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Abstract

In this technical note we find computable exponential convergence rates for a large class of5

stochastically ordered Markov processes. We extend the result of Lund, Meyn, and Tweedie
(1996), who found exponential convergence rates for stochastically ordered Markov processes
starting from a fixed initial state, by allowing for a random initial condition that is also
stochastically ordered. Our bounds are formulated in terms of moment-generating functions
of hitting times. To illustrate our result, we find an explicit exponential convergence rate10

for an M/M/1 queue beginning in equilibrium and then experiencing a change in its arrival
or departure rates, a setting which has not been studied to our knowledge.
Keywords: Markov processes, Queueing

1 Introduction

This paper is concerned with parametrized stochastically ordered Markov processes. Con-
sider, for example, a stable M/M/1 queue with service rate µ and arrival rate λ < µ. For
a fixed µ, let {Xt(π, λ)}t≥0 be the queue-length process with service rate λ and initial
distribution π. Then Xt(π, λ) is stochastically increasing in λ, for all t ≥ 0. That is,

P (Xt(π, λ) ≥ x) ≤ P (Xt(π, λ
′) ≥ x)

for all x ∈ Z+ if λ ≤ λ′. Similarly, Xt(π, µ) is stochastically decreasing in µ for fixed λ and15

π. The focus of our paper is to analyze the convergence of a parametrized stochastically
ordered Markov process to its stationary distribution, when its initial state is distributed
according to a stationary distribution for another parameter choice. This will be stated
more precisely below.

The Markov process is described by its transition kernel and its initial distribution. We20

assume that the initial distribution is the stationary distribution associated with setting the
parameter equal to r0, and we let r be the parameter setting of the transition kernel. The
parameter change happens once, at t = 0. In other words, if r = r0, the process is always
in equilibrium, and when r 6= r0, the system starts in the equilibrium associated with r0

and transitions over time to the one associated with r. The equilibrium distributions are25

denoted by π(r0) and π(r). When r 6= r0 we say the system is “perturbed.” These Markov
processes will be denoted by Xt (r0, r). We sometimes refer to the collection {Xt (r0, r)}r0,r
∗Accepted for publication to Systems and Control Letters on August 26, 2019.

1



as a “system.” Note that there could be multiple parameters. For example, to study an
M/M/1 queue starting in the stationary distribution associated with (λ0, µ0), operating
under parameters (λ, µ), we would have r0 = (λ0, µ0) and r = (λ, µ). In the M/M/1 setting,30

we say that r = r0 if λ0 = λ and µ0 = µ. Otherwise, r0 6= r. As in [9], we consider Markov
processes that take value in [0,∞). In this paper, we consider the total variation distance
between a parametrized continuous time Markov process and its stationary distribution.
Recall the definition of total variation distance:

Definition 1. The total variation distance between two measure P and Q on state space Ω
is given by

‖P −Q‖TV = sup
A⊂Ω
|P (A)−Q(A)| .

For a given random variable X, let L(X) denote the distribution law of X. We seek a
convergence bound of the form

‖L (Xt(r0, r))− π(r)‖TV ≤ Ce
−αt.

The value α is referred to as the “convergence rate.”35

Prior work in the area of the convergence of continuous-time Markov processes focuses on
convergence assuming a particular deterministic initial state. However, this type of analysis
is limiting, because the initial state of a process is often unknown. In situations where
the initial state is unobservable, it may be more reasonable to assume a particular initial
distribution rather than a particular initial state. Our extension of the result by [9] allows40

one to analyze a system in equilibrium that undergoes a perturbation of its parameters,
pushing it towards another equilibrium. For example, one might wish to analyze the effect
of a disruption on a queue of customers waiting for service. The bounds in this paper would
allow one to study how quickly the queue length process reaches the new equilibrium after
being perturbed.45

We start by reviewing the existing literature on the convergence of stochastically ordered
Markov processes, focusing on a paper by Lund, Meyn and Tweedie ([9]). We extend the
result of [9], allowing the initial state of the system to be distributed according to a station-
ary distribution from the family of distributions parametrized by the system parameters.
To illustrate the value of our result, we apply it to the analysis of perturbed M/M/1 queues.50

We also analyze a control system of parallel M/M/1 queues, in which the controller seeks
to equalize the queue lengths in response to perturbations of the service rates. More impor-
tantly, our result applies to a broader class of Markov processes, namely any parametrized
Markov process whose initial distribution is a stationary distribution.

