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Abstract. The minmax regret problem for combinatorial optimization
under uncertainty can be viewed as a zero-sum game played between
an optimizing player and an adversary, where the optimizing player se-
lects a solution and the adversary selects costs with the intention of
maximizing the regret of the player. The conventional minmax regret
model considers only deterministic solutions/strategies, and minmax re-
gret versions of most polynomial solvable problems are NP-hard. In this
paper, we consider a randomized model where the optimizing player se-
lects a probability distribution (corresponding to a mixed strategy) over
solutions and the adversary selects costs with knowledge of the player’s
distribution, but not its realization. We show that under this randomized
model, the minmax regret version of any polynomial solvable combina-
torial problem becomes polynomial solvable. This holds true for both
interval and discrete scenario representations of uncertainty. Using the
randomized model, we show new proofs of existing approximation algo-
rithms for the deterministic model based on primal-dual approaches. We
also determine integrality gaps of minmax regret formulations, giving
tight bounds on the limits of performance gains from randomization. Fi-
nally, we prove that minmax regret problems are NP-hard under general
convex uncertainty.
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1 Introduction

Many optimization applications involve cost coefficients that are not fully known.
When probability distributions are available for cost coefficients (e.g. from his-
torical data or other estimates), stochastic programming is often an appropriate
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modeling choice |1326]. In other cases, costs may only be known to be con-
tained in intervals (i.e. each cost has a known lower and upper bound) or to be a
member of a finite set of scenarios, and one is more interested in worst-case per-
formance. Robust optimization formulations are desirable here as they employ
a minmax-type objective |12L|17}[23].

In a general robust optimization problem with cost uncertainty, one must
select a set of items from some feasible solution set such that item costs are
contained in some uncertainty set. The basic problem of selecting an optimal so-
lution from the solution set when costs are known is referred to as the nominal
problem. When only the uncertainty set is known, the goal under the minmaz
criterion (also referred to as absolute robustness) is to select a solution that gives
the best upper bound on objective cost over all possible costs from the uncer-
tainty set [27] (assuming that the nominal problem is a minimization problem).
That is, one must select the solution that, when item costs are chosen to max-
imize the cost of the selected solution, is minimum. Under the minmaz regret
criterion (sometimes called the robust deviation model), the goal is instead to
select the solution that minimizes the maximum possible regret, defined as the
difference between the cost of the selected solution and the optimal solution [25].

A problem under the minmax regret criterion can be viewed as a two-stage
game played between an optimizing player and an adversary. In the first stage,
the optimizing player selects a deterministic solution. In the second stage, an
adversary observes the selected solution and chooses values/costs from the un-
certainty set with the intention of maximizing the player’s regret. The goal of
the optimizing player is thus to select a solution that least allows the adversary
to generate regret. For both interval and discrete scenario representations of cost
uncertainty, the minmax regret versions of most polynomial solvable problems
are NP-hard [1}/2//58}/23]/28]. A variation on this model, first suggested by Bertsi-
mas et al. [10] for minmax robust optimization, is to allow the optimizing player
to select a probability distribution over solutions and require the adversary to
select costs based on knowledge of the player’s distribution, but not its realiza-
tion. In this paper, we study this randomized model under the minmax regret
criterion instead of the minmax criterion.

We show that under this randomized model, the minmax regret version of
any polynomial solvable 0-1 integer linear programming problem is polynomial
solvable. This holds true for both interval and discrete scenario representations
of uncertainty. Our observation is that the randomized model corresponds to the
linear programming relaxation of the mixed integer program for the deterministic
model. While the relaxation may have an exponential number of constraints, an
efficient separation oracle is given by the nominal problem.

The linear programming formulation leads to further insights. We show that
currently known approximation algorithms for deterministic minmax regret
problems [3}/19], which have been proved using combinatorial arguments, can be
proved using simpler primal-dual methods. This analysis also yields integrality
gaps for deterministic minmax regret problems. The integrality gaps are shown
to be equal to k for discrete scenario uncertainty, where k is the number of



scenarios, and equal to 2 for interval uncertainty. Both gaps match the ratios of
the approximation algorithms, showing that these algorithms are optimal. The
integrality gaps also establish lower bounds on performance when moving from
the deterministic model to the randomized model. Letting Zp and Zr denote
the deterministic and randomized minmax regret values for a common nominal
problem, we effectively show that Zp/k < Zr < Zp for discrete scenario
uncertainty and Zp /2 < Zg < Zp for interval uncertainty.

