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Estimating Travel Time Distributions by
Bayesian Network Inference
Anatolii Prokhorchuk , Justin Dauwels , and Patrick Jaillet

Abstract— Travel time estimation is an important aspect of
intelligent transportation systems (ITS). In urban environments,
travel times can exhibit much variability due to various sto-
chastic factors. For this reason, we focus on estimating travel
time distributions, in contrast to the more commonly studied
estimation of mean expected travel times. We present algorithms
to infer travel time distributions from Floating Car Data;
specifically, from sparse GPS measurements. The framework
combines Gaussian copulas and network inference to estimate
marginal and joint distributions of travel times. We perform an
extensive set of numerical experiments on one month of GPS
trajectories. We benchmark the proposed models in terms of
Kullback-Leibler (KL) divergence and Hellinger distance for
the 50 most common trajectories. Combining Gaussian Copulas
and Bayesian Inference of Sparse Networks method achieves
4.9% reduction in KL divergence and 2% reduction in Hellinger
distance compared to baseline methods.

Index Terms— Travel time distribution estimation, Gaussian
copulas, graphical lasso, Bayesian network inference.

I. INTRODUCTION

INTELLIGENT Transportation Systems (ITS) aim to
decrease traffic congestion, reduce fuel consumption, and

improve other aspects of transportation. Travel time infor-
mation plays a crucial role in different ITS applications,
such as stochastic routing [1], ridesharing [2], and traffic
monitoring [3]. Better estimates of travel time can improve
the overall performance of such systems, leading to more
accurate information for the users including better routes and
better transportation options [4]. Another crucial aspect for
ITS users is the variation of travel time, affecting all of the
above use cases. However, most of the previous studies [5]–[9]
attempt to estimate expected travel times. Recent studies
[10]–[14] on distribution estimation usually deal with origin-
destination (OD) pairs or dense GPS data, instead of sparse
GPS trajectories. Sparse GPS data is commonly acquired by
vehicles, therefore, estimating travel time distributions from
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such data is an important topic. Nevertheless, the literature on
this topic is very limited.

In this paper, we present novel ways to infer the travel
time distributions from sparse GPS data. We aim to develop
a method which is able to reliably estimate travel time
distributions from sparse GPS data. This will allow utilizing
more easily obtainable data to provide the benefits to ITS
applications. In our approach, we infer the covariance structure
of travel times in the road network. As a result, the method
is able to reliably learn the distribution between any origin-
destination pair. To estimate the covariance structure, we com-
bine Gaussian copula with the recently developed Bayesian
network inference algorithm [15] which yields more accurate
network structures and precision matrices compared to graphi-
cal lasso [16]. The main advantage of this approach is the abil-
ity to handle variables with a different number of observations.
The proposed method does not require more expensive, high-
resolution data and is well-suited for sparse, low-resolution
GPS trajectories. We perform extensive numerical experiments
on a large dataset of sparse GPS recordings to validate the
proposed method. Interestingly, the proposed approach may
also be applied to high-resolution data, after it has been down-
sampled to low-resolution data; such approach might be viable
when the available computational resources are limited.

We consider a dataset provided by one of the major taxi
companies in Singapore. It contains GPS positions sampled by
a fleet of over 15,000 taxis during the period of August 2010.
In total, approximately 12 million trips are included in the
dataset. Each position (latitude and longitude) is accompanied
by a timestamp and the status of the taxi. Each vehicle
records this data with a certain sampling interval. Due to the
large size of the network (several thousand links) and large
sampling intervals (60 seconds on average), we divide the
dataset into 1-hour intervals. For each interval, we infer travel
time distributions from 70% of the paths, randomly selected
in that interval, and then evaluate the inferred distributions
by computing Kullback-Leibler divergence and Hellinger dis-
tance with the empirical distribution of travel time for the
remaining 30% of the paths. Our proposed model utilizes
Gaussian copulas and Bayesian inference of sparse networks
(BISN, [15]) framework and outperforms baseline methods by
4.9% in terms of the KL divergence and 2% in terms of the
Hellinger distance. We also investigate the performance of the
proposed model by training travel time models on data from
time intervals of varying length, and comparing those models
to empirical travel time distributions from later time intervals.
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TABLE I

BRIEF SUMMARY OF THE RELEVANT APPROACHES FOR TRAVEL TIME DISTRIBUTION ESTIMATION

The rest of the paper is organized as follows. In Section II
we summarize the literature on the problem of estimating
travel times and travel time distributions. In Section III we
describe our approach in detail. In Section IV we present and
discuss the results of our experiments on Singapore taxi data.
In Section V we offer concluding remarks and ideas for future
research.