2 Related work55

Lund, Meyn, and Tweedie ([9]) establish convergence rates for nonnegative Markov pro-
cesses that are stochastically ordered in their initial state, starting from a fixed initial state.
Examples of such Markov processes include: M/G/1 queues, birth-and-death processes,
storage processes, insurance risk processes, and reflected diffusions. We reproduce here the
main theorem, Theorem 2.1 from [9], which will be extended in this paper.60

Theorem 1. ([9]) Suppose that {Xt} is a Markov process on Ω = [0,∞) that is stochastically
increasing in its initial state, with parameter setting r. Let τ0(x) be the hitting time to zero
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of Xt given that X0 = x, and let τ0(π(r)) be the hitting time to zero of Xt given that X0 is
distributed according to the stationary distribution π(r).

Let L (Xt(x, r)) be the distribution law of Xt given that X0 = x. If E
[
eατ0(x)

]
<∞ for

some α > 0 and some x > 0, then

‖L (Xt(x, r))− π(r)‖TV ≤
(
E
[
eατ0(x)

]
+ E

[
eατ0(π(r))

])
e−αt (1)

for every x ≥ 0 and t ≥ 0.65

The significance of this theorem is that it provides computable rates of convergence for a
large class of Markov processes by relating the total variation distance from equilibrium to
moment generating functions of hitting times to zero. We extend this result to the situation
where X0 is distributed according to the stationary distribution corresponding to a different
parameter choice. The proof is analogous to the one given in [9] and is based on a coupling70

approach.
The second major result in [9] is to connect a drift condition to the convergence rate in

(1), which is Theorem 2.2 (i) in [9], reproduced below:

Theorem 2. ([9]) Suppose that {Xt} is a Markov process that is stochastically increasing
in its initial state. Let A be the extended generator of the process. If there exists a drift
function V : Ω→ [1,∞) and constants c > 0 and b <∞ such that for all x ∈ Ω

AV (x) ≤ −cV (x) + b1{0}(x) (2)

then E
[
ecτ0(x)

]
<∞ for all x > 0, which implies that (1) holds for α ≤ c.

We also connect Theorem 2 to our extension of Theorem 1. Theorem 1 is applied to several75

univariate systems in [9]: finite capacity stores, dam processes, diffusion models, periodic
queues, and M/M/1 queues. Additionally, one multivariate system is considered in [9]: two
M/M/1 queues in series.

The paper by Lund et al (1996) has inspired numerous related papers, some of which
we reference here. Several directly apply the main results; for example Novak and Watson80

(2009) used Theorem 1 to derive the convergence rate of an M/D/1 queue. In a more
applied work, Kiessler (2008) used the result of [9] to prove the convergence of an estimator
for traffic intensity.

Other works build on the derivation of bounds for other processes, or more general
bounds. For example, Liu et al (2008) applied the main theorem in order to bound the best85

uniform convergence rate for strongly ergodic Markov chains. Other processes studied are
Langevin diffusions ([12]) and jump diffusions ([15]). Hou et al (2005) also used a coupling
method, focusing on establishing subgeometric convergence rates. In related work to [4], Liu
et al (2010) established subgeometric convergence rates via first hitting times and drift func-
tions. Douc et al (2004) were able to generalize convergence bounds to time-inhomogeneous90

chains using coupling and drift conditions. Baxendale (2005) derives convergence bounds
for geometrically ergodic Markov processes with an alternate approach to [9], though also
using a drift condition.

Few papers allow for a random initial condition. Roberts and Tweedie (2000) found
convergence bounds for stochastically ordered Markov processes with a random initial con-95

dition, allowing for no minimal reachable element. However, their bound is stated in terms
of a drift condition, which may be challenging to verify because it requires finding a drift
function. Rosenthal (2002) also derives a convergence bound for an initial distribution for
more general chains, using drift and minorization conditions, via a coupling approach.
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3 Main result100

We begin with some definitions that we utilize in this paper. We let {Xt(r0, r)} denote
the process governed by r with initial distribution corresponding to r0. Similarly, we let
{Xt(r)|X0(r) = x} denote the process governed by r with initial state x.

