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Abstract. The workforce planning problem of hiring, dismissing, and promoting has been
the perennial difficulty of Human Resource (HR) management. To cope with uncertain at-
trition, we propose a new approach of finding a course of action that safeguards against vi-
olating organizational target-meeting constraints, such as productivity, budget, headcount,
dismissal threshold, and managerial span of control. As such, this approach leads to a trac-
table conic optimization model that minimizes a decision criterion that is inspired by the
riskiness index of Aumann and Serrano, for which its value can be associated with proba-
bilistic and robustness guarantees in meeting constraints under uncertainty. Additionally,
our model departs from the literature by considering employees’ time-in-grade, which is
known to affect resignations, as a decision variable. In our formulation, decisions and the
uncertainty are related. To solve the model, we introduce the technique of pipeline invari-
ance, which yields an exact reformulation that may be tractably solved. Computational per-
formance of the model is studied by running simulations on a real data set of employees
performing the same job function in the Singapore Civil Service. Using our model, we are
able to numerically illustrate insights into HR, such as the consequences of a lack of organi-
zational renewal. Our model is also likely the first numerical illustration that lends weight
to a time-based progression policy common to bureaucracies.
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1. Introduction

Although practitioners employ different Strategic

Human Resource (HR) function has recently gained
prominence. This is driven by the growing practice of
Strategic HR Management or Strategic Workforce Plan-
ning (Buyens and De Vos 2001, Ulrich and Dulebohn
2015), where human capital is structured to achieve trans-
formational goals of the organization. Strategic Workforce
Planning contrasts against traditional workforce planning;
the former, Ulrich et al. (2012) argue, is tied in with the
strategic objectives of the organization. Although this is
recognized as a nascent field, we are seeing in-depth sur-
veys that stocktake on the practice of Strategic Workforce
Planning; for example, a study by KPMG surveyed 37 or-
ganizations in the United Kingdom, with at least half hav-
ing at least 10,000 employees." We also see an offering of
consultancy services for Strategic Workforce Planning.”
These consultancies often provide data-driven workforce
planning tools or methodologies.” All these point to ambi-
tions to utilize data-driven tools in linking workforce plan-
ning to business strategy and the actual practice in
industry.
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Workforce Planning processes, there are often three
stages, as exemplified by the following description
from a global management consultancy firm: “Strategic
Workforce Planning enables translation of business
drivers into demand for skills and capabilities, as-
sesses expected supply within the organization and
in the labor market to anticipate gaps or overages,
and identifies how to solve them through reskilling,
hiring, and redeployment.”* The process begins with
identification of the organization’s strategic objectives
and value-add. As Gartner describes, “The first step
in building an effective workforce plan is understand-
ing the organization’s business strategy and goals.”*
By squaring the demand for workforce—that is, the
workforce resourcing required to support these strate-
gic goals and objectives—against the supply—that is,
the existing workforce in the organization—planners
are able to identify critical areas of gap to be filled. At
this point, many practitioners adopt analytics tools to
project the evolution of the workforce into the future.
Such tools can “provide organisations/companies with
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visibility into their current workforce (the supply) and
how the composition of this workforce is expected to
change over time as a result of workforce dynamics re-
lating to employees joining, moving within the organi-
sation and leaving.”” Finally, strategies are devised to
close this gap, such as hiring, promotions, transfers, re-
training, outsourcing and cosharing, to name a few.

Part of the allure of Strategic Workforce Planning lies
in the promise that it adopts a data-driven approach to-
ward the construction of the workforce plan. This is
evidenced by how HR analytics has been introduced in
almost every aspect of HR Management (Davenport
et al. 2010). Examples include attrition and flight risk,
talent and pipeline management, recruitment analytics
and employee value proposition, underperformance
risks, remuneration and benefits, real-time employee
engagement and sentiment analysis, learning and gami-
fication in the workplace, team performance, and social
networks, to name only a few.

1.1. Linking Data to Strategy

In practice, there are many challenges with executing
a data-driven Strategic Workforce Planning process.
Most primarily, it is not straightforward to either de-
termine the gaps in the workforce that emerge over
time or to deduce the accurate response to close these
gaps. For example, an organization is looking to
launch a new service, with targeted outcomes within
five years. What is the required workforce to support
such a function? Should new officers be hired, or
should the organization redeploy and retrain its exist-
ing officers? Should more specialized workers or gen-
eralists that can be flexibly deployed, but have lower
task-specific productivity, be employed? Translating
these strategic goals, if they can even be described as
productivity targets, into actual workforce figures is
notoriously difficult amongst practitioners. Moreover,
different HR interventions cannot be assessed sepa-
rately, as it is their combination that affects employees
and their behaviors. For example, an employee’s ca-
reer management can have downstream effects on
their flight risk, underperformance risk, engagement
levels, etc. As such, one needs to plan for this basket
of interventions and to minimize the risk of them not
articulating into eventual outcomes of individuals and
organizational units (Paul and Mitlacher 2008).

