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a b s t r a c t

The Container Relocation Problem (CRP) involves finding a sequence of moves of containers that
minimizes the number of relocations needed to retrieve all containers in a given order. In this paper, we
focus on average case analysis of the CRP when the number of columns grows asymptotically. We show
that the expected minimum number of relocations converges to a simple and intuitive lower-bound for
which we give an analytical formula.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Due to limited space in the storage area in container terminals,
containers are stacked in columns on top of each other. As shown
in Fig. 1, several columns of containers create bays of containers. If
a container that needs to be retrieved (target container) is not on
the topmost tier of a column and is covered by other containers, the
blocking containers must be relocated to other slots. As a result,
during the retrieval process, one or more relocation moves are
performed by the yard cranes. Finding the sequence of moves
that minimizes the total number of relocations while retrieving
containers from a bay in a pre-defined order is referred to as
the Container Relocation Problem (CRP) or the Block Relocation
Problem (BRP). For reviews and classification surveys of the
existing literature on the CRP, we refer the reader to [3,6].

A common assumption of the CRP is that only the containers
that are blocking the target container can be relocated. We refer to
the CRP with this setting as the restricted CRP. In this paper, unless
stated otherwise, CRP refers to the restricted CRP. On the other
hand, if we relax this assumption, we will refer to the problem as
unrestricted CRP.
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In this paper, we study the CRP for large randomly distributed
bays and we show that the ratio between the expected minimum
number of relocations and a simple lower bound (developed by [2]
and denoted below by S0) approaches 1. While the problem is
known to be NP-hard, this gives strong evidence that the CRP is
‘‘easier’’ to solve for large instances, and that heuristics can find
near-optimal solutions.

Let us define the problem more formally: we are given a bay
with C columns, P tiers; initially N containers are stored in the bay
with exactly h containers in each column, where h 6 P − 1, so
N = h × C . We denote such a bay Bh,C . We label the containers
based on their required departure order, i.e., container 1 is the first
one to be retrieved. The CRP corresponds to finding a sequence
of moves to retrieve containers 1, 2, . . . ,N (respecting the order)
with a minimum number of relocations. For bay Bh,C , we denote
the minimum number of relocations by zopt(Bh,C ). We focus on
an average case analysis when the number of columns grows
asymptotically. In our model, since N = h × C , when C grows to
infinity, N also grows to infinity.

Average case analysis of CRP is fairly new. The only other paper
found in the literature is by [5]. They also provide a probabilistic
analysis of the asymptotic CRP when both the number of columns
and tiers grow to infinity. They show that there exists a polynomial
time algorithm that solves this problem close to optimality with
high probability. Our model departs from theirs in two aspects:
(i) We keep the maximum height (number of tiers) a constant
whereas in [5] the height also grows. Our assumption is motivated
by the fact that the maximum height is limited by the crane
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Fig. 1. Bays of containers in storage area.

Fig. 2. Bay with 4 tiers and 4 columns.

height, and it cannot grow arbitrarily; and (ii) We assume the ratio
of the number of containers initially in the bay to the bay size
(i.e., number of columns) stays constant (i.e., the bay is almost full
at the beginning) and is equal to h. On the other hand, in [5], the
ratio of the number of containers initially in the bay to the bay
size decreases (and it approaches zero) as the number of columns
grows. In other words, in the model of [5], in large bays, the bay is
underutilized.

Before stating the main result in Section 3, we first provide four
main ingredients in the next section: the notion of a uniformly
random bay, the simple lower bound S0 on the minimum number
of relocations introduced by [2], a heuristic developed by [1] that
performs well in large bays, and the notion of ‘‘special’’ columns.

