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Abstract—Many intelligent transportation systems (ITS) lanes, for different prediction horizons. This problemlvaid
applications require accurate prediction of traffic parameters.  referred as large scale prediction problem. Any algorithm
Previous studies have shown that data driven machine leamng o 5rchitecture which deals with this problem should be
methods like support vector regression (SVR) can effectivg dul i labl d robust. Wi ¢ |
and accurately perform this task. However, these studies m_o ular, easily scalable and robust. Vve propose a emppra
focus on highways, or a few road segments. We propose Window based SVR method to perform large scale prediction
a robust and scalable method usingv-SVR to tackle the and compare its results with prediction performance of ANN
problem of speed prediction of a large heterogenous road and Holt’s exponential smoothing predictors.
network. The traditional performance measures such as Secondly we develop novel techniques for temporal and

mean absolute percentage error (MAPE) and root mean tial f luati f dicti lorith
square error (RMSE) provide little insight into spatial and Spatial periormance evaluaton of a prediction algorthm.

temporal characteristics of prediction methods for a large Prediction performance is usually evaluated using mean
network. This inadequacy can be a serious hurdle in effectwy  absolute percentage error (MAPE) and root mean square
implementation of prediction models for route guidance, error (RMSE) [7]-[24]. For large scale prediction, these
congestion avoidance, dynamic traffic assignment and other \reyaijling point estimation methods provide little insigh
ITS applications. We propose unsupervised learning techgues .
by employing k-means clustering, principal component anajsis !nto actual performance of the model. To .O.V.ercome this
(PCA), and self organizing maps (SOM) to overcome this inadequacy, we propose novel methods utilizing k-means
insufficiency. We establish the effectiveness of the devpled clustering, principal component analysis (PCA) and self

methods by evaluation of spatial and temporal characterists  organizing maps (SOM) for performance evaluation. To the
of prediction performance of the proposed variable window  pagt of our knowledge this is the first attempt to address this
v-SVR method.
problem.
. INTRODUCTION Singapore’s land transportation authority (LTA) providae
ata set for experimental purposes. It contains two months

. . . . d
Data driven learning techniques like support vectopy speed data (March-April, 2011) for each road segment

regression (SVR) are effective time series predictors[gll- in Singapore. LTA collected the data using a range of on

These techniques have found applications in many diver§ge sensors. We consider in this paper a subnetwork that
fields such as financial sector [4], packet r_1etworks [Skonsists of a continuous stretch of road network from Outram
and_ weather forecasts [6]. Meth_ods employing SVR ) Changi (Fig. 1). The selected area contains differerggyp

particularly suitable for road traffic parameters predicti of roads. It spans over parts of Singapore's main highways
and estimation, due to prevalent non-linear relationshiqgan Island Expressway and East Coast Park highway). The
amongst traffic variables. Machine learning techniques liky o5 5156 includes some other major roads in the downtown

artificial neural networks (ANN) and SVR consistently, o, anq urban arterial roads with significant traffic vatsm
provide better results than traditional regression mettod We did not include road segments for which little data is

prediction of different traffic parameters like travel time available. Using this criteria, we selected a total of 5024
flow and speed [7]-[22]. These studies, however, concentr ad segments for the study

on custom scenarios like highways or a few intersections; e paper is structured as follows. In Section Il we

Practical ro_ad networks are mucr_l more cpmplex. Int‘?”igerbtevelop the architecture of variable windewSVR method.

transportation systems (ITS) applications like route goe, performance comparison with other time series prediction
or conge'_stlon avoidance WOUld require pred'?“"” reSUItr%ethods is provided in Section lll. Sections IV and V deal
for generic networks. In this paper, we examine Wheth%ith development and evaluation of unsupervised learning

SVR_based prediction m_ethod can be "*_F’P“ed to a mo'fgchniques for spatial and temporal prediction perforreanc
practical road network environment, comprising of thowsan o,o1ation of variable window-SVR. At the end of the

of road segments with different capacities, speed limitsl a o0 (Section VI), we summarize our contributions and
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represents the set of road segments/links.