Definition 2. A set A is said to be increasing if

∀x ∈ A, y ≥ x =⇒ y ∈ A.

Definition 3. For a family of nonnegative Markov processes {Xt(r0, r)} with transition
kernel parametrized by r with starting stationary distribution parametrized by r0, we say
that Xt is stochastically increasing in r0 if for all t ≥ 0 and all increasing sets A ⊂ Ω,

P (Xt(r0, r) ∈ A) ≤ P (Xt(r
′
0, r) ∈ A)

whenever r0 ≤ r′0. Note that for a univariate process, A is of the form {y ∈ Ω : y ≥ x} for
some x.105

Definition 4. Define τ0(r0, r) to be the hitting time to the zero state of {Xt(r0, r)}. Sim-
ilarly, define τ0(x, r) to be the hitting time to the zero state of {Xt(r)|X0(r) = x} For a
Markov process {Xt(r0, r)}, let

G(r0, r, α) = E
[
eατ0(r0,r)

]
and similarly for a Markov process {Xt(r)|X0(r) = x}, define G(x, r, α) = E

[
eατ0(x,r)

]
.

We now extend Theorem 1 to allow for a random initial condition.

Theorem 3. Consider a family of nonnegative Markov processes {Xt(r0, r)} that is stochas-
tically increasing in r, where r = r0 corresponds to the system being in equilibrium. Let
rm = max{r0, r}. If G(rm, r, α) <∞ for some α > 0, then

‖L (Xt(r0, r))− π(r)‖TV ≤ G(rm, r, α)e−αt (3)

Proof. Note that Xt(r, r)
d
= π(r). Using the coupling inequality, we have

‖L (Xt(r0, r))− π(r)‖TV ≤ P (Xt(r0, r) 6= Xt(r, r))

where (Xt(r0, r), Xt(r, r)) is any coupling.

Either {Xt(rm, r)}
d
= {Xt(r0, r)} or {Xt(rm, r)}

d
= {Xt(r, r)}. We can create copiesXt(r0, r)

′,
Xt(r, r)

′ so that Xt(rm, r) = Xt(r0, r)
′ ≥ Xt(r, r)

′ if rm = r0, and Xt(rm, r) = Xt(r, r)
′ ≥

Xt(r0, r)
′ if rm = r. This is possible by an extension of Strassen’s Theorem to stochastic

processes, developed in [5] and as cited by [9]. We take (Xt(r0, r)
′, Xt(r, r)

′) as the coupling.
Then, the process Xt(rm, r) acts as a bounding process. Observe that

{Xt(rm, r) = 0} =⇒ {Xt(r0, r) = Xt(r, r) = 0}

and the coupling occurs at or before time t. So then we have

P (Xt(r0, r) 6= Xt(r, r)) ≤ P (τ0 (rm, r) > t) .
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Exponentiating and using Markov’s inequality, we obtain the desired result:

‖L (Xt(r0, r))− π(r)‖TV ≤ P
(
eατ0(rm,r) > eαt

)
for α > 0

≤ E
[
eατ0(rm,r)

]
e−αt

= G(rm, r, α)e−αt

However, the challenge in applying Theorem 3 is finding α > 0 for which G(rm, r, α) is
finite. Note that G(rm, r, α) is a moment generating function (MGF), so {α : G(rm, r, α) <110

∞} is an interval containing zero, typically referred to as the domain. For some Markov
processes, the domain is precisely known. One such example is the M/M/1 queue with fixed
service rate, where the arrival rate is perturbed from r0 = λ0 to r = λ. For processes where
the domain is difficult to find but rm = r, we can apply Theorem 2.

Corollary 1. If rm = r and the drift condition (2) holds for a Markov process Xt(x, r) with115

some V (·), b, c, then (3) holds with α = c.

Proof. If the drift condition holds then G(x, r, α) < ∞, by Theorem 2. Applying Lemma
3.1 from [9], we also have that G(r, r, c) <∞.

We now apply Theorem 3 to the analysis of a single M/M/1 queue.

