
1
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Characterizing the Proximity of Position

Measurements to Road Segments
Ali Oran, Member, IEEE, Patrick Jaillet

Abstract—The analysis of spatial proximity between objects
can yield useful insights for a variety of problems. A common
application is found in map matching problems, where noisy
position measurements collected from a receiver on a network-
bound mobile object is analyzed for estimating the original road
segments traversed by the object. Motivated by this problem,
we take a detailed look at proximity measures that quantify the
spatial closeness between points and curves in non-deterministic
problems, where the given points are noisy observations of a
stochastic process defined on a given set of curves. Starting with
a critical review of traditional pointwise approaches, we introduce
the integral proximity measure for quantifying proximity so
as to better represent the statistical likelihoods of a process’
states. Assuming a generic stochastic model with additive noise,
we discuss the correct proximity function for the proximity
measures, and the relationship between a posteriori probabilities
of the process and the proximity measures for a comparison
of both measures. Later, we prove that the proposed measure
can provide better inferences about the process’ states, when the
process is under the influence of uncorrelated bivariate Gaussian
noise. Finally, we conduct an extensive Monte Carlo analysis,
which shows significant inference improvements over traditional
proximity measures, particularly under high noise levels and
dense road settings.

Index Terms—Vehicle Localization, Map Matching, GPS, In-
tegrated Likelihood

I. INTRODUCTION

A. Motivation

Since the beginning of 2000s, with the increasing use
of personal navigation assistants (PNAs), and GPS-equipped
smart phones, the problem of localizing vehicles/pedestrians
on urban road networks has been a major research interest
under the generic name of Map Matching (MM). It is of impor-
tance to intelligent transportation systems for understanding
the travel patterns in a city, or in surveillance systems for
tracking mobile objects on a network. It can be considered as
a discrete time state estimation problem, and, given that objects
are constrained to move along a network, rather than on open
space, it may seem at first to be a trivial exercise. However,
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MM easily becomes challenging, when urban canyons deterio-
rate position measurements, and when a large number of roads
makes it difficult to estimate the original location of the object.
Consequently, a good amount of research has been dedicated
to it; and various approaches, from simple proximity methods
to complex tracking filters, have been proposed (see surveys
[1], [2]). In practice, the chosen MM method depends on the
application and the available data [3]. Most of the studies
have addressed the MM of vehicles equipped with PNAs
or similar devices with GPS receivers [4]–[12], which, by
using a reliable car battery, can provide frequent and relatively
accurate GPS traces. Under such data, the aforementioned
studies have been able to deliver good estimations. Another
group of studies have considered harnessing additional data
sources (e.g. accelerometer, gyroscope) to propose good meth-
ods as well [13]–[15]. However, there is still a need for
new approaches that can improve the matching accuracy of
general MM problems, dealing with estimation of the location
of any mobile objects, in the absence of frequently sampled
GPS or multiple-sensor data. One of the driving forces for
this need is the recent emergence of smart phones as the
data sources for understanding urban mobility patterns [16]–
[18]. The accuracy limitations of smart phone sensors, and
these sensors’ reliance on the phone battery, require the next
generation MM algorithms to be able to harness low-frequent,
and highly-noisy position data [19]–[21]. Motivated by this
type of problems, in this paper we introduce more accurate
statistical measures to distinguish the possible locations of a
road-bound mobile object, through a proximity analysis of its
position data with respect to the road network.

B. Problem Statement
In general, when the frequency of the position measure-

ments of a mobile object decreases, the uncertainty about its
true locations increases considerably [22], [23]. This situation
is more pronounced when the position data is also highly
noisy. If additional information is available about the object
(e.g speed, acceleration, heading direction) or about the tra-
versed network (e.g traffic speed data on roads), then using
data fusion methods or other means, uncertainties could be
reduced, and object’s original location can be estimated with
high accuracy. This type of analysis has been well-studied
in the literature, such as the ones incorporating Kalman and
Particle Filters [5], [7], [14], [15], [24], or other methods
[25]. Meanwhile, the reliance on extra data limits this type
of approaches’ usage.
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In the absence of extra data, localization algorithms need
to rely on position data and the road network. Through the
analysis of these two data sets, a variety of heuristic weights,
probabilities, and criteria have been incorporated, such as the
proximity weight, the emission probability, the travel distance
criteria, the travel orientation criteria [3], [11], [22], [26].
While such heuristics have contributed to better results in
particular studies, their contributions in a generic problem
would depend on the validity of the assumptions made for
them. For instance, when a position data is observed at similar
proximity to some roads, this brings a significant uncertainty
for determining the original location of the vehicle. If the
position data were sampled frequently, by comparing the
possible distances the vehicle could have traversed in that
short period, one could estimate the location of the vehicle
with fair accuracy. Yet, heuristics of the sampling period can
only remain reliable when those periods are low [27]. Under
long sampling periods, in order to decide among the numerous
possible paths, one has to make strong assumptions about the
mobile objects’ travel (e.g. traveling only through shortest
paths, not making u-turns, or specific route choices such as
highways), which may not be generalized. Consequently, the
important question is, how to define a quantitative measure for
distinguishing the possibility among different segments, in the
availability of only sparse and noisy position data, and without
making a priori assumptions about the object’s movement.

In this regard, when analyzing the road segments with
respect to given position measurements, one fact is widely
accepted: a segment closer to a measurement is more likely to
be the true segment for the measurement compared to another
segment further away [28]. This simple, yet reliable fact about
the spatial closeness between position measurements and the
road segments can be referred to as the proximity relation.
Analyses based on the proximity relation have been considered
in almost every MM method, following the common avail-
ability of position measurements, the relation’s sampling fre-
quency invariant nature, and particularly its independence from
any motion model assumed for the mobile object. Considering
these 3 properties, it can be used to define the measure sought
in the previous paragraph. Therefore, the critical problem is
how to define a measure for the proximity of a segment to a
position measurement, so that the likelihood of segments will
be well reflected in the measure, and be consistent.

C. Related Work

Several studies have addressed measures of proximity in
other problems, where closeness between objects have also
been an important consideration, such as clustering, clas-
sification, and information retrieval. In contrast, proximity
measures haven’t got much attention in MM literature, in
both probabilistic and deterministic studies. In both groups,
various measures that are based on the analysis of a position
measurement with respect to road segments’ coordinates can
be considered as belonging to the class of proximity measures.
In this regard, in deterministic MM methods, measures defined
by monotonically decreasing functions of the Euclidean dis-
tance [12], [22], [26], commonly named as proximity-weight

or criteria, are proximity measures. In probabilistic methods,
observation (emission) probabilities defined only through the
coordinates of the observation and the road segments [29]–
[33] are proximity measures as well. While these methods
are conceptually different, the proximity formulations have
been considerably similar, and simple in most studies in
both groups. A proximity function, chosen according to the
characteristics of the problem, is used to define the proximity
measure of a segment, with some studies also imposing
bounds. While a variety of proximity functions have been
proposed, almost all are defined by having the (shortest)
distance from the observed position to the segment as its
argument [6], [10], [12], [20], [22], [26], [29]–[40]. The table
of MM methods in [41] shows some of this common pattern.
They are easy to compute, as they only require finding the
closest point of the segment to the position measurement,
and then the corresponding distance. Since shortest distance
becomes the sole argument for the proximity measure, we
will refer to measures of this kind as “shortest distance based
proximity measures”.

For a problem like MM that deals with noisy position
measurements the sole reliance on the shortest distance can
yield inaccurate inferences. A group of segments with very
different geometric characteristics would not necessarily be
differentiated under such measures. Alternatively, more com-
plex proximity functions, such as the Mahalonobis distance
commonly used in nearest neighbor algorithms but rarely used
in MM, have also been proposed [42]. Under this approach,
a maxima (or minima) of the chosen proximity function
along the segment is considered as the proximity measure of
the segment. Since the measure is defined as the pointwise
extremum of the proximity function, we will refer to this type
of measures as “pointwise proximity measures”1. While the
use of complex proximity functions could be an improvement
to the shortest distance based functions, segments of different
geometry can again easily be associated with similar proximity
values, if their extrema points are similar. Generally speaking,
the reliance on a single point of a segment could make any
pointwise proximity measure insufficient for reflecting the
likelihood of the overall segment.

The very common use of pointwise measures could be
attributed to a few factors, most importantly their relatively
simple and compact formulations, then, the historic develop-
ment of MM literature from pure geometric methods, which
was based on finding the closest segment to a given point,
and, finally, the reliance on other aspects of the input. When
data is frequently sampled, or additional data is available,
various additional techniques can be quite accurate, and, one
can have the luxury to use simple proximity measures, without
a significant drop in the accuracy of the overall method. Hence,
for the most generic MM algorithms, the only positive aspect
of using pointwise measures is their compact formulations.

