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Abstract

The container relocation problem (CRP) is concerned with finding a sequence of moves of containers
that minimizes the number of relocations needed to retrieve all containers, while respecting a given
order of retrieval. However, the assumption of knowing the full retrieval order of containers is
particularly unrealistic in real operations. This paper studies the stochastic CRP (SCRP), which relaxes
this assumption. A new multistage stochastic model, called the batch model, is introduced, motivated,
and compared with an existing model (the online model). The two main contributions are an optimal
algorithm called Pruning-Best-First-Search (PBFS) and a randomized approximate algorithm called
PBFS-Approximate with a bounded average error. Both algorithms, applicable in the batch and online
models, are based on a new family of lower bounds for which we show some theoretical properties.
Moreover, we introduce two new heuristics outperforming the best existing heuristics. Algorithms,
bounds, and heuristics are tested in an extensive computational section. Finally, based on strong
computational evidence, we conjecture the optimality of the “leveling” heuristic in a special “no
information” case, where, at any retrieval stage, any of the remaining containers is equally likely to be
retrieved next.

Introduction

With the growth in international container shipping in maritime ports, there has been an increasing
interest in improving operations in container terminals, both on the sea side and land side. The operations
on the sea side involve the assignment of quay cranes to ships, the loading of export containers on vessels,
and the discharging of import containers from vessels onto internal trucks. Import containers are then
transferred to the land side and are stacked in the storage area. Operations on the land side (also called
yard operations) include the routing of internal trucks within the yard, the stacking of containers for
storage, and the delivery of import containers to external trucks for delivery to another location. This
work focuses on the latter problem.

Due to limited space in the storage area, containers are stacked on top of each other. The resulting
stacks create rows of containers as shown in Figure 1. If a container that needs to be retrieved (target
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Figure 1: Illustration of stacks of containers in a storage yard (figure from Tanaka and Takii (2016)).

container) is not located at on a topmost tier and is covered by other containers, the blocking containers
must be relocated to another stack. As a result, during the retrieval process, the yard cranes perform one
or more relocation moves. Such relocations (also called reshuffles) are costly for the port operators and
result in delays in the retrieval process. Thus, reducing the number of relocations is one of the main goals
of port operators. The container relocation problem (CRP) (also known as the block relocation problem)
addresses this challenge by minimizing the number of relocations. As this problem is the main subject
of this paper, we provide a formal definition and an extensive literature review.

The container relocation problem. First, it is commonly known that the time to relocate a container
within a row is insignificant compared to the time to relocate a container between two distinct rows.
Therefore, in most cases, port operators tend to avoid relocations between rows. The CRP assumes
that only relocations within rows are allowed, and problems for different rows should be considered
independently. Furthermore, a row usually stores containers of the same type for the sake of stability
and simplicity.

Using these facts, the CRP models one row using a two-dimensional array of size (T,S), where S is
the number of stacks and T is the maximum height, i.e., the maximum number of containers in a stack as
limited by the height of the crane. Each element of this array represents a potential slot for a container,
and contains a number only if a container is currently stored in this slot. Stacks are numbered from left
(1) to right (S) and tiers from bottom (1) to top (T). We refer to this array as a configuration. The common
assumptions of the CRP are the following:

A1: The initial configuration has T tiers, S stacks, and C containers. In order for the problem to
always be feasible, we suppose that the triplet (T,S,C) satisfies 0 6 C 6 ST − (T − 1) (see Caserta
et al. (2012)).

A2: A container can be retrieved/relocated only if it is in the topmost tier of its stack, i.e., no other
container is blocking it.
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A3: A container can be relocated only if it is blocking the target container. This assumption was
suggested by Caserta et al. (2012), and the problem under this assumption is commonly referred to
as the restricted CRP. Most studies focus on this restricted version, because it is the current practice
in many yards, and it helps decrease the dimensionality of the problem, while not losing much
optimality (see Petering and Hussein (2013)). As is common practice, we will not mention the term
“restricted” in the rest of the paper even though we always assume A3.

A4: The cost of relocating a container from a stack does not depend on the stack to which the
container is relocated. This allows us to consider the stacks of a configuration as interchangeable.
In addition, it motivates the objective of minimizing the number of relocations, since the cost of
each relocation can be normalized to 1. Note that this assumption is not required for all the results
stated below, hence our approaches could be easily extended to the case when Assumption A4 does
not hold.

A5: The retrieval order of containers is known, so that each container can be labeled from 1 to C,
representing the departure order, i.e., Container 1 is the first one to be retrieved, and C the last one.

The CRP involves finding a sequence of moves to retrieve Containers 1, 2, . . . ,C (respecting the order)
with a minimum number of relocations. Figure 2 provides a simple example of the CRP. The CRP with the
above classical assumptions is referred to as static and full information: “static” because no new containers
arrive during the retrieval process (see Assumption A1) and “full information” because we know the
full retrieval order at the beginning of the retrieval process (see Assumption A5). This problem was first
formulated by Kim and Hong (2006) in a dynamic programming model.

2
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4
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Ret 1,2,3,4
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Figure 2: Configuration for the CRP with 3 tiers, 3 stacks, and 6 containers. The optimal solution performs
3 relocations.

Researchers have tackled the static CRP with full information from two points of view. The first
approach aims to find the optimal solution. Primarily, researchers have used integer programming
(IP) to address this problem. For example, Caserta et al. (2012) propose an intuitive formulation of the
problem. Petering and Hussein (2013) develop a more tractable formulation that is, however, unable
to solve real-sized instances efficiently. Zehendner et al. (2015) fix the formulation from Caserta et al.
(2012) and improve it by removing some variables, tightening some constraints, introducing a new
upper bound, and applying a preprocessing step to fix several variables. In all these IP formulations,
due to the combinatorial nature of the problem, the number of variables and constraints dramatically
increases as the size of the problem grows, and the IP cannot be solved for large instances. To bypass
this problem, a recent trend has been to look at more efficient ways to explore the branch-and-bound
tree, or even decrease its size using the structural properties of the problem. Ünlüyurt and Aydın (2012)
and Expósito-Izquierdo et al. (2015) suggest two branch-and-bound approaches with several heuristics
based on this idea. Another solution using the A∗ algorithm is explored by Zhu et al. (2012), and built
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upon by Tanaka and Takii (2016) and Borjian et al. (2015a). Another solution using branch-and-price is
presented by Zehendner and Feillet (2014b).

As the problem isNP-hard (Caserta et al. (2012)), an alternative approach is to use quick and efficient
heuristics providing suboptimal solutions. For the sake of conciseness, we mention only some of them
that are relevant to this paper. Caserta et al. (2012) introduce a “MinMax” policy that is defined and
generalized later in this paper. Wu and Ting (2010) propose a beam search heuristic, and Wu and Ting
(2012) develop the group assignment heuristic (GAH) also generalized in Section 2. Finally, in Kim and
Hong (2006) and Zhu et al. (2012), lower bounds for the CRP are introduced: Kim and Hong (2006) count
the number of blocking containers as a straightforward lower bound, and Zhu et al. (2012) refine this
idea by taking into account additional unavoidable relocations using a family of lower bounds.

Finally, there are many problems related to the CRP. The stacking problem is concerned with how to
store incoming containers in a configuration given an arrival order of containers. The pre-marshalling
problem deals with rearranging the containers prior to the retrieval process in order to minimize future
relocations, but no container is removed in this process. For both problems, general review and classifi-
cation surveys of the existing literature on the CRP can be found in Stahlbock and Voß (2008), Steenken
et al. (2004), and Lehnfeld and Knust (2014). In addition, Assumption A1 can be relaxed, which leads to
the dynamic CRP where stacking and retrieving are done simultaneously as new containers arrive. For
this problem, see Borjian et al. (2015b) and Hakan Akyüz and Lee (2014).

Finally, the main focus of this paper is an extension of the CRP where the full information assumption
(A5) is relaxed. Indeed, Assumption A5 is unrealistic given that arrival times of external trucks at
the terminal are generally unpredictable due to uncertain conditions. Nevertheless, new technology
advancements such as truck appointment systems (TASs) and GPS tracking can help predict relative
truck arrival times. Thus, although the exact retrieval order might not be known, some information on
trucks’ arrival times might be available. This leads us to introduce a stochastic version of the CRP.

The stochastic CRP (SCRP). A common assumption is that, for each container, there is a time window
during which a truck driver will arrive to retrieve it. We refer to a batch of containers as the set of containers
stacked in the same row and with the same arrival time window. This information can be either inferred
using machine learning algorithms, not yet much discussed in the literature, or obtained by using the
appointment time windows in a TAS, which has gained attention over the last decade. The first TAS was
implemented by Hong Kong International Terminals (HIT) in 1997. It uses 30-minute time slots, where
trucks can register (Murty et al. (2005)). Another TAS was introduced in New Zealand in 2007. Two
other studies, Giuliano and O’Brien (2007) and Morais and Lord (2006), evaluate the benefits of TAS, in
reducing truck idling time by increasing on-time ratio. More recent information can be found in Phillips
(2015) and Bonney (2015).

On the modeling side, Zehendner and Feillet (2014a) formulate an IP to get the optimal number of
slots a TAS should offer for each batch. Very few studies have tackled the SCRP, also referred to as CRP
with Time Windows. This problem was first modeled by Zhao and Goodchild (2010). In their original
model, each container is assigned to a batch. Batches of containers are ordered such that all containers in
a batch must be retrieved before any containers from a later batch are retrieved. Furthermore, the relative
retrieval order of containers within a given batch is assumed to be a random permutation. From now on,
we will refer to the model of Zhao and Goodchild (2010) as the online model. In Section 1, we discuss in
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more detail how this model assumes information is revealed. For the online model, Zhao and Goodchild
(2010) develop a myopic heuristic (called RDH) and study, in different settings with two or more groups,
the value of information using RDH. They conclude that a small improvement in the information system
reduces the number of relocations significantly. Van Asperen et al. (2013) use a simulation tool to evaluate
the effect of a TAS on many statistics including the ratio of relocations to retrievals. Their decision rules
are based on several heuristics including the “leveling,” Random, or “traveling distance” heuristics.
More recently, Ku and Arthanari (2016) also use the online model. They formulate the SCRP under the
online model as a finite horizon dynamic programming problem and suggest a decision tree scheme to
solve it optimally. They also introduce a new heuristic called expected reshuffling index (ERI), which
outperforms RDH, and they perform computational experiments based on available test instances. We
will refer frequently to this work and use some of their techniques as well as their available test instances
to evaluate our algorithms.

In another recent study related to the SCRP, Zehendner et al. (2017) study the online container relo-
cation problem, which corresponds to an adversarial model. They prove that the number of relocations
performed by the leveling policy can be upper-bounded by a linear function of the number of block-
ing containers and provide a tight competitive ratio for this policy. Moreover, Galle et al. (2016) show
that the ratio of the expected number of relocations to the expected blocking lower bound converges
to one. Finally, Tierney and Voß (2016) study the robust pre-marshalling problem which also considers
uncertainty in the retrieval times of containers.

For a general review of techniques on finite horizon dynamic programming, we refer the reader to
Bertsekas (2005) and Sennott (2009).

Contributions of the paper. The contributions of this paper are:

1. A new stochastic model, referred to as the batch model. This new model uses the same probability
distribution as the online model. However, the two models differ in the way each reveals new
information on the retrieval order. The batch model is motivated, described, and compared with
the online model.

2. Lower and upper bounds for the SCRP. We derive a new family of lower bounds for which we
show theoretical properties. Furthermore, we develop two new fast and efficient heuristics.

3. A novel optimal algorithm scheme based on decision trees and pruning strategies referred to as
Pruning-Best-First-Search (PBFS), which takes advantage of the properties of the aforementioned
lower bounds. The algorithm is explained with pseudocode in Algorithm 2.

4. A second novel algorithm tuned for the case of larger batches referred to as PBFS-Approximate
(PBFSA). We build upon PBFS and derive a sampling strategy resulting in an approximate algo-
rithm with an expected error that we bound theoretically. The pseudocode of the second algorithm
is presented in Algorithm 3.

5. Extensive computational experiments using an existing set of instances. The first experiment
exhibits the efficiency of PBFS, our lower bounds and two new heuristics for the batch model
based on existing instances, presented by Ku and Arthanari (2016), where batches of containers
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are small (2 containers per batch on average). The second experiment illustrates the advantage
of using PBFSA when batches of containers are larger, based on instances obtained by modifying
the existing set. In addition, most of our techniques including lower bounds, heuristics, and the
PBFS algorithm also apply to the online model. The third experiment shows that, in this model,
PBFS outperforms the algorithm introduced in Ku and Arthanari (2016) in the sense that it is faster
for instances that Ku and Arthanari (2016) could solve, and it can solve problems of larger size.
Furthermore, our two new heuristics also outperform the best existing heuristic (ERI) for the online
model. Finally, the last experiment is used to test the conjecture about the optimality of the leveling
heuristic in the special case of the online model with a unique batch of containers.

The rest of the paper is structured as follows: Section 1 thoroughly describes the batch model, its
assumptions and objective, the difference with the online model, and the general theory of decision trees
applied to the SCRP. Section 2 gives a good intuition into the problem and defines heuristics and a class of
lower bounds for the SCRP used in subsequent sections. Then Sections 3 and 4 introduce respectively the
PBFS and PBFSA algorithms. Computational experiments for both batch and online models are carried
through Section 5. We conclude the paper in Section 6 with a discussion of future directions for the SCRP.

1 SCRP and Decision Trees

1.1 Motivation

Before stating the general assumptions of the batch model, let us motivate our problem using a typical
example. We consider a port with a TAS offering 30-minute time windows during which truck drivers
who want to retrieve a container can register to arrive at the port. For the sake of the example, we
consider the time window between 9:00 a.m. and 9:30 a.m. Multiple trucks can be registered in this time
window; in this example, presented in Figure 3, 3 trucks (designated i1, i4 and i6) are registered for this
time window. We assume that all 3 trucks arrive on time (between 9:00 a.m. and 9:30 a.m.) and that their
containers (similarly designated i1, i4, and i6) form a batch to be retrieved. We display the configuration
of interest in Figure 4 (3 tiers, 3 stacks, and 6 containers).

We assume that trucks arrive randomly within the time window, so each truck arrival order is equally
likely to happen. In this example, there are 6 potential arrival orders, each with 1/6 chance of occurring.

At 9:00 a.m., none of the 3 trucks has arrived, and their relative retrieval order is unknown. Conse-
quently, these 3 containers are all labeled 1 in Figure 4a. In Figure 4b, the IDs of all containers and their
locations are depicted.

Between 9:00 a.m. and 9:30 a.m., trucks arrive in a particular order (e.g., Truck i4 first, then i6, and
i1 last). In busy terminals, trucks typically queue up as they wait to be served. Their place in line is
based on their arrival order, so the port operator generally retrieves containers based on the arrival order.
Processing in this way, on a first-come, first-served basis, avoids issues with truck unions and maintains
fairness among drivers. Consequently, we take the retrieval order to be exogenously determined and we
do not consider it a potential decision for port operators.

To provide a specified level of service to the truck drivers, the terminal operator often sets a target
average waiting time. If the appointment time window is about the same as or shorter than the target
average waiting time, the operator has information about the retrieval order of containers in the batch
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Figure 3: Timeline of events for the batch model with three trucks.

before the retrieval of those containers must begin in order to meet the target waiting time. Given these
conditions, we make the simplifying assumption in this work that the retrieval of a batch begins at the
end of the appointment time window associated with the batch, and the retrieval order of all containers
in the batch is known at the moment the retrieval of the batch commences. In our example, the target
average waiting time is 30 minutes. At 9:30 a.m., the retrieval order of the batch (i4, i6, i1) is known and
the retrieval of the batch commences soon after. The updated information is depicted in the configuration
of Figure 4c.

The assumption that containers to be retrieved are revealed on a batch basis models the reality that
port operators typically know information about all the containers in the same batch before starting
to retrieve them. This is especially true for busy ports that have a TAS. Moreover, we assume that
no information about future batches is available when making decisions for the current batch. Similar
modeling assumptions have been made in previous work (see Zhao and Goodchild (2010) and Ku and
Arthanari (2016)).

1
5 4

1 5 1

4a Before any truck has
arrived (9:00 a.m.)

i6
i3 i5

i1 i2 i4

4b IDs to match containers
with trucks

2
5 4

3 5 1

4c Before the first container
gets retrieved (9:30 a.m.)

Figure 4: SCRP example. The left configuration is the input to our problem. The configuration in the
middle denotes each container with an ID il where l = 1, . . . , 6. The configuration on the right denotes

the order of the first batch after it is revealed.

The general assumptions we apply to our model are formally stated in Section 1.2 (A∗5 and A∗6) and
result in the batch model, the main focus of this paper. The goal of the SCRP is to find a sequence of moves
minimizing the expected number of relocations needed to empty the initial configuration.
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Labels in Figures 4a and 4c are defined such that two containers have the same label only if they are
in the same batch and their relative order is yet to be revealed. In our example, since Container i5 is the
only container in the second batch and is retrieved after the first 3 containers, it is necessarily the fourth
container to be retrieved (thus labeled 4). Containers i2 and i3 are labeled 5, and when their relative order
is revealed, one will be labeled 5 and the other 6.