Definition 2: (Speed Profile) A Speed profile for road
segments is set of speed values for that link such that
U(tj,s) represents average speed of the link during interval
(tj —to,tj). Uk(tj,s) is the predicted speed of the link during
interval (t; —tot;) for K prediction horizon.ty is the
sampling interval for data, which is 5 minutes for the data
set at hand.

In this section, based on above definitions, we develop
a robust and scalable SVR architecture, to deal with the
problem of large scale prediction. The objective of the Fig. 1: The map of region for speed prediction
method is to perform prediction of future speed profiles for

individual links based on current and past speed trends. To

make the architecture modular, we will perform prediction e goal of training SVR is to find (x) which can provide
for each road segment individually. most suitable representation of data set [27].

B, Feature selection using temporal variable window

Future state of traffic parameters depends upon historical

We use SVR to extract the relationship between give havior of the ai q tand it iahboring link
and future speed values from training data to perform speéﬁ avior ot Ine given road segment and f's NEIGhboring finks
ese relationships have been utilized for traffic paramete

prediction. For a links, consider a set of vectors of given . . . .
d val Rv=1...1}, and ding fut prediction by both. machine learning techniques [3Q], [31]
speed valuegx,eR"|v=1,...,1}, and corresponding future as well as alternative methods [23], [24]. If both spatiadl an

speed values{yyeR|v = 1,...,I}. We will perform SVR _ _ ) _ _ _
training by feeding SVR with given and target speed Valugemporal relationships are taken into consideration then:

pairs &v.yv). SVR will then try to find a function to replicate Y (t+nty,s) = F [U(t,%),...,U(t — miy, sj)]. 4)

these trends. Each inpu contains h” input features. To ) ) ) ] )
exploit the relationship between these features, eachtingll (4), /" [¢] defines the relationship between historic speed

vector is mapped into higher order space using a kernklues of given road segment, its neighbb(s, s),... U(t -
function. If x = {x1,...x} is the input feature set, then the ™o:Si), and future speed values of the given segméfnt+

chosen kernel functiom(e) defines this mapping: x — ntp, ). By neglecting the spatial features in (4_), the equation
/. In this section, we provide a brief overview of gyReduces to window method for feature selection [22]:

methodology. A more rigorous treatment of the topic can be Y(t+nt,s) = F[U(t,s),....U{t—mb,s)].  (5)
found in [25]-[29]. Fore-SVR, this problem can be formally

A. SVR based time series prediction - Theoretical Overvie

stated as in [27]: Spatial relationship are more difficult to extract and regui
| more computations [30], [31]. This complexity strongly
min: z= ~wTw+C (&+ &), @ limits the overall §calab|llty of the pred|ct|or1 system.rividt
£ al. proposed spatial and temporal correlations, as a measur

. ) ) to find relevant neighboring links [23]. However, correteti
wher_e i a_nd_ & are slack variables, introduced for jothoqs fails to capture the non-linear relationships .[30]
constraint optimization [27]. Support vector method ergplo 5o 5 result, many prediction studies utilize only past

S0 calIer insen_sitive lose fupctioq, which only pena_lizestrendS of the road segment for prediction [8], [12], [18],
input points outside soft margin defined by bousels CiS 50 The resulting prediction methods are scalable. For
the cost function, associated with the training errorsdarg instance. assume that we wish to extend our subnetwork
than the bounde|. w is the hyperplane. with additional nodesE = {gyk=1,...r} : g« ¢ E. E
Difficulty in choosing the appropriate value of error boundmay represent neighboring area of the test network. Since
(€) led to the d?"e',‘)pme“t 9f a new class ‘?f,SVR .callecgl” predictions only need local information, we can justiea
v-SVR [29]. With introduction O_f v, the minimization e jictors for the extra nodes, without having to re-calier
problem in (1) takes the form [29]: the existing predictors. However, methods which exploit
1 1] spatial relations would need to be re-calibrated in thiscas
. T * . . .
min:z=sw w+C(ve + T _Zl(fi +&"))- (2)  [23],[30], [31]. Instead of choosing a fixed temporal window
1= nty for all prediction horizons [8], [12], [18], [20], [22],
e couple the length of temporal window to the prediction