4 M/M/1 queues120

4.1 Queue length process

We study the queue length process and consider perturbing the arrival and service rates
from r0 = (λ0, µ0) to r = (λ, µ). Throughout, we assume the stability conditions λ0 < µ0

and λ < µ. First we consider the case of changing the arrival rate while keeping the service
rate fixed. We then show how to find bounds for any change of the two parameters, as long125

as the service rate is greater than the arrival rate.
Suppose that µ = µ0. The two processes are thenXt ((λ0, µ0), (λ, µ0)) andXt ((λ, µ0), (λ, µ0)).

For clarity of presentation, we omit the service rate in the notation, and refer to the two
processes as Xt(λ0, λ) and Xt(λ, λ), respectively. Let λm = max{λ0, λ}. From Theorem 3,
we have

‖L (Xt(λ0, λ))− π(λ)‖TV ≤ G(λm, λ, α)e−αt. (4)

Let us analytically compute G(λm, λ, α). Let τy(x, λ) be the hitting time to y of the M/M/1
queue with parameters set to (λ, µ), started from a queue length of x, and write

G(x, λ, α) = E
[
eατ0(x)

]
.

Then by conditioning on the initial state, we obtain

G(λm, λ, α) = E
[
eατ0(λm,λ)

]
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=

∞∑
x=0

(
1− λm

µ

)(
λm
µ

)x
G(x, λ, α)

Now by decomposing the hitting time and noting the independence and stationarity of the
incremental hitting times,

G(x, λ, α) = E
[
eατ0(x,λ)

]
= E

[
x∏
i=1

eατx−i(x−i+1,λ)

]

=

x∏
i=1

E
[
eατx−i(x−i+1,λ)

]
=

x∏
i=1

E
[
eατ0(1,λ)

]
= (G(1, λ, α))

x

Therefore

G(λm, λ, α) =

∞∑
x=0

(
1− λm

µ

)(
λm
µ

)x
(G(1, λ, α))

x

=
1− λm

µ

1− λm
µ G(1, λ, α)

(5)

as long as λm
µ G(1, λ, α) < 1. Next we compute G(1, λ, α).

Theorem 4. Assume λ < µ. For α ≤
(√

µ−
√
λ
)2

,

G(1, λ, α) = E
[
eατ0(1,λ)

]
=

1

2λ

(
λ+ µ− α−

√
(λ+ µ− α)

2 − 4λµ

)
(6)

Proof. In order to calculate the MGF, we condition on whether a departure or an arrival
happens first. Let EA be the event that an arrival happens first and let ED be the event that
a departure happens first. Let τ(A, λ) be the time required for the arrival, conditioned on
the an arrival happening first; we define τ(D,λ) similarly. Using properties of exponential
random variables, we have

E
[
eατ0(1,λ)

]
= E

[
eατ0(1,λ)|EA

]
P(EA) + E

[
eατ0(1,λ)|ED

]
P(ED)

= E
[
eα(τ0(2,λ)+τ(A,λ))

] λ

λ+ µ
+ E

[
eατ(D,λ)

] µ

λ+ µ

= E
[
eατ0(1,λ)

]2
E
[
eατ(A,λ)

] λ

λ+ µ
+ E

[
eατ(D,λ)

] µ

λ+ µ

Now since τ(A, λ)
d
= τ(D,λ) ∼ exp(λ+ µ),

E
[
eατ(A,λ)

]
= E

[
eατ(D,λ)

]
=

λ+ µ

λ+ µ− α
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so long as α < λ+ µ. In fact, this is the case: α ≤
(√

µ−
√
λ
)2

= µ+ λ− 2
√
λµ < λ+ µ.

Now in order to find E
[
eατ0(1,λ)

]
we solve the resulting quadratic to obtain

E
[
eατ0(1,λ)

]
=

1

2λ

(
λ+ µ− α±

√
(λ+ µ− α)2 − 4λµ

)
(7)

In order for the discriminant to be nonnegative, we need α ≤
(√

µ−
√
λ
)2

or α ≥
(√

µ+
√
λ
)2

.