Figure 5: Average truck turn times in minutes by terminal at Los Angeles-Long Beach port in June and
July 2017 (source: JOC.com). The dashed line shows the length of a time window (60 minutes) in the
truck appointment system.

We mention that these assumptions apply to an increasing number of port terminals. For example,
Figure 5 presents the average truck turn time in minutes for all 15 terminals of Los Angeles-Long Beach
port (the largest U.S. port for containers) in June and July 2017. In many of these terminals, a truck
appointment system with 60-minutes time windows (see Davies (2009)) has been implemented, and
Figure 5 shows that most terminals have an average truck turn time longer than 60 minutes.

The online model. The main distinguishing difference between the batch model and the online model
introduced by Zhao and Goodchild (2010) is the information revelation process. The online model
disregards any within-batch information available when it plans the moves to retrieve a container.
Hence new information is revealed one container at a time. The online model applies especially to
less busy ports where the waiting time is significantly shorter than the appointment time windows. In
this case, because there is a limited number of trucks waiting, limited information about the future is
known. We show through Lemma 1 that ignoring information (if available) results in a potential loss
of operational efficiency as measured by the expected number of relocations. In addition, most of our
batch-based approaches also apply to the online model, and we provide numerical results based on it in
Section 5.
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1.2 Assumptions, Notations, and Formulation

To define our problem as a multistage stochastic optimization problem (the number of “stages” is
the number of batches), we need to define a probabilistic model of the container retrieval order, a scheme for
revealing new information about this order, and an objective function.

Batch model. Let us state the assumptions and objective of the stochastic CRP under the batch model.
Assumptions A∗1, A∗2, A∗3, and A∗4 are respectively identical to Assumptions A1, A2, A3, and A4.

A∗5 : (probabilistic model) Given an ordering of batches, the probability distribution of the retrieval
order is such that: 1) all the containers in a given batch are retrieved before any containers in
a later batch, and 2) within each batch of containers, the order of the containers is drawn from
a uniform random permutation. This paper focuses mainly on this latter assumption, but our
model can be extended to the more general case of any probability distribution on permutations
(not necessarily uniform) that respects the order of batches.

A∗6 : (revelation of new information) For each batch w, the full relative order of containers from
the wth batch (i.e., the specific random permutation drawn) is revealed after all containers in
batch 1 through w − 1 have been retrieved.

Given these assumptions, we want to find the minimum expected number of relocations to retrieve
all containers from a given initial configuration. We refer to this problem as the “stochastic CRP.” Let us
introduce some notations:

- The problem size is given by (T,S,C), respectively the number of tiers, stacks, and containers in the
initial configuration.

- The number of batches of containers in the initial configuration is denoted by W. We consider that
the batches are ordered from 1 to W.

- For each batch w ∈ {1, . . . ,W}, let Cw be the number of containers in w. By definition
W∑

w=1

Cw = C.

- Each container has two attributes:

• The first attribute, denoted by (cl)l∈{1,...,C}, is the label and is defined as follows: initially,

containers in batch w are labeled Kw such that Kw = 1 +

w−1∑
u=1

Cu, where the sum is empty for

w = 1. Then, for k ∈ {1, . . . ,C}, if a container is revealed to be the kth container to be retrieved,
its label changes to k. Using this labeling, at any point in the retrieval process, two containers
have the same label only if they are in the same batch and their relative order is yet to be
revealed.

• The second attribute is a unique ID denoted by (il)l∈{1,...,C}. This ID is used only to identify
uniquely containers in the initial configuration (see Figure 4b) and for the sake of clarity of
the following probabilistic model. Note that for l ∈ {1, . . . ,C}, if Container il is in batch w, then
cl = Kw (until the actual retrieval order of il is revealed).
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- For k ∈ {1, . . . ,C}, let ζk be a random variable taking values in (il)l∈{1,...,C}, such that {ζk = il} is
the event that Container il is the kth container to be retrieved. According to Assumption A∗5, the
distribution of (ζk)k∈{1,...,C} is given by

P [ζk = il] =

 1
Cw

, if w = min{u ∈ {1, . . . ,W} | Ku > k} and cl = Kw,

0 , otherwise.

In this case, there are a total of
∏W

w=1 (Cw!) orders with equal probabilities. More generally, we
consider the case where the probability of each order within each batch is not necessarily equally
likely. However, we still assume that the batches are ordered, thus P [ζk = il] can be positive only
if w = min{u|Ku > k} and cl = Kw. In the practical case where probabilities are not considered to be
uniform, a list of potential retrieval orders and their associated probability is given for each batch of
containers (based on historical data), thus P [ζk = il] can easily be inferred from these probabilities.

- An action corresponds to a sequence of relocations to retrieve one container. For k ∈ {1, . . . ,C}, we
denote the action for the kth retrieval by ak, and the feasible set of actions is defined according to
Assumptions A∗2 and A∗3.

- For a given batch w ∈ {1, . . . ,W},

1. let yw denote the configuration before the retrieval order of containers in batch w is revealed,
i.e., before ζKw , . . . , ζKw+Cw−1 are revealed. Note that y1 corresponds to the initial configuration.
We denote xKw the configuration after the retrieval order of containers in batch w is revealed,

and before action aKw is taken. If
ζKw ,...,ζKw+Cw−1
−−−−−−−−−−−→ represents the revelation of the random variables

ζKw , . . . , ζKw+Cw−1, we can write yw
ζKw ,...,ζKw+Cw−1
−−−−−−−−−−−→ xKw .

2. After the retrieval order of batch w has been revealed, actions to retrieve the revealed containers
must be made. If Cw > 1, then {Kw, . . . ,Kw+Cw−2} , ∅. In this case, for k ∈ {Kw, . . . ,Kw+Cw−2},
let xk+1 be the configuration after applying action ak to state xk and before action ak+1. Therefore,
if

ak
−→ represents the application of action ak, we have xk

ak
−→ xk+1.

3. The last container to be retrieved in batch w is the (Kw + Cw − 1)th container, thus, according to
the previous point, xKw+Cw−1 corresponds to the configuration before aKw+Cw−1 is taken. After
this retrieval, the order of the next batch (batch w + 1) has to be revealed, and according to the
first point, the configuration is yw+1. The configuration after retrieving batch W will be empty,
thus we define yW+1 to be the empty configuration. So if

aKw+Cw−1
−−−−−−→ represents the application

of action aKw+Cw−1, then we have xKw+Cw−1
aKw+Cw−1
−−−−−−→ yw+1.

In summary, we have

∀ w ∈ {1, . . . ,W} ,


yw

ζKw ,...,ζKw+Cw−1
−−−−−−−−−−−→ xKw ,

xk
ak
−→ xk+1, if Cw > 1 , ∀ k ∈ {Kw, . . . ,Kw + Cw − 2},

xKw+Cw−1
aKw+Cw−1
−−−−−−→ yw+1.

- Let the function r(.) be such that r(x) is number of relocations to retrieve the target container in
configuration x. It is also equal to the number of containers blocking the target container. This
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function is defined only for configurations in which the target container is identified. Specifically, it
is defined for (xk)k=1,...,C (but not for

(
yw

)
w=1,...,W). For k ∈ {1, . . . ,C}, we refer to r(xk) as the immediate

cost for the kth retrieval.

- Let the function f (.) be such that f (x) is the minimum expected number of relocations required
to retrieve all containers from configuration x. In addition, f (x) is commonly referred to as the
cost-to-go function of configuration x. Note that it is well defined for both (xk)k=1,...,C and

(
yw

)
w=1,...,W.

By definition, we have:

∀ w ∈ {1, . . . ,W},


f
(
yw

)
= E
ζk,...,ζk+Cw−1

[
f (xk)

]
, where k = Kw,

f (xk) = r (xk) + min
ak

{
f (xk+1)

}
, if Cw > 1 and ∀ k ∈ {Kw, . . . ,Kw + Cw − 2},

f (xk) = r (xk) + min
ak

{
f
(
yw+1

)}
, where k = Kw + Cw − 1,

which can be written as

∀ w ∈ {1, . . . ,W},


f
(
yw

)
= E
ζKw ,...,ζKw+Cw−1

[
f (xKw)

]
,

f
(
xKw

)
= min

aKw ,...,aKw+Cw−1


Kw+Cw−1∑

k=Kw

r (xk)

 + f
(
yw+1

) , (1)

and f
(
yW+1

)
= 0. Therefore, the SCRP is concerned with finding f

(
y1

)
, where by induction:

f
(
y1

)
= E
ζK1 ,...,ζK1+C1−1

 min
aK1 ,...,aK1+C1−1

 E
ζK2 ,...,ζK2+C2−1

. . . E
ζKW ,...,ζKW+CW−1

 min
aKW ,...,aKW+CW−1

 C∑
k=1

r (xk)


 . . .



 . (2)

As a final remark, we note that batches should be as small as possible if only information is at stake.
Indeed, smaller batches correspond to an efficient information system since more information is known
about the retrieval order. But the size of batches is restricted by two intrinsic constraints:

1. Batches should be at least larger than a certain size. Indeed, a terminal offers time slots for trucks
to register, and these slots cannot be too brief, as trucks would most certainly not arrive during
their appointed slot due to traffic or other uncertain factors. Therefore, given the minimum time
of a slot, the terminal will allow at least a certain number of trucks to register for each slot, i.e., the
minimum batch size.

2. Batches cannot be too large for the batch model to be applicable, since in this model, the appoint-
ment time windows are supposed to be the same as or shorter than the target waiting time. As
the target waiting time is limited, only a limited number of containers can be retrieved in a certain
batch.

The online model. Using our notations, we briefly present the SCRP under the online model. Instead
of Assumption A∗6, the online model assumes that for each retrieval k ∈ {1, . . . ,C}, only the next target
container is revealed (i.e., ζk). Therefore, we consider the states

(
yo

k, x
o
k

)
k=1,...,C

defined such that k ∈

{1, . . . ,C}, yo
k

ζk
−→ xo

k
ak
−→ yo

k+1, where yo
C+1 is the empty configuration. In this case, if f o denotes the

cost-to-go function, then by definition we have f o
(
yo

k

)
= E

ζk

[
f o

(
xo

k

)]
(with f o

(
yo

C+1

)
= 0), and ∀ k ∈
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{1, . . . ,C}, f o
(
xo

k

)
= min

ak

{
r
(
xo

k

)
+ f o

(
yo

k+1

)}
. By induction, the SCRP under the online model is hence

concerned with finding:

f o
(
yo

1

)
= E
ζ1

min
a1

Eζ2

. . .EζC

min
aC

 C∑
k=1

r
(
xo

k

)
 . . .



 .

The next lemma compares the batch and the online models theoretically (the proof can be found
in Appendix A). It states that it is beneficial in terms of the expected number of relocations to use the
batch model rather than the online model, if the first one is applicable. Practically, this suggests that the
operator should always use available information.

Lemma 1. Let y be a given initial configuration, then we have

f
(
y
)
6 f o (y) .

1.3 Decision Trees

Multistage stochastic optimization problems can be solved using decision trees in which chance nodes
and decision nodes typically alternate. A chance node embodies the stochasticity of the model, whereas
a decision node models the possible actions of the algorithm. In a decision tree for the SCRP, a node
represents a configuration. The root node (denoted by 0) is the initial configuration, and the leaf nodes
are configurations for which we can compute the cost-to-go function.

In our case, we slightly modify the structure of a typical decision tree, in the sense that chance nodes
and decision nodes do not necessarily alternate. A chance node is a configuration for which the target
container is not known yet, and information needs to be revealed (note that this occurs only at the
beginning of each batch). A decision node is a configuration for which the target container is known.
Using our notations, chance nodes correspond to

(
yw

)
w=1,...,W and decision nodes correspond to (xk)k=1,...,C.

Let n be a node corresponding to a configuration in the decision tree. Thus f (n), the cost-to-go
function of n, is defined for all nodes n, and r(n), the immediate cost function of n, is well defined when
n is a decision node. We denote by λn the level of n in the decision tree, and define it as the number of
containers remaining in the configuration. We denote the lowest level of the tree by λ∗ = min

n∈Tree
{λn}. It

corresponds to the level such that if λn = λ∗, f (n) can be computed efficiently (the empty configuration
being an obvious candidate with a cost-to-go of 0). Moreover,

• If n is a chance node, then there exists a unique w ∈ {1, . . . ,W} such that λn = C−Kw + 1. We denote
by Ωn the set of offspring of n, each offspring being a decision node corresponding to a realization
of the random variables ζKw , . . . , ζKw+Cw−1, i.e., the full retrieval order of containers in batch w. Note
that n has a priori |Ωn| = Cw! offspring.

• If n is a decision node, then r(n) is well defined and is equal to the number of containers blocking
the target container in configuration n (i.e., the (C − λn + 1)th container to be retrieved). We denote
by ∆n the set of offspring of n, which can either be chance nodes if there exists w ∈ {1, . . . ,W} such
that λn + 1 = C − Kw + 1, or decision nodes otherwise. For the sake of simplicity, we compute ∆n

greedily by considering all feasible combinations of relocations of the r(n) containers blocking the
target container in n. Note that |∆n| is of the order of (S − 1)r(n), where S is the number of stacks.
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Figure 6: Decision tree represented with nodes. The colored arrows represent different values of imme-
diate cost, i.e., the number of containers blocking the target container (dotted green: 0, dashed orange:
1, thick solid red: 2).

Equation (1) provides the relation to compute the cost-to-go by backtracking. For all n in the decision
tree, we have

f (n) =


1
|Ωn|

∑
ni∈Ωn

f (ni) , if n is a chance node,

r(n) + min
ni∈∆n

{
f (ni)

}
, if n is a decision node.

(3)

In the case in which the probability of each permutation (in each batch) is not uniform, we mentioned
that in practice, operators provide the probability of potential orders for each batch. Given a chance node
n and one of its offspring ni ∈ Ωn, this input probability is exactly the probability that the actual retrieval
order is the one revealed in ni. For a given node n, we denote these probabilities by

(
pni

)
ni∈Ωn

. In this
case, Equation (3) is replaced by:

f (n) =


∑

ni∈Ωn

pni f (ni) , if n is a chance node,

r(n) + min
ni∈∆n

{
f (ni)

}
, if n is a decision node,

for all n in the decision tree.
Figures 6 and 7 provide the description of the decision tree corresponding to the example in Figure

4, using chance/decision nodes and configurations, respectively. A chance node is depicted with a circle,
and a decision node with a square.

To illustrate how to use Equation (3), we derive the calculations using the example in Figure 6. Suppose
that f (25) = f (26) = f (27) = 0.5 are known, then we get f (17) = f (18) = f (19) = 0.5, f (07) = f (09) = 1.5,
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Figure 7: Decision tree represented with configurations. The colored arrows represent different values
of immediate cost, i.e., the number of containers blocking the target container (dotted green: 0, dashed
orange: 1, thick solid red: 2). Red circled numbers highlight containers blocking the target container.
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Figure 8: “Abstraction” procedure.

and f (08) = 2.5, leading to f (01) = 3.5. Similarly, by backtracking, we can compute f (02) = f (03) =

f (04) = 1.5 and f (05) = f (06) = 2.5, giving us f (00) = 13/6.
As the example shows, considering the full decision tree can become intractable even for small

examples, hence quickly impossible for larger problems. As previously mentioned, the number of
decision offspring of a chance node scales with Cw!, and the number of offspring of a decision node is of
the order of (S− 1)r(n). So the size of the tree grows exponentially with the size of the problem. However,
there exist general and specific techniques to reduce substantially the size of this tree, as we discuss now.

First, there are suboptimal approaches. One way to approximate f (n), when n is a chance node, is to
sample from its offspring. When Ωn is large (which can happen with large batches), one might sample
a certain number of realizations, resulting in a set of offspring Ψn ⊂ Ωn. By sampling “enough,” we
show in Section 4, we can ensure guarantees on expectation for such an algorithm. Another popular
suboptimal approach is to use techniques from Approximate Dynamic Programming. These techniques
can provide good empirical results, but no guarantee on how far from optimality can be obtained. This
direction is not discussed in this paper but can be a direction for future work. Finally, another approach is
to consider heuristics such as the ones described in the next section, which select a subset of the offspring
of decision nodes, and lead to upper bounds on the optimal value f (0).

Second, there exist ways to decrease the size of the tree while ensuring optimality. One is to reduce the
number of nodes using the problem structure of the SCRP. In the online setting, Ku and Arthanari (2016)
propose an “abstraction” technique that significantly shrinks the size of the tree. Thanks to Assumption
A∗4, we can consider that the stacks of a configuration are interchangeable, making many configurations
equivalent in terms of number of relocations. For instance, in Figure 6, nodes 20 and 21 are identical in
terms of number of relocations.

