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Abstract

The inventory routing problem considered in this paper is concerned with

the repeated distribution of a commodity, such as heating oil, over a long period

of time to a large number of customers. The problem involves a central depot as

well as various satellite facilities which the drivers can visit during their shift to

refill their vehicles. The customers maintain a local inventory of the commodity.

Their consumption varies daily and cannot be predicted deterministically. In

case of a stockout, a direct delivery is made and a penalty cost is incurred. In

this paper we present incremental cost approximations to be used in a rolling

horizon framework for the problem of minimizing the total expected annual

delivery costs.

Keywords: delivery cost approximations, inventory routing problem, sto-

chastic demand, rolling horizon
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Introduction

Inventory routing problems (IRPs) usually arise when consumers rely on a central

supplier to provide a given commodity on a repeated basis. For the central supplier,

these problems usually involve the daily specification of a sequence of locations that

must be visited by a fleet of delivery vehicles for restocking purpose. Whenever

a customer unexpectedly stocks out, a special delivery must be made immediately,

with a high incurred cost.

Although IRPs have appeared in the literature as early as in the 1970s (e.g.,

Beltrami and Bodin, 1974 and Russell and Igo, 1979), much of the research is more

recent (e.g., Anily and Federgruen, 1990 and 1993, Bell et al., 1983, Bard et al.,

1998, Berman and Larson, 1999, Chan, Federgruen, and Simchi-Levi, 1998, Chan,

Muriel, and Simchi-Levi, 1998, Chien, Balakrishnan, and Wong, 1989, Christofides

and Beasley, 1984, Dror and Ball, 1987, Dror, Ball, and Golden, 1985, Federgruen

and Simchi-Levi, 1995, Federgruen and Zipkin, 1984, Fisher et al., 1983, Gaudioso

and Paletta, 1992, Golden, Assad, and Dahl, 1984, Kleywegt, Nori, and Savelsbergh,

1998 and 2000, Kumar, Schwarz, and Ward, 1995, Reiman, Rubio, and Wein, 1999,

Rubio, 1995, Trudeau and Dror, 1992, and Webb and Larson, 1995).

For typical IRPs, a customer’s consumption rate is difficult to predict with cer-

tainty and can only be represented at best by a random variable with known proba-

bility distribution. If one is willing to assume such probability distributions, a natural

objective is to minimize the total expected annual delivery cost including the delivery

cost of stockouts. Planning the entire annual distribution scheme in advance would,

however, be unreliable and prone to many needed adjustments. Moreover, for com-

putational feasibility, actual routing plans can only be computed for a much shorter

time period than an annual horizon.

In Bard et al., 1998 we proposed to deal with these issues by introducing a com-

prehensive decomposition scheme (based on a rolling horizon framework), in which

vehicle routing problems are repeatedly solved over a two-week moving period. More

specifically, for a given two-week planning horizon, the method first identifies cus-

tomers that are to be visited during this time. After an adjustment is made to

balance daily demand and accommodate weekend days, customers scheduled for the
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first week only are routed. The two-week planning horizon is then shifted by a week

and the process is repeated. The overall scheme was tested on data sets generated

from field experience with a national liquid propane distributor. One of the unique

aspects of the week-long routing subproblems we considered is the presence of satellite

facilities where vehicles can be reloaded and customer deliveries continued until the

closing time is reached. In Bard et al., 1998, we proposed and tested three heuristics

for solving these problems. In another paper Bard et al., 1998b, we have proposed

and tested a branch and cut algorithm for solving similar routing problems, called

VRP with satellite facilities.

This paper is a close companion to Bard et al., 1998 and contains the main justifi-

cations behind the identification processes (selection of the customers to be routed on

a specific day of a given week) as described above. Interested readers should refer to

Bard et al., 1998 for any details and clarifications on the overall approach and on the

use of the material developed in this paper. The next section contains mathematical

derivations and approximations. Section 2 is concerned with some numerical testing

based on Monte Carlo simulation.