II. RELATED WORK

Travel time estimation is a well-studied topic in the lit-
erature [5]–[9], [17]–[23]. Most of the previous studies deal
with the estimation and prediction of travel times, without
providing confidence intervals on these estimates [5]–[9].
Recently, travel time distribution estimation received more
attention [10]–[14]. The problem of estimating the travel times
and travel time distributions heavily depends on the sources
of data. These sources include inductive loop detector data,
probe vehicles, and video streams from traffic cameras.

One of the most common sources is data from loop detectors
and similar equipment installed on the roads. Depending on
the type of the detector, loop detectors can record different
traffic parameters such as flow and speed. There are several
common travel time estimation techniques for this type of data.
Certain models are rooted in traffic flow theory [5], [6], while
other techniques are data-driven and do not require theoretical
traffic models. Time-series analysis is a family of data-driven
techniques [7]–[9] that include SVR [7] and Artificial Neural
Networks (ANN) [18], [19]. Kalman filters, another time-
series based approach, have also been applied to travel time
estimation; for example, Dailey [20] apply Kalman filters to
estimate travel time based on occupancy and volume data from
loop detectors.

Probe vehicles are another viable source of travel time
data. These vehicles are supplied with GPS systems that
record location data and timestamps (and sometimes other
information such as speed) with a certain sampling interval,
usually from every few seconds to more than a minute.

GPS data also poses a number of different challenges related
to the nature of data, including location data errors, and the
sparsity of the signals both in terms of sampling interval
and number of probe vehicles. Due to the popularity of GPS
devices, there is an increasing number of studies about this
kind of data [10]–[13], [23]–[27] aiming to overcome the
mentioned challenges. Statistical models such as Gaussian
mixtures [28], copulas [12], [13], and regression methods [23]
are commonly applied to GPS data, in addition to graphi-
cal models such as Markov chains [24], [28] and Bayesian
Networks [25].

In the following, we briefly review studies concerning
estimation of travel time distributions. An important consid-
eration for studies with probe vehicles data is the sampling
interval, i.e., how often vehicles report their location. Sampling
intervals in the literature range from around one second [11]
to only reporting origin and destination [26]. In Table I we
summarize some of the more relevant studies.

Ramezani and Geroliminis [24] proposed modeling travel
time distributions with Markov chains. For each pair of con-
secutive links they build a 2D diagram of travel times. Next,
they apply heuristic grid clustering to this diagram to compute
a state of the travel time for these particular links. They apply
Markov chains to compute the transition probabilities and
travel time distributions. This approach produces good dis-
tribution estimates even for arterial links, however, it requires
high-resolution travel time data. Hunter et al. [25] proposed
to apply Bayesian networks for travel times estimation using
only origin-destination pairs as input data. They applied
Expectation-Maximization (EM) algorithm to handle path
uncertainty. The approach showed promising results, however,
it assumes independence of link travel times. As a next step,
Hunter et al. [11] proposed a different method for travel time
distributions estimation. They developed an approach for dense
GPS data sampled at 1Hz that infers the number of stops made
by a vehicle on a particular road segment. In that study, travel
time distributions were estimated using Markov model for the
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number of stops coupled with a Gaussian Markov Random
Field. The proposed model performed better than the baseline
ones, however, the method requires high-resolution data.

Another promising approach for travel time distribution esti-
mation from probe vehicle data is graphical models [12]–[14],
[25]. Wan and Kornhauser [13] applied graphical lasso and
Gaussian copulas for travel time estimation. They approximate
the path travel time distribution by the sum of a series of
conditional path travel time distributions. These distributions
are conditioned on a lag vector (a vector of entering times
experienced by a vehicle to each link in the path). In this
framework the dependence between the travel times at dif-
ferent edge takes into account the time lag along the trip.
To address the possible low number of observations, lagged
Gaussian copula parameters are estimated by the graphical
lasso method to achieve a sparse precision matrix. In [12]
Wan introduced Gaussian Copula Mixture Models (GCMM)
for path travel time estimation. In this approach, the travel
times are modeled for different scenarios. To compute the total
travel time for a given path, they integrate the conditional
path travel time distributions over a set of path scenarios.
Each scenario represents certain traffic conditions and the
statistical dependence between travel times at different links in
each scenario is stationary. The parameters of each Gaussian
copula are again estimated via the graphical lasso. However,
the numerical results in [12] are quite limited, since only three
paths consisting of less than 15 links each are considered.