Consequently, alternative proximity measures have been
proposed in [19], [22], [41], [43], [44]. The drawback of these
measures are that they have been either brief proposals with

1Note that, since the shortest distance is associated with the closest point
of a segment to a given point, shortest distance based proximity measures are
in fact special cases of the broader group of pointwise measures.
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limited scope, or are bound to particular MM algorithms that
can not be implemented as stand alone proximity measures
in other studies. For instance, a short discussion about the
possible drawbacks of the shortest distance based proximity
measures was presented by the authors in [43]. An alterna-
tive formulation was proposed by cumulating the pointwise
Euclidean distance based measures on a segment through a
line integral; and a closed form was also developed with a
1-D Gaussian proximity function, and by considering road
links’ polyline nature. Later, in [45], the proposed formulation
was used under a Hidden Markov Model (HMM) based MM
algorithm, that had combined the proximity weights with
topological transition weights of segments. For the GPS set
of [29], the HMM method with the cumulative weights was
shown to yield better estimations, particularly in noisy and
sparse data sets, compared to the same HMM method with the
shortest distance based proximity weights. Yet, these studies
have limited scope in formulations and results. In [19], an
exponential function of distance between the observation and
the segment was used as an observation model. The line
integral of the observation probability on possible paths was
later used in their recursive MM formulations along with their
traffic model. The formulation’s solution was dependent on
their Domain of Data Relevance (DDR) concept that was
proposed in their earlier work [46], and overall lacked a
closed form. Frechet distance was also shown to be a reliable
proximity measure in [22] and [41]; but being a distance
measure between two curves, it can not be used to define
a standalone proximity measure for a road segment given
a single position measurement. This limits the type of MM
methods it can be part of. In [44], the tangent distance of [47]
was introduced to MM; but the need to solve a least square
problem might become computationally demanding.

Considering the notion of proximity measures in MM, and
the drawbacks of the current measures, an alternative frame-
work defining the proximity between position measurements
and road segments is proposed in this study. Our development
and later comparisons will be as generic as possible so that a
large group of MM and other localization methods can use the
proposed framework. We will start our discussion, in Section
II, by formulating proximity measures. For doing this, we will
first formulate the traditional pointwise approaches and discuss
their drawbacks in detail. We will then propose a new alterna-
tive approach that will better suit non-deterministic problems
with a formulation similar to [43], yet without the reliance on
Euclidean distance. In Section III, we will discuss the choice of
the proximity function for the proposed approach. Considering
the 2-dimensional aspect of the problem, in Section IV, we will
develop closed formulations for the proposed measure when
position measurements are assumed to be observed under the
uncorrelated bivariate Gaussian noise process. We will support
the proposed measure by proving that it can yield better
estimates compared to pointwise measures. To understand the
significance of the new measure, we will compare location
estimation performances of the proposed formulations against
the pointwise formulations, both considering the bivariate
Gaussian noise, via extensive Monte Carlo simulations.
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Fig. 1. A typical MM problem on a vector map-like setting. GPS data, p, is
almost the same shortest distance (δ5 ≈ δ7 = δ8) away from a few roads.
Shortest distance based proximity measures only considers these distances.

II. QUANTIFICATION OF PROXIMITY

We start our discussion by taking a general look at formu-
lations that define proximity measures between a point and
a curve. Remember that our interest is on non-deterministic
problems, where the given point is a noisy observation of a
stochastic process defined on a set of curves, e.g. position
measurements of a road-bound object. We use the terms
‘observation’ and ‘position measurement’ as generic terms that
encompass coordinate pairs defined on a two dimensional ref-
erence frame (e.g. (latitude, longitude) or (north, east) pairs)2.
We refer to the collection of these position measurements “the
spatio-temporal data” of the moving object, and will abstract
them under Cartesian coordinates.

We assume that the state space of the stochastic process,
the curves in R2, are well defined and piecewise smooth.
A simple piecewise smooth curve can be defined by the
parametrized equation, S .

= {s(t) = [x(t), y(t)], t ∈ [0, 1]},
where x(t) and y(t) are continuous real valued functions such
that t1 6= t2 implies, s(t1) 6= s(t2), and have piecewise
continuous derivatives ẋ and ẏ, where ẋ2 + ẏ2 6= 0 [48]. For
brevity, we will refer to simple piecewise smooth curves as
curves in the rest of the paper. Also, throughout the paper,
we will start our discussion of proximity by first considering
curves. We will later consider straight line segments to obtain
more tractable results. In MM, this is equivalent to working
with vector maps where roads are defined by polylines, which
in turn are comprised of straight line segments that are well
defined by their end points (shape points) in R2 (e.g. Fig. 1).
In that setting, the set of end points, V , along with the set of
line segments, A, form a directed graph, D = (V,A). On this
graph, it will be possible to define the line segments with their
parametrized equations. A segment S ∈ A, with end points
SA, and SB in V , can be defined as,

S
.
= {s(t) : s(t) = SA + t(SB − SA), t ∈ [0, 1]}. (1)

2Our arguments can be carried to a 3-D MM without loss of generality.
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A. Traditional, Point-Wise, Way of Quantifying Proximity

Given a point and a curve in R2, a measure of proximity
between the two can be defined by functions of the Euclidean
distance between them. For this discussion, consider points p
and s in R2. Let d(p, s) : R2×R2 → R≥0,R≥0

.
= R+ ∪ {0},

denote the the Euclidean distance between them, i.e., d(p, s)
.
=

||p− s||. Accordingly, the (shortest) distance between point p
and a curve S ∈ R2 can be defined as [49],

D(p, S)
.
= min {d(p, s) : s ∈ S)} . (2)

For a general formulation of proximity measures defined by
the shortest distance, let f : R≥0 → R≥0 be a generic proxim-
ity function of distance, assumed to be piecewise continuous,
and monotonically decreasing, reflecting the fact that farther
away segments to the measurement are less likely to be the
true segment. Then, the shortest distance proximity measure
of a curve S with respect to a point p can be defined as,

f(D(p, S)) = max
s∈S

f(d(p, s)). (3)

When the curve is a line segment, D(p, S) is the distance
from p to its projection on S, if the projection falls on S, or,
otherwise it is the distance from p to the closer end point of
S [4]. Both cases are shown in Fig. 1, where δ5, δ7, and
δ8 are the shortest distances from pt to roads 5, 7 and 8
respectively. Hence, the proximity measures for roads 5, 7,
and 8 are, f(δ5), f(δ7) = f(δ8), respectively. In practice, a
common example of this approach includes the use of the zero-
mean one-dimensional Gaussian probability density function
(pdf) as the proximity function in probabilistic MM methods.
The Euclidean distance becomes the sole argument, yielding,

f(D(p, S)) =
1√
2π σ

e−
1

2 σ2
D2(p,S). (4)

Other common formulations include decreasing affine func-
tions of Euclidean distance in deterministic methods.

This type of formulations is easily computable and can
provide adequate measures for reflecting the spatial closeness
of a curve to a point for some problems. However, in a non-
deterministic problem like MM, the use of shortest Euclidean
distance as the sole argument as in (3) has drawbacks. First,
notice that the Euclidean distance is an isotropic distance
measure, i.e., measurements in x and y coordinates are treated
equally. Hence, its usage implicitly assumes an isotropic noise
distribution, and would yield a subpar proximity analysis
if the noise channels are unequal. For instance, in Fig. 1
with shortest distances δ5 ≈ δ7, almost the same proximity
weights would be assigned to segments 5, 7 and 8 under
piecewise continuous proximity functions, independent of the
noise acting on measurements.

Therefore, better measures may be obtained by using prox-
imity functions that can take into account the noise factors
inherent in measurements. With this change, rather than find-
ing the shortest Euclidean distance to maximize the distance
dependent function f , one would need to find the maximum of
a proximity function defined along the curve. To formulate this
more general approach, let us introduce F : R2×R2 → R≥0,
a generic function that assigns a proximity measure between

two points. Then, the pointwise proximity measure of a curve
S with respect to a point p can be defined as, 3

WP (p, S) = max
s∈S

F (p, s). (5)

In practice, statistical functions, such as Mahalonobis distance
or similar forms can be used to define F . For instance, the
reciprocal of squared Mahalonobis distance could be used in
(5), by considering the covariance of the noise distribution, Σ,

F (p, s) =
1

(p− s)T Σ−1 (p− s)
. (6)

However, a significant issue still remains, and that is the
complete reliance on particular points of a segment (the
extrema points in (5)) for defining the proximity measure of
the whole segment. This ignores the variations in proximity
function, F , along the segment, which needs to be taken
into account if an accurate characterization of the segment’s
proximity is the goal. Except trivial cases that result in constant
F , this reliance would otherwise be equivalent to making an
implicit assumption that the extremum point should be the
only point of interest in a segment. In MM, this would be
equivalent to assuming that the only possible location of the
mobile object is on a particular point of the road. Because
of the randomness of position measurements, this can not be
justified. Hence, the primary drawback of pointwise measures
is not about the chosen proximity function, but in fact their
reliance on a single point for characterizing a 1-dimensional
object. Therefore, in order to define proximity measures that
would reflect the likelihoods of segments, this dependency
should be addressed first.