2. Background

2.1. Uniformly random bay

We view a bay as an array of P × C slots (see Fig. 2). The
slots are numbered from bottom to top, and left to right from 1 to
P × C . The goal is to generate a bay Bh,C with uniform probability,
meaning each container is equally likely to be anywhere in the
configuration, with the restriction that there are h containers per
column. We first generate a uniformly random permutation of
{1, . . . , h × C} called π . Then we assign a slot for each container
with the following relation: Bh,C (i, j) = π(h × (j − 1) + i) for
i 6 h and Bh,C (i, j) = 0 for i > h + 1. One can see that each bay is
generated with probability 1/N!. There is a one to one mapping
between configurations with C columns and permutations of
{1, . . . , h×C}, denoted by Sh×C . Finally, we denote the expectation
of random variable X over this uniform distribution by Eh,C [X].

2.2. The counting lower bound S0

This boundwas introduced in [2] and it is based on the following
simple observation. In the initial configuration, if a container is
blocking, then it must be relocated at least once. Thus we count
the number of blocking containers in Bh,C , we denote it as S0(Bh,C ),
and we have zopt(Bh,C ) > S0(Bh,C ). Note that if a container blocks
more than one container, it is counted only once. In Lemma 1 we
give an explicit formula for the expectation of S0 under the uniform
distribution.

Lemma 1. Let C, h ∈ N and S0 be the counting lower bound defined
above, we have

Eh,C

S0(Bh,C )


= αh × C, (1)

where αh = h −
h

i=1 1/i is the expected number of blocking
containers in one column.

Fact 2. Note that αh only depends on h.
Proof of Lemma 1. Let S i0(Bh,C ) be the number of blocking con-
tainers in column i. By the linearity of expectation, we have
Eh,C


S0(Bh,C )


= Eh,C

C
i=1 S

i
0(Bh,C )


=
C

i=1 Eh,C

S i0(Bh,C )


=

αh × C , where αh = Eh,C

S10(Bh,C )


= Eh,1


S0(Bh,1)


. This relies

on the fact that each column is identically distributed.
Now let us compute αh. It is clear that α1 = 0. For h > 2,

by conditioning on the event that the topmost container is the
smallest number in the column or not, we obtain the recursive
equation αh = αh−1 + (h − 1)/h. Finally by induction we have
αh = h −

h
i=1 1/iwhich completes the proof.

2.3. The heuristic H ([1])

Suppose n is the target container located in column c , and r is
the topmost blocking container in c . For convenience, we denote
by min(ci) the minimum of column ci (note that min(ci) = N + 1
if ci is empty). H uses the following rule to determine c∗

≠ c , the
column where r should be relocated to. If there is a column ci with
|ci| < P , where min(ci) is greater than r , then H chooses such
a column where min(ci) is minimized, since columns with larger
minimums can be useful for larger blocking containers (as r will
never be relocated again, we say this relocation of r is a ‘‘good’’
move). If there is no column satisfying min(ci) > r (any relocation
of r can only result in a ‘‘bad’’ move), then H chooses the column
wheremin(ci) is maximized in order to delay the next unavoidable
relocation of r asmuch as possible.Wewill refer to this heuristic as
heuristicH anddenote its number of relocations by zH(Bh,C ). Notice
that zopt(Bh,C ) 6 zH(Bh,C ). Finally we state the following simple
fact, which does not require a formal proof:

Fact 3. For any configuration B with C columns and at most C
containers, we have

S0(B) = zopt(B) = zH(B). (2)

2.4. Definition of ‘‘special’’ columns

For h, C ∈ N, a column in Bh,C is called ‘‘special’’ if all of its
containers belong to the C highest. Given this definition, a column
in Bh,C+1 is ‘‘special’’ if all containers belong to the C + 1 highest,
or equivalently, if each of its containers has index at least ωh,C =

(h − 1)(C + 1) + 1. We will also consider the following event:

Ωh,C =

Bh,C+1 has at least 1 ‘‘special’’ column


. (3)

Lemma 4 states that the eventΩh,C has a probability that increases
exponentially fast to 1 as a function of C . The proof of Lemma 4 can
be found in the Appendix.