Given that the randomized model makes many minmax regret problems poly-
nomial solvable for interval uncertainty and discrete scenario uncertainty, it is
natural to ask if polynomial solvability remains in the presence of slightly more
elaborate uncertainty sets. We show that for general convex uncertainty sets,
however, deterministic and randomized minmax regret problems are NP-hard,
even for polynomial solvable nominal problems.

The paper is structured as follows. In the remainder of this section we review
related work. Section [2] introduces notation and definitions. Section [3| highlights
our most important results for discrete scenario uncertainty, interval uncertainty,
and convex uncertainty. A full development of these topics, with proofs, is con-
tained in the full version of the paper [24]. A conclusion is given in Section

]

Related work. One of the first studies of minmax regret from both an al-
gorithmic and complexity perspective was that of Averbakh [7]. He looked at
the minmax regret version of the simple problem of selecting k£ items out of n
total items, where the cost of each item is uncertain and the goal is to select
the set of items with minimum total cost. For interval uncertainty, he derived
a polynomial-time algorithm based on interchange arguments. He demonstrated
that for the discrete scenario representation of uncertainty, however, the minmax
regret problem becomes NP-hard, even for the case of only two scenarios. It is
interesting to contrast these results with the case of general minmax regret lin-
ear programming which, as shown by Averbakh and Lebedev [9], is NP-hard for
interval uncertainty but polynomial solvable for discrete scenario uncertainty.

Apart from the item selection problem, most polynomial solvable minmax
regret combinatorial problems are NP-hard, both for interval and discrete sce-
nario uncertainty [11/2}|8}[23}/28]. The survey paper of Aissi et al. [5] provides
a comprehensive summary of results related to both minmax and minmax re-
gret combinatorial problems. For problems that are already NP-complete, most
of their minmax regret versions are X5-complete [16]. To solve minmax regret
problems in practice, the book by Kasperski reviews standard mixed integer pro-
gram (MIP) formulations for both interval and discrete scenario uncertainty [17].

General approximation algorithms for deterministic minmax regret problems
are known for both types of uncertainty. Kasperski and Zieliriski [19] proved a
2-approximation algorithm based on midpoint costs under interval uncertainty,
and Aissi et al. [3] gave a k-approximation algorithm using mean costs under
discrete scenario uncertainty, where k is the number of scenarios. Under interval
uncertainty, fully polynomial-time approximation schemes are known for many
problems [17}/20]. For discrete scenario uncertainty, Kasperski et al. [18] looked



at the minmax regret item selection problem, which models special cases of
many combinatorial problems. They showed that for a non-constant number of
scenarios, the problem is not approximable within any constant factor unless
P=NP. If the number of scenarios is constant, fully polynomial-time approxima-
tion schemes are known for some problems [4}/6].

The application of a game-theoretic model with mixed strategies to robust
optimization problems was introduced by Bertsimas et al. [10]. They focused
on the minmax robust model, and their analysis was motivated by adversarial
models used for online optimization algorithms. They showed that if it is possible
to optimize over both the solution set and the uncertainty set in polynomial time,
then an optimal mixed strategy solution can be calculated in polynomial time,
and that the expected cost under the randomized model is no greater than the
cost for the deterministic model. They also gave bounds on the improvement
gained from randomization for various uncertainty sets. Our work is similar
to theirs, but we focus on the minmax regret criterion instead of the minmax
criterion.

Other related areas of research are Stackelberg security games [21122], net-
work interdiction games [11], and dueling algorithms [15]. A common feature of
many of these works, as well as ours, is that they involve games that at first
glance have exponential size but can be solved efficiently using the appropriate
reductions.

