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Abstract
Accurate prediction of network-level traffic parameters during inclement weather conditions can greatly help in many trans-
portation applications. Rainfall tends to have a quantifiable impact on driving behavior and traffic network performance. This
impact is often studied for low-resolution rainfall data on small road networks, whereas this study investigates it in the con-
text of a large traffic network and high-resolution rainfall radar images. First, the impact of rainfall intensity on traffic perfor-
mance throughout the day and for different road categories is analyzed. Next, it is investigated whether including rainfall
information can improve the predictive accuracy of the state-of-the-art traffic forecasting methods. Numerical results show
that the impact of rainfall on traffic varies for different rainfall intensities as well as for different times of the day and days of
the week. The results also show that incorporating rainfall data into prediction models improves their overall performance.
The average reduction in mean absolute percentage error (MAPE) for models with rainfall data is 4.5%. Experiments with
downsampled rainfall data were also performed, and it was concluded that incorporating higher resolution weather data does
indeed lead to an increase in performance of traffic prediction models.

Weather conditions tend to have a measurable impact on
traffic conditions on the roads. Many efforts have been
made to incorporate weather-related variables in traffic
modeling and to estimate the impact of adverse weather
conditions on road traffic and driving behavior (1, 2).
In particular, rainfall intensity has been frequently
identified as an external factor that has the highest
impact on driving conditions and network performance
(2–7). Quantifying this impact could help transportation
operators to better manage the safety and the efficiency
of transportation systems during intense rainfall (8, 9).

In the estimation of the impact of rainfall on traffic
conditions, the existing studies restrict their focus to a
short segment or a single intersection only (3, 10–13).
Moreover, the relevant literature often deals with a lim-
ited database where the information about the rainfall is
frequently collected for a short period of time (e.g., a few
weeks or days) and often aggregated in hourly or even
daily intervals (3, 10–16). Such an approach fails to cap-
ture spatial and temporal dynamics of rainfall impact on
traffic.

With the recent improvements in sensor technology,
traffic-related information (e.g., rainfall intensity) is now

collected routinely from multiple sources with high tem-
poral resolution. This study relies on rainfall and traffic
datasets with high resolution and coverage to: (i) quanti-
tatively investigate the impact of rainfall on the driving
conditions in a large traffic network; and (ii) determine
whether including information about the rainfall can
improve the accuracy of traffic speed prediction algo-
rithms for short- to long-term prediction horizons.
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For assessing the impact of rainfall on driving condi-
tions, the average network traffic speed for rainfall and
non-rainfall weather scenarios is evaluated. Since the
rainfall and traffic intensities might significantly vary
across time and space, the traffic speed for all 5min time
instances across the day is evaluated. This differentiates
the current study from related papers that deal with the
low- or medium-resolution weather information and traf-
fic data for short road segments or a single corridor (16–
22). It is important to verify whether similar findings
might be achieved if high-resolution weather data is relied
on, as well as heterogeneous and large traffic networks.

As a next step, it is explored how rainfall information
may help to improve traffic speed prediction. To this
end, speed information is combined with the rainfall data
to train and test state-of-the-art forecasting methods
involving ensemble methods and recurrent neural net-
works. It is important to point out that the focus of this
study is to show how incorporating rainfall data can
improve the prediction performance of traffic forecasting
methods, whether they are ensemble methods or deep
learning models. These predictions methods are compared
for three different prediction horizons (15, 30, and 45min)
with and without rainfall data. The flowchart illustrating
the preprocessing steps is presented in Figure 1.

The contributions of this study are as follows:

� To the best of the authors’ knowledge, this is the
first study concerned with the integration of high-
resolution weather radar data into state-of-the-art
algorithms for short- to medium-term traffic fore-
casting on the city scale network.

� To achieve this goal, 6months of high-resolution
rainfall intensity data for the Singapore road net-
work was extracted using image processing.

� It is investigated how the rainfall affects the aver-
age traffic speed depending on various parameters:
the hour of the day, the day of the week, the type
of the road, and the intensity of the rain.

� A way of incorporating rainfall information in
various prediction models (gradient boosting and
recurrent neural networks) is proposed, and how
it affects the model performance is studied. To
provide a further comparison with the current lit-
erature, it is also investigated how the rainfall res-
olution affects the prediction performance by
downsampling available high-resolution rainfall
data.

The rest of the paper is structured as follows. First,
the relevant literature is briefly reviewed. Next, the data-
set analyzed in this paper is described. The following sec-
tion presents the methodology for investigating the
impact of rainfall on traffic conditions and for assessing

the prediction algorithms. Then the results of the analy-
sis and experiments are presented and discussed. In the
final section, concluding remarks are offered, and topics
for future research are suggested.