In earlier work [14], we combined Gaussian copulas and the
graphical lasso approach to infer the travel time distributions
for parts of the Singapore network. In this paper, we conduct
a more in-depth study with a larger dataset, containing more
trajectories and spanning a larger time period. We also propose
a Bayesian framework that goes beyond the graphical lasso,
and is able to deal with sparse GPS data in a large network.
Sparse GPS data is easier to obtain and more common than
high-resolution GPS data. Therefore, the proposed framework
can more widely be utilized. To address the drawbacks of
the graphical lasso method [12]–[14], we propose to apply
a novel Bayesian Inference of Sparse Networks (BISN) [15]
method. The graphical lasso method does not take into account
the difference in the number of vehicles traversing different
links, while BISN allows us to accurately model travel time
distributions for the usual scenario where some links are more
frequently traversed than others. At the same time, it has lower
computational complexity. We investigate the effect of using
copulas for path travel time modeling and how the estimation
performance depends on various factors such as path length,
day of the week, and hour of the day.

Previous studies described above are either limited to small
networks or time frames [12], [13], [28], require hard-to-
obtain high-resolution GPS data [11], [24] or both. Moreover,
some of the studies require strong assumptions on travel time
distributions, such as independence, Gaussianity and others.
In contrast, the proposed method is able to estimate the
travel time distributions for paths in a large traffic network,
based on sparse data, without assumptions on link travel
time distributions while also taking the variable link coverage
across the network into account.

III. METHODOLOGY

A. Approach

We will first describe the problem statement, next we
will outline our statistical modeling approach. We aim to
estimate travel time distributions of paths in a transportation
network from sparse GPS data. We are provided with 1 month
(August of 2011) of taxi GPS data from one of the taxi
companies in Singapore. Each data point contains geographical
coordinates, taxi identifier, timestamp, and current state. The
possible values for the latter are FREE (the taxi is looking
for passengers), ON CALL (the taxi has received a booking
and is on its way to pick up the client), POB (passenger on
board), and periods of inactivity. We are interested only in
trips made in the POB state, since they typically represent the
real traffic conditions. This particular dataset has been studied
in [17], where it is shown that traffic patterns can be inferred
from taxi trajectories, and only 700 (out of more than 15,000)
to obtain a network coverage of 70%. From this collection of
GPS trajectories, we wish to infer the travel time distribution
for any path in the network for one-hour intervals.

In the following, we will outline our statistical modeling
approach for travel time distributions. We model the travel
times associated with paths in a network as a multivariate
Gaussian or copula Gaussian random variable. A path consists
of multiple links, and its travel time is a sum of individual link
travel times, each modeled as a random variable; in multivari-
ate copula Gaussian models, the travel times at individual links
are not necessarily Gaussian distributed. In order to determine
the distribution of the path travel time, we need to infer how
the travel time at each link depends on the travel time at the
other links. In both Gaussian and copula Gaussian models,
this statistical relationship is fully captured by the covariance
matrix � and its inverse (precision matrix K ). The precision
matrix encodes the dependency among different variables in
an elegant manner: if two variables xi and x j are conditionally
independent, the corresponding element Ki, j in the precision
matrix is zero.

We model the network as a graph G = (V , E), where V
is a set of vertices, representing nodes in the network (such
as intersections), and E is a set of arcs, representing road
links (26 972 in the network at hand). We define the path as
a sequence of consecutive road links and the trajectory as a
path traversed by a taxi. For each trajectory, we know the
timestamp of the taxi arriving at the first link in the path
and the timestamp of it leaving the last one. The general
overview of our proposed approach is displayed in Fig. 1. First,
we convert the raw GPS coordinates data into paths matched
onto the graph G by means of the HMM-based algorithm
proposed in [29].

Next, from these projected paths along with the reported
timestamps we compute travel times for each individual link.
We assume a constant speed of the taxi throughout all links
in a given path. Then we calculate travel time for each link
proportionate to the link length. We will refer to this approach
as the “scaling method” (cf. Section C). Approaches based
on proportions are commonly considered in studies dealing
with sparse GPS trajectories [30], [31]. In the dataset at hand,
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Fig. 1. Diagram of the proposed approach for travel time modeling.

all road links are covered by a large number of different
trajectories. In some cases, only a subset of links is congested
for a given path during the current time interval. However,
when we compute travel times of individual links we do this
irrespective of any particular path. This implies that travel
times for each congested link will be partially computed from
trajectories covering only congested links. Due to the amount
of data, congested links will have larger travel times and vice
versa. At the same time, the proposed distribution estimation
method (namely, combining Gaussian copulas with Bayesian
network inference) can be applied together with any other
individual link travel time computation approach. For example,
a tensor-based approach [10] can be utilized.

In order to model the non-Gaussian distribution of these
travel times estimates, we apply Gaussian copulas, trans-
forming the non-Gaussian travel time estimates into Gaussian
random variables (cf. Section F).