2 Definitions

We consider a general combinatorial optimization problem where we are given
a set of n items E = {e1,ea,...,¢e,} and a set F of feasible subsets of E. Each
item e € E has a cost ¢, € R. Given the vector ¢ = (cy,...,c,), the goal of the
optimization problem is to select a feasible subset of items that minimizes the
total cost; we refer to this as the nominal problem:

F*(¢) := mi . 1

(c):=min > c (1)
ecT

Let z = (x1,...,x,) be a characteristic vector for some set T, so that z. = 1

if e € T and z. = 0 otherwise. Also let X C {0,1}" denote the set of all
characteristic vectors corresponding to feasible sets T' € F. We assume that X is
described in size m (e.g. with m linear inequalities). We can equivalently write
the nominal problem with a linear objective function

X .

F*(c) = min 2 Cee. (2)

Throughout the paper, we use both set notation and characteristic vectors for
ease of presentation.

We review the conventional definitions for the deterministic minmax regret

framework and then present the analogous definitions for our randomized model.



For some cost vector ¢ € C, the deterministic cost of a solution T € F is

F(T,c) = Zce. (3)

ecT

The regret of a solution 7" under some cost vector c is the difference between the
cost of the solution and the optimal cost:

R(T,c) := F(T,c) — F*(c). (4)
The maximum regret problem for a solution T is

Ruyax(T) := max R(T, ¢) = max (F(T,c) — F*(c)). (5)

ceC ceC

The deterministic minmaz regret problem is then

Zp = 71r51€1.r7_1_ Ruax(T) = 71%21?25{(F(T7 c) — F*(c)). (6)
We abuse the notation F(-,¢), R(-,c) and Ryax(-) by replacing set arguments
with vectors (e.g. F'(z,c) in place of F(T), c)), but we generally use capital letters
for sets and lowercase letters for vectors.

We now move to the randomized framework, where the optimizing player
selects a distribution over solutions and the adversary selects a distribution over
costs. Starting with the optimizing player, for some set T' € F, let yr denote
the probability that the optimizing player selects set T'. Let y = (yr)rex be the
vector of length | F| specifying the set selection distribution; we refer to y simply
as a solution. Define the feasible region for y as

YVi={y|ly>0,1"y=1} (7)

where the notation 0 and 1 indicates a full vector of zeros and ones, respectively.
We similarly define a distribution over costs for the adversary. The set C may in
general be infinite, but we only consider strategies with finite support; for now
we assume that such strategies are sufficient. Thus consider a finite set Cy C C,
and for some ¢ € Cy, let w. denote the probability that the adversary selects
costs ¢. Then let w = (we)cec ; and define the feasible region

Wi={w|w>0,1"w=1}. (8)

We are interested in succinct descriptions of strategies for both players. We
define for the optimizing player a mized strategy encoding M = (0,Y) as a set of
deterministic solutions © = {T; € F | i = 1,..., u} that should be selected with
nonzero probability and the corresponding probabilities Y = {yr, € [0,1] | ¢ =
1,...,u} that satisfy > % yr, = 1. Here p is the support size of the mixed
strategy (i.e. the number of deterministic solutions with nonzero probability).
Likewise, define an adversarial mixed strategy encoding £ = (C,W) as a set of
costs C = {c/ € C; | j =1,...,n} to be selected with corresponding probabilities
W ={ws €1[0,1] | j =1,...,n} satisfying Z?:I we = 1.



The expected regret under y and w is simply

Rly,w) =Y > yrwR(T,c)= > Y yrwe(F(T,c) = F*(c)).  (9)

TEF ceCy TEF ceCy

For a given y, the mazimum expected regret problem is

Rax(y) == max We Z yrR(T,c) = ggg}f( Z yrR(T, c). (10)
ceC;  TeF TeF

The above equality follows from a standard observation in game theory: the op-

timization of w € W is maximization of the function G(y,c) = 3 ;e yrR(T, c)

over the convex hull of Cy, which is equivalent to optimizing over C; itself. The

minmax expected regret problem, which we refer to as the randomized minmazx

regret problem, is

g = gggﬁmax(y) = minmax (Z yr(F(T,c) - F*(C))) : (11)
TeF

where we have replaced Cy with C under the assumption that C; contains the

maximizing cost vector.