Related Work

It has been demonstrated that different rainfall intensi-
ties can have varying impact on the key traffic state para-
meters and their relationships (3–7, 14).

In certain cases, even light drizzle can make drivers
cautious, with driving behavior matching that of a lower-
capacity carriageway. This decrease in throughput leads
to further degradation of other key traffic flow para-
meters such as speed and travel time (2). Xu et al. studied
the effect of rainfall on the macroscopic fundamental
diagram (MFD) (23). They found that rainfall decreases
production, capacity, and speed, with the most pro-
nounced effect during PM peak.

This quantifiable effect of rainfall is frequently utilized
to develop mathematical models that can predict traffic
conditions based on the current traffic and weather infor-
mation (3, 4, 16, 24, 25). For instance, Tsirigotis et al.
assess the effects of rainfall intensity on the predictability
of traffic speed using vector autoregressive moving aver-
age models with explanatory variables (16). They analyze
traffic and rainfall data spanned over 1week for a single
section of an urban motorway with a resolution of
10min intervals. They conclude that information about
the rainfall only marginally improves the prediction per-
formance. Furthermore, they emphasize the need for
considering a large database with intense rainfall inci-
dents in traffic forecasting applications. In another study,
Butler et al. apply neural networks to predict traffic vol-
ume by including weather conditions as exogenous vari-
ables (19). The test road network comprised of two
traffic lanes approaching a junction in Dublin city,
Ireland. The data was collected for 4 years with a sam-
pling interval of 1 hour. They reveal that additional rain-
fall information, given in a coarse format, decreased the

Figure 1. Flowchart of data extraction and fusion process.
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forecasting accuracy for traffic volumes. In addition, they
suggest that weather information should be observed at
intervals finer than 1hour in traffic applications. Hou
et al. studied the impact of adverse weather on traffic to
properly calibrate traffic-flow-related parameters during
the inclement weather (26). They performed experiments
based on rainfall data from automated surface observing
system (ASOS) stations located at several U.S. airports.
This data is sampled every 5min; however, it is combined
with data from loop detectors within 10mi of the station.
Based on simulations, they found that incorporating
rainfall, visibility, and snow data can lead to producing
more realistic traffic conditions during the adverse
weather.

Peng et al. performed experiments on data from
Georgia Department of Transportation (27). Both traffic
and weather data are sampled with 1 h interval. They
compared auto regressive integrated moving average
(ARIMA) and neural network approaches, and observed
that rainfall addition provided a marginal improvement
in mean absolute percentage error (MAPE) (0.17% in
absolute value for neural networks). Jia et al. applied
deep learning models such as deep belief network (DBN)
and long short-term memory (LSTM) to predict traffic
speed and traffic flow (17, 18). They consider data from
a single arterial road for the experiments sampled every
2min, while the rainfall data is sampled hourly. They
found that inclusion of the rainfall data did not improve
prediction for 2min horizon, while the slight improve-
ment of 1.5% in MAPE was observed for 10 and 30min
horizons. Zhang and Kabuka provided results for a dif-
ferent deep learning model, that is, the gated recurrent
unit (GRU) (21). They performed experiments on the
Performance Measurement System (PeMS) dataset com-
bined with hourly available weather data. They con-
cluded that this can improve prediction accuracy up to
25% compared with the baseline (no weather data) case.
Most recent relevant papers are summarized in Table 1.

Incorporating weather data has been explored in other
applications intelligent transportation systems (ITS) as
well. Patnaik et al. investigated adding rainfall data into
the bus arrival time prediction model (28). They found
that rainfall data did not increase the model accuracy
and attributed it to the low resolution of the weather
data. A similar problem was considered by Chen et al.;
however, they did not investigate the improvement
resulting from the addition of the precipitation data
explicitly (29). A more recent study by Noor et al., simi-
lar to Patnaik et al., has not been able to significantly
improve the bus arrival time prediction model by incor-
porating the weather data (28, 30). They suggested that
the small sample size could have been the cause.

In summary, the scope of existing studies remains lim-
ited; either only small portions of the network were

considered, or the analyzed rainfall information is col-
lected from a limited number of stations and/or aggre-
gated in 1 h intervals.

Data Set

This section explains the traffic- and rainfall-related data
sets analyzed in this study. The traffic network of
Singapore is considered for analysis, since Singapore
exhibits a tropical climate where the rainfall can be par-
ticularly heavy and persistent throughout the year. Table
2 summarizes the notation employed throughout this
paper.