We describe the abstraction step with an example in Figure 8. The five configurations at the top are
all equivalent to the configuration at the bottom. The abstraction transformation first ranks the stacks by
increasing height. For stacks with equal height, it breaks ties by ranking them lexicographically going
from bottom to top. Stacks are rearranged in order to have the first ranked on the left and the last on the
right. Ku and Arthanari (2016) use a slightly different rule and add the extra step of removing empty
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stacks. Using the abstraction procedure, the proposed algorithm should not generate a node twice with
identical abstracted versions. Even though Ku and Arthanari (2016) introduce this rule for the online
model, this abstraction step also applies in the batch setting. Throughout the rest of the paper, we will
refer in pseudocode to the function Abstract(n), when applying this method to a given node n. We
mention that Ku and Arthanari (2016) also suggest caching strategies that could be added on the top of
this simplification step, including caching part of the tree or using a transportation table.

Finally, the performance of a decision-tree-based algorithm depends on the exploration strategy of
the tree. For the online model, Ku and Arthanari (2016) use depth-first-search (DFS), and we propose to
explore the best-first-search (BFS) approach. Note that BFS requires some kind of measure that we define
in Section 3.

In further sections, we explore two other ways to decrease the size of the tree while still ensuring
optimality. The first one is specific to the SCRP, and uses properties of the problem to increase λ∗. Recall
that λ∗ is the minimum level of the tree at which we can find the optimal expected number of relocations,
without further branching. We show that we can set λ∗ to max{S,CW}, where S is the number of stacks,
and CW is the number of containers in the last batch. Comparatively, Ku and Arthanari (2016) branch
until λ∗ = 0. The second optimal pruning strategy uses lower bounds in a BFS scheme.

After we introduce the batch model for the SCRP (as well as the online model) and some preliminary
concepts about decision trees, the next three sections develop approaches to solve the SCRP.

2 Heuristics and Lower Bounds

Before introducing the two main algorithms, we describe in this section heuristics and lower bounds
for the SCRP. Indeed, PBFS and PBFSA build upon some of these bounds. In addition, these algorithms
provide good intuition on how to solve the SCRP.

Let n be a given configuration with S stacks and T tiers. We say that a Container c is a blocking container
in n if it is stacked above at least one container which is to be removed before c. Note that all the bounds
mentioned below apply both in the batch and online models.

2.1 Heuristics

For the sake of completeness of this paper, we first describe three existing heuristics used in proofs
and/or our computational experiments before describing two novel heuristics.

2.1.1 Existing heuristics

Random. For every relocation of a blocking Container c from Stack s, the Random heuristic picks any
Stack s′ , s uniformly at random among stacks that are not “full,” i.e., stacks containing strictly less than
T containers.

Leveling (L). For every relocation of a blocking Container c from Stack s, L chooses the Stack s′ , s
currently containing the fewest containers, breaking ties arbitrarily by selecting such leftmost stack.

Heuristic L is interesting for several reasons. Most important, it is an intuitive and commonly used
heuristic in real operations in that it uses no more than the height of each stack. In addition, it does not
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require any information about batches or departure times, which means it is robust with respect to the
inaccuracy of information.

Expected reshuffling index (ERI). This index-based heuristic was introduced by Ku and Arthanari
(2016) for the online model. For every relocation of a blocking Container c from Stack s, ERI computes
a score called the expected reshuffling index for each Stack s′ , s that is not full, denoted by ERI(s′, c).
ERI chooses the Stack s′ , s with the lowest ERI(s′, c). In the case of a tie, the policy breaks it by
selecting the highest stack among the ones minimizing ERI(s′, c). Further ties are arbitrarily broken
by selecting the leftmost stack verifying the two previous conditions. ERI(s′, c) corresponds to the
expected number of containers in Stack s′ that depart earlier than c. Let Hs′ be the current number of
containers in s′. If Hs′ = 0, then ERI(s′, c) = 0. Otherwise, let (c1, . . . , cHs′ ) be the containers in s′, then

ERI(s′, c) =

Hs′∑
i=1

1 {ci < c} +
1 {ci = c}

2
.

2.1.2 First new heuristic: Expected Minmax (EM)

EM considers an idea similar to that of Caserta et al. (2012) for the CRP. Let min(s) be the smallest
label of a container in s (min(s) = C + 1, if Stack s is empty). For every relocation of a blocking Container
c from Stack s, we select the stack to which we relocate c using the following rules:

[Rule 1] If there exists s′ , s such that min(s′) > c, let M = min
s′∈{1,...,S}\s

{min(s′) : min(s′) > c}. Select a stack such

that min(s′) = M, breaking ties by choosing from the highest ones, finally taking the leftmost stack
if any ties remain.

[Rule 2] If for all Stacks s′ , s, min(s′) 6 c, let M = max
s′∈{1,...,S}\s

{min(s′)}. Select a stack such that min(s′) = M.

If there are several such stacks, select those with the minimum number of containers labeled M.
Further ties are again broken by taking the highest ones, and finally choosing the leftmost one
arbitrarily.

2©
4
7
4 4 7
1 7 3

4 8 3
Rule 1

−→

4©
7 2
4 4 7
1 7 3

4 8 2
Rule 1

−→

7© 2
4 4 7
1 7 4 3

4 4 2
Rule 2

−→

2
4© 4 7 7
1 7 4 3

4 4 2
Rule 2

−→

4 2
4 7 7

1 7 4 3

Figure 9: Decisions of the EM heuristic on an example with 5 tiers, 4 stacks, and 9 containers (3 per
batch). Under the batch model, the first batch has been revealed, and we present the decisions to
retrieve the first container made by EM. The container with the circled red label is the current blocking
container. Numbers under the configuration correspond to the stack indices min(s). The underlined
green (respectively squared orange) indices correspond to the selected stack with the corresponding M
when Rule 1 (respectively Rule 2) applies.
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Rule 1 says: if there is a stack where min(s) is greater than c (c can almost surely avoid being relocated
again), then choose such a stack where min(s) is minimized, since stacks with larger minimums can be
useful for larger blocking containers.

If there is no stack satisfying min(s) > c (Rule 2), then we have two cases following the same rule. On
one hand, if M = c, then M is the maximum of the minimum labels of each stack, and c can potentially
avoid being relocated again. If there are several stacks that maximize the minimum label, then by
selecting the one with the least number of containers labeled M, EM minimizes the probability of c being
relocated again. On the other hand, if M < c, c will almost surely be relocated again, and then EM chooses
the stack where min(s) is maximized in order to delay the next unavoidable relocation of c as much as
possible. We show how EM makes decision on a simple example in Figure 9.

2.1.3 Second new heuristic: Expected Group assignment (EG)

EM is quite intuitive because it tries to minimize the number of blocking containers after each retrieval.
EG aims for the same goal, but uses some more sophisticated rules. EG is inspired by a heuristic designed
by Wu and Ting (2012) for the complete information case, and we generalize this idea to the SCRP. It
is different from ERI and EM because it considers a group of blocking containers together, whereas ERI
and EM consider them one at a time. EG can be decomposed in two main phases for each retrieval. The
decisions made by EG on the same example as shown in Figure 9 are given in Figure 10.

The first phase assigns the blocking containers for which there exists s′ , s such that min(s′) > c.
If this is not the case, the assignments of these containers will be ignored during the first phase. The
acceptable containers are assigned in descending order of labels, i.e., the container with the highest label
is assigned first (breaking ties for the highest one first). In order to assign these acceptable containers,
the first phase applies the first of the EM rules. Finally, an acceptable container cannot be assigned to a
stack if there is a container below it that was previously assigned to this stack.

The assignment in the second phase for the blocking containers not yet assigned might lead to
additional relocations. These containers are assigned to other stacks in ascending order of labels. The
second phase first computes a modified min(s′) index for each stack denoted by Gmin(s′), which is defined
as follows: Let Hs′ be the height of Stack s′ and B(s′) be the subset of containers assigned in the first phase
to Stack s′,

Gmin(s′) =


−1, if |B(s′)| + Hs′ = T,
min(s′), if |B(s′)| = 0,
B(s′), if |B(s′)| = 1,
0, otherwise.

If a stack is full after we assign the containers during the first phase, then it cannot be selected. If no
container was assigned, the index remains as the min. If one container was assigned, it is “artificially”
the new minimum of the stack. Finally, if more than one container was assigned, the index becomes
very unattractive by being as low as possible (0). The second phase is similar to the EM heuristic, but
it considers Gmin instead of the min index, breaking ties identically. Note that, after each assignment in
the second phase, we update Gmin accordingly for the remaining containers to be assigned. For more
details in the complete information case, we refer the reader to Wu and Ting (2012).
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10a. First phase: EG assigns acceptable containers in descending order. The container with the circled
red label is the next acceptable container that EG tries to assign to a stack. Containers with overlined blue
labels are assigned, and with gray labels are unassigned. Below, we show the indices min(s) to apply the
first rule of EM (×means that a container below the considered container has already been assigned to a
stack).
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10b. Second Phase, EG assigns all unassigned containers using the index Gmin(s).

Figure 10: Decisions of the EG heuristic in an example with 5 tiers, 4 stacks, and 9 containers (3 in
each batch). Under the batch model, the first batch has been revealed, and we present the two-phases
decisions to retrieve the first container made by EG.

2.2 Lower Bounds

After defining heuristics (upper bounds), we are now concerned with defining valid lower bounds
for the SCRP. More specifically, we care about computing lower bounds for decision nodes in the decision
tree defined before. Note that the computation of lower bounds easily extends to chance nodes.

2.2.1 Blocking lower bound

Suppose that the departure order is known, as in the CRP. The following lower bound was introduced
by Kim and Hong (2006) and is based on the following simple observation. If a container is blocking in
n, then it must be relocated at least once. Thus, the optimal number of relocations is lower bounded by
the number of blocking containers.

In the SCRP, the retrieval order is a random variable, so the fact that a container is blocking is also
random. Let us denote the expected number of blocking containers in n by b(n). Therefore, by taking the
expectation on the retrieval order of the previous fact, which holds for every retrieval order, we have the
following observation.

Observation 1. For all configurations n, f (n) is the minimum expected number of relocations to empty n, and
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b(n) is the expected number of blocking containers, then

f (n) > b(n).

Lemma 2 shows one way to compute the expected number of blocking containers for one stack, and
b(n) is the sum of the expected number of blocking containers of each stack of n. Mathematically, let bs(n)

be the expected number of blocking containers in Stack s of n, we have b(n) =

S∑
s=1

bs(n).

Lemma 2. Let n be a single stack configuration with T tiers, and H > 0 containers (H 6 T). If H = 0, we have

b(n) = 0.

If H > 1, we denote the label of containers by (ci)i=1,...,H, where c1 is the container at the bottom and cH is the
container at the top (see Figure 11), then we have:

b(n) = H −
H∑

h=1

1

{
ch = min

i=1,...,h
{ci}

}
h∑

i=1

1 {ch = ci}

,

where 1 {A} is the indicator function of A.

cH

...
c2

c1


T

Figure 11: Example of a single stack configuration.

Proof. Clearly, if H = 0, then b(n) = 0. If H > 1, then by definition we have

b(n) = E

 H∑
h=1

1
{
ch is a blocking container

} =

H∑
h=1

P
[
ch is a blocking container

]
.

Let us fix h ∈ {1, . . . ,H}, and compute the probability that ch is blocking. We consider two cases:

• If ch > min
i=1,...,h

{ci}, then ch is almost surely blocking.

• Otherwise ch = min
i=1,...,h

{ci}, and there are
h∑

i=1

1 {ch = ci} − 1 containers below ch with the same label (or

batch). Since each departure sequence between containers of the same batch is equally likely, the

probability that ch is blocking is equal to
∑h

i=1 1{ch=ci}−1∑h
i=1 1{ch=ci}

= 1 − 1∑h
i=1 1{ch=ci}

.

20



Consequently, we get

P
[
ch is a blocking container

]
= 1 × 1

{
ch > min

i=1,...,h
{ci}

}
+

1 −
1∑h

i=1 1 {ch = ci}

 × 1{
ch = min

i=1,...,h
{ci}

}

= 1 −
1

{
ch = min

i=1,...,h
{ci}

}
∑h

i=1 1 {ch = ci}
.

We sum the above expression for h = 1, . . . ,H to conclude the proof. �

Therefore, one can compute the blocking lower bound as follows: let Hs be the number of containers
in Stack s, and

(
cs

1, . . . , c
s
Hs

)
be the containers in Stack s listed from bottom to top, then

b(n) =
∑

s=1,...,S
Hs>1


Hs
−

Hs∑
h=1

1

{
cs

h = min
i=1,...,h

{
cs

i

}}
h∑

i=1

1

{
cs

h = cs
i

}

. (4)

Non-uniform case. In the case where probabilities are not uniform across retrieval orders, we still
consider a similar lower bound. For each Container cs

h, let qcs
h

be the probability that cs
h is the first container

to be retrieved among the ones with the same batch, and positioned below in its stack. Equation (4)
extends to give:

b(n) =
∑

s=1,...,S
Hs>1

Hs
−

Hs∑
h=1

qcs
h
1

{
cs

h = min
i=1,...,h

{
cs

i

}} .
2.2.2 Look-ahead lower bounds

Note that the blocking lower bound b is only taking into account the current configuration. However,
some relocations lead necessarily to an additional relocation. We refer to such relocations as “bad.”
Formally, let s be a stack of a configuration, and min(s) be the smallest label of a container in s. Recall
that, if s is empty, we set min(s) = C + 1. We say that the relocation of Container c from Stack s is “bad” if
c > max

s′=1,...,S , s′,s

{
min(s′)

}
. We propose to construct a lower bound that anticipates “bad” relocations.

The basic idea is based on a similar one used by Zhu et al. (2012) for the CRP. We consider the first
look-ahead lower bound denoted by b1(n). By definition, we take b1(n) = b(n) + d1(n), where b(n) is
the blocking lower bound, and d1(n) is the expected number of unavoidable “bad” relocations while
performing the first removal. We compute the term d1(n) by considering all realizations of the first target
container. For each realization, we compute the number of unavoidable “bad” relocations and average
them. Formally, for a given configuration n, consider Un the set of potential next target container in n

(which can be a singleton if it is known already), i.e., Un =

{
c
∣∣∣∣∣c = min

s=1,...,S
(min(s))

}
. Based on the definition

of a bad relocation, we compute the number of unavoidable “bad” moves for each u ∈ Un denoted by
β(n,u), and we take:

d1(n) =
1
|Un|

∑
u∈Un

β(n,u),
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or d1(n) =
∑

u∈Un
pn,uβ(n,u), where pn,u is the probability that u is the next target container in n if the

probabilities considered are not uniform (which can be computed using
(
pni

)
ni∈Ωn

if n is a chance node).

4
3

1 3 1

Figure 12: Example for look-ahead lower bounds.

For example, in Figure 12, the presented configuration denoted by n is such that b(n) = 2. Now
consider a container u ∈ Un: if u is the container labeled 1 in Stack 1, then there is no blocking container,
so β(n,u) = 0; if u is the other container labeled 1, the relocation of the container labeled 4 from Stack 3 is
necessarily a bad relocation, since min(1) = 1 < 4 and min(2) = 3 < 4, but it is not the case for the blocking
container labeled 3, hence β(n,u) = 1. Therefore, d1(1) = 0.5(0 + 1) = 0.5, and b1(n) = 2 + 0.5 = 2.5, hence
giving a lower bound closer to the optimal solution than b(n). Note that, if n has an empty stack, then
β(n,u) = 0 for all u ∈ Un, and hence d1(n) = 0.

We can refine this idea by trying to find unavoidable “bad” relocations for the second removal.
In this case, the configuration depends on the first removal and the decisions that have been made
accordingly. For the sake of clarity, consider that the first target container has been revealed, and denote
it u1. After retrieving u1, only containers blocking u1 have changed from their initial position. It can be
very challenging to detect future unavoidable “bad” moves for these containers. To bypass this issue,
we consider that all containers blocking u1 are also removed, resulting in a configuration without u1 and
its blocking containers. Given this new configuration denoted by n(u1), we can compute the expected
number of unavoidable bad moves d1(n(u1)). Since u1 is actually random, we have to consider each
scenario with its associated probability and compute a new configuration where blocking containers are
retrieved with the target container. We denote the result d2(n), and it is a lower bound on the expected
number of unavoidable bad relocations for the first two removals starting at n. Finally, our second
look-ahead lower bound is given by b2(n) = b(n) + d2(n).