These challenges persist, despite the bountiful data
available on employees’ resignation patterns, perfor-
mance and learning records, and engagement indica-
tors. This is because HR analytics continues to struggle
to draw the link between human capital and organiza-
tional outcomes (Marler and Boudreau 2017). Although
data abound, Strategic Workforce Planning does not
immediately translate into an analysis frame that seam-
lessly integrates these data and secondary analyses into
trade-offs and risks at the organizational level. As such,

organizational leaders have repeatedly reported the
use of data as one of the key hurdles in the Strategic
Workforce Planning process.'

In this paper, we hope to make preliminary steps to-
ward this overarching goal. In particular, we would like
to concentrate on the topic of workforce planning—
how should a business unit hire, promote, and design
its operational structure in order to achieve a targeted
productivity level, while constrained by budget,
availability of workforce, and managerial span of
control? This is not simple; the trade-offs between dif-
ferent HR decisions may not be, at first glance, appar-
ent. For example, the optimal staffing level across
different competency bands could depend on both
the productivity targets that the organization aspires
to meet and the expectation of employees on promo-
tion and remuneration.

More specifically, our goal is to propose a data-driven
methodology for the Strategic Workforce Planning pro-
cess by attempting to address two key capacity-planning
questions:

1. Given productivity targets on various segments of
the workforce, how should staffing levels—that is, the
number of employees that are required within every job
function and level—be decided, while constrained by
the budget and other operating constraints?

2. Over time, how many officers need to be hired and/
or promoted in order to achieve these staffing levels,
while carefully managing for loss of employees through
resignations that cannot be controlled?

In contrast, we will not include in the scope of our
problem challenges pertaining to the execution of the
workforce plan. Specifically, we avoid questions on
which employees to promote, hire, or fire. We are cogni-
zant that these decisions often lie within the decision do-
main of HR practitioners and that we should not readily
encroach upon them. These decisions depend on many
other factors and considerations that cannot reasonably
be articulated, much less optimized. For example, a pos-
sible consideration for recruitment would be the mix of
skills and working styles that the new member would
bring to the team. Such considerations will depend idio-
syncratically on the managers and how they envision
operations to be run. Indeed, the HR practitioners with
which we have interacted for this project have also com-
municated that these decisions should lie within their
control, although they are happy for the model to advise
on the number of individuals to be promoted.

1.2. Literature Review

The workforce planning problem is not new. Davis
et al. (2018) motivate the need for workforce planning
in both the context of service continuity and financial
planning. Over the last half-century or so, there have
been various approaches, such as a simulation-based
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or systems-dynamics approach (to raise a few exam-
ples: Park et al. 2008 and Chung et al. 2010), an econo-
metric approach (e.g., Roos et al. 1999 and Sing et al.
2012), and, finally, a mathematical programming ap-
proach, which is the focus of this paper.

The most popular approach has been from the
perspective of a Markov model. Bartholomew et al.
(1991) provide a broad overview. Various improve-
ments over the years have incorporated learning ef-
fects and productivity (e.g., Gans and Zhou 2002),
interdepartmental flows (Song and Huang 2008),
and staff scheduling (such as Abernathy et al. 1973
and Kim and Mehrotra 2015), just to name a few ex-
tensions. The primary goal of the Markov model is
to set up the transition probabilities through the hi-
erarchy and determine the two central questions
of attainability (is it possible to transit from one or-
ganization of work to another?) and sustainability
(what is the minimum cost to do so?). As explained
in Guerry and De Feyter (2012), attainability is not
always guaranteed. As such, additional conditions
and approximate measures (such as fuzzy sets as in
Dimitriou et al. 2013) have been introduced. Many of
these models also require the development of a heu-
ristic to obtain tractable solutions (as is the case in
Gans and Zhou 2002).

At the broader level, some researchers have moved
away from the Markov paradigm and approached the
problem via dynamic programming (as in Mehlmann
1980, Flynn 1981, and Rao 1990). In order to balance be-
tween competing organizational outcomes, some have
adopted a goal-programming paradigm (Price and
Piskor 1972, Georgiou and Tsantas 2002). In more mod-
ern literature, researchers have applied stochastic pro-
gramming techniques supported by linearizations and
Bender’s decomposition, as in Zhu and Sherali (2009),
in order to tackle the computational difficulties. A re-
cent work by De Feyter et al. (2017) considers a multiple
objective model to control for costs and proximity to the
desired organizational structure. Their approach, how-
ever, does not consider promotions as part of the deci-
sion variables.

Nonetheless, these methods suffer from the curse of
dimensionality and become rapidly unscalable with the
number of input variables. For example, in Zhu and
Sherali’s case, the stochastic model only solved three out
of 10 times in computational tests. In the age of data ana-
lytics, taking as input individual-level machine-learning
predictions of flight risk and performance risk would
very likely exceed the computational limits of these
models. Often, the optimal organizational structure or
production model may also not be known (Valeva et al.
2017 designed a learning model in the context of uncer-
tain product demand). Moreover, although uncertainty
in resignations, which are known to fluctuate wildly, is
accounted for in the Markov structure of the problems, it

is not immediately apparent how these models can be
made robust to the wrong estimation of resignation like-
lihood from the data.