It can be shown that encapsulates upper and lower bound orizon by choosing — m in (5),

for fraction of training errors and support vectors respebt
[29]. Applying the Lagrange multiplier technique to (1) and

(2), will yield resultant function [27], [28]: C. Parameter selection for SVR
[

fF0) = S (g —a* AT b. 3 Kernel functions define the mapping of input data into
) Zl( Jo0x)" 900 + @) feature space. Popular choices of kernel function include



radial basis function (RBF), linear kernel, and polynomial 0%

kernel function. The choice however, mostly remains a =~ | & & Smeoting s . Smoathing
outcome of experimental results [8]. g W% ] &SR g 15% *SR
. . . 8 3

The RBF kernel is defined as: = 159 | —m w mmm|E 10%;

o] HX_)?H 1 % o ,./:/A A E 5% //,/JTA A4 4 4

(0()(, X) = eXp( - 202 ) Y= F (6) 10% w N r
. . . . . . . . 5% + + + + + + + 0% + t + t t t t
RBF is highly effective in mapping non-linear relationship 5 10 15 20 25 30 45 60 5 10 15 20 25 30 45 60
It can be shown that linear kernel behaves as special case or Predieton Horizon (mintes) Prediction forizon (minutes)
(a) Mean error (b) Standard deviation of MAPE

RBF kernel for certain parameter values [32]. Due to these
attributes we used RBF kernel for SVR training. EfficiencyFig. 2: Performance comparison of different prediction
of SVR strongly depends proper parameter select@y)( methods
Wrong selection can give rise to issues like data over
fitting. To avoid these issues, we used k-fold cross valiati
(CV) technique using-SVR for parameter selection. CV by calculating MAPE for each technique. For a ling)(
however, adds additional computational cost to the systeMlAPE for k' prediction horizores(s;, k) is defined as:
e-SVR offers flexibility of choosing value of, depending | ~
: - o 18 U(t,s) — Oty s) |

pon setup requirements. A loose error boursd ¢an eS(Sak)——Z )
reduce the CV cost substantially. For traffic prediction, ! =1 U(t;j,s)
lL?soeSdev(—ag\c/)Ir?bf?)Lrjr:;(\a/v(elg zzz\gg:(taic;rr]]altgcumr?ﬁtgeartistwésﬁrljfer}i:,n\;vl:or the whole road networks, MAPE for k" prediction
associated with error bound)( We implemented the SVR horizon is calculated as(k) = E{es(s; k)}. E{e} denotes
by means of the LIBSVM software package [33].

()