1 Expected Total Delivery Cost and Optimal De-

liveries for a Customer Over a Given Time Pe-

riod

1.1 Problem Statement

Our approach attempts to incorporate long-term delivery costs into shorter planning

horizons. In doing so, we develop “optimal” a priori strategies based on expected

consumption of customers, as opposed to reactive strategies based on accurate cur-

rent knowledge of all local inventories. We are assuming that the central supplier has

no reliable monitoring of local inventories. Strategies, based on accurate real-time

monitoring of local inventories, are feasible with the adoption of advanced technolo-

gies; however, the quantification of the (long-term) benefits associated with the use

of such real-time information is far from obvious and an important research topic in
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its own, but beyond the scope of the current paper.

We are interested in evaluating the long-term strategies of repeatedly serving a

given customer. To do this we assume that the cost for each scheduled delivery at

a given customer is a fixed (but customer dependent) given constant b. Note that

this is an approximation since the cost due to the service of a customer is in fact

dependent on the set of other customers to be served that day (and thus can vary

depending on who else is served). In Bard et al., 1998 we provide examples on how

to estimate b in practice for a given customer. We assume that the customer’s tank

capacity is T . We also assume that the daily demand of a customer never exceeds T

(i.e., a customer never requires more than one delivery per day).

We define S as the cost of stockout, where S > b. Note that we assume S to

be fixed (not dependent on the volume of stockout). This is acceptable in case the

demand of the product is best approximated by a continuous rate of consumption

(as opposed to a discrete lumpy demand); also this assumes that as soon as the tank

becomes empty an immediate, and thus costly, special delivery is made. We also

assume that if a delivery is scheduled on a specific day and no stockout happened

before that day, then no stockout penalty can occur on the delivery day (in other

words, deliveries are always made “first thing in the morning”).

1.2 Preliminaries

Let us first consider the simple situation of a customer whose daily demand over a

given time period is constant and known, say µ (µ ≤ T ). Assume also that the tank

is initially full. Based on the assumption of a constant demand it is clear that the

optimal policy (minimizing the total delivery cost) is to fill up the tank every bT/µc
days (i.e., just before the customer runs out of stock). For an n-day period the total

delivery cost (not including the initial delivery cost associated with the initial full

tank) would then be, for n ≥ 1:

TCn =

⌊
n − 1

bT/µc

⌋
b.

If over the given time period, the daily demand is not constant, but takes different

rates for different subperiods (e.g., due to seasonality), one can divide the overall
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period into shorter periods for which constant consumption rate is valid and then

patch all solutions together. In the general case for which the daily demand differs

for each day of the n-day period in a known fashion, say µ1, µ2, . . . , µn, an optimal

policy is still to serve the customer just before he/she runs out of stock. For the n-day

period, let 1 < m1 < m2, · · · < mk(n) ≤ n be the optimal days for a visit. These are

defined as follows for 1 ≤ j ≤ k(n):

mj−1∑
i=1

µi ≤ jT and

mj∑
i=1

µi > jT.

The overall total delivery cost is then

TCn = k(n)b.

1.3 Random demand and infinite horizon

Let us now concentrate on the effect of true random fluctuations. Assume that the

daily demand corresponds to a stochastic process (Ui)1≤i≤n, where Ui is the demand

on day i. Assuming that seasonality and known variations have first been “removed”

(see above), it is then natural to assume that the Ui’s are i.i.d. random variables with

a finite expected value µ. Again, we assume that Prob(Ui > T ) = 0 and that the

tank is initially full. As mentioned in the introduction, we assume that the central

supplier cannot monitor what is left in the tank at any time, except at the time

of a delivery. This precludes any strategies who would schedule deliveries based on

current remaining level of inventories. Under these conditions, we have the following

proposition.

Proposition 1. In case of an infinite horizon, there exists an optimal policy which

(i) fills up the tank during each delivery and (ii) following any prior (scheduled or

stockout) delivery, plans the next delivery d∗ days after. The optimal replenishment

interval d∗ is a constant chosen so as to minimize the expected daily cost.