Lemma 4. Let h, C ∈ N such that C > h + 1 and Ωh,C be the event
defined by Eq. (3), then we have

P(Ωh,C ) 6 e−θh(C+1), (4)

where

θh =
1
8h


2

h(h + 1)

2h

> 0. (5)
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3. An average-case asymptotic analysis of CRP

The major result of this paper states that when the number
of columns increases to infinity, the expected optimal number of
relocations is asymptotically proportional to the expected number
of blocking containers.

Theorem 5. Let S0 be the counting lower bound and zopt be the
optimal number of relocations defined in Section 1. Then for C, h ∈ N
such that C > h + 1, we have

1 6
Eh,C


zopt(Bh,C )


Eh,C


S0(Bh,C )

 6 fh(C), (6)

where

fh(C) = 1 +
Kh

C
→

C→ ∞

1, (7)

where Kh is a constant defined by Eq. (13).

Proof of Theorem 5. The basic intuition is that, as the number
of columns grows, for any blocking container, we can find a
‘‘good’’ column with high probability. This implies that with
high probability, each container is only relocated once. More
formally, as C grows, with high probability Eh,C+1[zopt(Bh,C+1)] −

Eh,C

zopt(Bh,C )


is exactly αh. Therefore, for large enough C ,

Eh,C

zopt(Bh,C )


essentially behaves like αh × C , which is equal to

Eh,C [S0(Bh,C )] (according to Lemma 1).
Since for all configurations Bh,C , zopt(Bh,C ) > S0(Bh,C ) then

Eh,C [zopt (Bh,C )]
Eh,C [S0(Bh,C )] > 1.

Moreover, we have:

Eh,C

zopt(Bh,C )


Eh,C


S0(Bh,C )

 = 1 +
Eh,C


zopt(Bh,C )


− Eh,C


S0(Bh,C )


Eh,C


S0(Bh,C )


= 1 +

1
αhC


Eh,C


zopt(Bh,C )


− αhC


= 1 +

gh(C)

αhC
(8)

where

gh(C) = Eh,C

zopt(Bh,C )


− αhC . (9)

Now we claim that there exists a constant θh > 0 (defined in
Eq. (5)) such that:

Eh,C+1

zopt(Bh,C+1)


6 Eh,C


zopt(Bh,C )


+ αh

+ h(P − 1)(C + 1)e−θh(C+1), ∀C > h + 1. (10)

Eq. (10) studies how Eh,C

zopt(Bh,C )


evolves and states that it

increases almost linearly in αh which shows that the function gh(.)
is essentially bounded. Before proving Eq. (10) we conclude the
proof of the theorem. Using Eq. (10), we have for all C > h + 1:

Eh,C+1

zopt(Bh,C+1)


6 Eh,C


zopt(Bh,C )


+ αh

+ h(P − 1)(C + 1)e−θh(C+1)

=⇒ Eh,C+1

zopt(Bh,C+1)


− αh(C + 1) 6 Eh,C


zopt(Bh,C )


− αhC + h(P − 1)(C + 1)e−θh(C+1)

=⇒ gh(C + 1) 6 gh(C) + h(P − 1)(C + 1)e−θh(C+1)

=⇒ gh(C) 6 gh(h + 1) + h(P − 1)
C

i=h+2


ie−θh i


=⇒ gh(C) 6 gh(h + 1) + h(P − 1)

∞
i=1


ie−θh i



Fig. 3. Bay decomposition of Bh,C+1 . (The right part has C columns.)

=⇒gh(C) 6 gh(h + 1) +
eθhh(P − 1)
(eθh − 1)2

= K ′

h. (11)

Therefore using Eqs. (8) and (11), we have

Eh,C

zopt(Bh,C )


Eh,C


S0(Bh,C )

 6 1 +
Kh

C
= fh(C), (12)

where

Kh =
K ′

h

αh
=

gh(h + 1) +
eθh h(P−1)
(eθh−1)2

αh
. (13)

Now let us prove Eq. (10). Recall that a column is defined
to be ‘‘special’’ if none of its containers are smaller than
ωh,C = (h − 1)(C + 1) + 1 and that Ωh,C =


Bh,C+1

has at least one ‘‘special’’ column

.