However, the second condition is overruled by the condition α < λ+µ. To identify the cor-
rect root, we use the differentiation property of moment generating functions:

E [τ0(1, λ)] =
d

dα
E
[
eατ0(1,λ)

] ∣∣∣∣
α=0

Again conditioning on whether an arrival or departure happens first, we have

E [τ0(1, λ)]

=

(
E [τ0(2, λ)] +

1

λ+ µ

)
λ

λ+ µ
+

(
1

λ+ µ

)
µ

λ+ µ

= E [τ0(1, λ)] =

(
2E [τ0(1, λ)] +

1

λ+ µ

)
λ

λ+ µ
+

(
1

λ+ µ

)
µ

λ+ µ

=⇒ E [τ0(1, λ)] =
1

µ− λ

The + root of Equation (7) gives d
dαE

[
eατ0(1,λ)

] ∣∣∣∣
α=0

= µ
λ(λ−µ) < 0 and the − root gives

d
dαE

[
eατ0(1,λ)

] ∣∣∣∣
α=0

= 1
µ−λ = E [τ0(1, λ)] . This concludes the proof.

Remark 1. After proving Theorem 4, we came to know of an alternate proof in [11], pp.130

92-95.

Now we apply Theorem 3 to the convergence of M/M/1 queue with arrival rate perturbed
from r0 = λ0 to r = λ, using Theorem 4. There are two cases:
Case 1: λm = λ ≥ λ0

Set α =
(√

µ−
√
λ
)2

in Equation (6) to obtain

G(1, λ, α) =

√
µ

λ
.

To substitute into Equation (5), we need to verify that λm
µ G(1, λ, α) < 1.

λm
µ
G(1, λ, α) =

λ

µ

√
µ

λ
=

√
λ

µ
< 1.

Thus, we obtain

G(λm, λ, α) =
1− λ

µ

1−
√

λ
µ

= 1 +

√
λ

µ
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and

‖L (Xt(λ0, λ))− π(λ)‖TV ≤

(
1 +

√
λ

µ

)
e−(
√
µ−
√
λ)

2
t.

Case 2: λm = λ0 > λ

We need to pick α for which 1) λ0

µ G(1, λ, α) < 1 and 2) α ≤
(√

µ−
√
λ
)2

. Condition 1) is

equivalent to

λ0

µ

(
1

2λ

(
λ+ µ− α−

√
(λ+ µ− α)

2 − 4λµ

))
< 1√

(λ+ µ− α)
2 − 4λµ > −2λµ

λ0
+ λ+ µ− α

To determine when Condition 1) holds, we set these quantities equal to each other.√
(λ+ µ− α)

2 − 4λµ = −2λµ

λ0
+ λ+ µ− α

(λ+ µ− α)
2 − 4λµ =

(
−2λµ

λ0
+ λ+ µ− α

)2

α = λ+ µ− λ0 −
λµ

λ0

Squaring may have introduced additional solutions. With this value of α, the left side is
equal to √

(λ+ µ− α)
2 − 4λµ =

√(
λ0 +

λµ

λ0

)2

− 4λµ

=

√(
λ0 −

λµ

λ0

)2

=

∣∣∣∣λ0 −
λµ

λ0

∣∣∣∣
The right side is equal to λ0 − λµ

λ0
. If λ0 >

√
λµ there is a solution, otherwise there is no

solution. Setting α = 0, the left side is equal to µ − λ, while the right side is less than
µ − λ (setting λ0 = µ − ε). Therefore when λ0 >

√
λµ, we pick α < λ + µ − λ0 − λµ

λ0
. We

verify that λ+µ−λ0− λµ
λ0
≤
(√

µ−
√
λ
)2

. Otherwise, when λ0 ≤
√
λµ, we are free to pick135

α =
(√

µ−
√
λ
)2

.

Therefore Theorem 3 is satisfied by substituting either α = λ + µ − λ0 − λµ
λ0
− ε or

α =
(√

µ−
√
λ
)2

, depending on the value of λ0. Intuitively, large values of λ0 correspond

to more “contraction” when the system goes to equilibrium, and therefore the convergence
rate α should be smaller.140

Remark 2. The function

f(λ0) =


(√

µ−
√
λ
)2

if λ0 ≤
√
λµ

λ+ µ− λ0 − λµ
λ0

if λ0 >
√
λµ
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is continuous in λ0. In other words, the convergence rate changes continuously in λ0.

