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Abstract

This paper presents Gaussian process meta-
learning (GPML) for few-shot regression, which
explicitly exploits the distance between regression
problems/tasks using a novel task kernel. It con-
trasts sharply with the popular metric-based meta-
learning approach which is based on the distance
between data inputs or their embeddings in the few-
shot learning literature. Apart from the superior
predictive performance by capturing the diversity
of different tasks, GPML offers a set of representa-
tive tasks that are useful for understanding the task
distribution. We empirically demonstrate the per-
formance and interpretability of GPML in several
few-shot regression problems involving a multi-
modal task distribution and real-world datasets.

1 INTRODUCTION

Though a state-of-the-art machine learning model can now
be trained to reach an unprecedented level of predictive ac-
curacy in a given learning task, this is often data-inefficient
and time-consuming. It is therefore desirable to be able to
exploit the learning experience from similar tasks for build-
ing a model that can rapidly adapt to a new task using only
a limited quantity of its training data, which is the goal
of “learning to learn”, also known as meta-learning [Van{
schoren, 2018]].

The seminal work of [Finn et al.,[2017]] proposes a gradient-
based model agnostic meta-learning (MAML) algorithm: In
essence, MAML searches for model parameters to serve as a
common initializer for any new task such that the model us-
ing this initializer can be quickly adapted to the new task by
requiring only a few gradient descent (GD) updates based
on its training data. However, such an adaptation step (i.e.,
only a few GD updates from a common initializer) may no
longer be adequate if there is considerable diversity among

the new tasks. Therefore, apart from improving the time
and/or quality of the adaptation step in MAML [Grant et al.,
2018, Nichol et al. 2018, Rajeswaran et al., 2019, [Yoon
et al., 2018]], it appears beneficial to consider multiple ini-
tializers and their diversity to match that among the tasks.
Furthermore, the incapability of a common initializer to
explain the diversity among tasks raises the need of gener-
ating a set of multiple representative tasks that are able to
characterize this diversity.

Nonetheless, these desirable goals require us to overcome
the nontrivial challenge of defining the distance between
tasks in order to quantify the above diversity. Although the
notion of a distance metric has been widely explored in
few-shot classification for images [Allen et al., 2019} [Koch
et al., [2015| [Snell et al., 2017, [Vinyals et al., 2016], one
cannot directly implement their ideas to explicitly model the
distance between tasks. This is because they only consider
the distance between the embeddings (latent representations)
of images which are the training/test inputs to a task. Yet,
in meta-learning, the inputs to a meta-learning algorithm
are tasks represented by datasets. Hence, instead of the
distance between the inputs of a task, a meta-learning algo-
rithm should be based on the distance between tasks/datasets
which is challenging to define explicitly. While introduc-
ing full context embedding{] can be viewed as an attempt
to implicitly measure the distance between tasks, this ap-
proach does not outperform the prototypical networks based
on the distance between the embeddings of images [Snell
et al.|[2017]. It is possibly due to the additional complexity
of encoding the training set. Furthermore, it is difficult to
interpret the distance between classification tasks as their
training sets are transformed through the embedding func-
tion [Vinyals et al.l 2016]. As a result, designing a distance
metric between tasks remains an open question.

Our main contribution is to cast the few-shot regression prob-

"Full context embeddings include the whole training set (i.e.,
the support set) as inputs to the embedding function in the matching
network approach [Vinyals et al.| [2016].
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lem as a Gaussian process (GP), which results in Gaussian
process meta-learning (GPML) (Section EI) GPML belongs
to both the gradient-based meta-learning approach, which
searches for an initializer for a new task, and the metric-
based meta-learning approach that is based on a distance
metric. Different from existing approaches, the dependency
between initializers and tasks is explicitly modelled via GP
and the distance metric is between tasks.

It is not obvious that GP with a distance-based kernel is able
to model a function whose inputs are tasks. Unlike the input
space in the traditional GP regression that is endowed with
the Euclidean distance, different tasks are defined by differ-
ent datasets that are often generated from disjoint subsets
of the input domain. This renders direct application of the
Euclidean distance to datasets meaningless. While one can
naively learn the underlying functions of tasks to measure
a sensible distance between them, this approach is hardly
feasible due to the limited amount of training data available
to each task and the computational cost. Thus, efficiently
measuring the distance between tasks without knowing their
underlying functions is challenging.