The intuition is the following: the probability of having
a ‘‘special’’ column grows quickly to 1 as a function of C ,
implying that the event Ωh,C happens with high probability.
Now, conditioned on Ωh,C , we more easily express the difference
between bays of size C + 1 and C in the following way. We claim
that

Eh,C+1

zopt(Bh,C+1)|Ωh,C


6 Eh,C


zopt(Bh,C )


+ αh. (14)

Let Bh,C+1 be a given bay with C + 1 columns that verifies Ωh,C .
Since columns in bays can be interchanged, we suppose that a
‘‘special’’ column is the first (leftmost) column of the bay. We also
denote n1, n2, . . . , nh the containers of the first column. We know
that n1, n2, . . . , nh > ωh,C and n1 ≠ n2 ≠ . . . ≠ nh. Finally let B̂h,C
be the bay Bh,C+1 without its first column (see Fig. 3).

First we prove that

zopt(Bh,C+1) 6 zopt(B̂h,C ) + S0

n1
. . .
nh


. (15)

To prove Eq. (15), we construct a feasible sequence σ for the bay
of size C + 1 for which the number of relocations is equal to
the right side of Eq. (15). Let σopt(B̂h,C ) the optimal sequence for
B̂h,C , t ′ = min{n1, . . . , nh} be the first time step when the target
container in σopt(B̂h,C ) is larger than min{n1, n2, . . . , nh} and B′

h,C

be the bay obtained at t ′ using σopt(B̂h,C ). Let the first t ′ − 1 moves
of σ be the first t ′−1moves of σopt(B̂h,C ). Note that B′

h,C has atmost
C + 1− h (which is at most C) containers due to the choice of ωh,C .
By Fact 3, the number of relocations performed by σopt(B̂h,C ) from
t ′ until the end is S0(B′

h,C ). Therefore

zopt(B̂h,C ) =


# relocations up to t ′

done by σopt(B̂h,C )


+ S0(B′

h,C ). (16)
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After t ′, we run heuristic H on

B′

h,C+1 =


n1 · · · nh

T
∪ B′

h,C


.

We claim that zσ (number of relocations performed by the
feasible sequence σ constructed above) is exactly the right side
of Eq. (15). There are at most C + 1 containers in B′

h,C+1,
therefore using Fact 3, we know that if we apply the heuristic
H to this configuration, then the number of relocations done by
H is S0(B′

h,C+1) = S0(B′

h,C ) + S0


n1 · · · nh
T. Therefore

zopt(Bh,C+1) 6 zσ (Bh,C+1) and

zσ (Bh,C+1) =


# relocations up to t ′

done by σopt(B̂h,C )


+ S0(B′

h,C ) + S0

n1
. . .
nh


(17)

which gives us

zopt(Bh,C+1) 6 zopt(B̂h,C ) + S0

n1
. . .
nh


,

and proves Eq. (15).
Now we can take the expectation from both sides of Eq. (15)

over a uniform distribution of the rest of the h × C containers
that are not in the first column. We claim that the first term
on the right hand-side of Eq. (15) is exactly Eh,C


zopt(Bh,C )


. For

any configuration that appears in B̂h,C we can map it to a unique
configuration Bh,C where all containers are between 1 and hC , and
vice versa. Thus,

Eh,C


zopt(Bh,C+1)


n1
. . .
nh


6 Eh,C


zopt(Bh,C )


+ S0

n1
. . .
nh


.

(18)

Next, we take the expectation of both sides of Eq. (18) over
possible first columns,which is a ‘‘special’’ column.Nownotice that
if Bh,C+1 is generated uniformly in the sets of bays of size C+1, then
conditioned on Ωh,C , the probability of having a certain column
[n1, . . . , nh]T is identical for any n1 ≠ . . . ≠ nh > ωh,C and it is
given by

P

n1
. . .
nh

  Ωh,C


=

(C + 1 − h)!
(C + 1)!