the expectation value (approximated as mean value). The
standard deviation for each prediction horizoay)( is
D. Speed prediction using hybrid off-line training andcalculated as:
on-line prediction mechar_usm. _ | O = (E{(es(s,K) —e(k))z})%. )
Support vector regression is computationally intense, and
consequently, it does not scale well for large data sets. Thel) Multilayer feed forward neural networksDifferent
online version of SVR resolves this problem by performinglrchitectures of ANN have been extensively used for short
incremental online training. This method however, fails tderm traffic prediction [7], [10], [11], [13], [14], [17],
provide high prediction accuracy [15]. To balance both21], [22]. Multilayer feedforward (MLF) networks, posses
constraints, we use the hybrid off-line training and orelin highly desirable property of universal approximators [37]
prediction based SVR model. Traffic speed behaves ddis property makes MLF preferred ANN architecture for
a time series. This makes continuous training of Svmrediction of road network traffic parameters [15]. We
unnecessary. The same set of support vectors can be ug€iformed ANN training using back-propagation algorithm.
for prediction for a significant portion of timet:{. For 2) Holt's exponential smoothingExponential Smoothing
experimental purposes we getto 10 days. Each prediction methods are more commonly known as Holt's exponential
horizon can be treated as an independent function estimatismoothing models. These models have been efficaciously
problem. We utilize this property by implementing parallelapplied for road network traffic parameter prediction [38].
SVR architecture for each prediction horizon. Parallel SVRVe chose decay ratédy), for each prediction horizogk),
architecture can also be extended across multiple roaging MAPE based CV [15]. Fig. 2 shows the results for
segments. This would however, require optimization othe different prediction methods. SVR outperformed both
hardware and software resources [34], [35]. We will noANN and exponential smoothing method for all prediction
focus on resource optimization in this study. CV make$orizons. SVR based method has lower mean (Fig. 2a) and
accuracy analysis more robust to any outliers, or bias iperformance standard deviation (Fig. 2b). As expected, all
data. K-fold CV is less computationally intense. In manynethods perform better for smaller prediction horizonse Th
cases it provides similar performance evaluation resolts mean error and error variance increase with the prediction
more taxing leave one out cross validation (LOOCV) [36]horizon. ANN performs only slightly worse compared to
We performedk = 6 trials for each road segment. For eacHSVR.
trial, we separated the data differently into 50 days ofiiraj
data and 10 days of test data. Prediction error was calcllate
as the average error across the six trials.

IV. PERFORMANCE EVALUATION USING
UNSUPERVISED LEARNING TECHNIQUES
Point estimation measures like MAPE fail to capture
I1l. PERFORMANCE COMPARISON WITH OTHER  the spatial and temporal performance trends for a large
TIME SERIES PREDICTION METHODS network. Spatial trends can provide detailed insight into
In this section we compare the prediction performanceelative performance of road segments. Temporal trends
of proposed algorithm with performances of the artificiacan provide information related to variation in prediction
neural networks (ANN) and Holts exponential smoothingperformance due to changes in daily and hourly traffic



patterns. We can also utilize temporal trends to analyzeTABLE I: Performance for different clusters of segments

performance of prediction algorithm at micro level. Many Prediction Horizon|| Cluster 1 ]| Cluster 2 || Cluster 3 || Cluster 4
ITS applications can benefit from such analysis. For a smaill 5Omlf_1utes g-ggzﬂ) 8-722@ 11-282@ g.észm

; s o 10 minutes .24% .16% 14.60% .04%
data set such mferences_, are trivial. Large scale pretm_ct! e minutes 3 66% 1035% 1T 1500% 124 58%
problems,_ however, require more _sophlstlcgted data miniNng—>0 minutes 3.86% 1052% 1 16.01% 1 24.81%
and learning methods. In this section, we will develop novel 25 minutes 4.05% 10.64% || 16.05% || 24.98%
unsupervised learning techniques to address above medtion 30 minutes 4.20% || 10.72% || 16.08% || 25.10%
issues 45 minutes 4.61% 10.95% 16.18% 25.41%
ISSUES. 60 minutes 489% || 11.14% || 16.28% || 25.62%

A. Analysis of performance across space

. . .. 10% 0.72
We cluster road segments based on their predictic #Cluster 1 =Cluster 2

performance, across different prediction horizons. Wg ®% ] #Clusters  xCluster4
represent each road segmentoy a vectoresj € R" such 6% 1
that es; = [es(s,to) -.. es(s,nto)]T, wherees(s, k) is MAPE
for k" prediction horizon for segmerst. The distance /)

0.70 1
0.68 -
0.66 -
0.64
2% | ——r—t—t—t—% 0.62

4%

Mean s(i) value

#®Mean s(i) value

Standard Devi

between any two road segmeistsands;, is defined as: 0% +—t+—t+—+—+—+—+— 0.60 +————————+—
5 10 15 20 25 30 45 60 2 3 45 6 7 8 910
Prediction Horizon (minutes) Number of Clusters
A= \/(esi - esj)T(esi —€j). (9) (@) Intra cluster standard deviation (b) Mean silhouette value