Algorithm 1 Lower bound on the number of unavoidable bad relocations for the k first removals

1: procedure [dk(n)] = UnavoidableBadReloc (n, k)
2: if k = 0 or n has an empty stack or n is empty then dk(n) = 0
3: else let Un = {containers with minimum label in n}
4: if k = 1 then dk(n) = 1

|Un|

∑
u∈Un

β(n,u)
5: else
6: for u ∈ Un do
7: Let n(u) be the configuration n without u and all containers blocking u
8: Compute recursively dk−1 (n(u)) = UnavoidableBadReloc (n(u), k − 1)

9: Compute dk(n) = 1
|Un|

∑
u∈Un

β(n,u) + dk−1 (n(u))

This idea can easily be generalized for k > 2 by induction with bk(n) = b(n) + dk(n). Here k is the
number of removals that the lower bound considers to compute the expected number of unavoidable
bad relocations (see pseudocode of Algorithm 1).
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3 PBFS, a New Optimal Algorithm for the SCRP

Building upon lower bounds introduced in the previous section, this section introduces, studies, and
proves the optimality of one of the main contributions of this paper, the PBFS Algorithm.

3.1 PBFS Algorithm

We start by giving the pseudocode of our algorithm, and we derive its optimality in Lemmas 3 and 4.
PBFS takes two inputs, the configuration n for which we aim to compute f (n), and a valid lower bound
l. This algorithm uses a combination of four features to return f (n). The first one is the BFS exploration
of the tree based on a given lower bound l. We first compute f for the “most promising nodes,” because
nodes with small lower bounds are more likely to result in small f . The second technique is stopping
to compute f recursively after level λ∗ = max{S,CW}, by calculating it either using b or the A∗ algorithm
defined later. In Algorithm 2, A∗(n) denotes the optimal number of relocations for node n obtained using
the A∗ algorithm. The third feature is pruning with a lower bound, revealing the suboptimality of some
nodes without actually computing f . As its fourth feature, the algorithm uses the abstraction technique
described previously.

Algorithm 2 PBFS Algorithm

1: procedure [ f (n)] = PBFS (n, l)
2: if λn 6 S (n has less than S containers) then f (n) = b(n)
3: else
4: if n is a chance node then start with ΨPBFS

n = {}

5: for ni ∈ Ωn do ni ← Abstract(ni)
6: if there exists m = ni already in ΨPBFS

n then pn
m ← pn

m + 1
|Ωn|

7: else if there exists m = ni already in the decision tree then add m toΨPBFS
n and pn

m = 1
|Ωn|

8: else add ni to ΨPBFS
n , pn

ni
= 1
|Ωn|

and compute f (ni) = PBFS (ni, l)

9: Compute f (n) =
∑

ni∈Ψ
PBFS
n

pn
ni

f (ni)

10: else n is a decision node
11: if λn = CW (the full retrieval order is known) then f (n) = A∗(n)
12: else construct ∆n by considering all feasible sets of decisions to deliver the target container
13: Compute l(ni) for each ni ∈ ∆n

14: Sort
(
n(1),n(2), . . . ,n(|∆n|)

)
in nondecreasing order of l(.)

15: Compute f (n(1)) = PBFS
(
n(1), l

)
16: Start with ΓPBFS

n = {n(1)} and k = 2
17: while k 6 |∆n| and l(n(k)) < min

j=1,...,k−1

{
f (n( j))

}
do n(k) ← Abstract(n(k))

18: if there exists m = n(k) already in the decision tree then add m to ΓPBFS
n

19: else add n(k) to ΓPBFS
n and compute f (n(k)) = PBFS

(
n(k), l

)
20: Update k = k + 1

21: f (n) = r(n) + min
ni∈Γ

PBFS
n

{
f (ni)

}
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3.1.1 Decreasing the size of decision tree by increasing λ∗ to max{S,CW }

If CW 6 S, then compute f(n) using b(n). Recall that, for every relocation, heuristic L chooses the stack
with the fewest containers, breaking ties arbitrarily by choosing the leftmost one. Note that L always
provides a valid upper bound for the SCRP. So if we denote the resulting expected number of relocations
to empty configuration n using L by fL(n), then we have fL(n) > f (n).

Lemma 3. Let n be a configuration with S stacks, T tiers, and C containers such that C 6 S, then we have

fL(n) = b(n) = f (n)

Proof. Consider a retrieval order of containers from n that has a nonzero probability of occurring. If
there are no blocking containers, then the lemma clearly holds. Otherwise, let c be one of the blocking
containers for this retrieval order, and consider the first removal for which c has to be relocated. For
this removal, there are at most S containers in the configuration, hence there exists at least one empty
stack to relocate c. Since heuristic L chooses always empty stacks if one exists, L would move c to one
of the existing empty stacks. Note that in this case, c will never be blocking again, and hence will never
be relocated again. This observation holds for any blocking containers, thus L relocates each blocking
container at most once.

Since this fact holds for any retrieval order with nonzero probability, by taking expectation on the
retrieval order, we have fL(n) 6 b(n), thus fL(n) 6 b(n) 6 f (n) 6 fL(n), which concludes the proof. �

Lemma 3 states that for configurations with S containers or fewer, heuristic L is optimal for the SCRP.
This implies that, for nodes at level S, we have access to the cost-to-go function using b(n), as well as an
optimal solution (provided by heuristic L). Hence PBFS can stop branching at λ∗ = S (line 2 of Algorithm
2).

If CW > S, then compute f(n) using the A∗ algorithm. If n is a decision node at level CW, the full order
of retrieval is known, and computing f (n) reduces to solving a classical CRP, so we can leverage the exis-
tence of efficient solutions to the classical CRP such as the A∗ algorithm, and take λ∗ = CW. Throughout
the rest of the paper, A∗ refers to the improved version of this algorithm presented in Borjian et al. (2015a).

Combining with the two previous observations, we can take λ∗ = max{S,CW}.

3.1.2 Decreasing the size of decision tree by pruning using lower bounds

We would also like to reduce the size of the tree before level λ∗. For a decision node n, PBFS considers
only a subset ΓPBFS

n of all the offspring ∆n (line 21 of Algorithm 2). Our goal is to set ΓPBFS
n in order to still

guarantee optimality.
First, PBFS generates all nodes ni ∈ ∆n by considering all feasible sets of decisions to deliver the

target container in n (line 12 of Algorithm 2), and for each of them, compute a lower bound l(ni), where
l is the input lower bound (line 13 of Algorithm 2). Let

(
n(1),n(2), . . . ,n(|Ωn|)

)
be the list of offspring of n

sorted by nondecreasing lower bound (line 14 of Algorithm 2). The algorithm considers first n(1), adds it
to ΓPBFS

n and computes f (n(1)) recursively (lines 15-16 of Algorithm 2). Then for k > 2, we consider n(k)’s
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(
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)
l
(
n(|ΓPBFS
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(
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(
n(1)

)
× . . . ×

Figure 13: Illustration of the pruning rule. First, offspring are ordered by nondecreasing lower bounds.
Then we start computing the objective function starting at n(1). We stop computing the objective functions
once the pruning rule is reached. In the figure above, green nodes linked with full green arrows are
nodes in ΓPBFS

n , i.e., f (.) has been computed. Orange nodes linked with dashed orange arrows are nodes
in ∆n \ ΓPBFS

n , i.e., f (.) does not need to be computed, which is represented here by ×.

sequentially and check if l(n(k)) < min
j=1,...,k−1

{
f (n( j))

}
(line 17 of Algorithm 2). If so, add n(k) to ΓPBFS

n and

compute f (n(k)) recursively. If not, we stop branching on all nodes n(k), . . . ,n(|Ωn|). An illustration of the
pruning rule is shown in Figure 13 and the next lemma shows the optimality of this rule.

Lemma 4. Let n be a decision node in the decision tree, and ΓPBFS
n be the subset of nodes considered for this node

in Algorithm 2, and constructed as aforementioned, then we have

min
mi∈Γ

PBFS
n

{
f (mi)

}
= min

ni∈∆n

{
f (ni)

}
.

Proof. Let
(
n(1),n(2), . . . ,n(|Ωn|)

)
be the list of offspring of n, sorted by nondecreasing lower bounds. We

consider two cases:

• If ΓPBFS
n = ∆n, the statement clearly holds.

• Otherwise, there exists k 6 |∆n| such that l(n(k)) > min
j=1,...,k−1

{
f (n( j))

}
, and ΓPBFS

n =
{
n(1), . . . ,n(k−1)

}
.

Note that we have ∀k′ > k, f (n(k′)) > l(n(k′)) > l(n(k)) > min
j=1,...,k−1

{
f (n( j))

}
. Hence min

ni∈∆n

{
f (ni)

}
=

min
j=1,...,k−1

{
f (n( j))

}
= min

mi∈Γ
PBFS
n

{
f (mi)

}
.

�

We claim that increasing λ∗ to max{S,CW} together with pruning in a Best-First-Search scheme,
dramatically help in the efficiency of PBFS while guaranteeing optimality. However, this algorithm faces
the issue that |Ωn| = Cw! if n is a chance node. So if Cw is large, typically Cw > 4, the number of nodes to
consider gets too large. We tackle this issue by considering a near-optimal algorithm in the next section.
This leads us to consider an alternative to PBFS in the case of larger batches.
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4 PBFSA, Near-Optimal Algorithm with Guarantees for Large Batches

Building upon PBFS introduced in the previous section, this section describes the randomized algo-
rithm PBFSA and shows some theoretical guarantees on expectation. This new algorithm is identical
to PBFS except when computing the value function of a chance node (lines 4 to 17 of Algorithm 3). In
order to decrease the number of decision offspring to consider for each chance node, we sample a certain
number of i.i.d. permutations and consider only the decision nodes associated with these permutations
as illustrated in Figure 14. In particular, PBFSA uses fmin(.) and fmax(.), lower and upper bound functions
on f (.) for offspring of chance nodes. In this paper, we use certain fmin(.) and fmax(.) defined in Equations
(9)-(10), although others could be used. Combined with the fact that our problem has a finite number
of sampling stages, this allows us to independently sample nodes in order to approximate the objective
function. Using concentration inequalities, we can choose the number of samples needed to control the
approximation error.

Since we perform a sampling at each chance node, PBFSA incurs an approximation error at each
chance node. Lemma 5 proves that the total approximation error at the root node is on average the sum
of all approximation errors from the root node to any leaf node. Therefore, consider a node n, then δn is
the number of chance nodes between n and any leaf node in the decision tree. If the target error is ε at
node n, PBFSA “allocates” evenly the remaining error to the next chance nodes, giving εn = ε

δn
error at

each remaining chance node where sampling occurs.

1
5 4

1 5 1

n

. . .nNn(εn)

f
(
nNn(εn)

). . .n1

f (n1)

ni

×

. . . n|Ωn|

×

Figure 14: Illustration of the sampling rule. In this figure, the smallest batch is batch 1; therefore wmin = 1,
and there are 6 containers, thus λn = 6. We have λ∗ = 3 so δn = 1 and thus εn = ε. These values allow us
to compute the number of samples required Nn(εn). If Nn(εn) in less than the total number of offspring
|Ωn| = Cwmin ! = 3!, then we compute only f (.) for sampled nodes. ΨPBFSA

n represents the subset of sampled
nodes colored green and linked with full green arrows, and for which f (.) needs to be computed. Note
that

∣∣∣ΨPBFSA
n

∣∣∣ = Nn(εn). Orange nodes linked with dashed orange arrows are nodes in Ωn \ ΨPBFSA
n , i.e.,

there were not sampled and f (.) does not need to be computed, which is represented here by ×. Finally,
the approximate value of f (n) is the average of the objective values over all sampled nodes.

26



Algorithm 3 PBFSA Algorithm

1: procedure [ f̃ (n)] = PBFSA (n, l, ε)
2: if λn 6 S then f̃ (n) = b(n)
3: else
4: if n is a chance node then start with ΨPBFSA

n = {}. Let wmin be such that λn = C − Kwmin + 1
5: Compute δn = min

{
w ∈ {wmin, . . . ,W}

∣∣∣∑w
u=wmin

Cu > λn − λ∗
}

to get εn =
ε
δn

6: Compute fmax(n) and fmin(n) from Equations (9)-(10) to get Nn(εn) =
π

(
fmax(n) − fmin(n)

)2

2ε2
n

7: if Nn(εn) 6 Cwmin ! then
8: for i = 1, . . . ,Nn(εn) do
9: Sample a random permutation, get corresponding ni ∈ Ωn and ni ← Abstract(ni)

10: if there is m = ni already in ΨPBFSA
n then pn

m ← pn
m + 1

Nn(εn)

11: else if there is m = ni already in the decision tree then add m to ΨPBFSA
n , pn

m = 1
Nn(εn)

12: else add ni to ΨPBFSA
n , pn

ni
= 1

Nn(εn) and compute f̃ (ni) = PBFSA (ni, l, ε − εn)

13: else
14: for ni ∈ Ωn do ni ← Abstract(ni)
15: if there exists m = ni already in ΨPBFSA

n then pn
m ← pn

m + 1
|Ωn|

16: else if there exists m = ni already in decision tree then add m toΨPBFSA
n and pn

m = 1
|Ωn|

17: else add ni to ΨPBFSA
n , pn

ni
= 1
|Ωn|

and compute f̃ (ni) = PBFSA (ni, l, ε − εn)

18: Compute f̃ (n) =
∑

ni∈Ψ
PBFSA
n

pn
ni

f̃ (ni)

19: else n is a decision node
20: if λn 6 CW then f̃ (n) = A∗(n)
21: else Construct∆n by considering all feasible sets of decisions to deliver the target container
22: Compute l(ni) for each ni ∈ ∆n

23: Sort
(
n(1),n(2), . . . ,n(|∆n|)

)
in nondecreasing order of l(.)

24: Compute f̃ (n(1)) = PBFSA
(
n(1), l, ε

)
25: Start with ΓPBFSA

n = {n(1)} and k = 2
26: while k 6 |∆n| and l(n(k)) < min

j=1,...,k−1

{
f̃ (n( j))

}
do n(k) ← Abstract(n(k))

27: if there exists m = n(k) already in the decision tree then add m to ΓPBFSA
n

28: else add n(k) to ΓPBFSA
n and compute f̃ (n(k)) = PBFSA

(
n(k), l, ε

)
29: Update k = k + 1

30: f̃ (n) = r(n) + min
ni∈Γ

PBFSA
n

{
f̃ (ni)

}

Formally, when n is a given chance node, recall that PBFS computes f (n) =
1
|Ωn|

∑
ni∈Ωn

f (ni), where

each ni ∈ Ωn represents one retrieval order (a random permutation) of batch w (if λn = C − Kw + 1).
Instead, PBFSA computes the number of chance nodes between n and a leaf node denoted by δn. If ε is
the target error at node n, the algorithm allocates εn = ε

δn
error for sampling at node n and the remaining
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(i.e., ε − εn) to its offspring (lines 12 and 17 of Algorithm 3). Using εn, we compute Nn(εn) and obtain a
subset Ψn ⊂ Ωn from Nn(εn) offspring drawn i.i.d. uniformly from Ωn. The important part is to define

Nn(εn), such that f̃ (n) =
1
|Ψn|

∑
m∈Ψn

f (m) is a “good” approximation of f (n), i.e.,
∣∣∣ f̃ (n) − f (n)

∣∣∣ is bounded

by ε on average. Note that if Nn(εn) > Cwmin !, we would need to sample more elements than the total
number of offspring of n, and thus we do not sample (lines 14-17 of Algorithm 3).

PBFSA takes three input arguments, the configuration n for which we want to evaluate f , a valid
lower bound l and an upper bound ε > 0 on the total expected “error” ensured by the algorithm. It
outputs f̃ (n), which is a randomized approximation of f (n). Because of the samplings performed in
line 9 in Algorithm 3, the output of PBFSA is random. The average error incurred by the algorithm is
E

[∣∣∣ f̃ (n) − f (n)
∣∣∣], where the expectation is taken over the aforementioned samplings. Our main result

(Lemma 5) states that PBFSA ensures E
[∣∣∣ f̃ (n) − f (n)

∣∣∣] 6 ε, in other words, PBFSA guarantees an average
error of at most ε. The proof of Lemma 5 can be found in Appendix B.

Lemma 5. Let n be a configuration with λn > 0 containers, l be a valid lower bound function, and ε > 0. If
f̃ (n) = PBFSA(n, l, ε), then

E
[∣∣∣ f̃ (n) − f (n)

∣∣∣] 6 ε.
Sketch of the proof. Lemma 5 is proven by backtracking from leaf nodes to the root node, i.e., consider a
node n at level λn, then the proof is done by induction on λn. To show that the expected absolute value
of the error at node n (i.e., f̃ (n) − f (n)) is bounded by ε, we actually show that the expected positive and
negative parts of the error are both bounded by ε/2, which implies our result.

First, we consider the case where n is a decision node and we show that there is no additional error
incurred by PBFSA at such node, i.e., if all the offspring of node n (in ΓPBFSA

n and at level λn − 1) have the
expected positive and negative parts of their error bounded by ε/2 (the induction hypothesis), then the
expected positive and negative parts of the error at node n are also bounded by ε/2.