By exploiting the structure of a sparse GP model
[Quifionero-Candela and Rasmussen, [2005]], we manage
to overcome this challenge. The main intuition is that a task
can be defined by its distance to a number of “representa-
tive” tasks, which we call inducing tasks (i.e., inspired by
the sparse GP literature) (Section [3.3). Though constructing
a useful distance between arbitrary tasks is indeed daunting,
restricting to the distance between a task and an inducing
task makes the problem more palatable. This is because we
have total control over the design of the inducing task, unlike
a training task defined strictly by its dataset. Furthermore,
the training of GPML naturally encourages the diversity and
representativeness of these inducing tasks. It implies that
given more computational resources, increasing the number
of inducing tasks can improve the performance of GPML, as
compared to MAML. The benefits are twofold: (a) GPML
is likely to predict well for tasks in different modes of the
distribution (especially when the number of inducing tasks
is large), and (b) these inducing tasks are useful for the
interpretation of the task distribution. We empirically evalu-
ate GPML in synthetic problems: learning a random cosine
function, learning a mixture of cosine and linear functions
(i.e., a multimodal task distribution), and introduce new real-
world applications of few-shot regression in collaborative
filtering and recovering missing data.

2 BACKGROUND AND NOTATIONS

2.1 REGRESSION TASK

A regression task aims to construct a regression model that
learns a function mapping an input to an output based on
a set of training examples, i.e., training set. A training

example is a pair of an input and its desired output. Let
Yt : Dy — D, denote the unknown underlying function of a
task ¢ where D, and D, are the domains of the input and the
output, respectively. The training set of a task ¢ is denoted
as (X, y:(X;)) where X; and y;:(X;) = (y¢(X))xex, are
the training inputs and their desired training outputs, respec-
tively. For simplicity, we assume that D,, is 1-dimensional.
The distribution of the input of a task ¢ is denoted as P;. Let
the regression model parameterized by the fask parameters
0 be denoted as f(x,6).

Given the above model f(x,8) of a task ¢, the goal of a
regression algorithm is to minimize the expectation of a
loss function over the input distribution of the task, i.e.,
Ex~p,l(y:(x), ) where I(y:(x), 8) is a loss function mea-
suring the dissimilarity between the predicted output f(x, 6)
and the desired output y;(x), e.g., the mean squared er-
ror (MSE): [(y4(x),0) = (y:(x) — f(x,0))2. As y,(x) is
not available for all x € D,, the training of the model
minimizes the loss on the training set, i.e., training loss:
Wy (Xy),0) £ | X1 Y e, H(ye(x),0). Tt results in the
optimal parameters 8* = argming [(y;(X;), ). To evalu-
ate the performance of a model with 8%, a fest set is set
aside, denoted as (X}, y;(X;")) where X} are drawn from
P;. Then, the performance measure, called test loss, is de-

fined as U(ye(X7), 0%) 2 [ 47|71 e 1o (x). 6).

2.2 FEW-SHOT REGRESSION AND MAML

The few-shot regression problem, in particular the k-shot
regression problem, aims to construct a meta model that
maps a regression task defined by a training set of size
k (i.e., k input-output pairs) to the underlying regression
function of the task, which is based on similar regression
tasks (training tasks) [Finn et al., 2017]]. Similar tasks are
defined as tasks drawn from the same task distribution,
e.g., a sinusoidal waves with known distributions of am-
plitude, phase, and frequency. A training task t is a tuple
(X, ye (X)), X)), ye (X)) where | X;| = k. These training
tasks constitute the meta training set, denoted as 7. To eval-
uate the performance of a meta model, a meta test set is
set aside, denoted as 7. Each test task in T, is defined in a
similar way as a training task and is drawn from the same
task distribution as that of 7. It is noted that |X/*| is not
necessarily equal to k. However, we assume that | X;*| = k
if t € T to conform with the setting of MAML while we
use a large test set ;" for ¢ € 7, to accurately measure the
performance of the meta model.