Proof. Since the cost of serving the customer is b for each scheduled visit and S for

each stockout visit, irrespective of the quantity served, serving the maximum amount

during every delivery cannot be sub-optimal.
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Since the underlying stochastic process is stationary, and since we have an infinite

horizon, delivery days correspond to renewal events associated to a simple stationary

renewal process, and an optimal a priori planning strategy (i.e., minimizing the ex-

pected daily delivery cost) will always schedule the next delivery a constant number

of days after any given delivery.

1.4 Optimal policies over a finite horizon

1.4.1 Constant replenishment interval strategies

Because (regular or stockout) delivery costs are fixed, irrespective of the amount

delivered, we can safely assume that, even for a finite horizon, any valid strategies

will fill up the tank at each delivery.

For an n-day period, an intelligent strategy should however adapt itself and choose

the next scheduled visit based not only on the tank size and probability distribution of

the daily demand of the customer, but also on the number of days remaining until the

end of the period. In other words an optimal general policy may lead to non-identical

replenishment intervals over a given n-day period.

However, because of the conditions of our problem (e.g. each refill costs the same,

irrespective of the amount delivered), we believe that such an adaptive strategy would

not bring a significant difference (in the total expected delivery cost) over a simpler

(and analytically tractable) non-adaptive (i.e. with constant replenishment intervals)

strategy. This is why we will restrict ourselves to the following set of acceptable

policies:

Policy Restriction. For a given n-day period, feasible policies will be chosen among

the restricted set of constant replenishment interval strategies, i.e., strategies whose

scheduled replenishment intervals are constant over the time period.

A consequence of this restriction is that any optimal such policies over a n-day period

should lead to a constant replenishment interval d∗(n) which should in fact be inde-

pendent of n, when n is large enough. We will test this approximation in Section 2.
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1.4.2 Optimal constant replenishment interval strategies

Define ETCn(d) to be the expected total cost over an n-day period of a constant

replenishement interval strategy of d days.

As before, we assume an initial full tank. Let us derive a detailed analytical

formula for ETCn(d). Since we assume that any scheduled deliveries are always done

“first thing in the morning” and that the daily demand can never exceed the tank

size T , there will never be any stockout if d = 1.

Assume now that d > 1 and that we are at the beginning of day 1 with a full tank

(the next scheduled visit is then on day d + 1). If on one day i during the next d− 1

days there is a stockout then one makes a delivery on that day and the next scheduled

visit is updated to d + i and so on. We then have a renewal stochastic process where

the renewal points are the times of refill (regular or due to stockout).

Let pj be the probability that a stockout first appears on the jth day following

day 1, 1 ≤ j ≤ d − 1. This probability is given as

pj = Prob(Dj ≤ T and Dj+1 > T )

=

∫ T

0

P (Uj+1 > T − x)fDj
(x)dx,

where Dk =
∑k

i=1 Ui is the total consumption from day 1 to k, and fDk
(x) is the

density function of the distribution of Dk.

Let p = p1 + p2 + · · · + pd−1 be the probability that there is (at least) a stockout

in the next d − 1 days, and pd
4
= 1 − p be the probability of no stockout during that

period. We then have the following relationships:

For d ≥ n ≥ 2

ETCn(d) =
n−1∑
j=1

pj(ETCn−j(d) + S),

where ETC1(d) = 0.

For n ≥ d + 1

ETCn(d) =
d−1∑
j=1

pj(ETCn−j(d) + S) + (1 − p)(ETCn−d(d) + b).

Define yn = ETCn(d) (yn is of course dependent on d, but for notational simplicity

8



we will not make this dependence explicit). One can rewrite the previous relationships

as follows:

yn =


∑n−1

j=1 pjyn−j + S
∑n−1

j=1 pj if 2 ≤ n ≤ d

∑d
j=1 pjyn−j + pS + (1 − p)b if n ≥ d + 1

(1)

with the initial condition y1 = 0. From this initial condition and recursions (1), one

can numerically compute yj for all j. However, we would like to obtain an analytical

expression for yn, especially when n is large compared to d. To do so, let us consider

the recursions when n ≥ d + 1, i.e.,

yn −
d∑

j=1

pjyn−j = pS + (1 − p)b, (2)

and the associated homogeneous equation

yn −
d∑

j=1

pjyn−j = 0. (3)

The corresponding characteristic function (see e.g., Kelley and Peterson, 1991) for

the definition of a characteristic function and its use for solving homogeneous linear

recursions) is given by

xd −
d∑

j=1

pjx
d−j = 0. (4)

Let us characterize the roots of equation (4).