Second, we consider the case where n is a chance node, and we show that an additional error is
incurred due to sampling. Using the lemmas proven below, the positive and negative parts of this
additional error are bounded by εn/2. Since all the offspring of node n (in ΨPBFSA

n ) are decision nodes at
level λn and PBFSA sets a target error of (ε − εn)/2 for these nodes, then the first part of the proof shows
that the positive and negative parts of the error of each offspring of node n are bounded by (ε − εn)/2.
Combining both observations leads to n having the positive and negative parts of its error bounded by
ε/2, which proves the lemma. �

4.1 Hoeffding’s Inequality Applied to the SCRP

To prove this result, we use Hoeffding’s inequality to compute the number of samples to ensure
probabilistic guarantees. We first state the well-known inequality and a direct corollary. Proofs of
Corollary 1, Lemma 6, and Lemma 7 can be found in Appendix C.

Theorem 1 (Hoeffding’s inequality). Let X ∈ [xmin, xmax] be a real-valued bounded random variable with mean

value E [X]. Let N ∈N and (X1, . . . ,XN) be N i.i.d. samples of X. If X =
1
N

N∑
i=1

Xi, then we have

∀δ > 0 , P
(
X − E [X] > δ

)
6 exp

(
−2Nδ2

(xmax − xmin)2

)
, (5)
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and

∀δ > 0 , P
(
X − E [X] < −δ

)
6 exp

(
−2Nδ2

(xmax − xmin)2

)
. (6)

Corollary 1. Let X ∈ [xmin, xmax] be a real-valued bounded random variable with mean value E [X]. Let N ∈ N

and (X1, . . . ,XN) be N i.i.d. samples of X. If X =
1
N

N∑
i=1

Xi, then ∀ε > 0 such that N >
π (xmax − xmin)2

2ε2 , we have

E
[(

X − E [X]
)+

]
6
ε
2
, (7)

E
[(

X − E [X]
)−]
6
ε
2
, (8)

where x+ = max{x, 0} (resp. x− = −min{x, 0}) is the positive (resp. negative) part of x.

To use Hoeffding’s inequality, we need to define lower ( fmin) and upper ( fmax) bound functions, such
that for each chance node n, fmin(n) 6 min

ni∈Ωn

{
f (ni)

}
and fmax(n) > max

ni∈Ωn

{
f (ni)

}
.

Lemma 6. Let n be a chance node, if
fmin(n) = min

ni∈Ωn
{b(ni)} , (9)

and

fmax(n) = min
{

((λn − S) (T − 1))+ + (min {S, λn} − 1) ,
(
2
⌈
λn

S

⌉
− 1

)
max
ni∈Ωn

{b(ni)}
}
, (10)

then
fmin(n) 6 min

ni∈Ωn

{
f (ni)

}
and fmax(n) > max

ni∈Ωn

{
f (ni)

}
.

Notice that the previous lemma involves computing min
ni∈Ωn

{b(ni)} and max
ni∈Ωn

{b(ni)}. The following

corollary provides an efficient way to compute these values.

Lemma 7. Let n be a chance node, and wmin ∈ {1, . . . ,W} be such that λn = C − Kwmin + 1 (i.e., the minimum
batch in n). For each Stack s of n with Hs > 1 containers, let (cs

h)h=1,...,Hs be the containers in s, where cs
1 is the

container at the bottom and cs
Hs is the container at the top (see Figure 11, for the case H = Hs). Finally, consider

Cs
wmin

=
∣∣∣∣{cs

h = Kwmin , h = 1, . . . ,Hs
}∣∣∣∣. Then we have

min
ni∈Ωn

{b(ni)} =
∑

s=1,...,S
Hs>1


Hs
− Cs

wmin
−

∑
h=1,...,Hs

cs
h,Kwmin

1

{
cs

h = min
i=1,...,h

{
cs

i

}}
h∑

i=1

1

{
cs

h = cs
i

}

, (11)

and

max
ni∈Ωn

{b(ni)} =
∑

s=1,...,S
Hs>1


Hs
−

∑
h=1,...,Hs

cs
h,Kwmin

1

{
cs

h = min
i=1,...,h

{
cs

i

}}
h∑

i=1

1

{
cs

h = cs
i

}

. (12)
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Non-uniform case. Similar to the blocking lower bound, we can extend Lemma 7 to the case where
probabilities are not uniform across retrieval orders. Recall that qcs

h
denotes the probability that cs

h is the
first one to be retrieved among the ones positioned below in its stack and with the same label. Then we
have

min
ni∈Ωn

{b(ni)} =
∑

s=1,...,S
Hs>1

Hs
− Cs

wmin
−

∑
h=1,...,Hs

cs
h,Kwmin

qcs
h
1

{
cs

h = min
i=1,...,h

{
cs

i

}} ,
and

max
ni∈Ωn

{b(ni)} =
∑

s=1,...,S
Hs>1

Hs
−

∑
h=1,...,Hs

cs
h,Kwmin

qcs
h
1

{
cs

h = min
i=1,...,h

{
cs

i

}} .

5 Computational Experiments

Having introduced lower and upper bounds, PBFS, PBFSA, and theoretical guarantees in previous
sections, we present several experimental results in this section to understand the effectiveness of our
algorithms for the SCRP. For clarity, we refer to the set of instances from Ku and Arthanari (2016) as the
existing dataset. We present four sets of experiments:

1. Based on instances from the existing dataset, which have relatively small batches, we test the PBFS
algorithm, as well as the two new heuristics and our lower bounds.

2. We slightly modify the existing dataset to obtain the modified dataset, in order to obtain instances
with relatively larger batches. We test the efficiency of PBFSA on this modified dataset.

3. Based on the existing dataset, we show that PBFS improves on the algorithm proposed in Ku and
Arthanari (2016) for the online model. Moreover, the two new heuristics (EM and EG) outperform
the ERI algorithm on expectation for the majority of the instances in the dataset.

4. We change the existing dataset by considering that all containers belong to a unique batch. We
show strong computational evidence to support Conjecture 1, which states that the leveling policy
is optimal for the SCRP under the online model with a unique batch.

All experiments are performed on a MacBook Pro with 2.2 GHz Intel Core i7 processor and 8.00 GB of
RAM, and the programming language is MATLAB 2016a. Finally, all results and instances used in this
section are available at https://github.com/vgalle/StochasticCRP.

Implementation of heuristics.

1. Computing the number of relocations using b when there are S containers or less: In the retrieval
process, when there are S containers or fewer remaining in the configuration, the expected
number of relocations performed by ERI, EM, EG, and L is computed using b. This is motivated
by the following observation: ERI, EM, EG, and L are optimal when there are S containers or
fewer remaining in the configuration, and Lemma 3 shows that the optimal expected number of
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relocations in this case is equal to b. Therefore, for all heuristics (except Random), instead of running
simulations until there are no containers left, we stop when there are S containers left and compute
the expected number of relocations using b instead.

2. Estimating the expected number of relocations using sampling: To estimate the exact objective
value for a given heuristic, one would have to consider all possible retrieval scenarios. Instead, for
each heuristic unless specified otherwise, we report the average over 5000 samples (of retrieval
orders) for each instance, where samples are uniformly drawn at random.

Existing dataset description. The full description of the dataset can be found in Ku and Arthanari
(2016), and the original data set is available at http://crp-timewindow.blogspot.com. Note that:

• Configuration sizes vary from T = 3, . . . , 6 tiers, and S = 5, . . . , 10 stacks.

• Two occupancy rates are considered, 50 and 67 percent. The occupancy rate (µ ∈ [0, 1]) is defined
such that the initial number of containers is C = round

(
µ × S × T

)
, where round(x) rounds x to the

closest integer. Therefore, a given triplet (T,S, µ) is equivalent to a given triplet (T,S,C), and note
that if C = round (0.67 × S × T), the condition 0 6 C 6 ST − (T − 1) is satisfied.

• Given a configuration size (T and S) and an occupancy rate (µ) resulting in a given initial number
of containers (C), the dataset includes 30 different initial configurations.

• For all 1,440 instances, the ratio between the number of batches and C is taken to be around half,
i.e., there are on average two containers per batch, which is the smallest size for a batch.

In all our experiments, the time limit is set to an hour, and the first look-ahead lower bound b1 is
used as input for both PBFS and PBFSA. All instances are solved by heuristics and lower bounds within
seconds or less.

5.1 Experiment 1: Batch Model with Small Batches

Table 1 gives a summary of the results as follows: "indicates that all 30 instances are solved optimally
by PBFS. In this case, the average solution time to solve these instances is given in seconds. Otherwise,
the number of instances solved optimally is provided in red and in the form x/30. This table shows the
efficiency of PBFS as it can solve all instances except two, for T = 3 and T = 4. Most important, the
average time to solve these instances is under 10 seconds for these problem sizes. Since many ports
today have a maximum tier requirement of 4 and need fast solutions, PBFS could be used in practice in
the case of small batches. However, for T = 5 and T = 6, PBFS cannot solve all instances optimally in a
timely manner. This suggests that, as the problem grows slightly, given instances become very hard to
solve, which should not be a surprise, given the NP-hardness of the problem. To avoid such situations
in real operations, heuristics can be used to provide a “good” suboptimal solution (good in the sense of
being not too far from optimality). Therefore, we want to evaluate the performance of these heuristics in
order to know which one should be used in real operations.

We measure the performance of heuristics and the tightness of lower bounds in Tables 5 and 6.
Concerning lower bounds, b encompasses a significant number of relocations. Adding unavoidable
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T 3 4 5 6
S Fill rate 50 percent 67 percent 50 percent 67 percent 50 percent 67 percent 50 percent 67 percent
5 C 8 10 10 13 13 17 15 20

Solved " " " " " 28/30 " 15/30
Time (s) 0.01 0.02 0.03 0.12 0.17 5.17

6 C 9 12 12 16 15 20 18 24
Solved " " " " " 25/30 " 14/30
Time (s) 0.01 0.03 0.04 0.86 2.90 15.94

7 C 11 14 14 19 18 23 21 28
Solved " " " " " 24/30 23/30 5/30
Time (s) 0.02 0.04 0.04 0.83 1.37

8 C 12 16 16 21 20 27 24 32
Solved " " " " " 20/30 22/30 5/30
Time (s) 0.01 0.06 0.16 10.04 6.84

9 C 14 18 18 24 23 30 27 36
Solved " " " " 29/30 10/30 19/30 2/30
Time (s) 0.03 0.10 0.37 8.84

10 C 15 20 20 27 25 34 30 40
Solved " " " 28/30 29/30 12/30 22/30 2/30
Time (s) 0.03 0.10 0.54

Table 1: Instances solved by PBFS in the batch model with small batches.

“bad” relocations in b1 and b2 improves the lower bound slightly. But experiments seem to confirm that
b2(n) − b1(n) 6 b1(n) − b(n) holds, supporting our intuition that the relative increase of lower bounds
bk(n) − bk−1(n) decreases with k.

Concerning heuristics, EG and EM clearly outperform ERI as they result in lower expected numbers
of relocations. When we have access to the optimal solutions, both heuristics are on average at most
2 percent more than the optimal solution. We expect this behavior to be similar for larger instances,
however we only have access to lower bounds to evaluate their performances. In this case, heuristics are
on average at most 11 percent more than b2, hence at most 11 percent from the optimal solution (even
though we believe that this number is very conservative, as our lower bounds are not “tight”). Therefore,
both EG and EM appear to be good solutions for the SCRP under the batch model with small batches. In
this case, we recommend using EM for its simplicity of implementation and its understandability.

5.2 Experiment 2: Batch Model with Larger Batches

5.2.1 Modifying existing instances

For the sake of reproducibility, we use the existing set of instances, but slightly modify it to consider
larger batches. In order to create these instances, for each original instance n, consider n′ with the same
containers in the same configuration. But, if w is the batch of a container c in n, then we take the batch
of c in n′ to be w′ =

⌈
w
γ

⌉
, where γ > 1, i.e., we merge γ batches together. In these experiments, we take

γ = 2, which implies that batches have an average size of four.
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T 3 4 5 6
S Fill rate 50 percent 67 percent 50 percent 67 percent 50 percent 67 percent 50 percent 67 percent
5 C 8 10 10 13 13 17 15 20

Solved " " " " " 21/30 " 3/30
Time (s) 0.08 0.29 0.14 4.55 3.20 72.70

6 C 9 12 12 16 15 20 18 24
Solved " " " " " 18/30 27/30 1/30
Time (s) 0.08 0.47 0.25 126.37 14.74

7 C 11 14 14 19 18 23 21 28
Solved " " " 29/30 " 9/30 14/30 0/30
Time (s) 0.13 0.71 0.58 17.74

8 C 12 16 16 21 20 27 24 32
Solved " " " 28/30 29/30 6/30 17/30 1/30
Time (s) 0.08 1.67 1.26

9 C 14 18 18 24 23 30 27 36
Solved " " " 26/30 25/30 5/30 15/30 0/30
Time (s) 0.13 1.49 1.47

10 C 15 20 20 27 25 34 30 40
Solved " " " 22/30 29/30 7/30 14/30 0/30
Time (s) 0.17 0.79 3.10

Table 2: Instances solved by PBFSA in the batch model with larger batches.

5.2.2 Target error ε

To set our target error, we consider the following. Let n0 be a given instance, and set ε =
b(n0)

2 . In
this case, we know that ε 6 f (n0)

2 , which implies that we are making an error of at most 50 percent. Note
that this error is very conservative due to two major things: first, b(n0) is not necessarily representative
of f (n0), especially if n0 has many containers. Second, the number of samples given by Hoeffding’s
inequality is also very conservative, probably making our approximation substantially more accurate
than what we can theoretically prove.

5.2.3 Results

Results are summarized in Table 2. Similarly to Table 1, "indicates that all 30 instances are solved
approximately by PBFSA within the given expected error. In this case, the average solution time to
solve these instances is given in seconds. Otherwise, the number of instances solved is provided in red
and in the form x/30. This table shows that PBFSA presents several advantages. First, it solves most of
instances with T = 4 and S 6 9 approximately within two minutes, while we note that PBFS was not
able to solve most of these. Moreover, as can be seen in Tables 7 and 8, PBFSA still outperforms the best
heuristics despite the fact that we only set the theoretical guarantee to 50 percent of optimality. Together,
these two advantages show the practicality of PBFSA for problem sizes typically encountered in real
ports. Moreover, we note that increasing the batch size appears to make the problem significantly more
complicated to solve as we can solve optimally larger instances in Experiment 1 (see Table 1). Finally, we
remark that similar conclusions of Experiment 1 can be drawn for lower and upper bounds (see Tables 7
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and 8).

5.3 Experiment 3: Online Model and Comparison with Ku and Arthanari (2016)

Table 3 gives a summary similar to the two previous experiments. In addition, we report the results
of Ku and Arthanari (2016) who set a time limit of eight hours for each instance. In this table,X(X) indicates
that all 30 instances are solved optimally by both PBFS and Ku and Arthanari (2016). In this case, the
average solution time in seconds to solve these instances is given for PBFS and for Ku and Arthanari
(2016) in parentheses. "indicates that all 30 instances are solved optimally only by PBFS but not by Ku
and Arthanari (2016). In this case, only the average solution time to solve these instances with PBFS is
given in seconds. Otherwise, the number of instances solved by PBFS is provided in red and in the form
x/30.

T 3 4 5 6
S Fill rate 50 percent 67 percent 50 percent 67 percent 50 percent 67 percent 50 percent 67 percent
5 C 8 10 10 13 13 17 15 20

Solved X(X) " X(X) " X(X) 28/30 " 18/30
Time (s) 0.01 (0.02) 0.02 0.01 (2.51) 0.09 0.16 (2483.30) 3.74

6 C 9 12 12 16 15 20 18 24
Solved X(X) " X(X) " " 25/30 " 15/30
Time 0.01 (0.01) 0.04 0.06 (139.08) 0.81 1.85 14.92

7 C 11 14 14 19 18 23 21 28
Solved X(X) " X(X) " " 24/30 23/30 5/30
Time (s) 0.02 (0.33) 0.04 0.04 (207.62) 0.67 1.38

8 C 12 16 16 21 20 27 24 32
Solved X(X) " " " " 20/30 22/30 5/30
Time (s) 0.01 (0.33) 0.05 0.10 8.29 5.85

9 C 14 18 18 24 23 30 27 36
Solved X(X) " " " 29/30 10/30 19/30 2/30
Time (s) 0.02 (32.24) 0.09 0.38 7.26

10 C 15 20 20 27 25 34 30 40
Solved X(X) " " 28/30 29/30 12/30 16/30 2/30
Time (s) 0.03 (58.85) 0.08 0.52

Table 3: Instances solved by PBFS and Ku and Arthanari (2016) in the online model with small batch.

Results show strong evidence that our solution significantly improves the best existing results for the
SCRP under the online model, given that we solve many larger instances optimally. Furthermore, it also
outperforms the most recent algorithm in solution time for the problem sizes it can solve. It appears that,
for problems for which we can solve all (or almost all) instances, most instances are “easy” to solve as the
algorithm finds a solution within seconds. However, as in the batch model, there exist some instances for
which the optimal solution still requires an exponential number of nodes, which makes our algorithm
not tractable.