In this paper, we follow the approach of MAML [Finn et al.
2017]], which is to find an initializer of a task such that it
can be quickly adapted to the task by performing a small
number m of gradient descent (GD) updates. Let 6; denote
the initializer of a task ¢, and g,gm) (67) denote a function
equivalent to performing m GD updates on the training loss



I(y:(Xy), O) starting from 6 = 07, i.e.,

g (02) 2 gV (g V(7)) Vi>2,
9:"(67) 2 67 — 61, (y:(X,), 67)

where VI (y:(X;),07) is the gradient of I;(y:(X}),0)
wrt. @ at @ = 67 and 6 > 0 is the step size of GD. The
number m of GD updates is selected manually, which al-
lows for a trade-off between the speed of the adaptation to a

new task and the performance of the updated gim) (67).

Let h(t,¢) denote a mapping from a training set
(X%, y:(X4)) to an initializer 7 where ¢ is the parameters of
h, i.e., the meta parameters. Then, given the training set of a
task ¢, the meta model predicts an initializer 6 = h(t, ¢) of
the regression model f. Given the initializer, the adaptation
via m GD updates produces a function f(x, gt(m) (h(t,@)))
for the regression task. The goal of meta-learning is that this

function f(x, ggm) (h(t, @))) is close to the underlying func-

tion of the task ¢, which can be quantified by the test loss of
the task ¢, i.e., {(y: (X)), g§’”’> (h(t, ¢))). Therefore, to train
of the meta model, i.e., the meta training, is to minimize the
average of the test loss over tasks in the meta training set:

UT,$) 2 1TI7 Soer (0e(X0), 0™ (001, 8)) ) -

Let the optimal meta parameters obtained by meta training
be defined as ¢, = argmin,[(7, ¢). To measure the per-
formance of the meta-learning algorithm, the average of the
test loss over tasks in the meta test set is computed, i.e.,
(T, ¢+). Under the above procedure, MAML is an algo-
rithm where h is a constant function, i.e., h(t, ) = 0 for
all t where 6 is the common initializer that does not depend
on the task ¢. In other words, the meta parameters coincide
with the task parameters of f, i.e., ¢ = 0. Although the
adaptation step takes into account the training set of the
task (i.e, g{™ (8)), it is often the case that the number m of
GD updates is small for fast adaptation. So, the influence of
y¢(X;) may be limited, especially when the task distribution
is multimodal, as illustrated in our experiments. Therefore,
in the next section, we introduce a meta model that is capa-
ble of expressing the relationship between the training set
(X, y: (X)) of a task ¢ and its initializer 8y = h(t, @), i.e.,
learning a rask-dependent initializer.

3 LEARNING TO LEARN WITH
GAUSSIAN PROCESS

3.1 GAUSSIAN PROCESSES

In this section, we present the Gaussian process (GP) in
the context of meta-learning. In other words, GP is used
to model an unknown function mapping from the train-

ing set of a task ¢ to its initializer 65, denoted as h(t)E]
For simplicity, we only consider a 1-dimensional 6. In
practice, @ is a vector of n elements (e.g., n parame-
ters of a neural network). Then, h(t) is modelled with n
GPs, each of which is described as below. Every finite
subset of {h(t)}se7uT. follows a multivariate Gaussian
distribution. The GP is fully specified by its prior mean
E[h(t)] and covariance k(t,t') = cov[h(t),h(t')] for all
t,t' € T U T.. In this work, we use a constant mean func-
tion E[h(t)] = fforall ¢t € T U T.. Suppose a column
vector 07+ = (h(t) + €)/.7 where e ~ N(0,02) is ob-
served, the GP posterior p(65|07+) = p(h(t)|07) for any
task ¢ € 7 U T, is a Gaussian distribution with the follow-
ing posterior mean and posterior variance [Rasmussen and
Williams|, [2006]:

o= ke (Ko + 0207107 — i) + i,

_ 1
022 k(t, 1) — Ker (Ko + 020 kgD

where k;7 is a row vector whose elements are k(t,t’) for
t' € T', k7 £ k[, K77 is a matrix whose element at
the ¢-th row and the j-th column is k(¢;,¢;) such that ¢; and
t; are, respectively, the i-th and j-th elements in T, and I
is an identity matrix of the same size as K.

The covariance cov[h(t), h(t')] is defined by a kernel (or
covariance function) k(t,t"), which we call a task kernel.
In other words, the task kernel measures the covariance
between initializers 07 and 07, based on the distance between
these tasks, i.e., between their training sets (X, y¢(X;)) and
(X, y (X)) Hence, the design of the task kernel plays a
crucial role in enhancing the predictive performance of GP
with the correlation between initializers.