For the given road networlG), optimal number of clusters Fig. 3: Spatial performance indices

are not explicity known. That is a typical problem in
clustering known as validation [39]. We use Silhouette inde
[40] as internal validation criteria to find the optimal nuenb
of clusters Q). Silhouette valu€(s) for a road segments

's calculated as: Beoa= /(8- 8%+ (B - &% (11)

{(s)= %,—1§ {(s)<1 (10 2) Visualization of prediction error across time

by SOM: Self-organizing maps (SOM) represent
wherea(s) is the mean distance of road segmaptiith  high-dimensional data on a low-dimensional manifold
all other road segments in the same clugbés) is distance (typically two-dimensional). Different groups of segment

to group the segments. To this end, we define distance
measure between two segmestsnds; as:

of 5 with nearest neighboring cluster. appear as points (“centroids”) on the SOM, where similar
groups are located nearby on the map, and dissimilar groups
B. Analysis of performance across time are farther apart [42], [43]. For a given linlg), day to

1) Analysis by PCA based clusteringthe performance day performance may vary, across prediction horizons.
e utiize SOM to map this higher dimensional daily

of predictors tends to depend on the time of the day an , . . .
on the day of the week. Also large social events (e.g_performance data into two-dimensional cluster space. This

New Year celebrations) may affect the traffic conditions\,"'_OUId help identify days with similar performance for a

and result in larger prediction errors. Some links may hav&ven fink.

stable prediction errors ir_1 time. For.other Iinks,. the pc_e'dh . V. RESULTS: PERFORMANCE EVALUATION

error may vary substantially over time. We wish to identify ACROSS SPACE AND TIME

the consistent and relatively inconsistent links. To thisl,e . . .

we apply principal component analysis (PCA) to find such _In this section, we analyze the performance_of the yarlable
clusters of links. PCA is a well known method employedVindow SVR algorithm by the tools proposed in Section IV.
for statistical inference. Principal components provige aFor Spatial clustering, we found thét= 4 clusters provided
implicit visualization of inherent similar subsets withihe
data [41]. To evaluate daily variance for ligk we compute
daily averages of the prediction error for different préidic <
horizons. Similarly, we computed hourly averages of thiS

.. . . . < 2,000
prediction error, across prediction horizons to evaluhge t £

mPercentage — 100%

- nu
®Segment N 80% -

Count a

<+ Temporal Cluster 1

5
.. R - S 1,500 30 2 g,g

) 238,
hourly variation. We apply PCA individually to the resuljin 2 1000 208 2 40% aTemporal Clustr 2
two matrices. We represent each road segm@nitas a ¢ 5 108 € 209
2-tuple (Jgi, &), Wheredy; and &, are number of principal 0 R L S

H. 0, H i 1 2 3 4

components explaining 80% of daily and hourly varianc Spatial Cluster Number 1 ool Chster 4

respecuvely. If the.number of P”nc_'pa| componepts is $mal (a) Spatial clustering distribution (b) Temporal clustering distribution
(large), the prediction error varies little (substantipthcross

time. We apply k-means clustering to those 2-tuples in order ~ Fi9- 4: Spatial and temporal clustering patterns



TABLE II: Centroid count of principal components for prediction errors at any point in time.

optimal temporal structure SOM structures for a typical single link witldg = 6
Cluster || 83 || o || Number of segments are shown in Fig. 5. Fig. 5a shows variable count for
Cluster 11| 5 || 6 1500 each cluster, and Fig. 5b shows dissimilarity between
Cluster 2] 13 || 12 3524 clusters. Dark colored paths between hexagons in Fig. 5b,

represent greater dissimilarity, and vice versa. We reafer t
j'" cluster init" row in Fig. 5 asp;j. As evident from

the graphs, SOM can provide detailed inference regarding
temporal performance behavior. For this particular linle w
observe four major groupsp{s, P11, P12, P22) of daily
performance variations (Fig. 5a). Clusfmy mostly contains
Saturdays and Sundays (weekends). Where as, the clusters
P11, P12 and py, contain weekdays. Although there are three
main clusters incorporating weekdays, they show similar
prediction performance (Fig. 5b). However, there is a @erta