=
1

C+1
h


h!

.

Therefore we can write:

Eh,C+1

zopt(Bh,C+1) | Ωh,C


=


(n1,...,nh)
ni≠ nj

ni> ωh,C


Eh,C


zopt(Bh,C+1)


n1
. . .
nh


, Ωh,C



× P

n1
. . .
nh

  Ωh,C


(19)

=


(n1,...,nh)
ni≠ nj

ni> ωh,C


Eh,C


zopt(Bh,C+1)


n1
. . .
nh



× P

n1
. . .
nh

  Ωh,C


(20)
6 Eh,C

zopt(Bh,C )

 
(n1,...,nh)
ni≠ nj

ni> ωh,C

P

n1
. . .
nh

  Ωh,C



+


(n1,...,nh)
ni≠ nj

ni> ωh,C

S0

n1
. . .
nh


× P

n1
. . .
nh

  Ωh,C



6 Eh,C

zopt(Bh,C )


+


(n1,...,nh)
ni≠ nj

ni> ωh,C

S0

n1
. . .
nh


× P

n1
. . .
nh

  Ωh,C


. (21)

The equality between (19) and (20) comes from the fact that if
we know that Bh,C+1 has a ‘‘special’’ column, then we do not need
to condition on Ωh,C . Eq. (21) uses the fact that


n1≠ ...≠ nh

ni> ωh,C

P

n1
. . .
nh

  Ωh,C


= 1.

Note that, given any (n1, . . . , nh) such that ni ≠ nj, we have

Eh,1


S0

n1
. . .
nh


= αh,

where the expectation is over a random order of (n1, . . . , nh). This
is true regardless of the set (n1, . . . , nh) that is drawn from (see
Fact 2). This implies that the second term on the right hand side of
Eq. (21) is equal to αh; Therefore, we get Eq. (14).

Now we want to focus on the event Ωh,C . We give an upper
bound on Eh,C+1


zopt(Bh,C+1) | Ωh,C


. For any configuration, in

order to retrieve one container, we need at most P − 1 relocations
(since at most P − 1 containers are blocking it), thus for any
configuration, the optimal number of relocations is at most P − 1
times the number of containers (h(C + 1)) which gives us h(P −

1)(C +1) as an upper bound on the optimal number of relocations.
We use this universal bound to get

Eh,C+1

zopt(Bh,C+1) | Ωh,C


6 h(P − 1)(C + 1). (22)

Finally using Lemma 4, we have

Eh,C+1

zopt(Bh,C+1)


= Eh,C+1


zopt(Bh,C+1) | Ωh,C


P(Ωh,C )

+ Eh,C+1

zopt(Bh,C+1) | Ωh,C


P(Ωh,C )

6 Eh,C+1

zopt(Bh,C+1) | Ωh,C


+ Eh,C+1


zopt(Bh,C+1) | Ωh,C


e−θh(C+1)

6 Eh,C

zopt(Bh,C )


+ αh + h(P − 1)(C + 1)e−θh(C+1)

which proves Eq. (10) and hence completes the proof of the
theorem.

In the next corollary, we show that the optimal solution of the
unrestricted CRP has a similar asymptotic behavior. We remind
that the unrestricted CRP refers to the problem where we can
also relocate non-blocking containers. The proof is trivial since by
definition S0(Bh,C ) 6 zunr(Bh,C ) 6 zopt(Bh,C ).

Corollary 6. Let zunr(Bh,C ) be the optimal number of relocations for
the unrestricted CRP. For C > h + 1, we have

1 6
Eh,C


zunr(Bh,C )


αhC

6 fh(C),

where fh is the function defined in Theorem 5.
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Fig. 4. Simulation of the convergence of the ratio.

Fig. 5. Simulation of the convergence of the difference.