B. An Alternative Way for Quantifying Proximity

The dependence on a single point of a curve can be
improved by defining measures that take into account the
proximities of other points of the curve. For instance, very
simply, in addition to considering the maximum as in (5), the
minimum of the proximity function can also be considered to
define a measure, e.g. the average proximity. Ideally, all points
of a curve can be considered to define a complete measure for
the curve 4. In this regard, it would be reasonable to define the
proximity measure of a curve as the sum of the measures of
points that define the curve. That sum would be defined by a
line integral. Hence, the overall proximity measure of a curve
S with respect to a point p can be alternatively defined as,

WI(p, S)
.
=

∫
S

F (p, s) dl, (7)

with some proximity function F : R2 × R2 → R≥0. For the
special case of isotropic noise distributions, one can revert to
the simpler shortest distance based formulation of [43],

WI(p, S)
.
=

∫
S

f(d(p, s)) dl. (8)

3Proximity measures are commonly referred as proximity weights in MM
literature. Hence we use the notation W for these measures.

4In fact, this would be a similar approach to the average linkage approach
in clustering algorithms, which considers not only the closest and furthest but
all points making up the clusters.
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Different than (5), (7) quantifies proximity by considering all
points of a curve; and with this consideration, different seg-
ments can be distinguished under the proposed measure, e.g.
roads 5, 7 and 8 in Fig. 1 eventually getting different measures.
If formulated through the correct proximity function, (7) has
the potential to yield measures reflecting the likelihoods of the
segments, which will be discussed in III.

At this point, it can be argued that even if the proposed
formulation of (7) can yield better measures, the computational
effort needed to evaluate the line integral can well offset
the possible gains. However, simple smooth curves can be
approximated as a union of straight lines. Therefore, it is
possible to accurately approximate (7) by a sum of integrals
defined on straight segments, e.g. approximating arbitrary
shaped roads as a union of straight road segments. In this
regard, recall the parameterized form of a line segment S ∈ A
from (1). Let us introduce vectors, L, RA, and RB ; the vector
defining the segment, and the vectors defining the segment’s
end points with respect to the measurement point, p,

L
.
= SB − SA, RA

.
= SA − p, RB

.
= SB − p. (9)

Then, the parametrized equation in (1) can be written as,

s(t) = SA + L t, and
∣∣∣∣∣∣∣∣d s(t)dt

∣∣∣∣∣∣∣∣ = ||L||. (10)

Hence, (7) becomes,

WI(p, S)
.
= ||L||

∫ 1

0

F (p, s(t)) dt, (11)

for a straight segment S. Consequently, the proximity weight
of a polyline road segment, P , can be found by the sum of
the weights of straight line segments constituting it,

WI(p,P)
.
=
∑
Si∈P

||LSi ||
∫ 1

0

F (p, s(t)) dt. (12)

Equation (11) can be computed easily by numerical inte-
gration methods, particularly when working with piecewise
continuous proximity functions. Therefore, the needed com-
putational effort for the proposed measure can be kept minor
in most problems. In fact, it is possible to develop closed
form solutions to (11) for certain proximity functions, as will
be discussed in IV.

III. THE CHOICE OF WEIGHT FUNCTION

Now that the underlying formulations of our approach have
been defined, with (7) for any curve, and (11) for straight
segments, we proceed to discussing the choice of the proximity
function, F . Since the proximity measures are expected to
reflect the likelihoods of segments, considering functions that
can take into account the noise characteristics in position
measurements would be necessary. In that respect, we now
argue that choosing the pdf of the noise as the proximity
function, as in (4), would be needed.

For this discussion, let us develop an observation model for
the mobile object. Consider S .

= {Si}, a finite set of curves in
R2 with at most a finite number of intersection points between
each other. We will consider the object’s motion as a discrete

time stochastic process {ξk, k ∈ K}, taking values on the
union set of points that define each segment, and with some
index set K. When the noise process, {ζk} is additive, the
observation at k can be formulated as, zk = ξk + ζk.

Consequently, the likelihood of process ξk with state s ∈ S,
S ∈ S, generating the observation zk = p would be,
gζ(p−s), where gζ is the pdf of the noise. Hence, by choosing
the proximity function, F , as gζ , a proximity measure can
reflect the likelihoods of stochastic processes’ states. In our
problem, considering the statistical likelihoods of all points of
a segment through the line integral, (7), a whole segment’s
likelihood could be represented in the resulting measure. This
can be interpreted as an integrated likelihood formulation for
proximity. Hence,

WI(p, S)
.
=

∫
S

gζ(p− s) dl, (13)

for any curve S, and

WI(p, S)
.
= ||L||

∫ 1

0

gζ(p− s(t)) dt, (14)

for a line segment are the proposed integral proximity mea-
sures of a segment with respect to a point. In comparison, the
pointwise formulation of (5) becomes,

WP (p, S) = max
s∈S

gζ(p− s). (15)

In order to get more insight about these measures, let us take
a look at the a posterior probability of the mobile object being
on a particular curve S given an observation p at some time
k, Pr(ξk ∈ S | zk = p). Remember that the curves can only
have a finite number of intersection points. So, the probability
of ξk being on these points is zero. Hence, we can omit them
without loss of generality, and consider S as a union of disjoint
segments. Using Bayes rule,

Pr(ξk ∈ S |zk = p) =
Pr(ξk ∈ S, zk = p)

Pr(zk = p)

=
Pr(zk = p | ξk ∈ S)Pr(ξk ∈ S)∑
Si
Pr(zk = p | ξk ∈ Si)Pr(ξk ∈ Si)

. (16)

In (16), the denominator is a constant independent of the
particular segment, and can be omitted .
Pr(zk = p | ξk ∈ S) is the observation probability of p

given the process being on curve S. Remember that, we have
defined a curve S as a set of points. Therefore,

Pr(zk = p | ξk ∈ S) =
Pr(zk = p, ξk ∈ S)

Pr(ξk ∈ S)

=
1

Pr(ξk ∈ S)

∫
S

gz,ξ(zk = p, ξk = s) dl

=

∫
S

gz|ξ(zk = p |ξk = s) gξ(ξk = s |ξk ∈ S) dl. (17)

In (17), gz|ξ(zk = p |ξk = s) = gζ(p− s), and like mentioned
above is the likelihood of state being a particular point s while
generating data p. The second term, gξ(ξk = s |ξk ∈ S), is the
conditional prior density of state being s, given that state is in
S. Regarding this term, note the probabilistic MM methods’
definition of observation probability, Pr(zk = p | ξk ∈ S),
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as the likelihood for a particular point of state space, that is,
gz|ξ(zk = p | ξk = s∗) for some s∗ ∈ S. This is an implicit
assumption that the moving object was almost certainly on
s∗, i.e. in (17) the conditional a priori would be implicitly
assumed as,

gξ(ξk = s | ξk ∈ S) =

{
1 for s = s∗,
0 else. (18)

As mentioned earlier, this strong assumption rules out the
possibility of the object being on another point of the segment.
When observation probability is defined without incorporating
the dynamics of the object, or without the availability of a
priori information about its position, a better approach would
be to assume a uniform probability among the points that make
up the segments. Hence, rather than (18), the conditional a
priori can be defined as the inverse of the segment’s length,

gξ(ξk = s |ξk ∈ S) =
1

||L||
, ∀ s ∈ S, ∀S ∈ S. (19)

In (16), Pr(ξk ∈ S) is the a priori probability of the whole
segment, and can be formulated in a number of ways, the most
common by conditioning on the previous possible states [50],

Pr(ξk ∈ S) =
∑
i

Pr(ξk ∈ S | ξk−1 ∈ Si)Pr(ξk−1 ∈ Si),

or, if available, conditioning on the set of previous observa-
tions up to time k − 1, that is {Z}k−1,

Pr(ξk ∈ S |{Z}k−1) =
∑
i

Pr(ξk ∈ S |ξk−1 ∈ Si, {Z}k−1)

Pr(ξk−1 ∈ Si | {Z}k−1)).

Notice that both equations are dependent on the assumed
dynamic model for the process, Pr(ξk ∈ S | ξk−1 ∈ Si).
Yet, since we are looking at a generic stochastic process, we
will avoid considering a specific model that can favor some
segments. Therefore, we consider Pr(ξk ∈ S) independent of
previous states and observations, and define it under uniform
probability. Under this approach, there are two possible formu-
lations. The first one accepts a uniform probability distribution
among the segments,

Pr(ξk ∈ S) = c, c ≥ 0, ∀S ∈ S, (20)

whereas, the other accepts a distribution dependent on the size
of the state space at each segment,

Pr(ξk ∈ S) =
||L||∑
i ||LSi||

∝ ||L||, ∀S ∈ S. (21)

To decide between the two, the modeler needs to assess if
a longer segment has a higher probability to be the original
location of a mobile object compared to a shorter one, before
observing the data. This point is illustrated in Fig. 2. Note that,
the consideration of segment length in (21) along with (19) is
equivalent to assuming equal probability for all points of the
state space, whereas (20) with (19) implies higher probability
for the points belonging to shorter segments. In order to avoid
such bias, we continue our derivation with (21). 5

5Continuing with (20) wouldn’t affect our preceding discussions neither. In
that case, only the segment length from (21) would be omitted. Hence, the a
posteriori formulations would still be similar to (23) and (24), only the right
hand terms would both have a factor of 1/||L||.