3.2 TASK KERNEL

This section presents a novel stationary kernel that is
a function of the distance between (X, y:(X:)) and
(Xy, y# (Xe)). Our fresh perspective is to view y:(X;) as a
vector whose elements are y;(x) indexed by x € X;. How-
ever, the challenge is that the two index sets (X; and X}/) are
often not the same to evaluate the difference between y; (X})
and y; (X;/). A naive solution is to consider the intersection
set X; N Xy, i.e., the largest set containing training inputs
shared by these tasks. Then, inspired by the well-known
squared exponential (SE) kernel, we define a task kernel as

Z —(ye(x) — yw (X))2

k(t, | N X)) £ 0F exp 2|1 X N X | 13

XEX NX,,

@

where o2 is the signal variance and ly is the length-scale.
Both of these parameters are known as the hyperparame-
ters of the GP. A minor difference from the definition of

2As h is modelled with a GP, which is a nonparametric model,
we write h(t) without its parameters ¢.



the SE kernel is the factor 1/]X; N X}/| which reduces the
dependence between the kernel magnitude and | X; N Xy |.

An obvious drawback of the above task kernel is that the
intersection set X; N Xy may be small, or even empty. In
such cases, the evaluation of the task kernel k(t, t'| X N Xy)
ignores most of the information in the training set (if ;N
is small) or may even be impossible (if X; N Xy = ().

Remark 1. We would like to highlight that the require-
ments for the task kernel in few-shot regression problems
in this section are different from those for the task kernel
in the multi-task and multi-output GP (MT/MO GP) liter-
ature [Bonilla et al., 2008, |Alvarez and Lawrence, 2011].
In particular, few-shot regression problems often involve a
large number of training tasks (e.g., an unlimited number
of training tasks in Sec. , which cannot be handled by
MT/MO GP. Moreover, MT/MO GP requires the model of
each task to be a GP while few-shot regression does not.
In this work, we employ neural networks to model tasks,
which makes constructing a task kernel nontrivial.

3.3 INDUCING TASK

To resolve the above issue, we introduce a set 7, of n,
inducing tasks such that X; N X, = A, forall ¢, € T,
and t € 7 U T.. Since X; can be any subset of the input
domain D,, it follows that X;, = D, for all ¢, € X,,.
In other words, it is necessary that the training inputs of
any inducing task constitute the whole input domain D,.
Therefore, unlike tasks in 7 U 7, an inducing task t,, € T,
is defined by its optimal parameter, denoted as 67 . Given
07, the output y;, (x) at any input x € D, can be easily
computed as f(x, 07 ). As aresult, the task kernel between
a task ¢ and an inducing task ¢,, € 7, can be computed as

. 2
k(t,tu|X;) £ o2 exp (Z — (yt(X;Xj l(;(’ 0:.)) >

xXEX}

where y;(X}) is fully utilized, unlike ().

On the other hand, evaluating the task kernel between tasks
t,t’ € T U T, is still difficult due to the possibility of
X; N Xy = (0. This is gracefully resolved by assuming the
conditional independence among 67 fort € 7 U T, given
05, £ (6;7)] 7, such that the inference of GP does not
require the evaluation of k(t,t') forany ¢t,¢' € T U T.. It
implies that all the information in the meta training set can
be summarized by 0‘7’—u , which was introduced in the sparse
GP literature [[Quinonero-Candela and Rasmussen, [2005].

Lastly, we need to evaluate the task kernel between inducing
tasks. As the output of inducing tasks at any input can be
obtained, we can define a set of pivot inputs X, C D, to

evaluate the task kernel between any ¢,,,t,, € T, as

~(feetr) - rx87)
0%, 2

ket | ) £ 02 exp|

XEX)

Intuitively, a good initializer of a task should be close to
its optimal parameter so that the initializer can be quickly
updated to the optimum through a few GD updates. We
translate this intuition into an assumption: 07- follows a
Gaussian distribution NV(05- , 02T) where o7 is learned dur-
ing meta training as a meta parameter. It follows that the
posterior distribution of 8 for any ¢t € 7 U 7T, is a Gaussian
distribution, i.e, p(65 0% ) £ N (fiy 7, , &thT“) where fiz| 7.,
and 67 are defined in a similar manner to (T):

L) + i

kntht .