3 Results

We only consider the perspective of the optimizing player here; analogous results
for the adversary are given in the full version of the paper [24].

3.1 Discrete Scenario Uncertainty

Under discrete scenario uncertainty, we are given a finite set S of S| = k sce-
narios. For each S € S, there exists a cost vector ¢® = (¢2).cp. Our solvability
result for the optimizing player is the following.

Theorem 1. For discrete scenario uncertainty, if the nominal problem F*(c)
can be solved in time polynomial in n and m, then the corresponding randomized
minmaz regret problem min,cy maxges(F(y,c®) — F*(c%)) can be solved in time
polynomial in n, m, and k.

Recall that the feasible region X is described in size m. The algorithm for deter-
mining the optimizing player’s mixed strategy, shown in Algorithm [I] solves two
linear programs. The first is a linear programming relaxation of the deterministic
minmax regret problem,

min z

b,z

st > clpe—F*(c®) <z, VSES, (LPD)
eckE

p € CH(X), z free,



where CH(X') denotes the convex hull of X and p € [0,1]". We refer to the
vector p = (p1,...,Pn) as the marginal probability vector; it indicates the total
probability that each item should be selected in the mixed strategy. Given the
optimal vector p* from solving , the second linear program maps the
marginal probabilities to an optimal mixed strategy:

max w—g Pelle
u,w

eckE
st w—Y u <0, VTEF, (LPM)
ecT
u, w free,

where v = (ui,...,u,). While both (LPD|) and (LPM]) potentially have an

exponential number of constraints, a separation oracle is given by solvability of
the nominal problem. Solvability of the latter program (LPM)) is a known result
from [14].

Algorithm 1 RAND-MINMAX-REGRET (discrete scenario uncertainty)

Input: Nominal combinatorial problem, cost vectors (¢%)scs
Output: Optimizing player’s optimal mixed strategy M* = (0*,Y™) where O* =
(Tl,'--,TM) and Y* = (yTlﬂ"'7yTu)

1: Solve linear program (LPD) to get probability vector p* = (pi,...,p5).

2: Solve linear program with p = p* to generate constraints indexed ¢ =
1,..., . Each constraint i corresponds to a set 7; € F and dual variable yr,,
indicating that T; is an element in the optimal mixed strategy and has probability
yr; -

A k-approximation algorithm for the deterministic minmax regret problem
was introduced by Aissi et al. [3] and is shown in Algorithm 2| Using a new
primal-dual interpretation with the formulation (LPDJ), as well as some argu-
ments from [3], we show a simple proof of Theorem '

Algorithm 2 MEAN-COST-APPROXIMATION (Aissi et al. [3])

Input: Nominal combinatorial problem, cost vectors (¢)ses
Output: Feasible solution M € F satisfying Rmax(M) < kZp.

1: Determine mean costs for each item: d. + T Z cf, Ve € E.
ses

2: Solve nominal problem with mean costs: M <— argmin Z de.
TeF
ecT




Theorem 2. For discrete scenario uncertainty, the solution to the nominal prob-
lem with mean costs is a k-approzrimation for the deterministic minmax regret
problem.

Since the randomized minmax regret problem corresponds to a linear program-
ming relaxation of the deterministic minmax regret problem (specifically, the
deterministic formulation is given by replacing the constraint p € CH(X') with
z € X in ), it follows that Zr < Zp. Additionally, the primal-dual in-
terpretation allows us to prove a new lower bound on Zg, stated in Theorem
below. We show that this bound is tight.

Theorem 3. For discrete scenario uncertainty and all nominal problems,

(12)
where k = |S| is the number of scenarios. Equivalently, the integrality gap of the
mized integer program corresponding to (LPD)|) is equal to k.

3.2 Interval Uncertainty

For interval uncertainty, each item cost is independently contained within known
lower and upper bounds:

ce €lc.,cf], VeeE. (13)
Define the region
T:={c|ce€lc.,cl],e€ E}. (14)

Our solvability result for interval uncertainty is the following.