After this transformation, we compute the Partial Empirical
Covariance Matrix (PECM; cf. Section E). It serves as a
baseline method to infer the covariance structure of the travel
times at the different links in the transportation network. Next,
we apply the graphical lasso algorithm [16] (graphical lasso;
cf. Section G) to the PECM, in order to impose sparsity
on the precision matrix, yielding a more accurate estimate
of the covariance matrix of the travel times. Besides the
graphical lasso method, we also apply an alternative to graph-
ical lasso, named “Bayesian Inference of Sparse Networks”
(BISN; cf. Section H), as it has been shown to lead to
more accurate estimates of sparse networks from data [15].
As a result, this method is able to take into account the fact
that the number of data points (travel times) typically varies
across the links. By contrast, in the graphical lasso approach,
one implicitly assumes that each link has the same number
of data points (travel times). Indeed the graphical lasso is
directly applied to the PECM, and no confidence levels on the
elements of the PECM are provided; these confidence levels
depend on the number of data points associated with each pair
of links. Another important advantage of BISN is its lower
computational complexity; the computational complexity of
BISN only scales quadratically with the number of variables
(links in the transportation network), while the graphical lasso
has cubic computational complexity.

From the transformed travel times obtained by the scaling
method, we compute the mean travel times and their empirical
covariance matrix; we apply the graphical lasso and BISN
to the latter, in order to obtain more reliable estimates of

the covariance matrix. As a result, we obtain a multivariate
copula model of the travel times specified by the mean vector
of travel times and the covariance matrix; the latter is either
obtained by the graphical lasso or BISN, and we will assess
both approaches in this paper. Path travel time estimates are
computed by sampling from the joint distribution of the links
in the path. The approach is described in Sections H and I. For
evaluation, we select the 50 most common trajectories in the
network, and compare the obtained distribution with the empir-
ical one. Specifically, we compute two different measures,
i.e., the Kullback-Leibler (KL) divergence and the Hellinger
distance between the empirical distribution of travel times and
the marginal distributions obtained from the different travel
time models.

In the following, we will explain each step in the travel time
modeling pipeline.

B. Preprocessing

Data from probe vehicles tends to be noisy; the location
information typically only has an accuracy of 5m to 10m.
Therefore, it is important to preprocess the data and project
the GPS points onto the road network. This procedure is
called map matching (MM), and several methods have been
proposed for this purpose, including geometric, topological,
probabilistic and artificial intelligence based approaches [32].
Since the GPS data considered in this paper is sparse, we apply
a map matching algorithm based on Hidden Markov Models
that is particularly well suited for such sparse data [29]. For
this algorithm, each possible road segment is represented as
a hidden state with its observation probability p(observation)
depending on the distance between the trajectory point and the
segment d , road segment width 2w and standard deviation of
GPS error δg :

p(observation) = 1

2w

∫ w

−w
1

2πδ2
g

e
− (l−d)2

2δ2g d�. (1)

The emission probability p(observation|r) is defined as:

p(observation|r)= vmax

max(0, vobs−vmax)+vmax
p(observation),

(2)

where r is the candidate segment, vobs is the observed speed
and vmax is the speed limit. The ratio in (2) represents the
speeding penalty factor.

Goh et al. [29] apply SVM to compute the transition
probability between states. They determine the most likely
sequence of road segments by means of a modified Viterbi
algorithm. We refer the reader to [29] for more details.

C. Link Travel Time Estimation Using Scaling Method

After obtaining map matched data, we compute travel times
for each link. One of the most straightforward methods to
achieve this is to assume that a taxi vehicle has a constant
average speed throughout the whole multi-link path. We com-
pute the travel time ti for a link i with length �i by rescaling
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Fig. 2. Illustration of the scaling method (3) for computing link travel times
from path travel times. In this example, the path (blue dashed line) contains
four links (black arrows).

the path travel time TP as follows:

ti = �i TP∑
j∈P � j

. (3)

We provide an illustration of this calculation in Fig. 2. After
computing these estimates from all the trajectories (from
different taxis) we average values for each link to compute
the mean travel time.

To improve the accuracy of these intermediate travel time
estimates we incorporate information about the position of the
trajectory point on the road segment. Let the mapped trajectory
point on the first segment j1 ∈ P be A and the point on the
last segment jK ∈ P be B , where K is the total number of
GPS points along path P . Let �̃1 be the distance between A
and the last point of j1 and �̃K be the distance between B and
the last point of jK . We calculate the travel times estimate ti
as follows:

ti = �i TP

�̃1 + �̃K + ∑K−1
j=2 � j

. (4)

By taking into account the location of the first and last
GPS point along the first and last link more carefully, the
estimate (4) becomes more accurate compared to (3).