Remark 3. The rate α? =
(√

µ−
√
λ
)2

is well-known as the best convergence rate for the

M/M/1 queue length process starting in a fixed initial condition (see e.g. [2] in addition
to [9]). However, it is not immediately clear that the same result would hold in our setting
where the initial state of the queue has a distribution:

‖L (Xt(λ0, λ))− π(λ)‖TV � EX∼π(λ0) [‖L (Xt(λ)|X0 = X)− π(λ)‖TV] .

In other words, we cannot simply go from quenched to annealed convergence.

In the Appendix, we show another technique that gives a convergence rate of

α =
log µ

λ0

log
√

µ
λ

(√
µ−
√
λ
)2

when λ0 >
√
λµ. Therefore, the best known convergence rate in the λ0 >

√
λµ case is

max

{
λ+ µ− λ0 −

λµ

λ0
,

log µ
λ0

log
√

µ
λ

(√
µ−
√
λ
)2
}
.

We now consider a more general perturbation. Suppose the parameters of the M/M/1
queue change from (λ0, µ0) to (λ, µ). We can relate these parameters by abλ0 = λ and
bµ0 = µ. First, observe that π ((bµ0, abλ0)) ≡ π ((µ0, aλ0)). Second, observe that the
process Xt((µ0, λ0), (bµ0, abλ0)) is a sped-up version of the process Xt((µ0, λ0), (µ0, aλ0)),
by a factor of b. Therefore,

L (Xt((µ0, λ0), (bµ0, abλ0))) ≡ L (Xbt((µ0, λ0), (µ0, aλ0))) .

These two observations allow us to write

‖L (Xt((µ0, λ0), (bµ0, abλ0))− π ((bµ0, abλ0))‖TV

= ‖L (Xbt((µ0, λ0), (µ0, aλ0))− π ((µ0, aλ0))‖TV .

We then conclude

‖L (Xt((µ0, λ0), (µ, λ))− π ((µ, λ))‖TV ≤ G ((µ0, λ0), (µ0, aλ0), α) e−αbt.

Thus, we are left with G ((µ0, λ0), (µ0, aλ0), α) which is of the same form as Equation (4),
allowing us to apply Theorem 3 and Theorem 4 in order to calculate a bound.

Example 1. We now apply our work to a simple control system. Consider two parallel
M/M/1 queues with arrival rates λ1 and λ2, and service rates µ1 and µ2, respectively. This
queueing system could be a model for two parallel road segments, for example. Let λ = λ1+λ2

be the total arrival rate. The controller chooses λ1 and λ2 so that the expected queue lengths
are equal, by setting

λ1 =
µ1λ

µ1 + µ2
, λ2 =

µ2λ

µ1 + µ2
.

We assume that λ < µ1 + µ2, so that the queueing system is stable.145
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Suppose that at t = 0, the queueing system is in equilibrium, meaning that each queue is
in equilibrium. Suddenly, the service rates are perturbed to µ′1 and µ′2, which are assumed
to satisfy λ < µ′1 + µ′2, and are known to the controller. The controller responds by setting
the new arrival rates (λ′1, λ

′
2) to be

λ′1 =
µ′1λ

µ′1 + µ′2
, λ′2 =

µ′2λ

µ′1 + µ′2
.

Our methods can be used to analyze the rate of convergence of the queue length of each

queue to equilibrium. Consider the first queue. Let b =
µ′1
µ1

and a =
λ′1
bλ1

. Then by the above
analysis,

‖L (Xt((µ1, λ1), (µ′1, λ
′
1))− π ((µ′1, λ

′
1))‖TV ≤ G ((µ1, λ1), (µ1, aλ1), α) e−αbt

Therefore the convergence rate is α?b, where

α? =

{(√
µ1 −

√
aλ1

)2
if λ1 ≤

√
aλ1µ1

α′ if λ1 >
√
aλ1µ1

,

and

α′ = max

aλ1 + µ1 − λ1 −
aλ1µ1

λ1
,

log µ1

λ1

log
√

µ1

aλ1

(√
µ1 −

√
aλ1

)2

 .

The first condition can be rewritten as λ1 ≤ µ1

√
λ′1
µ′1

= µ1

√
1

µ′1+µ′2
. The analysis for the

second queue is analogous.