3

A shrewd reader may notice that the task kernel does not
have a consistent definition in (3): k7, |, is computed
based on X; while K7, 7, |x, is computed based on &),
Although this approach still gives a competitive empirical
performance in our experiments, the GP posterior with a
consistent definition of the task kernel should be defined as:

ﬁt\Tué Y AE? (KTuTu\Xp + 07211) (0*
a7, = k(1) = ke, x, (K77 12, +000) ™

(07, —A) + 7
ktTu‘Xt (KTu,Tu‘Xt + 0-7211)7

A 2 —1
w7, = ket v, (K7, 7012, + 03,1)

o7, = k(t,t]X;) - "k,

“

where all kernels are defined based on X; consistently.

Point estimate of the initializer. Given the posterior in
@) or @, we can define h as the posterior mean, i.e.,
h(t) = fiy7, or h(t) = py 7, . This effectively means that
the GP posterior variance is set to 0 and the meta model is
similar to a sparse GP model, namely the subset of regres-
sors [[Quinonero-Candela and Rasmussen), 2005} [Silverman,
1985) |Smola and Bartlett, [2001]]. The difference is that in-
stead of estimating a distribution of the inducing variables,
we only learn point estimates of a noisy version of the induc-
ing variables. The meta parameters consist of the optimal
parameters of the inducing tasks (67- ), the GP prior mean
(ji), and the GP hyperparameters (02, Iy, and 0'2). Optimiz-
ing 07 plays the role of optimizing both inducing variables
and inducing inputs in the traditional sparse GP regression.

The computational advantage of ji;7;, (B) is that the in-
version of K. 7, x, + o2L which incurs O(n3), can be
reused in the evaluation of fis7, for different tasks. On the
other hand, 1147, (@) requires the inversion of different ma-
trices K7, 7,12, + o1 for different tasks. Therefore, we
call the approach in (B) Gaussian process meta-learning lite
(GPML-lite) (described in Fig.[Th) and the approach in (4)
GPML (described in Fig. [Ib). The GPML model consists



of different GP models for different tasks all of which share
the inducing tasks 7, and the GP hyperparameters, but have

different evaluations of the task kernel.
Xy |

% (el % (%]

Xy |

oy w Xp 02&

0; 0,

(2) GPML-lite

Xt Xt/ Xt”

o o
r. o,

0, 0;,
(b) GPML

Figure 1: Plots of GPML-lite and GPML models: inducing
tasks are X, = {t,, t}, }; shaded square boxes show the set
of inputs that are used to compute the covariance between
initializers in the circles connected to them.

Probabilistic estimate of the initializer. Equations in (#)
specify a Gaussian posterior of h(t) = 7. Thus, it can be

used to define a probabilistic estimate of the initializer 0;.

In such case, during meta training, the expectation of the
test loss over 07 ~ p(67107- ), i.e.,

Eop~piorlos,) (1717 Ser lon(X0), 0™ (67))) -

is minimized with a stochastic optimization method. We call
this method GPML-Bayes to differentiate from GPML and
GPML-lite in the experiments.

Remark 2 (Representativeness of inducing tasks). Similar
to sparse GP regression with the SE kernel, the initializer
of a task is correlated with that of an inducing task if their
distance is small. In contrast, if the distance of a task to all
inducing tasks is large, the initializer of the task is similar
to the GP prior mean zi. This implies that the inducing
tasks should be representative of the task distribution if the
number of inducing tasks is large.

Recall that we have been developing a meta-learning algo-
rithm for a 1-dimensional 6;. When 6, is a vector of many
values (e.g., the parameters of a neural network), the map-
pings from the training set of ¢ to different elements of 8,
are modelled with different GP models sharing the inducing
tasks 7. It is the shared inducing tasks that forge a relation-
ship between elements of ;. As different model parameters
are modelled with different GPs, their computation can be
executed in parallel. Thus, the computational complexity of
GPML mainly depends on the number of inducing tasks,
whose scalability is similar to sparse GP models. Further-
more, the number of inducing tasks mostly depends on the
complexity of the task distribution (e.g., multimodal). To
reduce the number of GPs, we can model a subset of the
task parameters with GPs and the other task parameters with
MAML or combine GPML with the latent embedding opti-
mization (LEO) approach [Rusu et al.,2019]. In this paper,
all task parameters are modelled with GPs. We also use a
constant length-scale Ix = [ in our experiments. A possible
improvement is to implement the automatic relevance de-
termination in the kernel, i.e., defining an input-dependent
length-scale [Rasmussen and Williams), 2006].