0 Similar Clusters | Similarity dissimilarity between prediction performance pfi, pi2,

X - no. of variables li?\esci:s;asﬁty ey P22 (weekdays) angbys (weekends) (Fig. 5b). The rest of
=>Cluster Desirieises] ST the clusters contain outliers (individual days with relaly

() Daily performance trends (b) Inter cluster variation dissimilar prediction performance). However, the overall

daily performance variation for this particular road segte
Fig. 5: Daily performance trends for a single road segmerig quite small. This can be inferred from light colored paths
connecting the major clusters and relatively low number of
principal componentsdji = 6).
maximum mean silhouette value (Fig. 3b). The performance
for the 4 different groups of segments is summarized in | CONCLUSIONS AND FUTURE WORKS
Table I. Spatial cluster 1 (SC1) contains road segments
with smallest prediction error, mostly corresponding to In this paper, we proposed a modular, robust, and scalable
highways. Most road segments (about 79%, Fig. 4a) belortgchnique, termed as variable window-SVR method,
either to spatial cluster 2 (SC2) or 3 (SC3), representing deal with the problem of speed prediction of a large
segments with low and intermediate prediction error. Thesend heterogenous road network. To establish prediction
clusters represent the mean upper and lower bounds for ergafficiency of the method, we compared its performance with
performance of majority of road segments. Spatial Cluster @ther prediction methods including ANN and exponential
(SC4) contains the residual subset of road segments (5%, Fagnoothing. The comparison was performed for horizons
4a), with largest prediction error. The intra cluster vaca of 5 min to 60 min. Performance comparison showed
in SC1, SC2 and SC3 is relatively small, as shown in Fig 3dhat variable windowv-SVR consistently provided better
The segments within each cluster have comparable predictiprediction accuracy than ANN and exponential smoothing.
error, consistently for all prediction horizons. In costra Traditional methods like MAPE provide little or no
SC4 has large variability in prediction error.The clustgri information about the underlying spatial and temporal
method allowed us to separate the road segments in differeftaracteristics of prediction results. To assess the
classes, depending on prediction performance. For segmeperformance of our predictors across space and time,
in SC4, alternative prediction procedures may be applied.we applied unsupervised learning algorithms, including
For temporal performance clusterin@pca = 2 provided k-means clustering, PCA and SOM. We demonstrated the
maximum silhouette value. Parameters of the two temporaffectiveness of these methods by applying them to the
clusters are summarized in Table Il. The first temporgbrediction results of variable window-SVR method.
cluster TC1 (TC2) contains links with little (much) tempbra As a next step, one may couple our large-scale prediction
variation in the prediction error. Fig. 4b shows the peragat algorithms with prospective applications like dynamicteou
of segments belonging to those temporal clusters, separatguidance and congestion avoidance mechanisms. Moreover,
for each spatial cluster. In each spatial cluster, linkoihgl unsupervised learning can also prove to be useful for
to either two temporal clusters. Temporal cluster 1 (TClassessing the performance of alternative traffic predictor
contains "highly consistent” links, where as cluster 2 (JC2e.g., agent based traffic models.
contains "relatively inconsistent links”. Most of the lishkn
SC1 are highly consistent. SC2 has a mix of both TC1 and VIl. ACKNOWLEDGMENTS
TC2 (Fig. 4b). This implies that links with similar overall
error performance (Fig. 3a) may possess quite different The research described in this project was funded in
temporal characteristics. It is quite interesting thatewerst part by the Singapore National Research Foundation (NRF)
performing spatial cluster has some links with “consistent through the Singapore MIT Alliance for Research and
temporal characteristics (Fig. 4b). Those links have largéechnology (SMART) Center for Future Mobility (FM).
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