Traffic Data Set

Figure 2 shows the road network considered in the anal-
ysis. The Land Transportation Authority (LTA) of
Singapore collects raw traffic data in the network from
multiple sources such as loop detectors and probe vehi-
cles. The Traffic Management of LTA analyzes these
inputs and matches them to the corresponding road seg-
ments. Then, estimation models infer the speed along
each segment during the 5min sampling interval. These
values are then discretized into speed bands. Each speed
band corresponds to a range of 10 km/h: speed band one
(SB1) corresponds to average speed of 0–10 km/h, SB2
corresponds to average speed of 10–20 km/h, and so on.
While highly accurate speed data, associated with high
data collection costs, is desired among practitioners, it is
still important to understand the value of easily available
discrete information. This is especially relevant for the
prediction and similar applications where the forecast
speed values are often used as inputs for complex routing
and traffic control mechanisms.

The network being considered consists of n ¼ 2; 896

road segments: v1; . . . ; vn. The observations are available
for 6months covering period from August 2016 to
January 2017. For each 5min interval j and for each
road segment vi, si;j is defined as as the discretized aver-
age speed during this interval for that segment. Every
segment vi has less than 10% missing data.

Rainfall Data Set

The National Environmental Agency (NEA) of
Singapore administers automated weather instruments to
collect information about the rainfall (http://www.nea.-
gov.sg/). The rainfall data from the meteorological radar
is published on the NEA website in the form of an image
every 5 to 15min (see Figure 2). This image contains the
information about the rainfall intensity for each location
in the network. In addition to the precipitation scale, the
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time stamp and the map of the highway network help to
precisely integrate weather and traffic data (see Figures 2
and 3). Rainfall information was collected during the
6-month period that corresponds to the speed data set.
Similarly to the traffic data, ri;j is defined as the estimated
rainfall intensity for segment vi during time period j.

Rainfall intensity at each segment vi is estimated as
follows: first the rainfall and traffic road maps are over-
layed to estimate the location of the segment vi on the
rainfall map (see Figure 3). The nearest pixel of the rain-
fall map is assigned to each segment vi. To derive the
rainfall rate at a single pixel of the map visualizations,
Doppler Radar reflectivity is employed:

r ¼ að10
d
10Þb; ð1Þ

where:
r is rainfall rate in millimeters per hour;
d is the reading from the image visualization (see the
upper right corner of Figure 3); and
a and b are empirically estimated parameters.
This equation is known as the Marshall-Palmer formula;
it allows to convert dBZ (decibel relative to Z) values
from the radar into rainfall intensity. The coefficients
computed in Lu are employed (4). The rainfall intensity
at a segment vi is approximated by the mean of rainfall
intensities of the assigned pixel and its neighbors from
the 3 3 3 box (see the right side of Figure 4).

Since the rainfall data is irregularly reported (espe-
cially during the heavy showers), optical character recog-
nition (OCR) is employed to extract the time
components from each of the collected images (see the
top right corner of Figure 4). OCR is the process of con-
verting text images into text in ASCII format. As a pre-
processing step, the text images are binarized and scaled
(31). Then OCR functionality of Matlab is applied, and
further analysis is only carried out on those images that
fulfill the following requirement: 0 ł ðti � t�i Þł s, where
ti is the time when the image appeared in the database
(or time instant when the picture is collected from the

Table 2. Notation

Notation Definition

n Number of segments in the road network
vi i -th segment in the network
si;j Discretized speed value for i -th segment during j -th time period
ri;j Computed rainfall intensity value for i -th segment during j -th time period
a; b Parameters for rainfall intensity estimation
Snon�rainfall

j
Average network speed during j -th time among segments with zero rainfall intensity during that period

Srainfall
j

Average network speed during j -th time period among segments with non-zero rainfall intensity during that period

dðjÞ; hðjÞ Day of the week and hour of the day for j -th time period
k Prediction horizon

Figure 2. Singapore road network consisting of 2,139 highways,
10 arterial, and 747 slip roads.

Figure 3. Locations of rainfall stations in Singapore (upper left).
Format of rain map acquired from the National Environmental
Agency (NEA) (bottom). Corresponding precipitation scale is also
provided on NEA’s website (upper right corner).

Prokhorchuk et al 1289



internet), t�i is the corresponding output from the OCR,
and s is an empirically determined parameter (15min).
This condition ensures that outdated rainfall data is not
incorporated, since sometimes the image on the NEA
website will not be updated for an extended period of
time. Since the text being extracted has consistent for-
matting and is clearly visible in the image, it is found that
OCR performs quite well. The extracted time has been
compared with the image time stamp and no inconsisten-
cies were found. Note, OCR was only applied to extract
time stamps. By contrast, the actual rainfall data is
obtained from the raw images via the formula (1).