4.2 Workload process

Next we consider the workload process, {Wt}, for an M/M/1 queue. The value Wt ∈ R≥0 is
the time remaining until the queue is empty, starting from time t. As for the queue length150

process, we consider changing the arrival rate from λ0 to λ while keeping the service rate fixed
at µ0. The process {Wt} is stochastically increasing in λ. Applying Theorem 3, we need to
calculate GW (λm, λ, α) for the process {Wt}. But {Wt = 0} = {Xt = 0} since the workload
is zero if and only if the queue length is zero. Therefore GW (λm, λ, α) = GX(λm, λ, α), and
the same convergence results follow.155

In [9], it is shown that α? =
(√

µ−
√
λ
)2

is the best possible convergence rate for the

M/M/1 workload process beginning with initial condition W0 = 0. Precisely, [9] show that
if α > α? and W0 = 0,

lim sup
t→∞

eαt ‖L(Wt)− π‖TV =∞.

We investigate whether a similar property holds when W0 is distributed according to the

parameters (µ0, λ0). When λ0 ≤
√
λµ, it turns out that α? =

(√
µ−
√
λ
)2

is in fact the

best rate. We use the bounding process idea again with Wt(λ0, λ) and Wt(λ, λ), which is
analogous to the proof of Theorem 2.3 in [9]. Let T = inft{t : Wt(λ0, λ) = Wt(λ, λ)}.

‖L(Wt(λ0, λ))− π(λ)‖TV

= sup
A
|P (Wt(λ0, λ) ∈ A)− π(A;λ)|

10



≥ |P (Wt(λ0, λ) = 0)− π(0;λ)|
= P (Wt(min{λ0, λ}, λ) = 0, T > t)

≥ P (Wt(min{λ0, λ}, λ) = 0, T > t|W0(min{λ0, λ}, λ) = 0)

× P (W (min{λ0, λ}, λ) = 0)

= P (Wt(λ) = 0, T > t|W0(λ) = 0)

(
1− λ0

µ

)

It is shown in the proof of Theorem 2.3 in [9] that for α >
(√

µ−
√
λ
)2

,

lim sup
t→∞

eαtP (Wt(λ) = 0, T > t|W0(λ) = 0) =∞.

Multiplying the left side by the constant
(

1− λ0

µ

)
,

lim sup
t→∞

eαtP (Wt(λ) = 0, T > t|W0(λ) = 0)

(
1− λ0

µ

)
=∞,

and we conclude that

lim sup
t→∞

eαt ‖L(Wt(λ0, λ))− π(λ)‖TV =∞

when α >
(√

µ−
√
λ
)2

.

When λ0 ≥
√
λµ, we have a gap between the best known rate

α = max

{
log µ

λ0

log
√

µ
λ

(√
µ−
√
λ
)2

, λ+ µ− λ0 −
λµ

λ0

}

and the upper bound on the rate, α? =
(√

µ−
√
λ
)2

.

5 Conclusion

In this paper we presented a method for finding exponential convergence rates for stochas-
tically ordered Markov processes with a random initial condition. This method of analysis160

is useful for perturbation analysis of Markov processes, such as various queueing systems.
Furthermore, we provided an explicit exponential bound for convergence in total variation
distance of an M/M/1 queue that begins in an equilibrium distribution, and applied it in the
analysis of a control system. The method developed in this paper can certainly be applied
to other systems, such as M/G/1 queues, as long as one can identify the domain of the165

moment generating function of the hitting time to the zero state.

Appendix

Using a truncation technique, we can improve the convergence of the M/M/1 queue-length
process (and therefore the workload process as well) in the case λ0 >

√
λµ.

11



Theorem 5. There exists a computable C such that

‖L(Xt(λ0, λ))− π(λ)‖TV ≤ Ce
−αt

where

α =
log µ

λ0

log
√

µ
λ

(√
µ−
√
λ
)2

.

Proof.

‖L(Xt(λ0, λ))− π(λ)‖TV = sup
A
|P (Xt(λ0, λ) ∈ A)− π(A;λ)|

= sup
A

(P (Xt(λ0, λ) ∈ A)− π(A;λ))

= sup
A

( ∞∑
x=0

P (Xt(λ) ∈ A|X0 = x)π(x;λ0)− π(A;λ)

)

= sup
A

∞∑
x=0

π(x;λ0) [P (Xt(λ) ∈ A|X0 = x)− π(A;λ)]

The first equality is due to the fact that for any A,

P (Xt(λ0, λ) ∈ A)− π(A;λ) = − (P (Xt(λ0, λ) ∈ Ac)− π(Ac;λ)) .