S1

S2
p

Fig. 2. State space of 2 segments of different lengths. Should a priori proba-
bilities satisfy Pr(ξ ∈ S1) = Pr(ξ ∈ S2) or Pr(ξ ∈ S2) > Pr(ξ ∈ S1)?

Plugging (17) into (16), the a posteriori equation becomes,

Pr(ξk ∈ S | zk = p) ∝ Pr(ξk ∈ S)∫
S

gz|ζ(zk = p |ξk = s) gξ(ξk = s |ξk ∈ S) dl. (22)

Considering the uniform probability of points on a segment
in (19), and the a priori formulation of (21),

Pr(ξ ∈ S | z = p) ∝
∫
S

gζ(p− s) dl. (23)

Here, notice the similarity between (23) and (13). The measure
proposed in (7) in fact reflects the a posterior probability of a
stochastic process, when the proximity function F is chosen
as the pdf of noise acting on the process, and when uniform
a priori assumptions are made about the process’ possible
locations. Under the pointwise approach, with the choice of
the a priori being (18) rather than (19), we would have got a
particular point’s likelihood for the posterior probability:

Pr(ξ ∈ S | z = p) ∝ gζ(p− s∗). (24)

Hence, the integral proximity measure would benefit the
characterization of proximity between curves and points. For
certain groups of probability distributions and curves the im-
provements can be proven to be valid independent of position
data, curves’ geometry or noise levels.

IV. COMPARISON OF PROXIMITY MEASURES UNDER
UNCORRELATED BIVARIATE GAUSSIAN NOISE

Studies have shown that errors in GPS measurements can
be modeled under a Gaussian distribution [28]. Accordingly,
it has been very common in MM studies to assume a 1-D
zero-mean Gaussian noise distribution. Here, we also assume
a Gaussian based noise model, but rather an uncorrelated
bivariate Gaussian distribution because of the 2-D nature of
MM problem.

A. Theoretical Development

Let us consider an uncorrelated bivariate Gaussian noise
process with pdf gζ ∼ N(0,Σ), where

Σ
.
=

[
σ2

1 0
0 σ2

2

]
, hence |Σ| = σ2

1 σ
2
2 , Σ−1 =

[
1
σ2
1

0

0 1
σ2
2

]
.

In this setting, let us define the normalized forms of vectors
RA, RB , and L (from (9)),

R̃A
.
=

[ [
RA
]
1
/σ1[

RA
]
2
/σ2

]
, R̃B

.
=

[ [
RB
]
1
/σ1[

RB
]
2
/σ2

]
, (25)

L̃
.
=

[
[L]1 /σ1

[L]2 /σ2

]
;
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and the unit vector along L̃,

l̃
.
= L̃/||L̃||. (26)

Lemma 1. Under an uncorrelated zero-mean bivariate Gaus-
sian noise process with pdf gζ ∼ N(0,Σ), the integral
proximity measure for a straight line S ∈ R2, (14), can be
formulated in the following compact form,

WI(p, S) =
1√

2π σ1σ2

c(S)w⊥(p, S)w‖(p, S), (27)

where,
c(S)

.
= ||L||/||L̃|| (28)

is a geometry factor for the segment, independent of observed
data p,

w⊥(p, S)
.
= e−||R̃

A

L̃⊥ ||
2/2, (29)

w‖(p, S)
.
= Φ(R̃B · l̃)− Φ(R̃A · l̃), (30)

are functions of perpendicular and parallel projections of data
vectors R̃A and R̃B on vector L̃, that is,

R̃A
L̃⊥

.
= R̃A − R̃A

L̃‖
, R̃A

L̃‖
.
= (R̃A · l̃) l̃, (31)

Φ being the Gaussian cumulative distribution function.

Proof. See Appendix A.

In (27), notice the separate contributions of orthogonal and
parallel projections of data vectors, and the shape factor c(S).
In comparison, the following lemma presents the compact
form of the pointwise proximity measure of (6).

Lemma 2. Under an uncorrelated zero-mean bivariate Gaus-
sian noise process with pdf gζ ∼ N(0,Σ), the pointwise
proximity measure for a straight line S ∈ R2, (15) can be
formulated in the following compact form,

WP (p, S) =
1

2π σ1σ2
v(p, S), (32)

where,

v(p, S) =


e−||R̃

A||2/2 if (R̃A · l̃) ≥ 0,

e−||R̃
B ||2/2 if (R̃A · l̃) ≤ −||L̃||,

e−||R̃
A

L̃⊥ ||
2/2 else,

(33)

depends on where the data point’s projection on L̃ falls onto.
The last one corresponds to the case when the projection
falls onto L̃, and the first two corresponds to cases when the
projections fall outside.

Proof. See Appendix B.

In both (27) and (32), the first terms are independent
of segments. Hence, they can be omitted if the likelihood
comparison of some segments is the only goal. For such
comparisons, the following theorem shows a better expected
accuracy for the integrated likelihood proximity measure. We
omit the time indices for the stochastic process, because of
the time-invariant nature of proximity measures.

Theorem 1. Let S = {Si} be a collection of non-overlapping
straight line segments in R2. Let ξ be a stochastic process
taking values on the union of the sets of points that define

each segment of S with uniform probability. Assume that
ξ is observed under an additive noise process ζ, yielding
observation, z = ξ + ζ.

To estimate the original segment of some observation z = p,
consider estimators EP based on (5), and EI based on (7),
with a common proximity function F : R2 × R2 → R+,

EP (p,S)
.
= argmax

S∈S
WP (p, S) = argmax

S∈S

[
max
s∈S

(F (p, s))

]
,

(34)

EI(p,S)
.
= argmax

S∈S
WI(p, S) = argmax

S∈S

[∫
S

F (p, s) dl

]
.

(35)

If the pdf of ζ, gζ , is a zero-mean uncorrelated non-degenerate
bivariate Gaussian, then by taking F (p, s) = gζ(p − s),
EI(p,S), and EP (p,S) would yield unique results almost
surely. In addition, the unique results would satisfy,

Pr(EI(p,S) = Sp) ≥ Pr(Ep(p,S) = Sp), (36)

where Sp is the original segment of observation p, i.e., ξ ∈
Sp ∈ S.

Proof. See Appendix C.

The above theorem shows that the proposed integral mea-
sure (27) is expected to yield better estimations for the
true location of a mobile object compared to the pointwise
measure (32) for any position data with any noise level or
any road network configuration. The only thing that remains
to be seen is whether the proposed measures’ improvements
could be significant, and if so under what conditions. Yet,
depending on the position data, the configuration of road
segments, and noise characteristics potential improvements can
vary greatly, making it impossible to develop tight analytical
bounds on them, while covering all possibilities. Hence, to
understand potential gains, performances of both measures
needs to be compared numerically under various segments and
noise configurations (instances). In the following subsection
we will present a detailed analysis of possible gains with a
systematic study. Before that, notice the following simplified
forms of (27) and (32) under the commonly assumed uniform
Gaussian distribution.

Corollary 1. In the case of uniform noise, σ1 = σ2 = σo,
(27) simplifies to,

W o
I (p, S) =

1√
2π σo

w⊥
o

(p, S)w‖
o

(p, S), (37)

where,

w⊥
o

(p, S)
.
= e−||R

A

L⊥ ||
2/(2σ2

o), (38)

w‖
o

(p, S)
.
= Φ

(
RB · l
σo

)
− Φ

(
RA · l
σo

)
, (39)

are functions of perpendicular and parallel projections of data
vectors RA and RB on vector L,

RAL⊥
.
= RA −RAL‖ , RAL‖

.
= (RA · l) l, (40)

and l .= L/||L||, being the unit vector along L.
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On the other hand, (32) simplifies to,

W o
P (p, S) =

1

2π σ2
o

vo(p, S), (41)

where,

vo(p, S) =


e−||R

A||2/(2σ2
o) if (RA · l) ≥ 0,

e−||R
B ||2/(2σ2

o) if (RA · l) ≤ −||L||,
e−||R

A

L⊥ ||
2/(2σ2

o) else,

(42)

is a function of the shortest distance between p and S, D(p, S).

Proof. Follows the substitution of σo for both σ1 and σ2 in
equations from (25) through (33).

B. Estimation Comparison through Monte Carlo Analysis
There are no globally accepted MM data sets for the

comparison of different approaches, even though some specific
data sets have been made available online. Since the proposed
proximity measures are aimed to be a unifying approach for
the most general MM problem, we have decided to base our
comparisons independent of particular data sets or networks
to avoid possible bias. For this purpose, we have worked on
randomly generated groups of segments confined to a square
test bed of size 200 by 200 units (the length units have been
considered analogous to meters). The control parameters for
the tests have been chosen to reflect the major factors that
can affect proximity measures’ accuracy in practice. These
are: road networks’ sparsity, road segments’ length variations,
and the severity and anisotropy of the noise. Accordingly,
the parameters of interest for the segments are: the number
of segments confined to the simulation area, the segments’
average length, and the standard deviation of the length of the
segments, which is defined through the dimensionless coeffi-
cient of variation (CV), the ratio of standard deviation to mean.
For the noise: the standard deviation values of the bivariate
Gaussian in x and y directions, and their respective ratio (R),
are the control parameters of interest. These parameters are
summarized in Table I, and Table II.

