0.184 0.184 0.174 0.172 0.164 0.151

4 0.244 0.244 0.244 0.237 0.231 0.222 0.205

5 0.562 0.562 0.562 0.553 0.539 0.523 0.469

6 0.796 0.796 0.796 0.789 0.772 0.751 0.671

7 0.912 0.912 0.912 0.906 0.891 0.867 0.776

8 0.953 0.953 0.953 0.948 0.936 0.912 0.824

9 0.971 0.971 0.971 0.968 0.958 0.938 0.854

10 0.979 0.979 0.979 0.977 0.968 0.945 0.840

11 0.801 0.801 0.801 0.723 0.628 0.506 0.488

12 0.466 0.466 0.466 0.450 0.434 0.353 0.411

13 0.515 0.515 0.515 0.507 0.502 0.436 0.480

14 0.516 0.516 0.516 0.512 0.514 0.464 0.509

15 0.459 0.459 0.459 0.456 0.465 0.422 0.488

16 0.461 0.461 0.461 0.457 0.469 0.433 0.510

17 0.332 0.332 0.332 0.329 0.352 0.324 0.443

18 0.535 0.535 0.535 0.533 0.550 0.545 0.632

19 0.782 0.782 0.782 0.777 0.776 0.757 0.761

20 0.777 0.777 0.777 0.772 0.767 0.732 0.722

21 0.766 0.766 0.766 0.759 0.747 0.705 0.699

22 0.406 0.406 0.406 0.404 0.416 0.387 0.500

23 0.332 0.332 0.332 0.332 0.356 0.342 0.497

24 0.478 0.478 0.478 0.479 0.487 0.501 0.624

25 0.593 0.593 0.593 0.612 0.601 0.617 0.707

Fig. 4 Directional emittance of a dielectric
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FIGURE 6. SPECTRAL NORMAL EMISSIVITY OF ALUMINA AT
823 K FROM TEODORESCU AND JONES [12]. REPRINTED BY PER-
MISSION FROM SPRINGER, J. MATER. SCI. © 2008

not specify the temperature, but without comment included an
example worked using Tm. Likewise, Czerny and Walther [2]
provide an example worked using Tm, again without comment.
The present results show clearly that only Tm should be used when
evaluating εi .

APPLICATION TO REPRESENTATIVE MATERIALS
The previous example surfaces were contrived to maximize

the differences between ε and εi . In this section, we examine the
differences for representative non-gray materials.

Alumina
Experimental data for polycrystalline alumina (99.5% Al2O3,

6 mm thick, 1 µm roughness) have been reported by Teodorescu
and Jones [12] for T = 823 K and 2 6 λ 6 25 µm. The
experimental uncertainty is 3.5%. This data is available in tabular
form on 1 µm intervals and as a chart (Fig. 6). These results are
generally consistent with other reports on polycrystalline alumina.

In this case, we first integrate the data to obtain the spectral
normal emissivity, εn. One additional data point is extrapolated,
ε(1 µm, 823 K) ≈ 0.128, because fi at 2 µm still has the finite
value 0.059; the extrapolation extends the range to fi = 0.00012.
At the other end of this spectrum, f = 0.987 at 25 µm, but
no extrapolation was done. Thus, the value for total normal
emissivity εn is thus likely to be low by ∼1%. Integration of
the discrete data by a simple trapezoidal rule yields the following
values, both at 823 K:

εn = 0.506, εin = 0.404, and εin − εn = 0.102 (36)
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FIGURE 7. COMPARISON OF MODELS FOR ALUMINA SURFACE
AT T1 = 823 K

Our interest, ultimately, lies with estimating heat exchange,
so we require the spectral hemispherical emissivity. Teodorescu
and Jones [12] also measured the spectral directional emissivity.
We have integrated those data, as described in Appendix E, to
obtain the spectral hemispherical values from 1 to 25 µm.

We consider exchange with an effectively black environment
at temperatures down to 625 K. At 625 K, f = 0.972 at 25 µm,
so that the absorptivity calculation may be low by 2% or so. The
results are shown in Fig. 7. Once again, Eqn. (35) using εi(Tm)

is in excellent agreement with the exact result, Eqn. (4).

Drude/Hagens-Ruben Metal
The Drude/Hagen-Rubens model for emissivity applies ap-

proximately to some metals in the infrared regime [5, 10, 13].
Baehr and Stephan [13] provide the following equation for the
spectral, hemispherical emissivity under this model:

ε(λ,T) = 48.70
√

re
λ

{
1 +

[
31.62 + 6.849 ln

( re
λ

) ] √re
λ

− 166.78
re
λ
+ · · ·

}
(37)

for re/λ < 5 × 10−4 Ω · cm/µm, where re(T) the electrical resis-
tivity in Ω · cm.