3.1. Experimental results on the efficiency of heuristic H

Theorem 5 gives insights on how the expected optimal solution
of the CRP behaves asymptotically on random bays. To give
more insights on CRP, we show experimentally that the same
result holds for heuristic H , i.e., the ratio of Eh,C


zH(Bh,C )


and

Eh,C

S0(Bh,C )


converges to 1 as C goes to infinity. We take h =

P − 1 = 4 and for each size C , we compute both expectations over
a million instances generated uniformly, take their ratio and plot
the result in Fig. 4. Notice that we have

1 6
Eh,C


zopt(Bh,C )


Eh,C


S0(Bh,C )

 6
Eh,C


zH(Bh,C )


Eh,C


S0(Bh,C )

 ,
so Fig. 4 also shows experimentally that Theorem 5 holds.

First, note that Fig. 4 implies that the relative gap between
heuristic H and S0 shrinks to 0 as C increases. Moreover we have

Eh,C

zH(Bh,C )


− Eh,C


zopt(Bh,C )


Eh,C


zopt(Bh,C )

 6
Eh,C


zH(Bh,C )


− Eh,C


S0(Bh,C )


Eh,C


S0(Bh,C )

 ,

and thus the relative gap of H with optimality also converges to 0
as C grows to infinity.

In the proof of Theorem 5, we also study the function
gh(C) = Eh,C


zopt(Bh,C )


− Eh,C


S0(Bh,C )


. Note that gh(C) 6

Eh,C

zH(Bh,C )


− Eh,C


S0(Bh,C )


where the right-hand side of the

inequality is the function plotted in Fig. 5. The plot shows that
gh(C) 6 1.25 for all C , meaning that gh(C) is bounded aswe proved
in Theorem 5. Moreover, the plot implies that heuristic H is on
average atmost 1.25 away from the optimal solution, so heuristicH
is relatively more efficient in the case of large bays. Intuitively, the
probability of having a good column converges to 1, as we increase
the number of columns; hence the problem tends to become easier
as C grows.

Finally, in the proof, we note that the rate of convergence of the
minimum zopt to S0 is at least 1/C . Interestingly, we can infer from
Fig. 4. that the rate of convergence of the ratio for heuristicH is also
proportional to 1/C .

4. Conclusion

The Container Relocation Problem (CRP) is known for its
computational intractability, so most research studies have
designed heuristics to solve the problem, particularly for large
bays. The main purpose of this paper is to show a new theoretical
result stating that the ratio between the expected minimum
number of relocations and a simple lower bound (given by
Lemma 1) approaches 1. The main insight of this result is that in
large bays each blocking container is relocated at most once with
high probability. This leads us to believe that the same theoretical
result should hold for heuristic H and we confirm this intuition by
simulation.

Furthermore direct extensions of this paper include the formal
proof of a similar result for the heuristic H , the proof of
convergence of the difference between the optimal solution and
this lower bound. The study of the CRP with distributions other
than the uniform one could also be very interesting theoretically
as well as experimentally.
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Appendix. Proof of Lemma 4

Recall that

Ωh,C =

Bh,C+1 has at least one ‘‘special’’ column


.

We know that each bay of size C + 1 can be mapped to a
permutation π of Sh(C+1) taken uniformly at random. Let q(.) be
the function from Sh(C+1) to R+ defined by

q : π −→ number of ‘‘special’’ columns in the resulting bay of π.

Note that

P

Ωh,C


= P (q(π) = 0) .

First we compute the expected value of q(.)

Eh,C+1[q] = Eh,C+1


C+1
i=1

χ (ci is a ‘‘special’’ column)


= (C + 1) × P ({c1 is a ‘‘special’’ column}) ,

where we use linearity of expectation and the fact that columns
are identically distributed.