The occasional irregularities in reporting rainfall maps
lead to the unavoidable missing values in weather data
sets. If there is no data for the previous 5–10min, then
the missing data is imputed via linear interpolation of the
available rainfall information.

Data Analysis

This section describes the approach to determining the
impact of rainfall on traffic speed across the network,
and incorporating the rainfall information into traffic
speed prediction algorithms.

Impact of Rainfall on the Network Speed

First, the average driving conditions (or the average
speed-band) in the network for rainfall and non-rainfall
weather conditions are analyzed. As mentioned previ-
ously, for a given road segment vi and time period j, si;j

and ri;j are defined as average speed and average rainfall
intensity, respectively. The interest is in overall network
conditions during both scenarios. The average network
speed is defined in both cases as:

Snon�rainfall
j ¼

Pn
i¼1;ri;j¼0 si;j

jfri;j : ri;j ¼ 0gj ; S
rainfall
j ¼

Pn
i¼1;ri;j.0 si;j

jfri;j : ri;j.0gj :

ð2Þ

Since the rainfall data is available on road link level, it is
known that, during a particular time frame, only a subset
of links experience rainfall. For a fair comparison, aver-
age speed is computed only for links either with or with-
out rainfall, and not for the whole network at once.

Impact of Rainfall on Traffic Prediction

This section explains how the information about the
rainfall is incorporated, as an exogenous variable, in the
prediction of speed of a certain segment. To predict the
future driving conditions si;j+ k at time j+ k for segment
vi, a feature vector is constructed that consists of past
driving conditions (si;j�P; . . . ; si;jÞ, past weather condi-
tions (ri;j�P; . . . ; ri;jÞ, time of the day, and day of the
week:

si;j+ k ¼ fkðdðtiÞ; hðtiÞ; si;j; ri;j; . . . si;j�P; ri;j�PÞ; ð3Þ

where:
dð jÞ and hð jÞ are the day and hour, respectively, of the
particular time period j;
P represents the number of past speed band values of the
segment that are used;
k is the prediction horizon; and
fk is the predictor function.
Note, the rainfall has a near-immediate impact on the
traffic, which is in alignment with the findings from other
relevant studies (4). The function fk can be approximated
by means of any state-of-the-art prediction algorithm.
This study applies an ensemble method of extreme gradi-
ent boosting (XGBoost) and several variants of recurrent
neural networks (RNNs) for regression. A brief review of
these methods is given below.

Figure 4. Integrated rain and roadway map (left) with the estimated rainfall intensity for 3 3 3 pixels region (right). Time instance of the
map is extracted with the help of optical character recognition (OCR) (top right).
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Ensemble Methods. Ensemble methods are data-driven
algorithms that have been widely applied for a variety of
applications (32, 33). These techniques heavily rely on
the underlying assumption that collection of weak classi-
fiers can be a better predictor than the single classifier.
This study applied XGBoost, as it is the most popular
choice for both classification and prediction problems
because of its highly scalable nature (34). In XGBoost,
additive training is implemented whereby a new tree is
added to the model that has been learned so far. The gen-
eral objective function can thus be written as:

OðtÞ ¼
Xn

i¼1

‘ðyi; ŷ
ðt�1Þ
i + ftðxiÞÞ+OðftÞ; ð4Þ

where:
‘ is the loss function;
ft is the function that contains the structure of tree t; and
O is the regularization for the complexity of the tree
structure defined in terms of number of leaves T and
weights wj of leaves as:

Oð f Þ ¼ gT +
1

2
l
XT

j¼1

w2
j :

The objective function (4) is optimized through first- and
second-order gradient of the loss function ‘ which allows
XGBoost to support a wide range of custom loss func-
tions. Further details of the method can be found in
Chen and Guestrin (34).

Recurrent Neural Networks (RNNs)

Previously, traditional machine learning models such as
support vector machines (SVM) have been applied to
traffic prediction (35, 36). However, currently deep learn-
ing approaches have become widespread (37–39). LSTM
networks are a variation of RNNs that are able to
capture long-term dependencies (40). GRU is another
network architecture that is commonly applied for time-
series forecasting (41). Both architectures are character-
ized by gating mechanisms that aim to overcome the
vanishing gradient problems of common RNN. Another
RNN modification is the bidirectional recurrent network,
first proposed in Schuster and Paliwal (42). In this case,
the recurrent layer is duplicated and the input sequence is
fed both forwards and backward. In Cui et al. it was
observed that stacked bidirectional LSTM outperforms
plain LSTM and GRU networks for traffic prediction
(39). This study investigates whether this approach is still
beneficial with the addition of rainfall information.