We consider a surface at T1 = 373 K with re = 13.1 × 10−6

Ω · cm, a value representative of platinum. At this temperature,
0.01 6 f 6 0.99 for 3.88 6 λ 6 61.3 µm and fi = 0.01 at
λ = 3.36 µm. Over this range of wavelengths, ε(λ) varies from
0.086 down to 0.022 according to Eqn. (37). We may consider
heat exchange with a surface at T2 down to 275 K; at 275 K,
f > 0.99 for λ > 83.1 µm. The integrations are therefore done
from 3 to 100 µm. Results are shown in Fig. 8.
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Platinum, 𝑇1 = 373 K
Drude/Hagen-Rubens model for spectral hemispherical emissivity (Baehr & Stephan, 1998)

𝜀(𝜆, 𝑇) = 48.70√
𝑟𝑒
𝜆 {1 + [31.62 + 6.849 ln(

𝑟𝑒
𝜆 )]√

𝑟𝑒
𝜆 − 166.78

𝑟𝑒
𝜆 +⋯}
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FIGURE 8. COMPARISON OF MODELS FOR PLATINUM SURFACE
AT T1 = 373 K

Once again, Eqn. (35) using εi(Tm) closely tracks the ex-
act solution over a wide range (down to at least 300 K or
∆T/T1 = 20%). In this instance, non-gray effects are present
but less pronounced; the gray approximation, while not the best
alternative for even small ∆T , shows less divergence than in pre-
vious examples. In addition, at 373 K

ε = 0.0497, εi = 0.0553, and εi − ε = 0.0056 (38)

The internal and external emissivities are closer, as would be
expected when non-gray effects are smaller.

Spectrally Selective Materials
We may also consider an idealized spectrally selective sur-

face that makes a step transition at λc from a short-wavelength
absorptivity, αsw, to a long-wavelength absorptivity, αlw:

α(λ) =

{
αsw for λ 6 λc
αlw for λ > λc

(39)

From Eqns. (10) and (17),

ε(T) = αsw f (λcT) + αlw [1 − f (λcT)] (40)

= αsw +
90
π4 ∆α ζ(Xc,4) (41)

TABLE 1. SELECTIVE SOLAR REFLECTOR: SOFT ANODIZED
ALUMINUM AT T1 = 360 K WITH T2 = 290 K. HEAT FLUX IN W m−2.

Xz Xc Xc,m Xc,2

3.92069 5.70943 6.32429 7.08757

ε(T1) εi(T1) εi(Tm) α(T1,T2)

0.7258 0.6237 0.6807 0.7964

qgray qint, T1 qint, Tm qexact

400.2 462.1 371.0 371.8

where Xc = c2/λcT and ∆α = αlw − αsw. Similarly, from Eqns.
(15) and (18)

εi(T) = αsw fi(λcT) + αlw [1 − fi(λcT)] (42)

= αsw + ∆α

[
90
π4 ζ(Xc,4) − F(Xc)

]
(43)

Further,

ε(T) − εi(T) = ∆α F(Xc) (44)

and also

εi(Tm) = αsw + ∆α

[
90
π4 ζ(Xc,m,4) − F(Xc,m)

]
(45)

where Xc,m = c2/λcTm. Finally, from Eqn. (3)

α(T1,T2) = αsw +
90
π4 ∆α ζ(Xc,2,4) (46)

with Xc,2 = c2/λcT2. The previous results show that the impact
of selectivity will be greatest when Xc and Xz are close.

As an example, we may consider the following crude ap-
proximation to the soft-anodized aluminum described in [5]:
αsw = 0.1, αlw = 0.85, and λc = 7 µm. If this selective so-
lar reflector is at T1 = 360 K and exchanges radiation with sky at
T2 = 290 K, we obtain the results in Table 1. At these tempera-
tures, most of the radiant energy is on wavelengths above 7 µm,
and non-grayness is not pronounced. Nonetheless, as in previ-
ous examples, the agreement between Eqn. (4), 371.8 W/m2, and
Eqn. (35), 371.0 W/m2, is excellent, whereas Eqn. (14), 462.1
W/m2, performs quite poorly.
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Model of spectrally selective surface
Similar to data for soft-anodized aluminum in Edwards’ Radiation Heat Transfer Notes