A simple counting implies that:

P ({c1 is a ‘‘special’’ column})

=
(C + 1)[(C + 1) − 1] . . . [(C + 1) − h + 1]

h(C + 1)[h(C + 1) − 1] . . . [h(C + 1) − h + 1]

>


(C + 1) − h + 1

h(C + 1)

h

>


2

h(h + 1)

h

,
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where we use C + 1 > h + 1 to show the last inequality (notice
that when C → ∞, the probability is equivalent to (1/h)h which
would guarantee a faster convergence rate).

Therefore we know that

Eh,C+1[q] > (C + 1) ×


2

h(h + 1)

h

. (A.1)

We claim that q(.) is well concentrated around its mean. In
order to do so, we prove that q(.) is 1-Lipschitz.

Define ρ the distance between two permutations π1, π2 ∈

Sh(C+1) as ρ(π1, π2) = | {i ∈ [h(C + 1)] : π1(i) ≠ π2(i)} |. We
want to prove that

|q(π1) − q(π2)| 6 ρ(π1, π2), ∀ (π1, π2) ∈ Sh(C+1).

Let π1, π2 ∈ Sh(C+1). Let us first consider the case where
ρ(π1, π2) = 2. (Notice that if ρ(π1, π2) ≠ 0 then ρ(π1, π2) >
2). In that case, we have i, j ∈ {1, . . . , n} such that π1(i) =

π2(j) and π1(j) = π2(i). Let B(1) and B(2) be the configurations
generated by π1 and π2. Having ρ(π1, π2) = 2 corresponds to
the fact that if we swap 2 containers in B(1), we get B(2) and we
denote those containers a = π1(i) and b = π1(j). We have three
cases:

• a and b are both in ‘‘special’’ columns in B(1). In this case,
swapping them will not change anything since both their new
columns in B(2) will also be ‘‘special’’ and hence |q(π1) −

q(π2)| = 0.
• a and b are both in columns that are not ‘‘special’’ columns in

B(1). If a, b > ωh,C or a, b < ωh,C then we do not create any new
special column in B(2). Now suppose that a > ωh,C and b < ωh,C ,
then the column of a in B(2) might be a ‘‘special’’ column, but the
column of b in B(2) cannot be ‘‘special’’. Therefore in that case,
|q(π1) − q(π2)| 6 1.

• a is in a ‘‘special’’ column in B(1) but b is not. Now we know
that a > ωh,C . If b < ωh,C then the column of b in B(2) cannot
be ‘‘special’’ but the column of a might be and in that case
|q(π1) − q(π2)| 6 1. If b > ωh,C , then the column of b in B(2)

is ‘‘special’’ and the column of a in B(2) is not ‘‘special’’ which
gives us |q(π1) − q(π2)| = 0. Note that the proof is identical if
b is in a ‘‘special’’ column in B(1) but a is not.

So far we have shown that

If ρ(π1, π2) = 2, then |q(π1) − q(π2)| 6 1. (A.2)
Now we suppose that ρ(π1, π2) = k where 2 6 k 6
h(C + 1). Note that we can construct a sequence of permutations
(π ′

1, π
′

2, . . . , π
′

k) such that π ′

1 = π1, π ′

k = π2 and ρ(π ′

i , π
′

i+1) = 2.
Now using this fact and Eq. (A.2),

|q(π1) − q(π2)| =

 k−1
i=1

q(π ′

i ) − q(π ′

i+1)


6

k−1
i=1

|q(π ′

i ) − q(π ′

i+1)| 6

k−1
i=1

1 = k − 1

6 k = ρ(π1, π2),

which proves that q(.) is 1-Lipschitz.
Now we use Theorem 8.3.3 of [4] which states that

P

q 6 Eh,C+1[q] − t


6 e−

t2
8h(C+1) and apply it with t = Eh,C+1[q]

and Eq. (A.1) to get

P (q = 0) = P

q 6 Eh,C+1[q] − Eh,C+1[q]


6 e−

(Eh,C+1[q])
2

8h(C+1) 6 e−θh(C+1),

where

θh =
1
8h


2

h(h + 1)

2h

> 0,

which concludes the proof.
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