In the case of gradient boosting, a separate model is
trained for each of the segments vi. For recurrent net-
works, a single model is trained for the whole network.

The input to the network in non-rainfall case is a tensor
with the dimensions ðnsamples; nsegments; ntimestampsÞ. There
are several ways of including the rainfall data in the ten-
sor. The most straightforward one is to treat rainfall time
series for each segment as another input feature, so that
the tensor has the following dimensions: ðnsamples;
2nsegments; ntimestampsÞ.

A similar structure is employed for all tested RNN
models (GRU, LSTM, BLSTM). One recurrent layer is
followed by two fully connected layers with nsegments neu-
rons in all cases. Dropout regularization is applied after
each layer. A hyperparameter search is performed to find
the optimal layer size and dropout rate. The RNN results
are reported only for the best hyperparameters values:
LSTM and BLSTM layers consist of 1,024 neurons,
while the GRU layer consists of 512; the dropout rate is
set to 0:1. Rectified linear unit is used as an activation
function for all layers, and Adam is employed as an opti-
mizer with mean squared loss (43). The networks are
implemented via Keras library (44).

Evaluation

For training the prediction algorithm, all those data
points when the corresponding rainfall intensity data is
available (ri;j ø 0) are considered; whereas, for evalua-
tion, only those data points with rainfall intensity above
zero (ri;j.0) are considered. The prediction performance
is evaluated by three-fold rolling cross-validation. The
dataset contains approximately 180 days of data: for the
first fold the training data consists of observations from
day 1 to day 45 and test data from day 46 to day 90; for
the second fold, the training data consists of observation
from day 1 to day 90 and test data from day 90 to day
135; and for the last fold, the training data consists of
observations from day 1 to day 135 and test data from
day 135 to day 180. This is one of several approaches for
time-series cross-validation described in the literature (45).
The usual cross-validation procedure is not always suitable
for time-series data, especially if it is non-stationary.

Several common evaluation metrics are employed,
namely mean absolute error (MAE), mean squared error
(MSE) and MAPE. MAPE for segment vi and kth predic-
tion horizon is defined as:

MAPEðvi; kÞ ¼
1

d

Xd

j¼1

ĵsk
i;j � sk

i;jj
sk

i;j

; ð5Þ

where:
ŝk

i;j is the predicted speed band at time tj; and
d is the number of test samples.
MAPE for the whole network G containing p segments
for the kth prediction horizon is defined as:
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MAPEðkÞ ¼ 1

p

Xp

i¼1

MAPEðvi; kÞ: ð6Þ

Impact of Rainfall on Network Speed

This section discusses and analyzes the effects of rainfall
on traffic speed. Figure 5 shows the distribution of rain-
fall intensities across the available dataset. It can be
observed that the dataset contains the whole range of
intensities, with a slight overrepresentation of high-
intensity time periods (as can be expected from the tropi-
cal climate of Singapore). Figure 6 shows the average
speed during rainy and corresponding non-rainy time
instants. Reduction in average speed (across the net-
work), influenced by the rainfall, can be seen even in
speed-band data (see Figure 6). The reduction is higher
for the periods with congested traffic, which is in align-
ment with the results from other studies (14). In the case
of weekdays, as expected, these periods are evening and
morning peak hours (see Figures 6 and 7a). For the anal-
ysis, AM peak is defined to be from 06:00 to 09:59, and
PM peak to be from 17:00 to 20:59. Concerning week-
ends, the highest impact of rainfall is during the evening
and night hours (see Figures 6b and 7a) when an increas-
ing number of recreational- and shopping-related trips
are realized in a vibrant city such as Singapore. Figure 6
further shows that the lines of average network speed
during weekdays are smoother than for weekends (see
blue and red lines in Figure 6) as a consequence of a
larger dataset. Figure 7a shows the reduction in speed
band because of rainfall for different times of the day
and road categories. From Figure 7a, it can be seen that
reduction in speed band is greater for highways than for
arterial roads (see also Figure 7b). One possible reason
for this difference is that vehicles tend to travel faster on

highways, and therefore they tend to slow down more
when roads are slippery. Figure 7b shows the reduction
in speed band because of rainfall for different rainfall
intensities and road categories in the network. As
expected, heavy rainfall has a greater effect on traffic
than light rainfall. Heavy and even light rain might have
significant impact even during the weekends. This impact
has been frequently ignored by other studies, as they
often are limited to peak hours.