𝛼(𝜆) = {
𝛼sw for 𝜆 ⩽ 𝜆𝑐
𝛼lw for 𝜆 > 𝜆𝑐

Can write

𝜀(𝑇1) = 𝛼sw𝑓(𝜆𝑐𝑇1) + 𝛼lw [1 − 𝑓(𝜆𝑐𝑇1)] = 𝛼sw +
90
𝜋4 Δ𝛼 𝜁(𝑋𝑐,1, 4)

where 𝑋𝑐,1 = 𝑐2/𝜆𝑐𝑇1 and Δ𝛼 = 𝛼lw − 𝛼sw. Further,

𝜀𝑖(𝑇𝑚) = 𝛼sw + Δ𝛼 [ 90𝜋4 𝜁(𝑋𝑐,𝑚, 4) − 𝐹(𝑋𝑐,𝑚)]

where 𝑋𝑐,𝑚 = 𝑐2/𝜆𝑐𝑇𝑚. Finally,

𝛼(𝑇1, 𝑇2) = 𝛼sw +
90
𝜋4 Δ𝛼 𝜁(𝑋𝑐,2, 4)

with 𝑋𝑐,2 = 𝑐2/𝜆𝑐𝑇2. Impact of selectivity greatest when 𝑋𝑐 and 𝑋𝑧 are close.
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Soft anodized aluminum at T1 = 360 K with T2 = 290 K
Selective solar reflector: 𝛼sw = 0.1, 𝛼lw = 0.85, and 𝜆𝑐 = 7 µm. Heat flux in W/m

2.

𝜀(𝑇1) 𝜀𝑖(𝑇1) 𝜀𝑖(𝑇𝑚) 𝛼(𝑇1, 𝑇2)
0.7258 0.6237 0.6807 0.7964

𝑞gray 𝑞int, 𝑇1 𝑞int, 𝑇𝑚 𝑞exact
400.2 462.1 371.0 371.8

7
0.1

0.85

𝜆𝑧 = 10.2
𝜆 [µm]

𝛼
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Radiation thermal resistance
𝜀𝑖(𝑇𝑚) should be used for this linearization

Tresistor

Qconv Qrad

Qconv

Qrad

Tresistor Tair

Rtconv
= 1

– 
hA

Rtrad
= 1

h
rad

A

𝑅𝑡rad =
1

ℎrad𝐴

= 1
4𝜀𝜎𝑇3

𝑚𝐴

= 1
4 𝜀𝑖(𝑇𝑚) 𝜎𝑇3

𝑚𝐴
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Summary
𝜀𝑖(𝑇𝑚) is useful for radiation thermal resistance

Edwards and others have suggested 𝜀𝑖(𝑇1) for non-gray exchange in
enclosures with modest Δ𝑇, to provide a correct linearization of 𝑞net.

1 Theory and examples for several non-gray materials show that the
gray-body approximation gives the wrong slope for heat flux as 𝑇2 → 𝑇1.

2 |𝜀(𝑇1) − 𝜀
𝑖(𝑇1)| ⩽ 0.18400

3 𝜀𝑖 should be evaluated at the mean temperature, 𝑇𝑚, not 𝑇1 as has often
been suggested. 𝑇𝑚 gives a truncation error in 𝑞net of 𝑂(Δ𝑇

3).
4 𝜀𝑖(𝑇𝑚) should be used for radiation thermal resistances of non-gray
surfaces. Agreement excellent 𝑇2/𝑇1 = 1 ± 30% or more.

5 Calculations involving both the internal and external fractional functions
can be conveniently implemented using the incomplete zeta function.
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Thank you!
To read more, see this paper:

J. H. Lienhard V, “Linearization of Non-gray Radiation Exchange:
The Internal Fractional Function Reconsidered,” J. Heat Transfer,
141(5):052701, May 2019.

OPEN ACCESS: https://doi.org/10.1115/1.4042158
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Second-order, single-step, Runge-Kutta approximation

𝑞net = 𝑌(𝑇2) = 𝜎𝜀(𝑇1)𝑇
4
1 − 𝜎𝛼(𝑇1, 𝑇2)𝑇

4
2

A second-order Runge-Kutta method works from 𝑇𝑚 with expansions toward
both 𝑇1 and 𝑇2, subtracting the former from the latter:

𝑌(𝑇2) = 𝑌(𝑇𝑚) + 𝑌
′(𝑇𝑚)

𝛿𝑇
2
+ 𝑌 ′′(𝑇𝑚)

𝛿𝑇2
8

+ 𝑂(𝛿𝑇3)

𝑌(𝑇1) = 𝑌(𝑇𝑚) − 𝑌
′(𝑇𝑚)

𝛿𝑇
2
+ 𝑌 ′′(𝑇𝑚)

𝛿𝑇2
8

− 𝑂(𝛿𝑇3)