4 EXPERIMENTS

In these experiments, the performance is visualized by plot-
ting the boxplot of the MSE of f(x, g,@ (67)) on the test
set over 100 tasks in the task distribution. From the top to
bottom of a boxplot, algorithms are positioned in the de-
scending order of the average of MSE. Our models f are
feed forward neural network with ReLU activation function
in these experiments. Due to the lack of space, description
of the model f and some comparisons in our experiments
are deferred to the appendix.

4.1 SYNTHETIC FUNCTIONS

There are two 5-shot regression problems on learning a ran-
dom cosine function, namely cosine tasks, and a mixture of
cosine and linear functions, namely cosine and linear tasks
(further details are in Appendix [B). The empirical perfor-
mance of our approaches including GPML-lite, GPML, and
GPML-Bayes are compared against MAML with different
number m of GD updates.

Predictive performance. The MSE values of
£(x,6™(62)) trained with MAML, GPML-lite, GPML,
and GPML-Bayes are shown in Fig. 2] Even though the
performance of MAML improves as m increases from
5 to 10, MAML is still outperformed by our approaches
as it only learns 1 initializer for all tasks. Given more
computational resources, the performance of our methods
is improved by increasing n,, (e.g., from 2 to 4 in Fig. Zh
and from 4 to 8 in Fig. Zb) to capture the task diversity.
Although GPML-lite outperforms MAML, its performance
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(b) Cosine and linear tasks.

Figure 2: Plots of the MSE of f(x,ggm)(ﬂf)) for 5-shot
regression.

is not as good as GPML and GPML-Bayes. This is
noticeable when we compare GPML-lite, GPML, and
GPML-Bayes with n,, = 4 in Fig.[2h and n,, = 8 in Fig. [2p.
It is because the task kernels in the posterior of GPML-lite
are not defined consistently in the posterior as explained in
the paragraph after (3).

Representativeness of inducing tasks. Fig. [3|shows 4 in-
ducing tasks obtained from training GPML-Bayes on co-
sine tasks and cosine and linear tasks. These inducing tasks
modelled with neural networks successfully capture co-
sine functions of different phases and amplitudes in the
former (Fig.[3h) and cosine and linear functions in the latter
(Fig.[3b). Thus, we observe that inducing tasks are represen-
tative of the task distribution. Furthermore, we can observe
that a random task in the task distribution is close to an
inducing task because the distribution of MSE between a
random task and its closest inducing task peaks at 0 in Fig.[4]

Visualization of predicted tasks. Figs. 5] and [6] show
f(x,07) and f(x, gﬁm)(ef)) trained with MAML (m =
10) and GPML-Bayes (m = 1 and different values of n,,)

4
)
0 \/\/ N /\/ /\/\
4

5 0 5 5 0 5 5 0 5 5 0 5

(a) Cosine tasks.

PV N

s 0 5 5 0 5 5 0 5 5 0 5

(b) Cosine and linear tasks.

Figure 3: Plots of inducing tasks.

0.100 0.20
0.075 0.15
0.050 0.10
0.025 0.05
0.000 0.00
0 50 100 0 50 100

(a) Cosine tasks. (b) Cosine and linear tasks.

Figure 4: Plots of the distribution of MSE between a random
task and its closest inducing task (plotted as green lines).
The shaded area shows the distribution of MSE between
random tasks in the task distribution.

on 3 regression tasks. When GPML-Bayes does not fit the
tasks well (n,, = 2 in Fig.[5|and n,, = 4 in Fig.[6), the vari-
ance of the predicted functions is large. When GPML-Bayes
fits all 3 tasks well (thanks to the representative inducing
tasks in Fig.[3), the predicted functions have large variance.
Regarding MAML, it only learns 1 initializer for all 3 tasks,
so its performance is not as good as GPML-Bayes even with
m = 10.