Next, to investigate whether the rainfall impact is sta-
tistically significant, a regression analysis is performed.
Two scenarios are considered: first, the impact of any
rainfall (i.e., intensity is greater than zero); second, the
impact of heavy rainfall (the rainfall is considered heavy
if the intensity is higher than the median value). Day of
the week and time of the day are used as covariates to
perform the regression on the speed value as a target.
Figure 8 shows the histogram of estimated rainfall effects
for both scenarios. It can be seen that, for almost all the
links, the rainfall has a negative effect on speed. In addi-
tion to average effect values, the 95% confidence inter-
vals are also computed. For the rainfall scenario, out of
2,896 links, only 57 links (or less than 2%) do not have
the whole interval below zero, making the results statisti-
cally significant.

Results and Discussion

This section presents and discusses the results of using
rainfall information with a high temporal resolution for
short- to long-term speed prediction.

First, the prediction performance of XGBoost regres-
sion is investigated for three different prediction hori-
zons: 15, 30, and 45min. For testing, only those time
points where the rainfall intensity is greater than zero are
considered. Table 3 shows the results for varying values
of P in (3) for 15, 30, and 45min prediction horizon.

From Table 3 it can be observed that addition of rain-
fall information into the model decreases both the mean
and standard deviation of MAPE for all three prediction
horizons. The percentage decrease in mean for all P val-
ues and all prediction horizons is around 4%, while the
decrease in standard deviation is about 7%. The perfor-
mance of the model varies slightly for different P values
and an optimum P value was obtained for each horizon.
Utilizing more than five past values does not significantly
increase MAPE. The authors believe that this is because
the more recent speed data is a better predictor of short-
term speed fluctuations.

There is an increase in both the mean and standard
deviation on increasing the prediction horizon from 15 to
45min, as expected, since the long-term prediction is
more challenging. However, the effectiveness of incor-
porating rainfall information into the prediction model is

Figure 5. Histogram of rainfall intensities across the available
dataset:
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(a) (b)

Figure 6. Reduction in average traffic speed because of rainfall for various times of the day: (a) during different times of the day, and (b)
during light and heavy rain.

(a) (b)

Figure 7. Impact of rainfall on the average traffic speed for different road types: (a) during different times of the day, and (b) during light
and heavy rain.

Figure 8. Histogram of average effects of rainfall (left) and heavy rainfall (right) from the regression analysis.
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consistent for all cases. A Mann-Whitney U test is also
performed to determine the significance of these results
(46). This is a non-parametric test to determine whether
the two samples come from the same distribution: for all
prediction horizons, the p-value was smaller than 1e23.
This is also illustrated in Figure 9 which shows the distri-
bution of the difference in MAPE metric. It was obtained
by subtracting MAPE for the prediction model without
rainfall feature from the MAPE of the model with rain-
fall feature for each of the 2,896 segments. All the distri-
butions reveal that the prediction model shows improved
performance for around 80% of the segments in the net-
work, and the decrease in MAPE for these segments is
much higher than the increase in MAPE for the remain-
ing segments that are adversely affected by the inclusion
of rainfall intensity feature. These results show that traf-
fic speed prediction during inclement weather can be

improved by the inclusion of rainfall information into
the model. There are several possibilities why some links
do not show improvement in MAPE: a larger share of
missing values (either in the speed data or the rainfall
data), speed profile which differs significantly from the
rest of the network, or something particular to these
links, that make them less sensitive to rainfall effects
(e.g., tunnels).

Next, it is investigated how different models behave
with the inclusion of rainfall data. Tables 4 to 6 show the
results for several models. It can be observed that, in
most cases, the addition of rainfall improves the perfor-
mance of the model: this holds for linear regression, gra-
dient boosting, and RNNs. Linear regression is added
for comparison as a baseline model. For all prediction
horizons, it performs worse than XGBoost and LSTM,
as expected. It is observed that linear regression

Table 3. Mean and Standard Deviation of Mean Absolute Percentage Error (MAPE) for Varying Numbers of Previous Timestamps Used
for Training ( P) for Three Prediction Horizons

(a) 15 min Horizon

P

Mean Standard deviation

Without rain With rain Without rain With rain

2 10.22 9.21 1.70 1.30
3 10.09 9.14 1.70 1.30
4 10.02 9.11 1.69 1.30
5 10.00 9.10 1.70 1.30
6 9.99 9.09 1.70 1.31
7 9.98 9.09 1.71 1.31
8 9.98 9.10 1.72 1.32

(b) 30 min Horizon

P

Mean Standard deviation

Without rain With rain Without rain With rain

2 12.56 11.43 2.34 1.91
3 12.45 11.37 2.35 1.91
4 12.37 11.33 2.34 1.90
5 12.35 11.31 2.34 1.90
6 12.34 11.31 2.35 1.91
7 12.34 11.31 2.35 1.91
8 12.33 11.32 2.38 1.93