Subtract

𝑌(𝑇2) = 𝑌(𝑇1) + 𝑌
′(𝑇𝑚) ⋅ 𝛿𝑇 + 𝑂(𝛿𝑇

3)

𝑌(𝑇2) ≈ 𝑌
′(𝑇𝑚) ⋅ 𝛿𝑇

𝑌 ′(𝑇𝑚) = −
𝑑
𝑑𝑇

(𝜎𝑇4𝛼(𝑇1, 𝑇))|
𝑇𝑚

= ⋯ = −4𝜎𝑇3𝑚 ⋅ 𝜀
𝑖(𝑇𝑚)
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Incomplete zeta function and 𝑓(𝜆𝑇)

𝑓(𝜆𝑇) = 1
𝜎𝑇4 ∫

𝜆

0

2𝜋ℎ𝑐2𝑜
𝜆5 [exp(ℎ𝑐𝑜/𝑘𝐵𝑇𝜆) − 1]

𝑑𝜆 = 1
𝜎𝑇4

2𝜋𝑘4𝐵𝑇
4

ℎ3𝑐2𝑜
∫

∞

𝑐2/𝜆𝑇

𝑡3
𝑒𝑡 − 1

𝑑𝑡

When 𝜆𝑇 → ∞, 𝑓 = 1 and so

𝜎𝑇4 =
2𝜋𝑘4𝐵𝑇

4

ℎ3𝑐2𝑜
∫

∞

0

𝑡3
𝑒𝑡 − 1

𝑑𝑡
⏟

≡𝜁(4)Γ(4)

where Γ(4) = 3! and 𝜁 (4) is the Riemann zeta function (Euler: 𝜁 (4) = 𝜋4/90).

𝑓(𝜆𝑇) = 15
𝜋4 ∫

∞

0

𝑡3
𝑒𝑡 − 1

𝑑𝑡 − 15
𝜋4 ∫

𝑐2/𝜆𝑇

0

𝑡3
𝑒𝑡 − 1

𝑑𝑡

= 1 − 15
𝜋4
Γ(4) 𝜁 (𝑋, 4) = 1 − 90

𝜋4
𝜁 (𝑋, 4)

where 𝑋 = 𝑐2/𝜆𝑇, and 𝜁 (𝑋, 𝑠) is the incomplete zeta function.
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4

ℎ3𝑐2𝑜
∫

∞

𝑐2/𝜆𝑇

𝑡3
𝑒𝑡 − 1

𝑑𝑡

When 𝜆𝑇 → ∞, 𝑓 = 1 and so

𝜎𝑇4 =
2𝜋𝑘4𝐵𝑇

4

ℎ3𝑐2𝑜
∫

∞

0

𝑡3
𝑒𝑡 − 1

𝑑𝑡
⏟

≡𝜁(4)Γ(4)

where Γ(4) = 3! and 𝜁 (4) is the Riemann zeta function (Euler: 𝜁 (4) = 𝜋4/90).

𝑓(𝜆𝑇) = 15
𝜋4 ∫

∞

0

𝑡3
𝑒𝑡 − 1

𝑑𝑡 − 15
𝜋4 ∫

𝑐2/𝜆𝑇

0

𝑡3
𝑒𝑡 − 1

𝑑𝑡

= 1 − 15
𝜋4
Γ(4) 𝜁 (𝑋, 4) = 1 − 90

𝜋4
𝜁 (𝑋, 4)

where 𝑋 = 𝑐2/𝜆𝑇, and 𝜁 (𝑋, 𝑠) is the incomplete zeta function.
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Integration of directional emissivity for alumina

𝜀(𝜆, 𝑇) = ∫
𝜋/2

0
𝜀′(𝜃, 𝜆, 𝑇) sin(2𝜃) 𝑑𝜃

Data in 12° increments over 0°⩽ 𝜃 ⩽ 72°. Essentially constant from 0 to 36°; this
range was integrated analytically. From 36° to 84° a five-point trapezoidal
rule was used, and the integral from 84° to 90° was approximated as a
trapezoid. The value at 90° was set to zero, in line with theory. Numerical
truncation error is 1.0% for a gray surface.

The data showed angular behavior
consistent with a dielectric. On this basis, interpolated using a value
representative of large angle for a dielectric: 𝜀(84°, 𝜆) ≈ 0.75 𝜀(72°, 𝜆). Without
more data, cannot exclude peak emissivity above 80° predicted by Drude’s
model for metals; but sensitivity analysis letting 𝜀(84°, 𝜆) ≈ 2.5 𝜀(72°, 𝜆)
increases the hemispherical emissivity by only about 5% of the previous
estimate.
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Nondimensional results for model surfaces
𝜀𝑖(𝑇𝑚) excellent for 𝑇2/𝑇1 = 1 ± 30% or more
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FIGURE 10. MODELS FOR qnet (BLACK BELOW λz)
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FIGURE 11. MODELS FOR qnet (BLACK ABOVE λz)

where Xc,m = c2/λzTm = Xz(T1/Tm) = 3.92069(T1/Tm) and
Xc,2 = c2/λzT2 = Xz(T1/T2) = 3.92069(T1/T2).