Theorem 4. For interval uncertainty, if the nominal problem F*(c) can be
solved in time polynomial in n and m, then the corresponding randomized min-
maz regret problem minyey max.ez(F(y,c) — F*(c)) can be solved in time poly-
nomial in n and m.

The algorithm for determining the optimizing player’s mixed strategy is shown
in Algorithm [3] This is the same algorithm that is used for the discrete scenario
uncertainty case, except the linear program (LPI)) is used instead of (LPD)),

min 2z

P,z

s.t. Z cipe — Z ¢, (1—pe) <z vT € F, (LPI)
e€ E\T eeT

p € CH(X), z free.

For the deterministic minmax regret problem under interval uncertainty, the
known 2-approximation algorithm of Kasperski and Zieliniski [19] uses midpoint
costs and is shown in Algorithm (4l Using primal-dual methods, we show a new
proof for this algorithm as stated by Theorem [5] We also prove Theorem [6]
establishing the integrality gap for interval uncertainty, and we show that the
corresponding bound is tight.



Algorithm 3 RAND-MINMAX-REGRET (interval uncertainty)

Input: Nominal combinatorial problem, item cost bounds (c;,cl), e € E.
Output: Optimizing player’s optimal mixed strategy M* = (6*,Y™) where O*
(Th,...,T,) and Y™ = (y1y, ..., y1,)
1: Solve linear program (LPI) to get probability vector p* = (pi,...,pn).
2: Solve linear program with p = p* to generate constraints indexed i =
1,...,u. Bach constraint ¢ corresponds to a set 7; € F and dual variable yr;,
indicating that T; is an element in the optimal mixed strategy and has probability

Yy -

Algorithm 4 MIDPOINT-COST-APPROXIMATION (Kasperski and Zieliniski |19])

Input: Nominal combinatorial problem, item cost bounds (c;,cl), e € E.
Output: Feasible solution M € F satisfying Rmax(M) < 2Zp.

St
1: Determine midpoint costs for each item: de < (%) , VYee€e FE.
2: Solve nominal problem with midpoint costs: M < argmin Z de.

TeF

ecT

Theorem 5. For interval uncertainty, the solution to the nominal problem with
midpoint costs is a 2-approximation for the deterministic minmax regret problem.

Theorem 6. For interval uncertainty and all nominal problems,

Zg 2 o (15)

FEquivalently, the integrality gap of the mized integer program corresponding to

(LPI) is equal to 2.

3.3 Convex Uncertainty

If the uncertainty set C is allowed to be a general nonnegative convex set and the
nominal problem is polynomial solvable, we show that the maximum expected
regret problem becomes NP-hard. This result implies that both randomized and
deterministic minmax regret problems are NP-hard under convex uncertainty,
since both are at least as hard as the maximum expected regret problem.

Theorem 7. For polynomial solvable nominal problems F*(c) =
mingex ZeeE CeTe and nomnegative convexr uncertainty sets C, the maxi-
mum expected regret problem max.cc (ZeeE CePe — F*(c)) where p € CH(X) is
NP-hard.

4 Conclusion

Our results on lower bounds for randomized minmax regret in relation to deter-
ministic minmax regret, specifically Theorem [3] and Theorem [6] have important



implications for approximating deterministic minmax regret problems. Theorem
[B] indicates that the integrality gap for the minmax regret problem under dis-
crete scenario uncertainty is equal to k, and it is easy to create instances of
nearly all nominal problems that achieve this gap. This also holds true for the
integrality gap of 2 under interval uncertainty. In Kasperski [17], it is posed as
an open problem whether or not there exist approximation algorithms under
interval uncertainty that, for some specific nominal problems, achieve an ap-
proximation ratio better than 2. We have answered this question in the negative
for approximation schemes based on our linear programming relaxations.

An important future step with randomized minmax regret research is to
develop approximation algorithms for dealing with nominal problems that are
already NP-hard. This problem is non-trivial: an algorithm with an approxima-
tion factor a for a nominal problem does not immediately yield an algorithm to
approximate the randomized minmax regret problem with a factor a.
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