Since one of these differences of probabilities must be nonnegative, the absolute value can170

be dropped.
We now truncate π(λ0). Let N(ε) = min

{
N :

∑∞
x=N+1 π(x;λ0) ≤ ε

}
. Continuing,

≤ sup
A

N(ε)∑
x=0

[π(x;λ0) (P (Xt(λ) ∈ A|X0 = x)− π(A;λ))] + ε (8)

≤
N(ε)∑
x=0

[
π(x;λ0) sup

A
(P (Xt(λ) ∈ A|X0 = x)− π(A;λ))

]
+ ε (9)

Let α? =
(√

µ−
√
λ
)2

. Applying Theorem 2.1 from [9], we can write

≤
N(ε)∑
x=0

[
π(x;λ0) (G(x, λ, α) +G(λ, λ, α?)) e−α

?t
]
+ ε

≤ (1− ε)

(
1 +

√
λ

µ

)
e−α

?t + ε+

N(ε)∑
x=0

[
π(x;λ0)G(x, λ, α)e−α

?t
]

= (1− ε)

(
1 +

√
λ

µ

)
e−α

?t + ε+

N(ε)∑
x=0

[
π(x;λ0) (G(1, λ, α))x e−α

?t
]

= (1− ε)

(
1 +

√
λ

µ

)
e−α

?t + ε+

N(ε)∑
x=0

[(
1− λ0

µ

)(
λ0

µ

)x(√
µ

λ

)x
e−α

?t

]

= (1− ε)

(
1 +

√
λ

µ

)
e−α

?t + ε+

(
1− λ0

µ

)
(

λ0√
λµ

)N(ε)+1

− 1

λ0√
λµ

− 1

 e−α
?t (10)

12



Set ε = e−αt in order to fold in the ε term into a convergence bound. Then N(ε) must
satisfy (

1− λ0

µ

)N(ε)∑
x=0

(
λ0

µ

)x
≥ 1− e−αt

N(ε) ≥ 1

log µ
λ0

αt− 1.

Substituting the value N(ε) = 1
log µ

λ0

αt ≥
⌈

1
log µ

λ0

αt− 1
⌉

back into the bound (10), the last

term in the bound becomes(
1− λ0

µ

)
(

λ0√
λµ

) 1
log

µ
λ0

αt+1

− 1

λ0√
λµ
− 1

 e−α
?t

=

(
1− λ0

µ

) λ0√
λµ
e

log
(
λ0√
λµ

)
1

log
µ
λ0

αt
− 1

λ0√
λµ
− 1

 e−α
?t

If log
(

λ0√
λµ

)
1

log µ
λ0

α < α?, then we get convergence at rate

min

α, α? − log
(

λ0√
λµ

)
log µ

λ0

α

 .

Let α = cα? with c <
log µ

λ0

log
(
λ0√
λµ

) . Then we seek to maximize

min

cα?, α? − log
(

λ0√
λµ

)
log µ

λ0

cα?


over c. When λ0 >

√
λµ the factor

log
(
λ0√
λµ

)
log µ

λ0

is positive, and the optimal c is found by

setting the two quantities equal to each other, leading to c =
log µ

λ0

log
√

µ
λ

. We verify that this

value is less than
log µ

λ0

log
(
λ0√
λµ

) . Therefore the best rate obtained by this method is

α =
log µ

λ0

log
√

µ
λ

(√
µ−
√
λ
)2

.

Remark 4. The function

g(λ0) =


(√

µ−
√
λ
)2

if λ0 ≤
√
λµ

log µ
λ0

log
√

µ
λ

(√
µ−
√
λ
)2

if λ0 >
√
λµ

is continuous. In other words, the convergence rate changes continuously in λ0.

13



For certain values of (λ0, λ, µ) this rate is better than the rate previously computed,
α = λ+ µ− λ0 − λµ

λ0
. However, α < α? when λ0 >

√
λµ, so there is still a gap, and we do175

not know the best convergence rate in this case. We suspect that the rate α is not the best
possible, since the step from expression (8) to expression (9), which exchanges the order of
a supremum with a sum, can be quite loose.
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