The curves for this case are plotted in Fig. 10. Accuracy of
the linearization based εi(Tm) is excellent over the range T2/T1 =
1 ± 0.30 in even this extreme case of non-gray behavior.

Surface black above λz: From eqns. (28), (45), and (46) with
αsw = 0 and ∆α = 1, we have

ε(Tz) = 0.5823 and εi(Tz) = 0.3983 (78)

εi(Tm) =

[
90
π4 ζ(Xc,m,4) − F(Xc,m)

]
(79)

α(T1,T2) =
90
π4 ζ(Xc,2,4) (80)

The curves for this case are plotted in Fig. 11.
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Model surfaces: 𝛼(𝑇1, 𝑇2) has strong dependence on 𝑇2
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FIGURE 2. TOTAL ABSORPTIVITY FOR BOTH OF THE EXAMPLE
SURFACES, α(300 K, T2)

and negative for X > Xz , and 0 < α(λ,T) 6 1. Thus we can form
two bounds on the difference:

ε − εi 6

∫ Xz

0

dF
dX

dX = F(Xz) if ε − εi > 0, and (22)

εi − ε 6

∫ Xz

∞

dF
dX

dX = F(Xz) if εi − ε > 0 (23)

A simple calculation shows that

F(Xz) =
15
π4 X3

z e−Xz = 0.18400 (24)

In other words,

��ε − εi �� 6 0.18400 (25)

The value of Xz corresponds to

(λT)z =
14387.77
3.92069

= 3699.70 µm·K (26)

At 300 K, the wavelength λz = 12.2323 µm.
The following two extreme examples are designed to illus-

trate these bounds. First, suppose that we have a 300 K surface
that is black for λ 6 12.2323 µm, but perfectly reflective on other
wavelengths. Numerical integration of Eqns. (15) and (17) yields:

ε = 0.4177, εi = 0.6017, and εi − ε = 0.1840 (27)
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FIGURE 3. LINEARIZATION ERROR FOR A BLACK SURFACE
ABOUT T1 OR ABOUT Tm

If we instead have a 300 K surface that is black for 12.2323 µm 6
λ, but perfectly reflective on other wavelengths:

ε = 0.5823, εi = 0.3983, and ε − εi = 0.1840 (28)

In the first case, εi is 44% greater than ε; in the second case, εi
is 32% less than ε.

For a gray surface, Eqn. (20) gives ε − εi = 0, consistent
with Eqns. (4) and (7). The variation of the total absorptivity for
a 300 K surface irradiated by an effectively black source at T2 is
shown for both example surfaces in Fig. 2. The total absorptivity
varies significantly. The net heat exchange is discussed in detail
below.

The emissivities obtained from these examples are more gen-
eral than they may appear: the same values will be obtained for
any surface for which α(λ) switches between zero and one at Xz .
For example, from the preceding development, for the surface
black on short wavelengths

ε =

∫ λz

0
α(λ) df (λTz) =

∫ Xz

∞

df
dX

dX = f (Xz) − 0 (29)

= 1 −
90
π4 ζ(Xz,4) = 1 −

90
π4 ζ(3.92069,4) (30)

= 0.41771 (31)

Equation (18) gives εi , and the results for the long wavelength
example may be obtained by subtracting these values from unity.

LINEARIZATION ERRORS
The linearization itself produces error in calculation of the

heat flux, apart from non-gray error. To quantify this error, we

4 Copyright © 2018 by ASME
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The constant 𝑋𝑧, the finite solution of 𝑑𝐹/𝑑𝑋 = 0

4 (1 − 𝑒−𝑋𝑧) = 𝑋𝑧
In terms of the Lambert 𝑊 function

𝑋𝑧 = 4 − 𝑊 (4𝑒
−4) = 3.92069⋯

𝑋𝑧 is irrational. Diophantine approximation by continued fractions:

𝑋𝑧 = 3.92069⋯ = 3 +
1

1 +
1

11 +
1
⋅⋅⋅

Successive convergents give rational approximations:

𝑋𝑧 ≈ {4,
47
12
,… , 149

38
, 247
63

,… , 1137
290

,…} 2nd one is within 0.1%
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