Each combination of control parameters in Table I defines
a particular segment configuration on the test bed. For each
configuration, a group of segments were randomly generated;
and we call such a group, an instance of segments. On each
instance, the performances of both proximity measures have
been compared under a Monte Carlo (MC) analysis. In this
regard, the stochastic process, ξ, was sampled uniformly on
each segment a certain number of times that was proportional
to the segment’s length (1000 samples per unit length for stable
results). This ensured our simulations did not favor a segment
or points of the state space. These samples were later corrupted
with zero mean uncorrelated bivariate Gaussian noise, with the
noise control parameters listed in Table II. (34) and (35) has
been used to estimate the original segment of each sample.
For comparison, we define the percentage of absolute change
in estimation (PACE), and the percentage of relative change in
estimation (PRCE), both of which are indicative of the possible
gains when integrated proximity is used:

PACE .
= 100× (NI −NP )/N, (43)

PRCE .
= 100× (NI −NP )/NP , (44)

TABLE I
SEGMENT CONTROL PARAMETERS IN SIMULATIONS

1st Group of Sims. 2nd Group of Sims.

Number of Segs. 4, 8, 16 4, 8, 16

Av. Length of Segs. (Lµ) 40, 60 20, 40, 60
CV 0.25, 0.5 0, 0.25, 0.5, 1.0

TABLE II
NOISE CONTROL PARAMETERS IN SIMULATIONS

Uniform Noise Sims. Non-Uniform Noise Sims.

σx 10, 20, 40, 60, 80, 10, 20, 40, 60, 80,
100, 120 100, 120

R = σy/σx 1 0.2, 0.5, 0.7

where N is the total number of position samples generated
with the MC simulation, NI is the number of correct position
estimates with the integral proximity measure, NP with the
pointwise measure. PRCE has been the primary quantity for
observing the trends in gains. But, when NP becomes low
under high noise levels, PRCE becomes quite high. Therefore,
we also present PACE to give the reader a better perspective on
the gains. In addition, in order to avoid reaching conclusions
from a single instance, we have generated 8 random instances
for each segment configuration, and present the possible gains
(PACE and PRCE) as an average of the gains on 8 instances.
For clarity, two instances of randomly generated segments with
different segment configurations are shown in Fig. 3.

The first group of simulations have been conducted on
groups of segments that belong to transportation-network like
graphs, so that these simulations can reflect possible gains
on urban road networks. The graphs were generated by a
modified version of the ‘random geometric graph generator’
of NetworkX library [51], which places a number of nodes
uniformly at random in the unit cube, and connects any two
nodes with an edge if the Euclidean distance between them
is lower than a user-defined threshold. We also introduced
lower and upper limits on the degrees of nodes, so that the
generated graphs would resemble urban road networks rather
than abstract graphs. For avoiding a possible bias in segment
configurations, a secondary, larger, group of simulations have
also been conducted on non-intersecting randomly generated
segments. As before, these segments have also been gener-
ated by choosing segments’ end nodes uniformly at random.
Also, only the segments longer than 2 units of length were
considered to relate to actual road segments.

While R .
= σy/σx can vary between 0 to infinity, because

of the symmetric nature of the covariance matrix and the
simulations we have built, analyzing it from 0 to 1 would be
sufficient. Still, simulating all the configurations of Table I, for
all R values in Table II would be extremely time consuming.
Hence, uniform noise simulations were done under all segment
configurations, but the non-uniform noise simulations were
done only on segment configurations where our proximity
measure had resulted in the most gains under the uniform
noise. This was done to see if the maximum gains under
uniform noise would deteriorate under non-uniform noise.
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(a) Randomly generated network of
16 segments with mean length of 60,
and sample deviation of 15 units.

(b) Randomly generated 8 segments
with mean length of 60, and sample
deviation of 30 units.

Fig. 3. Two instances of randomly generated segments.

Uniform noise simulations compare measures (37) and (41).
The results of our first group of simulations, on road network
like segments, are shown in Fig. 4, with 4a showing PRCE,
and 4b PACE results. In all subfigures, x-axis shows the
uniform standard deviation, σx = σy , whereas y-axis shows
the percent change in estimation. The rows of subfigures
corresponds to simulations done on the groups of segments
with average lengths, Lµ, of 40, and 60 units; and the columns
correspond to simulations with CV values of 0.25 and 0.5. The
3 curves in each subfigure with different colors correspond
to the number of segments in the simulation area, blue for 4
segments, red for 8 and green for 16. The results of the second
group of simulations on non-intersecting random segments
are shown in Fig. 5a and in 5b in a similar fashion with
rows corresponding to different average segment lengths, and
columns corresponding to different CVs.

From the subfigures in Fig. 4a and Fig. 5a, similar patterns
can be observed. The most noticeable pattern is the increase
in gains with the increasing CV values, except the case when
CV= 0, which is the highly unlikely case of all equal length
segments. With the increasing variation in segment lengths, a
considerable increase in gains can be noticed, with absolute
gains up to 18%, and relative gains up to 80% possible. This
pattern can be attributed to the relative emphasis of pointwise
and integral proximity formulations. Pointwise proximity es-
timator under uniform noise picks the nearest segment to a
measurement as the original segment. The integral proximity
estimator, by assuming a uniform probability among all the
points of all segments, will consider longer segments more
likely compared to shorter ones. Therefore, when the variation
between segment lengths increases, the pointwise proximity
will never differentiate the likelihood between a short and a
long segment, whereas the integral proximity will.

Another pattern is the increase in gains with the increasing
noise standard deviation values, again except for the marginal
all equal length case. This increase is related to the scattering
of position measurements farther away from their original
locations on segments with increasing noise levels. When
position measurements are not scattered far, both estimators
can do well. But, when the measurements are scattered far
away, both proximity measures will suffer. However, the
pointwise proximity will do worse as it relies heavily on the

(a) Lµ = 40m, CV=0.25 (b) Lµ = 40m, CV=0.5

(c) Lµ = 60m, CV=0.25 (d) Lµ = 60m, CV=0.5

Fig. 4a. Relative gains on network of segments, under uniform noise.

(a) Lµ = 40m, CV=0.25 (b) Lµ = 40m, CV=0.5

(c) Lµ = 60m, CV=0.25 (d) Lµ = 60m, CV=0.5

Fig. 4b. Absolute gains on network of segments, under uniform noise.

shortest distance, and, favors the nearest segment accordingly.
The increasing gains are more pronounced depending on the
variation in segment lengths, for instance, gains increasing
quite quickly with increasing σx when CV is 1. Eventually,
the gains seems to be stabilizing towards a limiting value.

Non-uniform noise distribution simulations compare mea-
sures (27) and (32), and the results are shown in Fig. 6a and
6b. The rows of subfigures again correspond to simulations
with different average segments lengths, Lµ, and the curves
with different colors again correspond to different number of
segments. The columns correspond to different R values of
1, 0.7, 0.5, and 0.2, and x-axis shows the standard deviation
in x-direction, σx. All simulations were done for CV=1, since
it was the case with the most gains under uniform noise
simulations. In Fig. 6a, from left to right, slight drops in
gains with decreasing R values can be observed; yet, the gains
still remain quite high. Also, similar patterns about σx can be
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(a) Lµ = 20m, CV=0 (b) Lµ = 20m, CV=0.25 (c) Lµ = 20m, CV=0.5 (d) Lµ = 20m, CV=1

(e) Lµ = 40m, CV=0 (f) Lµ = 40m, CV=0.25 (g) Lµ = 40m, CV=0.5 (h) Lµ = 40m, CV=1

(i) Lµ = 60m, CV=0 (j) Lµ = 60m, CV=0.25 (k) Lµ = 60m, CV=0.5 (l) Lµ = 60m, CV=1

Fig. 5a. Relative gains on random segments, under uniform noise.

observed compared to Fig. 4a, and 5a. Hence, the proposed
measures remain a better alternative under non-uniform noise
distributions as well.

Also, in most tests, the gains are higher with more segments,
as evidenced in Fig. 4a, 5a, and 6a (16 segments highest,
followed by 8 and 4). Hence, the proposed measures will also
be suitable for MM in urban centers with dense road networks.

Overall, the proposed proximity measures have yielded
considerably better estimates, except the marginal gains for
segments with equal lengths. The gains were higher with in-
creasing variation in segment lenghts, noise standard deviation
values, and the number of segments.