Lemma 1. 1 is a root of (4) with multiplicity one. Any other root r is such that

|r| ≤ 1, where |r| is the absolute value of r if r is real, and the modulus of r if r is

complex.

Proof. Since
∑d

i=1 pi = 1, 1 is root of (4). One can thus rewrite (4) as

(x − 1)[xd−1 + (1 − p1)x
d−2 + · · · + (1 − p1 − p2 − · · · − pd−1)] = 0,

which shows that 1 is a root with multiplicity one only. (The second factor on the

left hand side of the equation above is a polynomial of degree d− 1 of which 1 is not

a root. This can be seen by simple substitution.)
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Any other root r will have |r| ≤ 1. Indeed if |r| > 1, then |rd| > |ri| for all

1 ≤ i ≤ d. But this is clearly impossible since (4) implies that |rd| ≤
∑d

i=1 pi|rd−i| ≤
max1≤i≤d |rd−i|.

Since the general solutions yn of (3) are given by weighted sums of the roots of

the characteristic equations raised to the nth power, the implication of Lemma 1 is

that yn = f(n, d) + α(d) where f(n, d) goes to zero exponentially fast as n goes to

infinity (f(n, d) is the part corresponding to the weighted sum of roots r such that

r < 1, each raised to the nth power).

Let us now look at a particular solution to (2). Because 1 is a root of order 1

in the characteristic function, a particular solution will be of the form yn = β(d)n,

where β(d) is a constant. Replacing yn by β(d)n in (2), we get β(d) = (pS + (1 −
p)b)/

∑d
j=1 jpj.

We just proved the following result:

Theorem 1. The expected total cost of filling up a customer’s tank using a constant

replenishment period strategy of d days over an n-day period (n ≥ d + 1) is given by

ETCn(d) = f(n, d) + α(d) + β(d)n, (5)

where

β(d) =
pS + (1 − p)b∑d

j=1 jpj

, (6)

and where f(n, d) goes to zero exponentially fast as n goes to infinity.

This leads to our final approximation result.

Corollary 1. An optimal constant replenishment period strategy of serving a cus-

tomer over a large n-day period will correspond to choosing d∗ so as to minimize

β(d).

Proof. From Theorem 1, an optimal policy will correspond to finding d so as to

minimize ETCn(d) = f(n, d) + α(d) + β(d)n. When n is large enough, β(d)n is the

main component of the total cost.

Notes:
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1. From (5) we have limn→∞ETCn(d)/n = β(d). From an application of a dis-

crete version of the renewal reward theorem (see for example Ross, 1997 for an

elementary treatment of renewal reward theory), we know that the expression

for β(d) should have a simple interpretation. Indeed the numerator of β(d) is

the expected cost of a delivery (i.e. the expected “cost of a cycle”) and the de-

nominator is the expected number of days between deliveries (i.e. the expected

“duration of a cycle”).

2. The expression given in (6) could naturally be obtained directly by the renewal

reward theorem for the infinite horizon case. Our derivation can precisely mea-

sure the approximation made from a finite to an infinite horizon period.

3. As an illustration, when d = 2, equation (4) has two roots, 1 and −(1− p), and

the exact expression for yn, n ≥ 3, is given by

yn =
pS − b

(2 − p)2
[−(1 − p)]n − pS + b(1 − p)(3 − p)

(2 − p)2
+

pS + (1 − p)b

2 − p
n.

When n is large, approximating this expression by the linear term pS+(1−p)b
2−p

n

overestimates the true total cost by a constant pS+b(1−p)(3−p)
(2−p)2

.