D. Gaussian Copula

An obvious choice for the travel time distribution might be
Gaussian or lognormal distributions. However, as Fig. 3 shows
for the most common trajectory, both distributions are poor fits
for the empirical travel time data. Instead we applied Gaussian
copulas, allowing to fit a more flexible distribution to the data.
A Gaussian copula with p dimensions is defined as:

C(t1, . . . , tp) = �p(�
−1(t1), . . . ,�

−1(tp);�), (5)

where � is the CDF of standard normal distribution and
�p(∗;�) is the CDF for a p-dimensional multivariate
Gaussian distribution with zero mean and covariance matrix�.

We transform observed travel times ti at link i , obtained by
the scaling method (4), into Gaussian distributed values by the
probability integral transform:

t̃i = ψ−1(Fi (ti )), (6)

where Fi is the distribution function of the travel times at
link i , and ψ−1 is the inverse error function.

Fig. 3. QQ (quantile-quantile) plots of travel times and log travel times for
the most traversed trajectory during one time interval.

The distribution Fi is inferred from a finite number of
samples. In practice, we compute Fi by first calculating the
cumulative histogram of the samples, and applying linear
interpolation to the values of the cumulative histogram.

E. Empirical Covariance Matrix

In the proposed travel time modeling pipeline, we estimate
the covariance of the travel times at the links in the trans-
portation network. To this end, we compute the empirical
covariance matrix S. Specifically, we compute the Partial
Empirical Covariance Matrix (PECM) [11] by calculating
covariances for every pair (i, j) of links separately:

Ŝi, j = βi j 〈ti t j 〉 − 〈ti 〉〈t j 〉, (7)

where the 〈ti 〉 is the average travel time (obtained by the
scaling method (3)) computed across all paths P that contain
the link i , while the average 〈ti t j 〉 is computed across all
paths P that contain links i and j . To avoid the matrix being
negative semi-definite, we introduce scaling coefficient βi, j so
that all elements Ŝi, j have the same variance as proposed by
Hunter et al. [11]:

βi, j =
√√√√ 〈t2

i 〉〈t2
j 〉

〈t2
i 〉i, j 〈t2

j 〉i, j
, (8)

where 〈〉i, j is computed across paths that contain both link i
and link j . We set Ŝi, j to be zero if less than 5 trajectories
contain these two links. Indeed if two links rarely occur
together in the same path, most likely the travel times along
those links are to a good approximation independent.

F. Graphical Lasso

In the setting of sparse GPS data, the amount of data is
limited and the network is large. Therefore, it is hard to infer
the full precision matrix reliably. For such scenarios, it is a
common practice to assume that the precision matrix is sparse,
and to apply the graphical lasso approach [16]:

K̂ = argmin
K

(Tr SK − log det K + α||K ||1). (9)

This procedure imposes an L1 penalty, resulting in a sparse
precision matrix K̂ . The inverse of the estimate K̂ is a reliable
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estimate of the covariance matrix. We apply the coordinate
descent implementation [16] to solve the optimization prob-
lem (9). To estimate the precision matrix, the algorithm is
applied to PECM introduced in the previous section (7).

G. Bayesian Inference of High-Dimensional Sparse Networks

Up to this point, the model did not take into account
the fact that some links are traversed by taxis more often
than others. This affects the estimates of the covariances
between links due to the difference in the uncertainty about the
estimate. For example, if one link pair has a few simultaneous
observations and another link pair has several times more
observations, these covariance estimates should be treated dif-
ferently when inferring the sparse precision matrix. To address
this, we employ Bayesian Inference of High-Dimensional
Sparse Networks framework (BISN) [15]. Instead of modeling
precision matrix like the graphical lasso, BISN deals with LDU
(lower-upper) decomposition of the precision matrix. In that
case, the probability density function (PDF) of the Gaussian
model with precision matrix K = L DLT , where L is a lower
triangle matrix and D is diagonal, can be written as:

p(t|L, D) =
p∏

j=1

D j, j exp(−1

2
tT L DLT t). (10)

BISN imposes a spike and slab prior to obtain sparse pre-
cision matrix K . The posterior distribution of the elements
in the LDU decomposition are computed approximately by a
variational Bayes approach. BISN introduces a coefficient γ
for each element in K and treats γ as a random variable. This
allows BISN to take into account the fact that different vari-
ables can have a different number of observations. In contrast
with the graphical lasso, where the corresponding α parameter
is a fixed constant multiplier for the matrix. As a result, BISN
obtains more reliable estimates of the sparsity pattern of K ,
and better estimates of the non-zero elements in K , ultimately
leading to a more reliable estimate of the covariance matrix.
The algorithm only has quadratic computational complexity
compared to the cubic complexity of graphical lasso; this
substantial reduction in computational complexity is important
for real-time applications. The computational complexity is
reduced in BISN by applying the stochastic approximation
based on matrix randomization.