We also perform a 10-shot regression with a noisy sine func-
tion adopted from the Bayesian MAML (BMAML) work
[Yoon et al., 2018]] which is discussed in Appendix [C]

4.2 REAL-WORLD DATASETS

Table 1: Cross entropy and MAE of f(x, gim)(af)) in ex-
periments with the sushi dataset.

Cross entropy MAE
MAML m =1 0.440 +0.086  1.021 4+ 0.543
GPMLn, =4m=1 0.418+0.111 0.906 £ 0.531
GPMLn, =8m =1 0.4174+0.112 0.901 £0.534

Sushi dataset. We introduce the use of few-shot learning
in collaborative filtering with the sushi dataset [Kamishimal
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Figure 5: Plots of predicted functions.

2003|] which consists of 5000 user ratings in a 5-point scale.

Each rating is over a subset of 100 types of sushi identified
by 7 features. We view the ratings of each user over different
types of sushi as 1 dataset/task (i.e., different people have
different preferences over sushi). By randomly drawing a
user in 5000 users, we generate a task which outputs a rating

given a type of sushi represented by a vector of 7 features.

The 5-shot learning model is to predict the a user’s rating of
a type of sushi given the features of the sushi and the ratings
of that user on 5 random types of sushi. Table[I] shows that
GPML outperforms MAML in both the cross entropy and
the mean absolue error (MAE) loss. It is also observed that
a random task in the task distribution is close to an inducing
task because the distribution of MSE between a random task
and its closest inducing task peaks around 0 in Fig.[7p. In
other words, inducing tasks are representative of the task
distribution. This can give us more insight, e.g., an inducing
task shows that the highest rated sushi (i.e., 5) is often in
the groups of octopus and crab as shown in Fig. 8]

Light sensor dataset. We apply our methods to recover
missing data in an environmental sensing dataset which
includes sensor readings at a number of locations over a
time period. We consider the dataset of a task as the sensor
readings at these locations at a particular timestamp. Since
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Figure 6: Plots of the predicted functions.

a number of random readings may be missing due to faulty
sensors, we want to recover the missing readings from the
available readings at a timestamp. This is cast as a 10-shot re-
gression problem: given a timestamp, recovering the sensor
readings at all locations from the readings at only 10 random
locations. We use the log of the light readings at 54 locations
in the Intel Berkeley sensor lab dataﬂ The dataset contains
light readings of 23890 timestamps (23890 tasks), which
is divided into 22695 meta training tasks and 1195 meta
test tasks. Tableshows the MSE values of f(x, ngm) (67))
trained with BMAML, MAML (varying m = 1, 5, 10), and
GPML (varying n,, = 8, 20). While increasing m from 5 to
10 does not improve the performance of MAML, the gap
between GPML and MAML increases as n,, increases. The
distribution of MSE between a random task and its closest
inducing task is shown in Fig. [7b which indicates that a
large number of tasks in the task distribution are close to an
inducing task, especially when n,, = 20.

3The dataset is available at http://db.csail.mit.
edu/labdata/labdata.htmll
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Figure 7: Plots of the distribution of MSE between a random
task and its closest inducing task.
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Figure 8: Plot of predicted ratings over different sushi groups
from an inducing task.

S RELATED WORKS

There have been serveral works that tackle the limitation
of a common initializer for all tasks in MAML which is
exacerbated in problems with multimodal task distributions,
i.e., tasks are diverse. It can be addressed in two ways:
(a) improving the prediction of the task parameters given
the common initializer, and (b) making the initializer task-
dependent, i.e., different tasks have different initializers.

Regarding the first direction, an initial work is the
light-weight Laplace approximation for meta-adaptation
(LLAMA) [|Grant et al., 2018]]. By casting MAML as em-
pirical Bayes in a hierarchical probabilistic model, LLAMA
applies local Laplace approximation to replace the point
estimate of the task parameters in MAML with a Gaus-
sian distribution at the cost of approximating a high-
dimensional covariance matrix. Another work is Bayesian
MAML (BMAML) that uses Stein variational GD (SVGD)
to obtain the posterior of the task parameters given the ini-
tializer [[Yoon et al. [2018]]. However, as admitted by its
authors, BMAML cannot capture the correct posterior dis-
tribution of the task parameters due to the limited number
of SVGD steps and initialzer samples (for fast adaptation to
a new task). Instead, BMAML aims to optimize for a set of
initializer samples that are useful for many tasks. Nonethe-
less, these initializer samples are assumed to be independent
from the task in BMAML, which decreases its performance
for problems with a multimodal task distribution. This is
a common disadvantage shared by LLAMA as its Laplace
approximation is applied to the task parameters obtained
with early stopping for fast adaptation. Even if we can afford
an expensive adaptation by performing many GD updates,
the overfitting issue may arise due to the small training
set. Regarding our GPML-Bayes, given a task, the task pa-
rameters are transformed from the initializer following the