1.5 Incremental Costs

In the previous section we have shown that the optimal (constant replenishment

interval) strategy to serve a given customer corresponds to planning on replenishing

the tank every d∗(n) days, where d∗(n) is the value of d that minimizes ETCn(d) =

f(n, d) + α(d) + β(d)n.

We would like now to estimate the impact on the overall total cost (over an n-day

period) of switching a given scheduled delivery of a customer to another day. This

incremental cost is an essential input in Ball et al., 1998 used in the second phase of

the customer selection (balancing the pre-selected customers among the days of the

planning current week).

As before, we assume that we are at the beginning of day 1 with a full tank.

Suppose now that on the first visit the optimal a priori strategy is not followed and

the customer is scheduled to be replenished on day j + 1, j 6= d∗. Suppose also
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that after the first visit, the optimal replenishment period of d∗ is resumed. The

difference between the expected total cost incurred by following this strategy and the

optimal expected total cost will hereafter be called the incremental cost and denoted

by cj. By definition cd∗ = 0. Let us derive the general incremental cost cj. Let

X(j) be the random variable representing the number of days until the next actual

delivery assuming a scheduled replenishment interval of j days. (In case of a stockout

X(j) < j, otherwise X(j) = j.) We then have

Theorem 2. The incremental cost cj of serving a customer after j days instead of

d∗ days is given by

cj = g(n, j, d∗) + E[X(j)](β(j) − β(d∗)), (7)

where, for any k ≥ 2,

E[X(k)] = k(1 −
k−1∑
i=1

pi) +
k−1∑
i=1

ipi, (8)

and where g(n, d∗, d∗) = 0 and g(n, j, d∗) goes to zero exponentially fast as n goes to

infinity.

Proof. Let SUBn(j, d∗) be the expected total cost corresponding to the suboptimal

strategy. We have

SUBn(j, d∗) =

j−1∑
i=1

pi(ETCn−i(d
∗) + S) + (1 −

j−1∑
i=1

pi)(ETCn−j(d
∗) + b)

= α(d∗) + β(d∗)n + E[X(j)](β(j) − β(d∗)) + h(n, j, d∗),

where h(n, j, d∗) (sum of the terms f(n − i, d∗) as defined in (5)) goes to zero expo-

nentially fast as n goes to infinity. By writing cj = SUBn(j, d∗) − ETCn(d∗) and

defining g(n, j, d∗) = h(n, j, d∗) − f(n, d∗), we get the result.

Notes:

1. When n is large enough, the incremental cost given in (7) can be approximated

as follows:

cj ≈ E[X(j)](β(j) − β(d∗)). (9)
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2. Note that if the expected total cost ETCn(d) is approximated by its linear

component β(d)n to start with, then β(d) can be interpreted as the daily cost

rate associated with the strategy of filling the customer every d days. Under

this interpretation one can then approximate ETCn(j, d∗) as follows:

SUBn(j, d∗) ≈ β(j)E[X(j)] + β(d∗)(n − E[X(j)]).

The first component is the expected number of days with a suboptimal cost of

β(j) per day, and the second term corresponds to the remaining total expected

cost under the optimal policy. This leads to the same approximation of cj as

given in (9).

2 Monte-Carlo Simulation and Testing

The purpose of this section is to use Monte-Carlo simulation to (i) validate one

consequence of Policy Restriction of Section 1.4.1, and (ii) validate the limiting ap-

proximation formula (9) for the computation of the incremental costs.

For the first testing, the input of the simulation is the total number of days n for

the horizon and the frequency of visit d (in days). The output is the total delivery

cost. For a fixed n, we vary d to find the optimal a priori frequency d∗(n). The Policy

Restriction implies that d∗(n) should be independent of n, when n is large. The code

is a fixed-time-increment simulation in which time is advanced day by day. For each

day, one first checks whether there is a scheduled delivery. If yes, the level in the

tank is set back to T and the total cost is incremented by b. Then the consumption

of the customer is randomly generated from a truncated normal distribution and is

deducted from the current level of the tank. If the new tank level is negative then an

emergency visit is scheduled, the level of the tank is set back to T and the total cost

is incremented by S.