Whereas the graphical lasso is applied to PECM, the BISN
model directly infers the sparse precision matrix from the data
(travel times at each link for different taxi rides). In order to
apply BISN, we construct a matrix X ∈ R

n×p , where n is a
number of observations (i.e., taxi trajectories) and p is a toyal
number of links, and each element Xi, j is an observed travel
time for a link j . If a particular link j is not a part of the
trajectory i , the corresponding value Xi, j is missing.

The performance of the algorithm depends on several fac-
tors, including sample size and the amount of missing data.
In experiments on the synthetic dataset, it was observed that
the performance degrades significantly with the increase of
missing data percentage. Based on experiments with synthetic
data, no covariance structure could be recovered with more
than 60% of the values missing.

To control the amount of the missing data in X we make
the following assumption: different taxis can be treated as one
vehicle during a short time interval. Under this assumption,
we can collapse rows of X to reduce the proportion of missing
values. We collapse rows i1 . . . it if start times of all observed
trajectories in these rows are within two minutes interval, and
none of the links occur in more than one trajectory, and hence
each column has at most one non-missing element across
rows i1 . . . it .

We apply BISN in two different ways. In the first case,
we construct matrix X for the 50 trajectories simultaneously.
In this way, the number of columns p equals the number
of unique links across 50 trajectories. The algorithm will be
evaluated only once for the whole network. We refer to this
approach as the “BISN network model”.

In the second approach, which we will refer to as “BISN
path model”, we construct a matrix X P for each path P
separately. The matrix X P is obtained as a submatrix of X
by selecting columns associated with links that occur in P .

H. Proposed Model

Next, we describe the overall proposed model. We compute
a set of travel time values for every link in the network
by the scaling method (4). Next, we calculate the empirical
covariance matrix (PECM) S and apply the graphical lasso
algorithm. As an alternative, we apply BISN to the data matrix
X (network model) and X P (path model). Both the graphical
lasso and BISN approach lead to sparse precision matrices.
The covariance matrices �̂ in the Gaussian models are com-
puted as the inverse of those sparse precision matrices. For
the copula Gaussian models, we apply the same calculations
to the integral-transformed travel times (cf. (9)), resulting in
covariance matrices �̂C . The Gaussian model is offered as
a comparison, however, the main proposed model is copula
Gaussian. We obtain multivariate Gaussian models T TP and
copula Gaussian models T T C

P for the travel times:

T TP ∼ N ([ t1 . . . t|P|
]
, �̂)

T T C
P ∼ CN ([ t̃1 . . . t̃|P|

]
, �̂C), (11)

where ti are link travel times from equation (4), t̃i are travel
times transformed with the integral transformation (8) and �̂
is the covariance matrix obtained by graphical lasso or BISN.
Further reading on the transformation of non-Gaussian vari-
ables and Gaussian copulas can be found in [33].

From those models, we generate samples of path travel
times as follows. First, we draw samples from the link
travel time distributions (3). Specifically, we sample from the
(multi-variate) marginal distribution associated with the links
contained in the path. In other words, we do not sample from
the individual marginal distributions associated with each link,
which would be inappropriate, but from the joint travel time
distribution instead of all links in the path, which is a marginal
distribution of the models (3). For the Gaussian models,
we can generate such samples via a standard procedure:
first, we sample a vector z of independent standard normal
variables, and then perform spectral decomposition of � :
� = U�U�. Then, the desired samples x can be calculated
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TABLE II

PERFORMANCE METRICS FOR DIFFERENT GAUSSIAN AND COPULA GAUSSIAN MODELS FOR 50 TRAJECTORIES.
LEFT AND RIGHT OF /, RESULTS ARE SHOWN FOR GAUSSIAN AND COPULA

GAUSSIAN MODELS RESPECTIVELY

as x = μ + Az, where A = U�
1
2 and μ is the mean vector.

To sample from the copula Gaussian models, we apply the
inverse transform to the Gaussian samples. At last, we obtain
samples for the path travel time by summing the samples of the
link travel times, leading to a sample of the path travel time for
each sample of the multivariate link travel time distribution.