Table 2: Mean and standard deviation (SD) of MSE of
f(x, g§m> (67)) in experiments with the light sensor dataset.

Mean  SD
BMAML with 10 particles 4.746  1.945
MAMLE=10m =1 1.008 1.075
MAML k=10m =5 0.575 0.581
MAML k£ =10m =10 0.580 0.532
GPMLk=10n,=8m =1 0.342 0.439
GPMLk=10n, =20m =1 0.261 0.435

GP posterior distribution through GD updates. Hence, the
expressive power of our methods mainly comes from the
second direction as below.

As the first direction is limited due to the need of fast adap-
tation, it is promising to consider the second direction. Prob-
abilistic MAML [Finn et al.,|2018]] injects the dependency
between the initializer and the training set (i.e., task) through
an inference network. In particular, the inference is approxi-
mated by adding a Gaussian noise into the gradient-descent
updated parameters. Nonetheless, as the number of the GD
updates is small, the relationship between the initializer and
the task is limited. Latent embedding optimization (LEO)
[Rusu et al.,2019] explicitly learns a task-dependent initial-
izer by encoding the training set (or its inputs) into a latent
space where the gradient-based meta-learning is performed.
The latent space is transformed into the parameter (or initial-
izer) space via a decoder network, which effectively means
that the initializer of a task depends on its training set. How-
ever, the objective function requires additional weighted
regularization terms to ensure that the network is maximally
expressive and the latent space is disentangled. On the other
hand, GPML learns a task-dependent initializer by defining
the covariance between initializers via the distance between
their tasks. Unlike LEO, the training of GPML naturally
encourages the diversity (disentangled representation) and
interpretability of the inducing tasks without additional reg-
ularization terms.

Metric-based meta-learning. Although there has not been
any work explicitly modelling the distance between tasks,
there are several existing meta-learning methods that use the
notion of the distance between the embeddings of images
in classification tasks. These methods are under the metric-
based meta-learning approach which aims to enforce similar
images (or their embeddings) to belong to the same class.
The most rudimentary approach is the siamese network
[Bromley et al.l [1994]] which is used to rank the similarity
between image pairs as a pre-training step; then, during
testing, the pre-trained siamese network is used to classify
images [Koch et al., 2015]]. The separation between these
two processes implies that the few-shot learning objective is
not explicitly enforced. The prototypical network assumes
that there exists a latent space (embedding space) such that



images of each class form a cluster [Snell et al., 2017].
Hence, the approach assigns a test image to the class whose
embedding cluster centroid is closest. The assumption is
further relaxed such that a class can form multiple clusters
in the embedding space [Allen et al., [2019]]. There is an
attempt to measure the distance between tasks implicitly
by introducing the full context embedding which includes
the whole training set (i.e., the support set) as inputs to
the embedding function in the matching network approach
[Vinyals et al., 2016]]. In contrast to these methods, GPML
explicitly models the distance between tasks to cast the
few-shot regression problem as a GP.

6 CONCLUSION AND FUTURE WORK

This paper presents GPML viewing the few-shot regression
as a GP. Unlike metric-based meta-learning that utilizes the
distance between data inputs, GPML is capable of modelling
the task distance via inducing tasks to construct a novel task
kernel. The meta training naturally encourages both diversity
and representativeness of these inducing tasks, which leads
to both superior predictive performance in handling diverse
tasks and useful interpretation of the task distribution. We
empirically illustrate these advantages of GPML through
both synthetic problems: learning a random cosine function
and a mixture of cosine and linear functions; and new real-
world applications with the sushi and sensor datasets. For
future work, we would like to explore two main directions
to extend GPML: (a) Bayesian modelling of the inducing
tasks and (b) developing new task kernels for classification
and reinforcement learning tasks.
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