(c) 45 min Horizon

P

Mean Standard deviation

Without rain With rain Without rain With rain

2 14.07 12.90 2.69 2.28
3 13.97 12.83 2.70 2.28
4 13.90 12.79 2.71 2.28
5 13.87 12.76 2.70 2.27
6 13.85 12.76 2.70 2.28
7 13.82 12.76 2.69 2.27
8 13.82 12.75 2.71 2.28
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predictions are usually close to the mean, which can
explain the squared error showing the largest gap
between the regression and other models (since it is more
sensitive to larger errors). Next, it is noticed that for 15
and 30min prediction horizons, gradient boosting

outperforms various RNN architectures. Only for the
45min horizon is the difference in metrics between gradi-
ent boosting and best RNNs marginal, with LSTM
showing the lowest MAPE among all models. While
RNNs can seem like a better-suited model for time-series
prediction because of their design, results show that gra-
dient boosting can achieve better performance for some
of the prediction horizons and metrics. Only a few traffic
forecasting studies use gradient boosting as a baseline,
with most focusing only on historical average and
ARIMA models for this purpose. However, results in
Yao et al. show that gradient boosting outperformed
convolutional LSTM and deep spatio-temporal residual
networks on two datasets; at the same time, both deep
multi-view spatial-temporal network and spatial-
temporal dynamic networks achieved smaller errors (47–
50). While the results are not dissimilar to these studies,
another possible reason for RNN performing worse in
this case can be that discretized speed data is used.

Table 7 shows the computation times for XGBoost
and LSTM, as well as linear regression, which is added
as a baseline. The experiments were performed on an
Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz server
with 4 GeForce GTX 1080 GPUs. The slight difference
in computation times between XGBoost and LSTMs is
because one LSTM model is trained for all segments,
while gradient boosting is trained for each segment indi-
vidually. Depending on the technical requirements and
the scale of the dataset, one or other model can be cho-
sen. It was observed that gradient boosting outperforms
RNNs on the shorter horizon forecasting; however, it
also requires training a separate model for each segment,
which comes at an additional computational cost. Linear
regression shows the fastest training and inference times
while producing the highest forecasting errors.

It can be seen from Figure 6 that the traffic speed
reduction because of rainfall varies across time; there-
fore, the performance of the predictive models was inves-
tigated for different times of the day. For weekdays, four
time categories were considered, to distinguish the per-
formance during peak hours. Weekends were split into
two categories, as no distinct pattern can be observed in
Figure 6 for the speed during weekends. The prediction
was performed for a horizon of 15min by XGBoost. The
results for weekdays in Figure 10 show that MAPE is
higher during the peak hours. The traffic is most con-
gested and rainfall has the greatest impact on traffic
speed during peak hours, as is observed in Figure 7. It
can also be seen that the inclusion of rainfall data pro-
vides the largest improvement in accuracy for AM and
PM peak hours (see Figure 10).

Next, it is investigated how the resolution of the rain-
fall data affects the model performance. Several temporal
resolutions often found in the literature (15, 30, and

(a)

(b)

(c)

Figure 9. Distribution of the difference in mean absolute
percentage error (MAPE) between the baseline and the rainfall
models for all segments in the network (positive numbers
represent improvement because of the addition of rainfall data):
(a) 15 min prediction horizon, (b) 30 min prediction horizon, and
(c) 45 min prediction horizon.
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Table 4. Comparison between Different Models: 15 min Prediction Horizon

Model MAPE MAE MSE

Linear regression (no rain) 10.6 0.74 0.99
XGBoost (no rain) 9.35 0.49 0.61
GRU (no rain) 13.29 0.74 1.05
LSTM (no rain) 11.38 0.63 0.88
BLSTM (no rain) 13.34 0.74 1.19
Linear regression (rainfall) 9.71 0.70 0.89
XGBoost (rainfall) 9.03 0.49 0.59
GRU (rainfall) 12.39 0.67 0.92
LSTM (rainfall) 11.49 0.64 0.88
BLSTM (rainfall) 12.84 0.72 1.07

Note: BLSTM=Bidirectional Long Short-Term Memory; GRU=Gated Recurrent Unit; LSTM=Long short-term memory; MAE=Mean Absolute Error;

MAPE=Mean Absolute Percentage Error; MSE=Mean Squared Error. Bold indicate the Lowest error values.