I. Evaluation

We evaluate the travel time models by comparing them
to the empirical pathwise travel time distributions. To assess
the deviation between the models and empirical distributions,
we compute the Kullback Leibler divergence:

DK L(P||Q) =
∫ ∞

−∞
p(x) log

p(x)

q(x)
dx, (12)

where Q is the distribution generated from the models, and P
is the empirical distribution. We can describe Q analytically.
For trajectory P , let t1 . . . t|P| be the average travel times for
each link in the trajectory and �̂ = {σ̂i, j } be the estimated
covariance matrix. Then, for the Gaussian models, the distri-
bution of travel times for trajectory P can be described as:

T TP ∼ N(

|P|∑
i=1

ti ,
|P|∑
i=1

|P|∑
j=1

σ̂i, j ). (13)

However, there are no analytical forms for the copula
models and the empirical distribution. Therefore, we consider
the formula of Kullback Leibler divergence for discrete distri-
butions:

DK L(P||Q) =
∑

i

P(i) log
P(i)

Q(i)
, (14)

where P = ∑
i P(i) and Q = ∑

i Q(i) are two discrete
probability distributions. To apply this formulation we first dis-
cretize both distributions by computing histograms. Due to the
presence of log P(i)

Q(i) in the formula, discrete KL divergence is
sensitive to discretization. We compute the KL divergence by
means of histograms, and tested various numbers of histogram
bins. We use a fixed number of uniform bins for each his-
togram, collapsing them when (14) is undefined. To determine
the number of bins for our experiments, we used a maximum
between two standard estimators, namely Sturges method and
Freedman-Diaconis rule. We set the default number of bins to
11, as it was the most common number of bins computed by
the estimator across different inputs.

Despite choosing an appropriate number of bins, the numer-
ical evaluation of the KL divergence may lead to instabilities

due to the ratio in (14). Therefore, we also considered an
alternative, i.e., the Hellinger distance:

H (P, Q) = 1√
2

√∑
i

(
√

P(i)− √
Q(i))2. (15)

It does not require computing the ratio of probabilities hence
it avoids the mentioned problem of the KL divergence. The
Hellinger distance for discrete distributions is similar to the
root mean square difference between the square roots of
vectors.

IV. RESULTS AND DISCUSSION

After obtaining trajectories by map-matching we split the
whole dataset into 1-hour intervals. We chose intervals of
1 hour in order to have sufficient data points for evaluation.
We are dealing with sparse trajectories so that a particular path
(which consists of several links) will be traversed by a limited
number of probe vehicles. We need to consider a larger time
interval to be able to compute the empirical distribution. This
is not a limitation of the proposed method, but a limitation
of the available dataset; for shorter intervals there are fewer
trajectories with sufficient coverage for the evaluation. For
each of the 50 paths in the test set, we consider only travel
times from exact trajectories to be able to compare our model
with the ground truth. However, the proposed method does not
require full 1-hour data for training which follows from the
results in later sections (see Fig. 6), but the evaluation is again
done for the 1-hour intervals.

For each time period, we randomly select 70% of the
trajectories for training the travel time models. We compare
the following models:

• Covariance matrix is diagonal (all links are independent)
[Independent],

• PECM is used as a covariance matrix [PECM],
• PECM with values for non-neighboring links set to zero

[Neighbors],
• Graphical lasso applied to PECM [Glasso],
• BISN applied to the entire network [BISN (network)],
• BISN applied separately for each path [BISN (path)].

It is possible to transform travel times into Gaussian variables
as a preprocessing step with any of the above methods.

A. Gaussian Copulas

First, we study the importance of using Gaussian copulas.
It is clear from Table II that copula models have lower KL
divergence and hence describe the travel time data more
accurately. This can be explained by the fact that observed path
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Fig. 4. Travel time distributions for one random path.

Fig. 5. KL divergence for BISN as a function of the length of the training
data [min], and for different gaps between the training and test period.

travel times do not necessarily follow the Gaussian distribution
(see Fig. 3).

B. Graphical Lasso and BISN

Fig. 4 shows empirical and estimated cumulative distribu-
tion functions (CDF) for one of the paths. For all methods,
travel times were first transformed into Gaussian random
variables. It can be observed that the shape of the BISN CDF
is the closest to the empirical CDF.

To compare the graphical lasso algorithm and BISN with
baseline methods we analyze the dataset containing 4 full
weeks (28 days) of data. Average KL divergence and Hellinger
distance for the 50 most traversed trajectories (for which
a sufficient number of observations is available) are shown
in Table II. It can be seen that the graphical lasso and BISN
outperform the baseline methods and BISN (path) performs
best. The Independent method performs worst as expected
since it doesn’t take into account the dependence between
links. BISN (network) performs worse than the graphical
lasso, possibly due to the inability to accurately estimate large
precision matrices with very limited data. Given such perfor-
mance of BISN (network), all of the following experiments are
performed only for BISN (path) which is later referred to as
BISN. PECM and the graphical lasso achieve comparable KL
divergence values, however, the Hellinger distance is smaller
for the graphical lasso.

Next, we investigate the performance of the proposed mod-
els on the future time intervals. To this end, we train the model
using the data preceding the 1-hour test interval. We compare
different training set sizes (15, 30, 45 and 60 minutes) as well
as different gaps between training and test sets (0, 15, 30 and

Fig. 6. Difference in KL divergence between BISN and PECM models
for various path lengths. Error bars represent the standard deviation of the
difference.