In Tables 9 and 10, we also report in parentheses the averages for ERI and Random found by Ku and
Arthanari (2016). The results for Random are consistent. However, we find significantly better results for
our implementation of ERI. This is unexpected since the only difference between the two implementations
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is the use of lower bound b, when the configuration has fewer than S containers remaining. Nevertheless,
ERI should also be optimal in this case, as it reduces to heuristic L. So this should not affect the expected
number of relocations, and we cannot explain this difference. Finally, we point out that the results are
quite similar to those in Experiment 1. Indeed, the existing data set has relatively small batches (on
average 2 containers), which inherently makes the two models, batch and online, very close to each
other.

5.4 Experiment 4: Online Model with a Unique Batch

T 3 4 5 6
S Fill rate 50 percent 67 percent 50 percent 67 percent 50 percent 67 percent 50 percent 67 percent
5 C 8 10 10 13 13 17 15 20

PBFS 2.08 3.33 3.54 6.53 6.56 12.05 9.13 17.28
L 2.08 3.33 3.54 6.52 6.57 12.06 9.14 17.29

6 C 9 12 12 16 15 20 18 24
PBFS 2.10 4.04 4.23 8.02 7.01 13.48 10.73 20.13
L 2.10 4.04 4.23 8.02 7.01 13.48 10.73 20.13

7 C 11 14 14 19 18 23 21 28
PBFS 2.69 4.60 4.82 9.55 8.58 14.75 12.22 23.14
L 2.69 4.61 4.82 9.55 8.58 14.74 12.22 23.14

8 C 12 16 16 21 20 27 24 32
PBFS 2.61 5.19 5.51 9.96 9.12 17.75 13.83 -
L 2.62 5.19 5.51 9.95 9.12 17.75 13.83 26.04

9 C 14 18 18 24 23 30 27 36
PBFS 3.31 5.72 6.10 11.58 10.89 19.15 - -
L 3.31 5.72 6.10 11.58 10.89 19.14 15.40 28.84

10 C 15 20 20 27 25 34 30 40
PBFS 3.36 6.38 6.68 12.98 11.13 22.07 - -
L 3.36 6.38 6.67 12.99 11.13 22.06 16.87 31.77

Table 4: Instances solved with PBFS and heuristic L in the online model with a unique batch.

In this experiment, we consider the existing dataset, but assign all containers into a unique batch
(W = 1). We consider the SCRP under the online model, where containers are revealed one at a time.
Note that, in this case, each container is equally likely to be retrieved, and it is equivalent to know
no-information about containers relative retrieval order. For each instance, we solve it twice: first using
PBFS, and then using heuristic L, for which we sample 10,000 scenarios (this is different from the 5000
samples considered in previous experiments). We report the results in Table 4. In this table, for each
problem size, we report the expected optimal number of relocations averaged over 30 instances. “-”
means that all 30 instances could not be solved optimally with PBFS within the given time limit of an
hour. Note that the expected number of relocations using heuristic L reported in this experiment might
be less than the one of PBFS; this is only due to the fact that we are sampling. Intuitively, L should be
the optimal solution in this setting, and this experiment shows strong evidence that the next conjecture
holds.
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Conjecture 1. Consider a configuration n with a unique batch. Let f o(n) be the minimum expected number of
relocations to empty n under the online model, and let f o,L(n) be the expected number of relocations performed by
the leveling heuristic under the online model, then

f o(n) = f o,L(n). (13)

This conjecture could also be made in the dynamic case, when containers arrive to be stacked. These
results would have important ramifications for port operations, namely: the optimal policy to minimize
relocations, when no information is given in advance, is leveling configurations.

6 Discussion

Managing relocation moves is one of the main challenges in the storage yard of container terminals,
because it directly affects the costs and efficiency of yard operations. The container relocation problem,
notorious for its computational intractability, addresses this issue. In this paper, we extend the CRP to
the more practical case in which the retrieval order of containers is not known far in advance. First,
we introduce a new stochastic model, called the batch model, show the applicability of this model,
and compare it theoretically with the existing model of Zhao and Goodchild (2010). Then, we derive
lower bounds and fast and efficient heuristics for the SCRP. Subsequently, we develop two novel algo-
rithms (PBFS and PBFSA) to solve the stochastic CRP in different settings. Efficiencies of all algorithms
are supported through computational experiments, for which all results are made available online at
https://github.com/vgalle/StochasticCRP. Finally, using our solution methods and based on extensive
experiments, we conjecture the optimality of the simple leveling heuristic in the online stochastic setting.
More generally, the methods developed in this paper apply to multistage stochastic optimization prob-
lems, where the number of stages is finite, the set of feasible actions at each stage is finite, the objective
function is bounded, and bounds on the objective function can be easily computed.

Future work could include the proof of Conjecture 1. Important future work can also be done on the
optimal design of time windows for a TAS. On the one hand, small time windows imply more information
on the retrieval sequence, hence higher operational efficiency of port operators. On the other hand, large
time windows insure higher flexibility for truck drivers and a high rate of on-time arrivals. To balance
this trade-off, one would need to quantify two important metrics with respect to the expected number
of relocations: the “value of information” and the assignment of containers to “wrong” batches. Finally,
in the grand scheme of port operations, the study of stacking and retrieving simultaneously, as well as
the extension in the row dimension of blocks, is important for future studies of operations to take into
account.
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Hakan Akyüz, M. and Lee, C.-Y. (2014). A mathematical formulation and efficient heuristics for the
dynamic container relocation problem. Naval Research Logistics (NRL), 61(2):101–118.

Kim, K. H. and Hong, G.-P. (2006). A heuristic rule for relocating blocks. Computers & Operations Research,
33(4):940–954.

Ku, D. and Arthanari, T. S. (2016). Container relocation problem with time windows for container
departure. European Journal of Operational Research, 252(3):1031–1039.

Lehnfeld, J. and Knust, S. (2014). Loading, unloading and premarshalling of stacks in storage areas:
Survey and classification. European Journal of Operational Research, 239(2):297–312.

Morais, P. and Lord, E. (2006). Terminal Appointment System Study. Technical Report, Transportation
Development Center of Transport Canada. (Accessed 11.01.2017).

Murty, K. G., Wan, Y.-w., Liu, J., Tseng, M. M., Leung, E., Lai, K.-K., and Chiu, H. W. (2005). Hongkong
International Terminals gains elastic capacity using a data-intensive decision-support system. Interfaces,
35(1):61–75.

37

http://www.joc.com/port-news/us-ports/port-new-york-and-new-jersey/us-ports-move-toward-truck-appointment-model_20150427.html
http://arxiv.org/abs/1505.04229
http://arxiv.org/abs/1505.04229
https://arxiv.org/pdf/1503.01535
https://arxiv.org/pdf/1503.01535
https://doi.org/10.1016/j.ejor.2011.12.039
https://doi.org/10.1016/j.ejor.2011.12.039
http://dtci.ca/wp-content/uploads/2011/10/Container-Reservation-Systems-Web.pdf
https://doi.org/10.1016/j.eswa.2015.04.021
https://doi.org/10.1016/j.eswa.2015.04.021
http://dx.doi.org/10.1016/j.orl.2016.08.006
http://dx.doi.org/10.1016/j.orl.2016.08.006
https://doi.org/10.1016/j.trd.2007.06.004
https://doi.org/10.1016/j.trd.2007.06.004
http://dx.doi.org/10.1002/nav.21569
http://dx.doi.org/10.1002/nav.21569
http://dx.doi.org/10.1016/j.cor.2004.08.005
https://doi.org/10.1016/j.ejor.2016.01.055
https://doi.org/10.1016/j.ejor.2016.01.055
https://doi.org/10.1016/j.ejor.2014.03.011
https://doi.org/10.1016/j.ejor.2014.03.011
https://www.tc.gc.ca/media/documents/policy/14570e.pdf
http://dx.doi/abs/10.1287/inte.1040.0120
http://dx.doi/abs/10.1287/inte.1040.0120


Petering, M. E. and Hussein, M. I. (2013). A new mixed integer program and extended look-ahead
heuristic algorithm for the block relocation problem. European Journal of Operational Research, 231(1):120–
130.

Phillips, E. E. (2015). Southern California Ports to try Trucking Appointment System. The Wall Street
Journal, 32(3):593–615. (Accessed 11.01.2017).

Sennott, L. I. (2009). Stochastic dynamic programming and the control of queueing systems, volume 504. John
Wiley & Sons.

Stahlbock, R. and Voß, S. (2008). Operations research at container terminals: a literature update. OR
Spectrum, 30(1):1–52.

Steenken, D., Voß, S., and Stahlbock, R. (2004). Container terminal operation and operations research - a
classification and literature review. OR Spectrum, 26(1):3–49.

Tanaka, S. and Takii, K. (2016). A Faster Branch-and-Bound Algorithm for the Block Relocation Problem.
IEEE Transactions on Automation Science and Engineering, 13(1):181–190.

Tierney, K. and Voß, S. (2016). Solving the Robust Container Pre-Marshalling Problem. In Computational
Logistics: 7th International Conference, ICCL 2016, Lisbon, Portugal, September 7-9, 2016, Proceedings, pages
131–145.
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A Theoretical and Computational Comparison of the Batch and the Online
Models

A.1 Theoretical Comparison: Proof of Lemma 1

Lemma 1. Let y be a given initial configuration, then we have

f
(
y
)
6 f o (y) .

Proof. We prove this lemma by induction on the number of batches W. The lemma clearly holds if y is
empty (i.e., W = 0). Now consider W > 1 and C1 > 1. For the sake of clarity of the proof, we define the
following notation:

∀ d ∈ {1, . . . ,C1} ,


y

ζ1,...,ζd
−−−−−→ xd

1

xd
k

ak
−→ xd

k+1, if d > 1 , ∀ k ∈ {1, . . . , d − 1}

xd
k

ak
−→ yd

k−d+2 , ∀ k ∈ {d, . . . ,C}

yd
k−d+1

ζk
−→ xd

k , ∀ k ∈ {d + 1, . . . ,C}.

(14)

These notations correspond to the following process: the first d containers to be retrieved are all revealed
at once. Then decisions to retrieve these d containers are made. Afterwards, each of the C − d remaining
containers is revealed one at a time (as in the online model). Under this revelation process, the minimum
expected number of relocations is given by

f d (
y
)

= E
ζ1,...,ζd

 min
a1,...,ad

 d∑
k=1

r
(
xd

k

)
+ f o

(
yd

2

)
 , ∀ d ∈ {1, . . . ,C1}.

Moreover, using the recursion formula from the online model, we have

f o
(
yd

2

)
= E
ζd

[
min

ad

{
r
(
xd

d+1

)
+ f o

(
yd

3

)}]
.

In particular, by definition of the online model, we have f o (y) = f 1 (
y
)
.

Using these relations, let us prove that

f d (
y
)
6 f d−1 (

y
)
, ∀ d ∈ {2, . . . ,C1}. (15)
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Let d ∈ {2, . . . ,C1}, we have

f d (
y
)

= E
ζ1,...,ζd

 min
a1,...,ad

 d∑
k=1

r
(
xd

k

)
+ f o

(
yd

2

)


= E
ζ1,...,ζd−1

Eζd

 min
a1,...,ad−1

min
ad

 d∑
k=1

r
(
xd

k

)
+ f o

(
yd

2

)


 (16)

6 E
ζ1,...,ζd−1

 min
a1,...,ad−1

Eζd

min
ad

 d∑
k=1

r
(
xd−1

k

)
+ f o

(
yd−1

3

)


 (17)

= E
ζ1,...,ζd−1

 min
a1,...,ad−1

d−1∑
k=1

r
(
xd−1

k

)
+ E
ζd

[
min

ad

{
r
(
xd−1

d

)
+ f o

(
yd−1

3

)}]
 (18)

= E
ζ1,...,ζd−1

 min
a1,...,ad−1

d−1∑
k=1

r
(
xd−1

k

)
+ f o

(
yd−1

2

)
 = f d−1 (

y
)
,

where the equality (18) holds since xd−1
k for k ∈ {1, . . . , d − 1} does not depend on ad and ζd. Finally, the

inequality holds because we have E [min {Z1, . . . ,Zm}] 6 min {E [Z1, . . . ,Zm]} for any Z1, . . . ,Zm random
variables. Note that we changed xd

k in xd−1
k and yd

2 in yd−1
3 . This change is necessary to stay consistent

with the definition of Equation (14). Indeed, the order between the expectations and the minimums in
Equation (16) implies that the process of the first d retrievals corresponds to

y
ζ1,...,ζd
−−−−−→ xd

1
a1
−→ xd

2
a2
−→ . . .

ad−1
−−−→ xd

d
ad
−→ yd

2,

whereas the order between the expectations and the minimums in Equation (17) corresponds to the
following process for the first d retrievals:

y
ζ1,...,ζd−1
−−−−−−→ xd−1

1
a1
−→ xd−1

2
a2
−→ . . .

ad−1
−−−→ yd−1

2
ζd
−→ xd−1

d
ad
−→ yd−1

3 .

Recall Equation (1) and apply it with w = 1 (note that K1 = 1 thus K1 + C1 − 1 = C1) to get

f
(
y
)

= E
ζ1,...,ζC1

 min
a1,...,aC1

 C1∑
k=1

r (xk) + f
(
y2

)
 .

By induction, for all configuration y2 with W − 1 batches we have f
(
y2

)
6 f o (y2

)
, thus

f
(
y
)

= E
ζ1,...,ζC1

 min
a1,...,aC1

 C1∑
k=1

r (xk) + f
(
y2

)
 6 E

ζ1,...,ζC1

 min
a1,...,aC1

 C1∑
k=1

r
(
xC1

k

)
+ f o

(
yC1

2

)
 = f C1

(
y
)
,

where we replaced xk by xC1
k and y2 by yC1

2 because, on the right-hand side of the inequality, the revelation
process after the first C1 containers is the online model. Finally, since f o (y) = f 1 (

y
)
, by applying Equation

(15) for each value of d ∈ {C1, . . . , 2}, we complete the proof as

f
(
y
)
6 f C1

(
y
)
6 f C1−1 (

y
)
6 . . . 6 f 2 (

y
)
6 f 1 (

y
)

= f o (y) .
�

As a final remark, Lemma 1 is tight in the general setting. Indeed, there exists an initial configuration
y for which f (y) = f o(y). For instance, consider the configuration in Figure 4a, then we have f (y) =

f o(y) = 13/6.
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A.2 Computational Comparison

There also exist configurations for which f (y) < f o(y). The difference between these two values
represents the value of taking into account available information (if possible).

To show a positive difference, we could have compared Experiments 1 and 3. However, since the
average batch size is two, these experiments do not show a positive difference between both models.
Another possibility would have been to use the instances from Experiment 2. However, as we previously
mentioned, such instances are hard to solve optimally and not approximately.

Instead, we consider another set of simpler instances randomly generated: 100 instances with T = 4
tiers, S = 4 stacks, and C = 12 containers. Each instance has W = 3 batches and each batch has Cw = 4
containers (for w = 1, 2, 3). We solve each of these 100 instances under the batch and the online models.
The code and detailed results are available at https://github.com/vgalle/StochasticCRP. We are especially

interested about
f o(.) − f (.)

f (.)
× 100, which reveals the percentage difference of relocations between the

batch and the online models.
On average over the 100 instances, the optimal expected number of relocations under the batch model

is 6.526 and under the online model 6.61, hence giving a difference of 0.084. We observe here that this
difference represents more than 1.287 percent of the optimal solution under the batch model, which is
quite significant considering the fact that heuristic EM experimentally lies within 2 percent above the
optimal solution. In addition, we noticed that for 25 of these instances, this difference was more than 2
percent with a maximum of about 4 percent (see Figure 15a).

0 0.5 1 1.5 2 2.5 3 3.5 4

15a T = 4, S = 4, C = 12, W = 3 and Cw = 4
(for w = 1, 2, 3).

0 2 4 6 8 10

15b T = 4, S = 4, C = 12, W = 2 and Cw = 6
(for w = 1, 2).

Figure 15: Distributions of percentage difference between the batch and the online models from 100
randomly generated instances.

We also consider 100 instances for which T = 4, S = 4, and C = 12, but now W = 2 and each batch
has Cw = 6 (for w = 1, 2). Figure 15b shows that this relative difference appears to increase when the
batch size increases. Indeed, the average difference is about 4.251 percent (batch: 6.751, online: 7.038,
difference: 0.287), with 25 instances having a difference of more than 5.3 percent.
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B Proof of Lemma 5

Lemma 5. Let n be a configuration with λn > 0 containers, l be a valid lower bound function, and ε > 0. If
f̃ (n) = PBFSA(n, l, ε), then

E
[∣∣∣ f̃ (n) − f (n)

∣∣∣] 6 ε.
Proof. The proof is by induction on λn. Throughout the proof, we use the same notations as the ones
introduced in Algorithm 3. We say that f̃ verifies Conditions (A) and (B) at node n, if it verifies respectively
the first and second inequalities below:

E
[(

f̃ (n) − f (n)
)+

]
6
ε
2

and E
[(

f̃ (n) − f (n)
)−]
6
ε
2
.