C. Computational Aspects

Switching to (27) from (32) or to (37) from (41) brings
some extra computational time for the proximity analysis. The
difference is that (27) and (37) are more complex functions,
and will take more CPU time for computations. Yet, they also
avoid the if-comparisons in (33), and (42). Therefore, the extra
computations will not be very demanding. To have an idea
about possible increase in computation efforts, we kept track
of the computation times for some of our simulations. We
have observed that the increase in computational time stayed
between 8% to 20% of the original pointwise proximity com-
putational times. Depending on the problem and the available
data, this extra computational time can easily be justified for
possible gains in estimation accuracy.

V. CONCLUSIONS

Building upon a careful analysis of the drawbacks of
traditional pointwise proximity measures between a point and
a curve, we have proposed the integral proximity measure that
can reflect the likelihoods of the states of a stochastic process
in a more consistent way. Assuming a generic stochastic model
with additive noise, we have discussed the correct proximity
function for proximity measures, and the relationship between
a posteriori probabilities of the process and the proximity mea-
sures for a comparison of both measures. In addition, we have
proved that the proposed integral proximity measure can yield
better inferences than the pointwise measure for problems
under the influence of uncorrelated bivariate Gaussian noise
processes. Randomly generated Monte Carlo simulations also
showed that absolute gains up to 18%, and relative gains up to
80% can be possible, with the additional computational times
ranging between 8% to 20%.

APPENDIX A
Proof. With the noise process being zero-mean bivariate Gaus-
sian, for a point s(t) of segment S,

gζ(p− s(t)) =
1

2π
√
|Σ|

e−
1
2 (p−s(t))TΣ−1(p−s(t)). (45)

Then, (14) becomes

WI(p, S) =
||LS ||

2π
√
|Σ|

∫ 1

0

e−
1
2 (p−s(t))TΣ−1(p−s(t)) dt. (46)
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(a) Lµ = 20m, CV=0 (b) Lµ = 20m, CV=0.25 (c) Lµ = 20m, CV=0.5 (d) Lµ = 20m, CV=1

(e) Lµ = 40m, CV=0 (f) Lµ = 40m, CV=0.25 (g) Lµ = 40m, CV=0.5 (h) Lµ = 40m, CV=1

(i) Lµ = 60m, CV=0 (j) Lµ = 60m, CV=0.25 (k) Lµ = 60m, CV=0.5 (l) Lµ = 60m, CV=1

Fig. 5b. Absolute gains on random segments, under uniform noise.

Considering the parametrization of (10), and the inverse of the
covariance matrix, the exponential term becomes,

[p− s(t)]TΣ−1[p− s(t)] = Ãt2 + 2B̃t+ C̃, (47)

where, Ã .
= ||L̃||2, B̃

.
= R̃A · L̃, C̃

.
= ||R̃A||2, (48)

with R̃A and L̃ introduced in (25). Since,

Ãt2 + 2B̃t+ C̃ = Ã(t+ B̃/Ã)2 − B̃2/Ã+ C̃,

(46) becomes,

WI(p, S) =
||LS ||

2π σ1σ2
e(B̃2/Ã−C̃)/2

∫ 1

0

e−Ã(t+B̃/Ã)2/2 dt.

(49)
Doing change of variables with x =

√
Ã (t+ B̃/Ã) yields:

∫ 1

0

e−Ã(t+B̃/Ã)2/2 dt =

∫ Ã+B̃√
Ã

B̃√
Ã

e−x
2/2 1√

Ã
dx

=

√
2π√
Ã

[
Φ

(
Ã+ B̃√

Ã

)
− Φ

(
B̃√
Ã

)]
.

√
Ã is ||L̃||, and following (31)

B̃2

Ã
− C̃ =

(R̃A · L̃)2

L̃ · L̃
− R̃A · R̃A = ||R̃A

L̃‖
||2 − ||R̃A||2.

Orthogonality of R̃A
L̃‖

and R̃A
L̃⊥

implies B̃2/Ã − C̃ is
−||R̃A

L̃⊥
||2. Also, note that,

Ã+ B̃ = L̃ · L̃+ R̃A · L̃ = L̃ · (L̃+ R̃A) = L̃ · R̃B .

Considering the unit vector l̃ of (26),

Φ

(
Ã+ B̃√

Ã

)
− Φ

(
B̃√
Ã

)
= Φ(R̃B · l̃)− Φ(R̃A · l̃).

Using these identities in (49) yields (27).

APPENDIX B
Proof. Having F (p, s) = gζ(p− s), and (6) with (45) yields,

WP (p, S) = max
s(t)∈S

[
1

2π σ1σ2
e−

1
2 (p−s(t))TΣ−1(p−s(t))

]
.

The max is attained when (p− s(t))TΣ−1(p− s(t)) is mini-
mized. Let us refer to this term as dΣ(p, s(t)), and recall (47),
where we had expanded it into a quadratic form. Considering
that, dΣ(p, s(t)) attains its minimum at t∗ ∈ [0, 1] such that,

t∗ =


0 if − B̃/Ã ≤ 0

−B̃/Ã if 0 < −B̃/Ã < 1

1 if − B̃/Ã ≥ 1.

(50)

Then, along with the identities in (48), one gets:

dΣ(p, s(t∗)) =


C̃ = ||R̃A||2, if t∗ = 0

−B̃2/Ã+ C̃ = ||R̃A
L̃⊥
||2, if t∗ = −B̃/Ã

Ã+ 2B̃ + C̃ = ||R̃B ||2 if t∗ = 1,
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(a) Lµ = 20m, CV=1, R=1. (b) Lµ = 20m, CV=1, R=0.7. (c) Lµ = 20m, CV=1, R=0.5. (d) Lµ = 20m, CV=1, R=0.2.

(e) Lµ = 40m, CV=1, R=1. (f) Lµ = 40m, CV=1, R=0.7. (g) Lµ = 40m, CV=1, R=0.5. (h) Lµ = 40m, CV=1, R=0.2.

(i) Lµ = 60m, CV=1, R=1. (j) Lµ = 60m, CV=1, R=0.7. (k) Lµ = 60m, CV=1, R=0.5. (l) Lµ = 60m, CV=1, R=0.2.

Fig. 6a. Relative gains on random segments, under non-uniform noise.

and B̃/Ã = R̃ · l̃/||L̃||, which completes the proof.

APPENDIX C

Proof. By choosing F (p, s) = gζ(p − s), and following
Lemma 1 and Lemma 2, under an uncorrelated non-degenerate
bivariate Gaussian noise process, (34) will be defined by (32),
and (35) by (27). Hence, we focus on equations (27), and (32).

For WI(p, S) in (27), let us first analyze its extrema points
over all p ∈ R2. Note that c(S) is independent p. Therefore, it
is sufficient to analyze the product of w⊥(p, S) and w‖(p, S),
which we will refer as w(p, S).

dw(p, S)

dp
= ∇w(p, S)

= ∇w⊥(p, S)w‖(p, S) + w⊥(p, S)∇w‖(p, S).

Note that w⊥(p, S) and w‖(p, S) are orthogonal. Hence, the
necessary condition,∇w(p, S) = 0, can only be satisfied when
both ∇w⊥(p, S) and ∇w‖(p, S) are 0. Now,

∇w⊥(p, S) = ∇e−||R̃
A

L̃⊥ ||
2/2 = e−||R̃

A

L̃⊥ ||
2/2∇(−||R̃A

L̃⊥
||2/2),

∇(||R̃A
L̃⊥
||2) = ∇(R̃A · l̃⊥)2 = 2(R̃A · l̃⊥)∇(R̃A · l̃⊥)

= 2(R̃A · l̃⊥)(−l̃⊥),

where l̃⊥ is the unit vector orthogonal to l̃. Then,

∇w⊥(p, S) = e−||R̃
A

L̃⊥ ||
2/2(R̃A · l̃⊥)l̃⊥.

Thus, the critical points of w⊥(p, S) satisfy R̃A ·l̃⊥ = 0. Using
the definitions of R̃A from (9) and (25), this holds for the set of
points, M⊥ .

= {p∗ ∈ R2 : p∗(t) = SA + t L, t ∈ (−∞,∞)},
where w⊥(p, S) attains its max. On the other hand,

∇w‖(p, S) = ∇(Φ(R̃B · l̃)− Φ(R̃A · l̃))

=
1√
2π
∇

[∫ R̃B ·l̃

R̃A·l̃
e−x

2/2 dx

]
Using Leibniz rule,

∇w‖(p, S) =
1√
2π

[
e−(R̃B ·l̃)2∇(R̃B · l̃)− e−(R̃A·l̃)2∇(R̃A · l̃)

]
=

1√
2π

[
e−(R̃A·l̃)2 − e−(R̃B ·l̃)2

]
l̃

Thus, the critical points of w‖(p, S) satisfy (R̃A · l̃)2 = (R̃B ·
l̃)2. Then,

[(R̃A · l̃)− (R̃B · l̃)][(R̃A · l̃) + (R̃B · l̃)] = 0.

Using the definitions of R̃A, R̃B from (9) and (25), one gets

[(S̃A − S̃B) · l̃][(S̃A + S̃B − 2p̃) · l̃] = 0.