Fig. 7. Performance of four models depending on the day of the week.

45 minutes). The results are shown in Fig. 5. It follows that
larger gaps between training and test times result in larger
errors. At the same time, increasing the duration of the training
data beyond 30 min is not effective, as relatively old data is
then included in the training dataset. The traffic conditions
may have changed in the meantime.

We also investigate how the models perform for trajectories
of different lengths. Fig. 6 shows that BISN method performs
better especially for longer trajectories. This can be explained
by the fact that the BISN approach is able to model the
covariance structure better which plays a bigger role for
trajectories with more links.

We also found that there exist temporal patterns affecting
model performance across different times of the day (see
Fig. 7). There is an increase in error during the peak hours.
Both the KL divergence and the Hellinger distance show
similar patterns. We also observed performance patterns across
different days of the week, with Sunday having the largest
error.

C. Computational Complexity

Travel time estimation is a real-time task, hence the compu-
tational complexity is an important factor. Both the graphical
lasso algorithm and BISN require intensive computations.
The original formulation of the graphical lasso [16] requires
O(p3) operations, where p is the number of variables (road
links). On the other hand, BISN has quadratic instead of
cubic complexity, since it relies on stochastic approximations
by matrix randomization. However, BISN complexity is also
dependent on the amount of missing data. The running time
of these algorithms is compared in Table III. Experiments
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TABLE III

AVERAGE PROCESSING TIME FOR ONE PATH FOR ONE TIME PERIOD IN SECONDS

were performed on a server with Intel Xeon CPU E5-2690v2
@ 3.00 GHz and 32 GB of RAM. The table shows the
average processing time including the necessary preprocessing.
It should be noted, however, that the performance of both
graphical lasso and BISN heavily depends on the algorithm
parameters. We set the α parameter for the graphical lasso
to 10−4 (based on preliminary tuning), maximum iterations as
103 and 104 for the graphical lasso and BISN respectively, and
we set the convergence tolerance to 10−4 for both methods.

D. Discussion

We performed several experiments aimed at estimating
both current and future states of the road network. Overall,
the results show that it is possible to obtain reliable estimates
of path travel time distributions using covariance estimation
techniques such as the graphical lasso and BISN even on
a dataset with a low sampling interval of 1 minute. Fig. 4
shows that the models can accurately estimate the shape of
the distribution for a path. Moreover, we observed that BISN
on average performs better than the common graphical lasso
method (cf. Table II). This table also provides a performance
comparison with several baseline methods such as the indepen-
dent travel times model and the empirical covariance matrix.
It also includes results for non-copula models. We confirmed
that real-world travel time distributions are typically non-
Gaussian (cf. Fig. 3), and can be modeled by Gaussian copulas.
We investigated the ability of the proposed model to estimate
travel time distributions for future time intervals. As can be
seen from Table 5, due to its reasonable computational time,
the proposed model can be applied in real-time settings.

For example, the model can be applied to predict travel
time distributions based on origin-destination pairs. Previous
approaches for path and time inference (such as [25]) can be
improved by relaxing assumptions on the distributions, while
Fig. 6 shows that the performance on future time intervals
can be comparable to estimating the current distributions. The
proposed model can also be utilized for notifying travelers
about changes in the traffic situation. By updating the current
travel time estimates when the new data becomes available,
the model would be able to compute expected travel times
together with quantiles and other statistics.

We investigated the computation complexity of both graph-
ical lasso and BISN. Despite the theoretical advantage, in our
experiments, BISN showed slightly worse running times com-
pared to the graphical lasso. This can be explained by the
extreme sparsity of the dataset, since BISN requires more
computational time in the presence of missing values. This
means that for certain other datasets (with a different structure
of sparsity) BISN can become less computationally tractable
for real-time use.

V. CONCLUSION AND FUTURE WORKS

In this work, we explored several approaches to model-
ing travel time distributions by combining Gaussian copulas,
the graphical lasso method, and the Bayesian Inference of
Sparse Networks (BISN) method. By analyzing GPS data from
the Singapore road network, we observed that Gaussian and
lognormal distributions are poor approximations of travel time
distributions. As an alternative to those standard distributions,
we investigated Gaussian copulas. The covariance matrices in
those copula models allow us to capture the statistical depen-
dence of travel times across different links. In order to obtain
reliable estimates of the covariance matrices from the sparse
GPS data, we applied the graphical lasso and, as an alternative,
the recently proposed BISN approach. We compared BISN
approach with the several baseline models. Numerical results
show that the proposed framework yields more reliable travel
time models compared to baseline models in terms of KL
divergence and Hellinger distance. In our future work, we will
build upon these results as part of stochastic routing decision-
making.
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