Note that if f̃ verifies Conditions (A) and (B) at node n, then E
[∣∣∣ f̃ (n) − f (n)

∣∣∣] 6 ε, which would prove the
lemma. Given ε > 0, and l a valid lower bound, the induction hypothesis is:

If f̃ (n) = PBFSA(n, l, ε), then f̃ verifies Conditions (A) and (B) at node n.

First, if λn 6 S, then f̃ (n) = b(n) = f (n), and therefore, f̃ verifies Conditions (A) and (B) at node n. In
this case, f̃ (n) is actually deterministic since no sampling is performed by PBFSA. From now on, consider
n such that λn > S.

Analysis of error at decision nodes

Let n be a decision node such that f̃ (n) = PBFSA(n, l, ε) and λn > S. First, if S < λn 6 CW,
then f̃ (n) = A∗(n) = f (n), hence f̃ verifies Conditions (A) and (B) at n.

If λn > max{S,CW}, consider ñ = argmin
ni∈Γ

PBFSA
n

{
f̃ (ni)

}
and n∗ = argmin

ni∈∆n

{
f (ni)

}
. Note that f̃ (n)− f (n) =

f̃ (ñ)− f (n∗) almost surely (a.s.), and by definition, ñ and n∗ are both such thatλñ = λn∗ = λn−1 < λn.
Consider the following measurable event:

E =
{

f̃ (n) − f (n) = f̃ (ñ) − f (n∗) > 0
}
. (19)

• Conditioned on E, we have
(

f̃ (n) − f (n)
)−

= 0 a.s., thus

E
[(

f̃ (n) − f (n)
)− ∣∣∣∣ E] = 0. (20)

Now let us show that conditioned on E, n∗ ∈ ΓPBFSA
n a.s.; we suppose by contradiction that

a.s. n∗ < ΓPBFSA
n . If k =

∣∣∣ΓPBFSA
n

∣∣∣, then k < |∆n| a.s., and min
j=1,...,k

{
f̃ (n( j))

}
6 l

(
n(k+1)

)
a.s. By

definition f̃ (ñ) = min
j=1,...,k

{
f̃ (n( j))

}
so f̃ (ñ) 6 l

(
n(k+1)

)
a.s. Since n∗ < ΓPBFSA

n , then there exists

k∗ ∈ {k + 1, . . . , |∆n|} such that n∗ = n(k∗). Since
(
n(i)

)
i∈{1,...,|∆n|}

are ordered by nondecreasing

l(.), we have l
(
n(k+1)

)
6 l

(
n(k∗)

)
= l (n∗). Therefore f̃ (ñ) 6 l (n∗) a.s.; but, conditioned on E,

f̃ (ñ) > f (n∗) > l (n∗) a.s., which leads to a contradiction. Thus conditioned on E, n∗ ∈ ΓPBFSA
n
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a.s.. Therefore, we have f̃ (n∗) = PBFSA(n∗, l, ε). By induction, f̃ verifies Condition (A) at
node n∗, thus

E
[(

f̃ (n∗) − f (n∗)
)+

]
6
ε
2
. (21)

Finally, since ñ = argmin
ni∈Γ

PBFSA
n

{
f̃ (ni)

}
and n∗ ∈ ΓPBFSA

n , then f̃ (ñ) 6 f̃ (n∗) a.s., so we have

f̃ (ñ) − f (n∗) 6 f̃ (n∗) − f (n∗) a.s. Consequently, we have
(

f̃ (n) − f (n)
)+

=
(

f̃ (ñ) − f (n∗)
)+
6(

f̃ (n∗) − f (n∗)
)+

a.s., resulting in

E
[(

f̃ (n) − f (n)
)+

∣∣∣∣ E] 6 E [(
f̃ (n∗) − f (n∗)

)+
∣∣∣∣ E] . (22)

• Conditioned on E, we have
(

f̃ (n) − f (n)
)+

= 0 a.s., thus

E
[(

f̃ (n) − f (n)
)+

∣∣∣∣ E] = 0. (23)

Moreover, by definition ñ ∈ ΓPBFSA
n a.s., and f̃ (ñ) = PBFSA(ñ, l, ε), thus the induction

hypothesis can be applied to ñ. In particular, we have

E
[(

f̃ (ñ) − f (ñ)
)−]
6
ε
2
. (24)

Finally, it is clear that f (ñ) > f (n∗), then f̃ (ñ) − f (n∗) > f̃ (ñ) − f (ñ) a.s., which is equivalent
to

(
f̃ (n) − f (n)

)−
=

(
f̃ (ñ) − f (n∗)

)−
6

(
f̃ (ñ) − f (ñ)

)−
a.s., resulting in

E
[(

f̃ (n) − f (n)
)− ∣∣∣∣ E] 6 E [(

f̃ (ñ) − f (ñ)
)− ∣∣∣∣ E] . (25)

Finally, note the following observation: Let Y > 0 a.s., and F be measurable, then we have

E [Y | F ]P (F ) 6 E [Y] and E
[
Y | F

]
P

(
F

)
6 E [Y] .

Now we can derive

E
[(

f̃ (n) − f (n)
)+

]
= E

[(
f̃ (n) − f (n)

)+
∣∣∣∣ E]P (E) 6 E

[(
f̃ (n∗) − f (n∗)

)+
∣∣∣∣ E]P (E) 6 E

[(
f̃ (n∗) − f (n∗)

)+
]
6
ε
2
,

where the first equality comes from Equation (23), the first inequality uses Equation (22), the
second one holds thanks to

(
f̃ (n∗) − f (n∗)

)+
> 0 a.s., and the last one is Equation (21). Therefore,

f̃ verifies Condition (A) at node n.
Similarly, we have

E
[(

f̃ (n) − f (n)
)−]

= E
[(

f̃ (n) − f (n)
)− ∣∣∣∣ E]P (

E

)
6 E

[(
f̃ (ñ) − f (ñ)

)− ∣∣∣∣ E]P (
E

)
6 E

[(
f̃ (ñ) − f (ñ)

)−]
6
ε
2
,

where the first equality comes from Equation (20), the first inequality uses Equation (25), the
second one holds thanks to

(
f̃ (ñ) − f (ñ)

)−
> 0 a.s., and the last one is Equation (24). Therefore,

f̃ verifies Condition (B) at node n.
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Therefore, we have proven that if n is a decision node with λn > S, f̃ verifies both Conditions
(A) and (B) at node n, which proves the lemma for decision nodes.

Analysis of error at chance nodes

If n is a chance node such that f̃ (n) = PBFSA(n, l, ε), and λn > S. Let us define f (n) =∑
ni∈Ψ

PBFSA
n

pn
ni

f (ni), and show that

E
[(

f̃ (n) − f (n)
)+

]
6
ε − εn

2
and E

[(
f̃ (n) − f (n)

)−]
6
ε − εn

2
. (26)

Recall that ∀ni ∈ ΨPBFSA
n , λni = λn, and ni are decision nodes such that f̃ (ni) = PBFSA(ni, l, ε −

εn). Therefore, using the previous result, we know that E
[(

f̃ (ni) − f (ni)
)+

]
6
ε − εn

2
and

E
[(

f̃ (ni) − f (ni)
)−]
6
ε − εn

2
. We derive the following calculations:

E
[(

f̃ (n) − f (n)
)+

]
= E


 ∑

ni∈Ψ
PBFSA
n

pn
ni

(
f̃ (ni) − f (ni)

)
+ 6 E

 ∑
ni∈Ψ

PBFSA
n

pn
ni

(
f̃ (ni) − f (ni)

)+


=

∑
ni∈Ψ

PBFSA
n

pn
ni
E

[(
f̃ (ni) − f (ni)

)+
]
6

∑
ni∈Ψ

PBFSA
n

pn
ni

ε − εn

2
=
ε − εn

2
.

Similarly, we have

E
[(

f̃ (n) − f (n)
)−]

= E


 ∑

ni∈Ψ
PBFSA
n

pn
ni

(
f̃ (ni) − f (ni)

)
− 6 E

 ∑
ni∈Ψ

PBFSA
n

pn
ni

(
f̃ (ni) − f (ni)

)−
=

∑
ni∈Ψ

PBFSA
n

pn
ni
E

[(
f̃ (ni) − f (ni)

)−]
6

∑
ni∈Ψ

PBFSA
n

pn
ni

ε − εn

2
=
ε − εn

2
,

which proves Equation (26).
If Nn(εn) > Cwmin!, then f (n) = f (n) so f̃ (n)− f (n) = f̃ (n)− f (n) a.s., and since ε−εn

2 6
ε
2 , Equation

(26) implies that f̃ verifies Conditions (A) and (B) at node n.

Otherwise, we have Nn(εn) 6 Cwmin!. SinceΨPBFSA
n is constructed using Nn(εn) =

π
(

fmax(n) − fmin(n)
)2

2ε2
n

samples, thus by using Corollary 1, we have

E
[(

f (n) − f (n)
)+

]
6
εn

2
and E

[(
f (n) − f (n)

)−]
6
εn

2
(27)

By combining Equations (26) and (27), we have

E
[(

f̃ (n) − f (n)
)+

]
6 E

[(
f̃ (n) − f (n)

)+
]

+ E
[(

f (n) − f (n)
)+

]
6
ε − εn

2
+
εn

2
=
ε
2
,

E
[(

f̃ (n) − f (n)
)−]
6 E

[(
f̃ (n) − f (n)

)−]
+ E

[(
f (n) − f (n)

)−]
6
ε − εn

2
+
εn

2
=
ε
2
,

which shows that f̃ verifies Conditions (A) and (B) at node n and concludes the proof. �
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C Technical Proofs of Section 4.1

Corollary 1. Let X ∈ [xmin, xmax] be a real-valued bounded random variable with mean value E [X]. Let N ∈ N

and (X1, . . . ,XN) be N i.i.d. samples of X. If X =
1
N

N∑
i=1

Xi, then ∀ε > 0 such that N >
π (xmax − xmin)2

2ε2 , we have

E
[(

X − E [X]
)+

]
6
ε
2
, (7)

E
[(

X − E [X]
)−]
6
ε
2
, (8)

where x+ = max{x, 0} (resp. x− = −min{x, 0}) is the positive (resp. negative) part of x.

Proof of Corollary 1. For the first result, define ∆ =
(
X − E [X]

)+
=

(
X − E [X]

)
1

{
X − E [X] > 0

}
. Note

that ∆ is a nonnegative random variable, and ∀δ > 0, {∆ > δ} =
{
X − E [X] > δ

}
. Let F∆ denote the

cumulative distribution function of∆, thus, using Equation (5), 1−F∆(δ) = P (∆ > δ) = P
(
X − E [X] > δ

)
6

exp
(
−2Nδ2

(xmax−xmin)2

)
, which gives

E [∆] =

∫
∞

δ=0
(1 − F∆(δ)) dδ 6

∫
∞

δ=0
exp

(
−2Nδ2

(xmax − xmin)2

)
dδ

=
(xmax − xmin)
√

2N

∫
∞

u=0
exp(−u2)du =

√
π (xmax − xmin)

2
√

2N
6
ε
2
.

The proof of the second result is identical to the first one if we consider ∆′ =
(
X − E [X]

)−
=(

E [X] − X
)
1

{
E [X] − X > 0

}
and notice that ∀δ > 0, {∆′ > δ} =

{
X − E [X] < −δ

}
, hence 1 − F∆′(δ) 6

exp
(
−2Nδ2

(xmax−xmin)2

)
using Equation (6). �

Lemma 6. Let n be a chance node, if
fmin(n) = min

ni∈Ωn
{b(ni)} , (9)

and

fmax(n) = min
{

((λn − S) (T − 1))+ + (min {S, λn} − 1) ,
(
2
⌈
λn

S

⌉
− 1

)
max
ni∈Ωn

{b(ni)}
}
, (10)

then
fmin(n) 6 min

ni∈Ωn

{
f (ni)

}
and fmax(n) > max

ni∈Ωn

{
f (ni)

}
.

Proof of Lemma 6. Since b(ni) 6 f (ni), then we have fmin(n) = min
ni∈Ωn

{b(ni)} 6 min
ni∈Ωn

{
f (ni)

}
.

By definition, fmax(n) is the minimum of two valid upper bounds. The first one comes from a basic
observation. If there are λn containers remaining to be retrieved in n, consider two cases:

• If λn > S, take the rth retrieval. If S < r 6 λn, then in order to perform this retrieval, there are at
most T− 1 containers blocking the target container so at most T− 1 relocations are needed. When S
or fewer containers remain, each container (except the lowest one) is at most relocated once, hence
we need at most S− 1 relocations. Combining these two facts, the maximum number of relocations
is bounded by (λn − S) (T − 1) + (S − 1) = ((λn − S) (T − 1))+ + (min {S, λn} − 1).
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• If λn 6 S, we know that f (ni) = b(ni) 6 λn − 1 = ((λn − S) (T − 1))+ + (min {S, λn} − 1).

This shows the validity of the first upper bound.
For the second upper bound, Zehendner et al. (2017) prove that, in the online case with a unique

batch, the number of relocations performed by the leveling heuristic (L) is at most
(
2
⌈
λn
S

⌉
− 1

)
B, where B

is the number of blocking containers. Since L is not using any information about batches (only the height
of stacks), this result holds for both batch and online models with any number of batches. Let ni ∈ Ωn,
using this result and taking expectation over the retrieval order of containers not unveiled in ni yet, we
have f (ni) 6 fL(ni) 6

(
2
⌈
λn
S

⌉
− 1

)
b(ni). By taking the maximum over all ni ∈ Ωn, the latter inequality

results in the second upper bound. �

Lemma 7. Let n be a chance node, and wmin ∈ {1, . . . ,W} be such that λn = C − Kwmin + 1 (i.e., the minimum
batch in n). For each Stack s of n with Hs > 1 containers, let (cs

h)h=1,...,Hs be the containers in s, where cs
1 is the

container at the bottom and cs
Hs is the container at the top (see Figure 11, for the case H = Hs). Finally, consider

Cs
wmin

=
∣∣∣∣{cs

h = Kwmin , h = 1, . . . ,Hs
}∣∣∣∣. Then we have

min
ni∈Ωn

{b(ni)} =
∑

s=1,...,S
Hs>1


Hs
− Cs

wmin
−

∑
h=1,...,Hs

cs
h,Kwmin

1

{
cs

h = min
i=1,...,h

{
cs

i

}}
h∑

i=1

1

{
cs

h = cs
i

}

, (11)

and

max
ni∈Ωn

{b(ni)} =
∑

s=1,...,S
Hs>1


Hs
−

∑
h=1,...,Hs

cs
h,Kwmin

1

{
cs

h = min
i=1,...,h

{
cs

i

}}
h∑

i=1

1

{
cs

h = cs
i

}

. (12)

Proof of Lemma 7. Let n be a chance node, and ni ∈ Ωn one of its decision offspring, such that all containers
in batch wmin have been revealed. Recall that b(ni) =

∑
s=1,...,S

bs(ni), where bs(ni) is the expected number of

blocking containers in Stack s. First, for each Stack s such that Hs = 0, bs(ni) = 0. Hence b(ni) =
∑

s=1,...,S
Hs>1

bs(ni).

For each Stack s such that Hs > 1, consider the containers in this stack (cs
i )i=1,...,Hs . Since all containers

labeled Kwmin , i.e., from batch wmin, are known in ni, we can write

bs(ni) =
∑

h=1,...,Hs

P
[
cs

h is blocking in ni

]
=

∑
h=1,...,Hs

cs
h=Kwmin

1

{
cs

h is blocking in ni

}
+

∑
h=1,...,Hs

cs
h,Kwmin

P
[
cs

h is blocking in ni

]
.