The other testing (incremental cost) is done via a similar simulation, except that

the input is n, d∗(n) (as computed above), and j (which represents the initial number

of days before the first scheduled visit). In both cases, for a given input, we run

10,000 independent simulations and average the output to obtain an approximation

of the expected value under consideration.
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We assume that the customer’s consumption rate follows a truncated normal dis-

tribution N(µ, σ), where negative values of the normal distribution are ignored. We

initially assume that T = 1000, µ = 40, σ = 10, b = 16.27, and S = 68. Note that

T/µ = 25 would represent the number of days between each refill, i.e., the optimal a

priori frequency if the consumption rate were a constant equal to µ.

2.1 Results for Test 1

By varying the time period n from 0.5 years, 1 year, 2 years, 5 years to 10 years, we

found that the optimal a priori policy was always to refill the customer every d∗ = 23

days. We repeated the experiments with different σ’s, from σ = 5 to σ = 30, and

reached the same conclusion, i.e., that d∗ was independent of the time period n.

For n = 10 years, Figure 1 presents the simulated expected total cost for d varying

from 15 to 30, as well as the calculated expected total cost based on Theorem 1 and

approximated by β(d)n (i.e., with only the linear part). The fit between the two

curves is almost perfect. To apply Theorem 1, the probability pi’s must be evaluated.

The easiest way to do this is via Monte-Carlo simulation. To achieve a satisfactory

level of precision, about 100,000 independent simulations were conducted for each pj.

Again we repeated the experiments with n=10 and different σ’s, ranging from

σ = 5 to σ = 30. To compare the simulated results with the analytic results, we

defined a fitness ratio r as follows. Suppose xi (i = 1, · · · , n) is a set of numbers, and

zi (i = 1, · · · , n) another set, then

r =

∑n
i=1 |xi − zi|∑n

i=1 xi/n

is our measure of fitness. Note that the numerator is simply the L1 measure of dis-

crepancy between the two sets of numbers and the denominator allows for a measure

independent of units. The smaller r is the better the fitness between the data sets x

and z. In Table 1, we present six cases with σ varying from 5 to 30. We give the min-

imal expected total cost for each case, using d∗ to represent the best frequency and

ETCmin to indicate the minimal expected total cost. The data show that for all six

cases we get the same d∗ with both simulation and the analytic method. The fitness

ratio r does not exceed 1.07, which indicate a good fit between the two approaches.
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Figure 1: Annual expected total cost

Cases Analytical Calculation, x’s Numerical Simulation, z’s Fitness Ratio

σ d∗ ETCmin d∗ ETCmin r

5 24 2477.43 24 2477.67 0.14

10 23 2618.62 23 2624.04 0.16

15 22 2790.16 22 2791.82 0.23

20 21 2969.13 21 2996.05 0.28

25 19 3210.13 19 3222.46 0.57

30 18 3459.64 18 3493.97 1.07

Table 1: Comparison of numerical results and analytic results
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2.2 Results for Test 2

By assuming that T = 1000, µ = 40, σ = 10, b = 16.27, and S = 68, the optimal a

priori frequency is to serve the customer every d∗ = 23 days (as indicated in Figure 1

above).

In Figure 2, we present, for n = 10, the simulated expected incremental costs

corresponding to j varying from 15 to 30 (the “empirical” curve). Also we have

used (9) to calculate the analytical (theoretical) approximated values for comparison

purposes. The fit between simulated and calculated is almost perfect. Additional

testings for varying σ yielded similar results.
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Figure 2: Incremental cost

3 Concluding Remarks

In this paper we have presented the justifications behind the derivations of the in-

cremental costs as used in the rolling horizon framework of Bard et al., 1998. The
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essence of our contributions lies in the ability to reduce the problem from an annual

time base to a bi-weekly rolling planning period via the approximations of delivery

costs.
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Table 1: Comparison of numerical results and analytic results

Figure 1: Annual expected total cost

Figure 2: Incremental cost
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