This holds for the set of points, M‖ .
= {p∗ ∈ R2 : p∗(t) =

(SA+SB)/2+t L⊥, t ∈ (−∞,∞)}, where ∇w‖(p, S) attains
its max. There is only one p∗ that belongs to both M‖ and
M⊥; and it is, p∗ = (SA + SB)/2.

Thus, w(p, S) has a unique global maximum, with no other
extrema points. Hence, it is also strictly quasiconcave, and it
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(a) Lµ = 20m, CV=1, R=1. (b) Lµ = 20m, CV=1, R=0.7. (c) Lµ = 20m, CV=1, R=0.5. (d) Lµ = 20m, CV=1, R=0.2.

(e) Lµ = 40m, CV=1, R=1. (f) Lµ = 40m, CV=1, R=0.7. (g) Lµ = 40m, CV=1, R=0.5. (h) Lµ = 40m, CV=1, R=0.2.

(i) Lµ = 60m, CV=1, R=1. (j) Lµ = 60m, CV=1, R=0.7. (k) Lµ = 60m, CV=1, R=0.5. (l) Lµ = 60m, CV=1, R=0.2.

Fig. 6b. Absolute gains on random segments, under non-uniform noise.

can not have thick level curves [52], [53]. Because of this, for
two non-overlapping segments, S1 and S2, the set of points
where WI(p, S1) and WI(p, S2) intersect, that is,

{p ∈ R2 : max
s∈S1

WI(p, S1) = max
s∈S2

WI(p, S2)}

can only define a curve but not a surface. Hence, (35) provides
unique estimates for all points p ∈ R2 other than these points
yielding equal value, thus allowing uniqueness almost surely.

In (32), WP (p, S) is defined by the piecewise exponential
v(p, S). For some segment S, the first two pieces of v(p, S)
attain their unique global maximum values at segment’s end
points, p = SA and p = SB . The last piece of v(p, S) is
again w⊥(p, S), and we have just showed that it attains its
global max for p ∈ M⊥, the set of points along vector L.
Therefore, (33) defines a semi-strictly-quasiconcave function
with a flat-top over segment S. Consequently, WP (p, S) can
not have thick level curves as well. Because of this, for two
non-overlapping segments, S1 and S2, the set of points where
WP (p, S1) and WP (p, S2) intersect, that is

{p ∈ R2 : max
s∈S1

WP (p, S1) = max
s∈S2

WP (p, S2)}

can only define a curve but not a surface. Hence, (34) provides
unique estimates for all points p ∈ R2 other than these points
yielding equal value, thus allowing uniqueness almost surely.

For the second half of the proof, let us introduce R̄P , and
R̄I to denote the set of points of non-unique results by (34)
and (35), respectively. Also, let us define, sets of unique results

for a segment Si ∈ S as RP (Si)
.
= {x : Si = EP (x,S)}, and

RI(Si)
.
= {x : Si = EI(x,S)}. Using the above sets, R2 can

be partitioned by either of the following identities,⋃
Si

RP (Si) ∪ R̄P = R2,
⋃
Si

RI(Si) ∪ R̄I = R2. (51)

We also define the following disjoint sets for a segment, Si,

Z1(Si)
.
= RP (Si) ∩ RI(Si),

Z2(Si)
.
= RP (Si) \

[
RI(Si) ∪ R̄I

]
, (52)

Z3(Si)
.
= RI(Si) \

[
RP (Si) ∪ R̄P

]
.

Z1(Si) is the set of points for which Si is estimated as the
original segment uniquely, by both estimators. Z2(Si) is the
set of points for which Si is estimated as the original segment
uniquely only by EP , and Z3(Si) only by EI .

Lemma 3. For Si ∈ S, Z3(Si) can be partitioned as follows,

Z3(Si) =
⋃
j 6=i

[
Z3(Si) ∩ Z2(Sj)

]
,
⋂
j

Z2(Sj) = ∅.

Proof. For x ∈ Z3(Si), by (52), x /∈ RP (Si), and x /∈ R̄P .
By (51), ∃ k 6= i such that x ∈ RP (Sk). Since x /∈ RI(Sk),
x ∈ Z2(Sk), which implies x ∈ Z3(Si) ∩ (Z2(Sk).

Since x was any point in Z3(Si), ∀x ∈ Z3(Si), ∃Sj ∈ S ,
j 6= i, such that x ∈ Z2(Sj) ∩ Z3(Si).
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Lemma 4. For Si ∈ S, Z2(Si) can be partitioned as follows,

Z2(Si) =
⋃
j 6=i

[
Z2(Si) ∩ Z3(Sj)

]
,
⋂
j

Z3(Sj) = ∅.

Proof. Follows the same argument in proof of Lemma 3.

Following the definition of RI(Si) and RP (Si), the left and
right terms of (36) can be expressed as:

Pr(EI(p,S) = Sp) = Pr(p ∈ RI(Sp)). (53)

Pr(EP (p,S) = Sp) = Pr(p ∈ RP (Sp)). (54)

Since the segments are non-overlapping, there can be only a
finite number of intersection points between segments, and
hence the probability of ξ being on those common points
will be zero. Therefore, by excluding the intersection points
S could be considered as a union of disjoint segments, and∑
i Pr(ξ ∈ Si) = 1. By the law of total probability,

Pr(p ∈ RI(Sp))

=
∑
i

[Pr(p ∈ RI(Si)| ξ ∈ Si)]Pr(ξ ∈ Si), (55)

Pr(p ∈ RP (Sp))

=
∑
i

[Pr(p ∈ RP (Si)| ξ ∈ Si)]Pr(ξ ∈ Si). (56)

To shorten the notation, let

pi
.
= p = ξ + ζ, such that, ξ ∈ Si. (57)

From (52), RI(Sp) = Z1(Sp) ∪ Z3(Sp), and RP (Sp) =
Z1(Sp) ∪ Z2(Sp). Therefore, along with (57),

Pr (p ∈ RI(Sp)) = (58)∑
i

[
Pr(pi ∈ Z1(Si)) + Pr(pi ∈ Z3(Si))

]
Pr(ξ ∈ Si),

P r (p ∈ RP (Sp)) = (59)∑
i

[
Pr(pi ∈ Z1(Si)) + Pr(pi ∈ Z2(Si))

]
Pr(ξ ∈ Si).

Following (58) and (59), (36) is equivalent to,∑
i

[
Pr(pi ∈ Z1(Si)) + Pr(pi ∈ Z3(Si))

]
Pr(ξ ∈ Si) >∑

i

[
Pr(pi ∈ Z1(Si)) + Pr(pi ∈ Z2(Si))

]
Pr(ξ ∈ Si).

After omitting common terms with Z1(Si), we get,∑
i

Pr
(
pi ∈ Z3(Si)

)
Pr(ξ ∈ Si)

>
∑
i

Pr
(
pi ∈ Z2(Si)

)
Pr(ξ ∈ Si). (60)

ξ is uniformly distributed on the segments, and hence,

gξ(z) =

{
1∑

Si
||LSi || if z ∈ S, S ∈ S,
0 else.

(61)

Let us introduce k .
=
∑
Si ||LSi ||, and define gξ(z) = 1/k,

for z on segments. This yields, Pr(ξ ∈ Si) = ||LSi ||/k.
From (57), gpi(z) = gξ+ζ(z| ξ ∈ Si); and ζ is independent

of ξ. Since pdf of the sum of two independent random

variables can be formulated by the convolution of their pdfs,
gpi(z) = gξ(z|ξ ∈ Si) ∗ gζ(z), with the convolution integral
defined on Si. That is,

gpi(z) = gξ(z| ξ ∈ Si) ∗ gζ(z)

=

∫
Si

gζ(z − u) gξ(u| ξ ∈ Si) du =

∫
Si

gζ(z − u)
1

||LSi ||
du.

Accordingly, Pr(pi ∈ Z3(Si) in (60) can be written as,

Pr
(
pi ∈ Z3(Si)

)
=

∫
Z3(Si)

∫
Si

gζ(z − u)
1

||LSi ||
du dz.

By formulating Pr(pi ∈ Z2(Si) in a similar fashion, and using
(61) for Pr(ξ ∈ Si), (60) becomes,∑

i

∫
Z3(Si)

[∫
Si

gζ(z − u)
1

||LSi ||
du

]
dz
||LSi ||
k

>
∑
i

∫
Z2(Si)

[∫
Si

gζ(z − u)
1

||LSi ||
du

]
dz
||LSi ||
k

.

Omitting the common terms with 1/k, and reordering, the
needed condition becomes,

∑
i

[∫
Z3(Si)

∫
Si

gζ(z − u) du dz

−
∫
Z2(Si)

∫
Si

gζ(z − u) du dz

]
> 0. (62)

From Lemma 3, Lemma 4, we know that ∀Si ∈ S, ∀z ∈
Z3(Si),∃Z2(Sj), j 6= i, such that z ∈ Z2(Si); and simi-
larly ∀z ∈ Z2(Si),∃Z3(Sj), j 6= i, such that z ∈ Z3(Si).
Therefore, we can expand Z3(Si) and Z2(Si); and regroup
the integrals to get,∑

i

∑
j

∫
Z3(Si)∩Z2(Sj)

[∫
Si

gζ(z − u) du

−
∫
Sj

gζ(z − u) du

]
dz > 0. (63)

Yet, from the definition of Z3(Si) and Z2(Sj), ∀(Si, Sj) ∈
S × S, ∀z ∈ Z3(Si) ∩ Z2(Sj), the following is already
satisfied, ∫

Si

gζ(z − u) du−
∫
Sj

gζ(z − u) du > 0.