Fix h ∈ {1, . . . ,Hs
} and cs

h , Kwmin , then the proof of Lemma 2 uses the fact that P
[
cs

h is blocking in ni

]
=

1 −
1

cs
h = min

i=1,...,h

{
cs

i

}∑h
i=1 1

{
cs

h=cs
i

} . Finally, it is clear that 0 6
∑

h=1,...,Hs

cs
h=Kwmin

1

{
cs

h is blocking in ni

}
6 Cs

wmin
. Therefore, we can

get the corresponding formulas. As a final remark, note that each of these bounds is tight. Indeed,
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consider the offspring of n, in which all containers in batch wmin are in the decreasing (resp. increasing)
order of retrieval from top to bottom, then this offspring has no (resp. Cs

wmin
) blocking container(s). �
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D Computational Experiments Tables

Lower bounds PBFS Heuristics
S T C b b1 b2 EG EM ERI L Rand.
5 3 8 1.64 1.66 1.66 1.70 1.70 1.70 1.70 1.82 2.34

4 10 2.88 2.96 2.99 3.11 3.11 3.13 3.14 3.51 4.62
5 13 4.61 4.88 5.01 5.32 5.40 5.38 5.57 6.17 8.00
6 15 6.28 6.64 7.06 7.59 7.85 7.81 8.09 9.41 12.35

6 3 9 1.68 1.69 1.69 1.74 1.76 1.74 1.74 1.84 2.43
4 12 3.54 3.61 3.63 3.68 3.69 3.68 3.68 4.11 5.59
5 15 5.37 5.57 5.68 5.91 5.97 5.94 6.01 7.21 9.55
6 18 7.19 7.52 7.68 8.23 8.38 8.29 8.63 10.05 13.53

7 3 11 2.82 2.86 2.88 2.88 2.88 2.88 2.89 2.96 4.12
4 14 3.97 4.06 4.10 4.16 4.17 4.17 4.20 4.65 6.47
5 18 6.49 6.65 6.74 6.97 7.05 7.00 7.07 8.46 11.27
6 21 8.82 9.21 9.51 - 10.40 10.35 10.76 12.47 17.69

8 3 12 2.29 2.30 2.30 2.31 2.31 2.31 2.31 2.43 3.23
4 16 4.68 4.73 4.75 4.82 4.83 4.83 4.83 5.41 7.48
5 20 7.20 7.42 7.54 7.85 7.96 7.93 8.06 9.32 13.44
6 24 9.52 9.85 10.09 - 11.10 10.99 11.34 13.29 19.28

9 3 14 2.98 2.98 2.98 3.00 3.00 3.01 3.00 3.19 4.54
4 18 5.63 5.71 5.71 5.73 5.73 5.73 5.73 6.52 9.29
5 23 8.58 8.69 8.77 - 9.05 9.02 9.12 11.16 15.57
6 27 10.38 10.78 10.98 - 11.59 11.58 11.76 14.62 20.93

10 3 15 3.18 3.18 3.18 3.19 3.19 3.20 3.20 3.27 4.75
4 20 6.20 6.23 6.23 6.28 6.30 6.28 6.28 6.98 10.41
5 25 9.10 9.37 9.39 - 9.60 9.60 9.73 11.38 16.64
6 30 11.91 12.28 12.44 - 13.01 12.92 13.15 15.93 23.40

Table 5: Results of experiment 1: Performance of PBFS, heuristics, and tightness of lower bounds for a
fill rate of 50 percent in the batch model, in the case of small batches. Bold numbers highlight the best
heuristic for a given problem size.
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Lower bounds PBFS Heuristics
S T C b b1 b2 EG EM ERI L Rand.
5 3 10 2.83 2.97 3.01 3.08 3.08 3.08 3.11 3.33 4.16

4 13 4.69 4.97 5.09 5.58 5.69 5.64 5.75 6.50 8.22
5 17 7.58 8.52 8.92 - 10.44 10.48 11.04 12.23 15.27
6 20 9.69 10.79 11.46 - 14.53 14.65 15.77 18.47 22.93

6 3 12 3.60 3.70 3.72 3.89 3.89 3.90 3.90 4.32 5.54
4 16 6.20 6.59 6.78 7.28 7.41 7.45 7.61 8.55 11.29
5 20 8.28 8.85 9.16 - 10.39 10.38 10.80 12.85 16.43
6 24 11.67 12.22 12.54 - 15.19 15.17 16.14 19.33 25.03

7 3 14 3.85 3.89 3.91 3.97 3.98 3.98 4.02 4.40 6.05
4 19 6.25 6.60 6.86 7.29 7.37 7.36 7.54 8.89 11.60
5 23 9.72 10.24 10.55 - 11.75 11.71 12.30 14.92 19.65
6 28 13.52 14.41 14.93 - 17.72 17.63 18.81 23.10 30.78

8 3 12 4.47 4.57 4.61 4.66 4.66 4.66 4.68 5.14 6.94
4 21 7.62 7.85 7.98 8.29 8.33 8.35 8.43 9.76 13.26
5 27 11.61 12.08 12.52 - 13.56 13.47 14.10 17.15 23.11
6 32 15.60 16.39 16.78 - 19.28 19.51 20.85 25.89 34.66

9 3 18 4.81 4.96 4.99 5.10 5.10 5.12 5.14 5.66 7.81
4 24 8.98 9.18 9.30 9.58 9.63 9.61 9.76 11.66 16.00
5 30 13.16 13.90 14.29 - 15.65 15.79 16.75 20.03 27.41
6 36 16.77 17.36 17.83 - 20.38 20.40 21.86 28.12 38.12

10 3 20 5.21 5.21 5.21 5.27 5.28 5.28 5.28 5.79 7.86
4 27 9.18 9.54 9.71 - 10.27 10.29 10.37 12.16 16.91
5 34 14.46 14.88 15.16 - 16.13 16.19 16.69 21.06 29.03
6 40 19.55 20.24 20.66 - 23.33 23.20 24.46 32.11 44.07

Table 6: Results of experiment 1: Performance of PBFS, heuristics, and tightness of lower bounds for a
fill rate of 67 percent in the batch model, in the case of small batches. Bold numbers highlight the best
heuristic for a given problem size.
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Lower bounds PBFSA Heuristics
S T C b b1 b2 EG EM ERI L Rand.
5 3 8 1.68 1.68 1.68 1.76 1.77 1.76 1.76 1.87 2.38

4 10 2.96 3.02 3.05 3.33 3.36 3.37 3.38 3.67 4.85
5 13 4.58 4.82 4.93 5.50 5.69 5.65 5.74 6.33 8.22
6 15 6.31 6.72 6.96 7.81 8.28 8.03 8.35 9.49 12.40

6 3 9 1.66 1.67 1.67 1.73 1.75 1.74 1.74 1.82 2.43
4 12 3.61 3.71 3.73 3.93 3.99 3.99 4.00 4.34 5.82
5 15 5.38 5.57 5.64 6.11 6.23 6.23 6.31 7.16 9.65
6 18 7.01 7.26 7.44 - 8.49 8.36 8.61 9.92 13.45

7 3 11 2.76 2.79 2.79 2.85 2.84 2.84 2.83 2.95 4.06
4 14 4.02 4.12 4.15 4.24 4.31 4.29 4.31 4.73 6.52
5 18 6.29 6.39 6.43 6.77 7.00 6.92 7.01 8.20 11.08
6 21 8.69 9.12 9.35 - 10.60 10.52 10.91 12.61 17.79

8 3 12 2.30 2.31 2.31 2.31 2.31 2.32 2.32 2.37 3.19
4 16 4.61 4.62 4.63 4.71 4.74 4.74 4.75 5.25 7.40
5 20 7.31 7.46 7.52 - 8.01 8.01 8.09 9.33 13.25
6 24 9.65 9.95 10.12 - 11.37 11.37 11.67 13.44 19.51

9 3 14 2.93 2.93 2.93 2.95 2.96 2.96 2.96 3.15 4.48
4 18 5.56 5.58 5.59 5.69 5.74 5.70 5.70 6.33 9.07
5 23 8.49 8.64 8.73 - 9.16 9.12 9.16 10.99 15.39
6 27 10.38 10.69 10.90 - 11.77 11.75 11.95 14.65 20.95

10 3 15 3.15 3.16 3.16 3.15 3.17 3.17 3.17 3.25 4.72
4 20 6180 6.20 6.21 6.28 6.35 6.34 6.34 6.92 10.27
5 25 9.13 9.31 9.36 - 9.66 9.63 9.68 11.44 16.73
6 30 12.09 12.35 12.51 - 13.38 13.23 13.42 16.33 23.80

Table 7: Results of experiment 2: Performance of PBFSA, heuristics, and tightness of lower bounds for a
fill rate of 50 percent in the batch model with larger batches. Bold numbers highlight the best heuristic
for a given problem size.
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Lower bounds PBFSA Heuristics
S T C b b1 b2 EG EM ERI L Rand.
5 3 10 2.78 2.87 2.90 3.07 3.08 3.08 3.09 3.36 4.18

4 13 4.71 4.92 5.00 5.70 5.81 5.80 5.89 6.60 8.23
5 17 7.53 8.17 8.44 - 10.38 10.32 10.68 11.96 14.9815
6 20 9.69 10.56 11.12 - 15.00 14.91 16.01 18.22 22.79

6 3 12 3.56 3.63 3.64 3.90 3.90 3.91 3.92 4.28 5.55
4 16 6.12 6.48 6.61 7.17 7.36 7.41 7.48 8.44 11.02
5 20 8.33 8.72 8.90 - 10.36 10.30 10.57 12.54 16.15
6 24 11.77 12.41 12.80 - 15.94 15.91 16.86 19.83 25.45

7 3 14 3.95 4.01 4.02 4.14 4.17 4.15 4.15 4.56 6.11
4 19 6.27 6.56 6.77 - 7.36 7.35 7.52 8.66 11.46
5 23 9.81 10.27 10.54 - 12.08 12.10 12.49 14.78 19.67
6 28 13.64 14.47 14.91 - 18.36 18.26 19.32 23.10 31.03

8 3 12 4.65 4.74 4.76 4.85 4.86 4.85 4.88 5.34 7.14
4 21 7.58 7.86 7.99 - 8.38 8.42 8.50 9.82 13.20
5 27 11.46 11.98 12.28 - 13.73 13.60 14.11 17.00 22.84
6 32 15.45 16.28 16.72 - 19.94 19.83 21.21 25.73 34.70

9 3 18 4.85 4.98 5.02 5.14 5.17 5.20 5.20 5.67 7.77
4 24 8.82 9.00 9.11 - 9.66 9.60 9.72 11.52 15.70
5 30 13.15 13.84 14.18 - 15.91 15.96 16.82 20.16 27.35
6 36 16.85 17.39 17.80 - 20.99 20.83 21.97 28.05 38.04

10 3 20 5.19 5.21 5.22 5.31 5.31 5.31 5.31 5.79 7.92
4 27 9.40 9.66 9.82 - 10.47 10.46 10.54 12.25 16.96
5 34 14.44 14.83 15.07 - 16.29 16.29 16.62 21.12 28.86
6 40 19.49 20.24 20.66 - 23.83 23.65 24.96 32.04 44.12

Table 8: Results of experiment 2: Performance of PBFSA, heuristics, and tightness of lower bounds for a
fill rate of 67 percent in the batch model with larger batches. Bold numbers highlight the best heuristic
for a given problem size.
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Lower bounds PBFS Heuristics
S T C b b1 b2 EG EM ERI L Rand.
5 3 8 1.64 1.66 1.66 1.70 1.70 1.70 1.71 (1.71) 1.82 2.34 (2.34)

4 10 2.88 2.96 2.99 3.11 3.11 3.13 3.14 (3.20) 3.51 4.62 (4.62)
5 13 4.61 4.88 5.01 5.32 5.38 5.38 5.57 (5.58) 6.16 8.00 (8.00)
6 15 6.28 6.64 7.06 7.59 7.85 7.80 8.08 (8.29) 9.41 12.36 (12.35)

6 3 9 1.68 1.69 1.69 1.74 1.76 1.74 1.74 (1.75) 1.84 2.43 (2.43)
4 12 3.54 3.61 3.63 3.68 3.69 3.68 3.68 (3.75) 4.11 5.59 (5.59)
5 15 5.37 5.57 5.68 5.91 5.96 5.94 6.00 (6.18) 7.21 9.54 (9.54)
6 18 7.19 7.52 7.68 8.23 8.38 8.29 8.62 (8.77) 10.05 13.53 (13.53)

7 3 11 2.82 2.86 2.88 2.88 2.88 2.88 2.89 (2.88) 2.96 4.11 (4.11)
4 14 3.97 4.06 4.1 4.16 4.17 4.17 4.21 (4.20*) 4.66 6.47 (6.03*)
5 18 6.49 6.65 6.74 6.97 7.04 7.00 7.07 (7.18) 8.45 11.27 (11.27)
6 21 8.82 9.21 9.51 - 10.40 10.35 10.76 (10.98) 12.46 17.69 (17.69)

8 3 12 2.29 2.3 2.3 2.31 2.31 2.31 2.31 (2.32) 2.43 3.23 (3.23)
4 16 4.68 4.73 4.75 4.82 4.83 4.83 4.83 (4.88) 5.41 7.49 (7.49)
5 20 7.20 7.42 7.54 7.85 7.97 7.94 8.07 (8.27) 9.32 13.44 (13.45)
6 24 9.52 9.85 10.09 - 11.10 10.98 11.34 (11.61) 13.29 19.29 (19.29)

9 3 14 2.98 2.98 2.98 3.00 3.00 3.00 3.00 (3.00) 3.19 4.54 (4.54)
4 18 5.63 5.71 5.71 5.73 5.73 5.73 5.73 (5.80) 6.52 9.29 (9.29)
5 23 8.58 8.69 8.77 - 9.05 9.02 9.12 (9.36) 11.16 15.56 (15.57)
6 27 10.38 10.78 10.98 - 11.59 11.58 11.76 (12.09) 14.62 20.94 (20.93)

10 3 15 3.18 3.18 3.18 3.19 3.19 3.20 3.20 (3.20) 3.27 4.75 (4.75)
4 20 6.20 6.23 6.23 6.28 6.30 6.27 6.28 (6.33) 6.98 10.41 (10.41)
5 25 9.10 9.37 9.39 - 9.61 9.60 9.73 (9.80) 11.38 16.64 (16.63)
6 30 11.91 12.28 12.44 - 13.01 12.92 13.15 (13.51) 15.92 23.41 (23.41)

Table 9: Results of experiment 3: Performance of heuristics and tightness of lower bounds for a fill rate of
50 percent in the online model with small batches. Bold numbers highlight the best heuristic for a given
problem size. Numbers in parentheses are taken from Ku and Arthanari (2016).
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Lower bounds PBFS Heuristics
S T C b b1 b2 EG EM ERI L Rand.
5 3 10 2.83 2.97 3.01 3.08 3.08 3.08 3.12 (3.10) 3.33 4.16 (4.16)

4 13 4.69 4.97 5.09 5.58 5.68 5.64 5.75 (5.80) 6.50 8.22 (8.22)
5 17 7.58 8.52 8.92 - 10.45 10.48 11.04 (11.15) 12.24 15.28 (15.28)
6 20 9.69 10.79 11.46 - 14.53 14.65 15.77 (16.14) 18.46 22.93 (22.93)

6 3 12 3.6 3.7 3.72 3.89 3.89 3.90 3.90 (3.92) 4.32 5.53 (5.53)
4 16 6.2 6.59 6.78 7.28 7.41 7.45 7.61 (7.68) 8.54 11.29 (11.28)
5 20 8.28 8.85 9.16 - 10.38 10.38 10.80 (10.97) 12.85 16.42 (16.42)
6 24 11.67 12.22 12.54 - 15.17 15.17 16.14 (16.65) 19.33 25.04 (25.03)

7 3 14 3.85 3.89 3.91 3.97 3.98 3.98 4.02 (4.01) 4.40 6.05 (6.05)
4 19 6.25 6.6 6.86 7.29 7.37 7.36 7.54 (7.68) 8.89 11.60 (11.61)
5 23 9.72 10.24 10.55 - 11.76 11.71 12.30 (12.64) 14.92 19.66 (19.65)
6 28 13.52 14.41 14.93 - 17.70 17.64 18.82 (19.49) 23.10 30.77 (30.79)

8 3 12 4.47 4.57 4.61 4.66 4.65 4.66 4.68 (4.7) 5.14 6.94 (6.94)
4 21 7.62 7.85 7.98 8.29 8.32 8.35 8.43 (8.5) 9.75 13.26 (13.25)
5 27 11.61 12.08 12.52 - 13.56 13.47 14.10 (14.44) 17.14 23.11 (23.12)
6 32 15.6 16.39 16.78 - 19.27 19.51 20.85 (21.72) 25.89 34.64 (34.63)

9 3 18 4.81 4.96 4.99 5.10 5.10 5.12 5.14 (5.19) 5.66 7.80 (7.80)
4 24 8.98 9.18 9.3 9.58 9.63 9.61 9.76 (9.92) 11.66 16.01 (16.00)
5 30 13.16 13.9 14.29 - 15.65 15.79 16.75 (16.97) 20.03 27.38 (27.39)
6 36 16.77 17.36 17.83 - 20.38 20.40 21.87 (22.73) 28.13 38.11 (38.14)

10 3 20 5.21 5.21 5.21 5.27 5.28 5.28 5.28 (5.30) 5.79 7.85 (7.86)
4 27 9.18 9.54 9.71 - 10.27 10.29 10.37 (10.50) 12.15 16.92 (16.91)
5 34 14.46 14.88 15.16 - 16.13 16.19 16.69 (17.23) 21.07 29.03 (29.03)
6 40 19.55 20.24 20.66 - 23.33 23.20 24.46 (25.58) 32.11 44.08 (44.07)

Table 10: Results of experiment 3: Performance of heuristics and tightness of lower bounds for a fill rate
of 67 percent in the online model with small batches. Bold numbers highlight the best heuristic for a
given problem size. Numbers in parentheses are taken from Ku and Arthanari (2016).
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