Table 5. Comparison between Different Models: 30 min Prediction Horizon

Model MAPE MAE MSE

Linear regression (no rain) 13.63 0.70 1.11
XGBoost (no rain) 11.75 0.60 0.88
GRU (no rain) 13.03 0.71 1.04
LSTM (no rain) 12.23 0.67 0.98
BLSTM (no rain) 12.45 0.69 1.00
Linear regression (rainfall) 13.16 0.68 1.05
XGBoost (rainfall) 11.32 0.59 0.85
GRU (rainfall) 14.78 0.81 1.29
LSTM (rainfall) 13.89 0.88 1.21
BLSTM (rainfall) 13.21 0.73 1.13

Note: BLSTM=Bidirectional Long Short-Term Memory; GRU=Gated Recurrent Unit; LSTM=Long short-term memory; MAE=Mean Absolute Error;

MAPE=Mean Absolute Percentage Error; MSE=Mean Squared Error. Bold indicate the Lowest error values.

Table 6. Comparison between Different Models: 45 Min Prediction Horizon

Model MAPE MAE MSE

Linear regression (no rain) 14.98 0.74 1.20
XGBoost (no rain) 13.32 0.67 1.07
GRU (no rain) 13.36 0.70 1.06
LSTM (no rain) 12.96 0.69 1.04
BLSTM (no rain) 13.61 0.71 1.08
Linear regression (rainfall) 13.94 0.73 1.15
XGBoost (rainfall) 12.93 0.67 1.02
GRU (rainfall) 13.90 0.75 1.17
LSTM (rainfall) 12.90 0.70 1.07
BLSTM (rainfall) 14.19 0.73 1.17

Note: BLSTM=Bidirectional Long Short-Term Memory; GRU=Gated Recurrent Unit; LSTM=Long short-term memory; MAE=Mean Absolute Error;

MAPE=Mean Absolute Percentage Error; MSE=Mean Squared Error. Bold indicate the Lowest error values.

Table 7. Average Training and Prediction Times Per Segment for Linear Regression, XGBoost and Long Short-Term Memory (LSTM)

Model Training time per segment, s Prediction time per segment, s

Linear regression 0.002 0.0001
XGBoost 0.14 0.001
LSTM 0.04 0.001
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60min) and several spatial resolutions are compared. A
new temporal resolution is computed by averaging the
intensities for the corresponding time period for each seg-
ment. Also, the original (segment-level) spatial resolution
is compared with city-level resolution. To this end, rain-
fall intensities from all segments during the time period
are averaged. In all cases, the test data remains the same
as in the original experiments, for a fair evaluation.
Results are presented in Figure 11. It can be observed
that higher resolution does indeed produce better results.
However, almost all resolution levels produce improve-
ments compared with the baseline model. Only city-level
data sampled at the 60min interval decrease the model’s
accuracy, similar to the effect observed in Butler et al.
(19). Additionally, the results show that the spatial
resolution of rainfall data plays a significant role in
short-term (15min) prediction. In this case, the local
information is required, as the rainfall is not homogenous
across the country. At the same time, both segment-level
and city-level data produce similar results for medium-
term (45min) prediction, since rain typically affects the
entire country over a long time period.

Conclusions

This study has investigated the impact of rainfall on traf-
fic conditions, and also how rainfall information can be
leveraged to improve traffic predictions. Some of the pre-
vious studies were not successful in showing that the
inclusion of lower-resolution precipitation data can
improve the performance of short-term traffic estimation
procedures. This study has considered high-resolution
and high-volume rainfall and traffic datasets. This study
has presented a method to merge rainfall information
with traffic data for traffic prediction, and its prediction
accuracy has been evaluated for horizons of 15 to

45min. The results have shown that, for predicting traf-
fic conditions during inclement weather, the inclusion of
rainfall information improves the prediction accuracy. It
is observed that most models can benefit from the rain-
fall information; however, a better choice of the model
architecture can provide a larger improvement than
the inclusion of the weather data into some models.

(a)

(b)

(c)

Figure 11. Impact of rainfall data spatiotemporal resolution on
traffic speed prediction accuracy for three prediction horizon.
Island-level resolution refers to city-level: (a) 15 min prediction
horizon, (b) 30 min prediction horizon, and (c) 45 min prediction
horizon.

Figure 10. Time category-wise comparison of mean absolute
percentage error (MAPE) and mean squared error (MSE) with and
without rainfall data.
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Also, experiments were performed with rainfall data
aggregated at different resolutions to study the impact of
resolution. It was observed that higher-resolution rainfall
data leads to higher model accuracy; however, most of
the resolutions can lead to a marginal improvement over
the baseline. In future work, the authors will consider
network topology to improve the speed prediction mod-
els. The authors will also explore the impact of rainfall
on the occurrence and duration of accidents in the con-
text of a large traffic network and high-resolution rain-
fall data. Also, the authors will explore how these
accidents affect traffic conditions and deteriorate the pre-
diction performance.
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