Hence, the necessary inequality holds.
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experiment in Zürich,” Transportation Research Record: J. of the Trans-
portation Research Board, vol. 1935, pp. 93–100, 2005.

[7] D. Obradovic, H. Lenz, and M. Schupfner, “Fusion of sensor data in
Siemens car navigation system,” IEEE Trans. on Vehicular Technology,
vol. 56, no. 1, pp. 43–50, 2007.

[8] M. A. Quddus, R. B. Noland, and W. Y. Ochieng, “A high accuracy
fuzzy logic based map matching algorithm for road transport,” J. of
Intelligent Transportation Syst., vol. 10, no. 3, pp. 103–115, 2006.

[9] G. Jagadeesh, T. Srikanthan, and X. Zhang, “A map matching method for
gps based real-time vehicle location,” J. of Navigation, vol. 57, no. 03,
pp. 429–440, 2004.

[10] W. Ochieng, M. Quddus, and R. Noland, “Map-matching in com-
plex urban road networks,” Brazilian Journal of Cartography (Revista
Brasileira de Cartografia), vol. 55, no. 2, pp. 1–18, 2003.

[11] N. Tradisauskas, J. Juhl, H. Lahrmann, and C. Jensen, “Map matching
for intelligent speed adaptation,” IET Intelligent Transport Syst., vol. 3,
no. 1, pp. 57–66, 2009.

[12] N. R. Velaga, M. A. Quddus, and A. L. Bristow, “Developing an
enhanced weight-based topological map-matching algorithm for intel-
ligent transport systems,” Transportation Research Part C: Emerging
Technologies, vol. 17, no. 6, pp. 672 – 683, 2009.

[13] C. Smaili, M. E. El Najjar, and F. Charpillet, “A road matching method
for precise vehicle localization using hybrid Bayesian network,” J. of
Intelligent Transportation Syst., vol. 12, no. 4, pp. 176–188, 2008.

[14] R. Toledo-Moreo, D. Betaille, and F. Peyret, “Lane-level integrity
provision for navigation and map matching with GNSS, dead reckoning,
and enhanced maps,” IEEE Trans. on Intell. Transp. Syst., vol. 11, no. 1,
pp. 100–112, 2010.

[15] M. M. Atia, A. R. Hilal, C. Stellings, E. Hartwell, J. Toonstra, W. B.
Miners, and O. A. Basir, “A low-cost lane-determination system using
GNSS/IMU fusion and hmm-based multistage map matching,” IEEE
Trans. on Intell. Transp. Syst., vol. PP, no. 99, pp. 1–11, 2017.

[16] J. Biagioni, T. Gerlich, T. Merrifield, and J. Eriksson, “Easytracker:
Automatic transit tracking, mapping, and arrival time prediction using
smartphones,” in Proc. of ACM Conf. on Embedded Networked Sensor
Syst., 2011, pp. 68–81.

[17] J. Han, E. Owusu, L. Nguyen, A. Perrig, and J. Zhang, “Accomplice:
Location inference using accelerometers on smartphones,” in Proc. of
Int. Conf. on Communication Systems and Networks, 2012, pp. 1–9.

[18] M. Lv, L. Chen, X. Wu, and G. Chen, “A road congestion detection
system using undedicated mobile phones,” IEEE Trans. on Intell. Transp.
Syst., vol. 16, no. 6, pp. 3060–3072, 2015.

[19] M. Bierlaire, J. Chen, and J. Newman, “A probabilistic map matching
method for smartphone GPS data,” Transportation Research Part C:
Emerging Technologies, vol. 26, no. 0, pp. 78 – 98, 2013.

[20] T. Hunter, P. Abbeel, and A. Bayen, “The path inference filter: Model-
based low-latency map matching of probe vehicle data,” IEEE Trans.
on Intell. Transp. Syst., vol. 15, no. 2, pp. 507–529, 2014.

[21] G. R. Jagadeesh and T. Srikanthan, “Online map-matching of noisy and
sparse location data with hidden markov and route choice models,” IEEE
Trans. on Intell. Transp. Syst., no. 99, pp. 1–12, 2017.

[22] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk, “On map-matching
vehicle tracking data,” in Proc. of Int. Conf. on Very large data. VLDB
Endowment, 2005, pp. 853–864.

[23] D. Pfoser and C. S. Jensen, “Capturing the uncertainty of moving-
object representations,” in Proc. of Int. Symp. on Advances in Spatial
Databases, 1999, pp. 111–132.

[24] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson,
R. Karlsson, and P.-J. Nordlund, “Particle filters for positioning, nav-
igation, and tracking,” IEEE Trans. on Signal Processing, vol. 50, no. 2,
pp. 425–437, 2002.

[25] I. Skog and P. Handel, “In-car positioning and navigation technologies–
a survey,” IEEE Trans. on Intell. Transp. Syst., vol. 10, no. 1, pp. 4–21,
March 2009.

[26] M. Quddus, W. Ochieng, L. Zhao, and R. Noland, “A general map
matching algorithm for transport telematics applications,” GPS Solu-
tions, vol. 7, pp. 157–167, 2003.

[27] J.-s. Yang, S.-p. Kang, and K.-s. Chon, “The map matching algorithm of
GPS data with relatively long polling time intervals,” J. of the Eastern
Asia Society for Transportation Studies, vol. 6, pp. 2561–2573, 2005.

[28] F. Diggelen, “System design & test-GNSS accuracy-lies, damn lies, and
statistics,” GPS World, vol. 18, no. 1, pp. 26–33, 2007.

[29] P. Newson and J. Krumm, “Hidden markov map matching through noise
and sparseness,” in Proc. of ACM SIGSPATIAL Int. Conf. on Advances
in Geographic Information Syst., 2009, pp. 336–343.

[30] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang, “Map-
matching for low-sampling-rate GPS trajectories,” in Proc. of ACM
SIGSPATIAL Int. Conf. on Adv. in Geo. Inform. Syst., 2009, pp. 352–361.

[31] C. Goh, J. Dauwels, N. Mitrovic, M. T. Asif, A. Oran, and P. Jaillet,
“Online map-matching based on Hidden Markov model for real-time
traffic sensing applications,” in Proc. of Int. IEEE Conf. on Intelligent
Transportation Syst., 2012, pp. 776 –781.

[32] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G.-Z. Sun, “An interactive-
voting based map matching algorithm,” in Proc. of Int. Conf. on Mobile
Data Management. IEEE Computer Society, 2010, pp. 43–52.

[33] X. Liu, K. Liu, M. Li, and F. Lu, “A st-crf map-matching method for
low-frequency floating car data,” IEEE Trans. on Intell. Transp. Syst.,
vol. 18, no. 5, pp. 1241–1254, 2017.

[34] O. Mazhelis, “Using recursive Bayesian estimation for matching GPS
measurements to imperfect road network data,” in Proc. of Int. IEEE
Conf. on Intelligent Transportation Syst., 2010, pp. 1492–1497.

[35] G. Jagadeesh and T. Srikanthan, “Robust real-time route inference from
sparse vehicle position data,” in Proc. of IEEE Int. Conf. on Intelligent
Transportation Syst., Oct 2014, pp. 296–301.

[36] M. Quddus and S. Washington, “Shortest path and vehicle trajectory
aided map-matching for low frequency {GPS} data,” Transportation
Research Part C: Emerging Technologies, vol. 55, pp. 328 – 339, 2015.

[37] R. Mohamed, H. Aly, and M. Youssef, “Accurate real-time map matching
for challenging environments,” IEEE Trans. on Intell. Transp. Syst.,
vol. 18, no. 4, pp. 847–857, 2017.

[38] M. Hashemi and H. A. Karimi, “A weight-based map-matching algo-
rithm for vehicle navigation in complex urban networks,” Journal of
Intell. Transp. Syst., vol. 20, no. 6, pp. 573–590, 2016.

[39] G. Hu, J. Shao, F. Liu, Y. Wang, and H. T. Shen, “If-matching:
Towards accurate map-matching with information fusion,” IEEE Trans.
on Knowledge and Data Engineering, vol. 29, no. 1, pp. 114–127, 2017.

[40] Y. J. Gong, E. Chen, X. Zhang, L. M. Ni, and J. Zhang, “Antmapper:
An ant colony-based map matching approach for trajectory-based appli-
cations,” IEEE Trans. on Intell. Transp. Syst., no. 99, pp. 1–12, 2017.

[41] H. Wei, Y. Wang, G. Forman, and Y. Zhu, “Map matching by Fréchet
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