Most critically, time spent by an employee in a grade
(time-in-grade, for short) is often ignored, although it is
known to be a major contributing factor that shapes
employee behavior, such as resignations. Studies
drawing the connection between resignations and
time-in-organization or time-in-grade are not in scarce
supply (e.g., Iverson 1999 and Kuwaiti et al. 2016). The
data from our partnering agency also illustrate the con-
nection, and it is not a linear one. Understanding HR
decisions along the dimensions of time-in-grade is also
an important problem (such as Senerdem 2001 and the
subsequent literature). Incorporating them, however,
poses challenges—the uncertainty at each time period
will depend on decisions made in the previous period.
Hence, techniques to deal with it are few and far
between.

One of the earliest attempts was by Bres et al. (1980),
who presented a linear goal programming model that
decided on the number of promotions where time-in-
organization was a factor. Subsequently, Kalamatianou
(1987) retained the Markov framework, by cutting
up the population of employees into those yet-to-be
and those ready-to-be promoted and estimating the
transition probabilities based on the age distribution.
Nonetheless, this did not directly address the inter-
dependence of decision and uncertainty and was a
workaround. Finally, Nilakantan and Raghavendra
(2008) attempted a Markov model based on both time-
in-grade and time-in-organization, but only under strict
assumptions. Unfortunately, they also stopped short of
attainability.

We also make a quick note about the literature on
learning curves (Shafer et al. 2001). In this stream, a
learning curve is assumed that describes the evolution
of the productivity of employees with time and then
optimized under a productivity and cost model. As
described by Nembhard and Bentefouet (2012), non-
linear formulations often arise out of optimization
problems structured around learning curves. These
models may require heuristics or simplifications to
solve. From a different perspective, Arlotto et al.
(2014) instead utilized an infinite-armed bandit model
to understand the trade-offs between productivity
and the opportunity cost of retaining a poorly per-
forming employee. We note the presence of such liter-
ature in learning curves; however, we seek to describe
productivity in a more general fashion and to be able
to consider decisions that relate promotion decisions
to time-in-grade in a tractable fashion.

The above literature review identifies a few key
gaps in the present literature. First, tractability of pre-
sent models is a key consideration. In the first place,
attainability is not guaranteed in Markov models.
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Moreover, many of the models we examined may
only be solved under heuristics or only for small in-
stances. It is also not clear whether these heuristics
provide guarantees on model performance. As we
move toward greater integration of predictive analyt-
ics with HR management, where large amounts of
data are ingested by the model, such approaches will
rapidly become untenable. Second, these models can-
not be fundamentally extended to take into consider-
ation time-in-grade without key technical innovations.
This is despite the benefits of better accuracy, result-
ing from greater granularity in the decisions and res-
ignations. This is because decisions and uncertainty
become intertwined. Attempts to model time-in-grade
are also extremely limited.

This lack of computational tractability and model-
ing flexibility limits the ability of HR practitioners to
implement a recruitment and progression strategy
based on time-in-grade. At its base, there isn't even
conclusive numerical evidence in support of time-
based progression, which is practiced across many bu-
reaucracies. We aim to fill this gap in this paper.

To address these challenges, we propose to consider
approaches based on robust optimization. In work-
force planning, robust optimization has traditionally
been applied to staffing and scheduling problems
(e.g., Burke et al. 2004, Lusby et al. 2012, and Yan et al.
2018). However, to the best of our knowledge, we ha-
ven't seen any literature on its application to strategic
workforce capacity planning.

1.3. Contributions

First and foremost, our model is a novel robust multiper-
iod optimization framework that considers time-in-grade
as a second timescale. In particular, the uncertainty and
decision space have a specific interdependent structure,
termed “pipeline invariance.” This improves on the liter-
ature because:

1. Its decision criterion is based on Aumann and
Serrano’s (2008) index, for which its value can be associ-
ated with probabilistic and robustness guarantees in
meeting organizational constraints under uncertainty.
Specifically, it is able to handle distributional ambiguity
in the estimation of resignation probabilities.

2. It can be formulated as an exponential conic opti-
mization problem, whose properties can be exploited
to be solved efficiently, despite the interdependence of
uncertainty and decisions.

3. It may be reasonably extended to incorporate data
at the individualized level, which can take as input the
results from various predictive analytics models.

Second, we claim that our model provides a novel
application in the domain of HR, by providing a pos-
sible means to address the difficulties in Strategic
Workforce Planning. Our model can be applied within
a variety of contexts and is customizable to different

measures of productivity and organizational structure.
As such, we can use our model to illustrate insights
into HR, in particular, giving quantitative substantia-
tion for a time-based progression model and the ramifi-
cations of a lack of organizational renewal. The model
is considered in the Singapore Civil Service.

Our work is also closely related to the literature on
inventory models and service management. Specifi-
cally, Gans and Zhou (2002) motivated their approach
from the context of call centers and explicitly drew the
connections to inventory models in their paper; Fry
et al. (2006) described their workforce model as an
adaptation of the newsvendor problem to a decision-
dependent context.

1.4. Notation

Given N €N, let [N] represent {1,...,N} and denote
[N]o := {0} U[N]. Let Z; be the nonnegative integers.
We use bold-faced characters, such as x € RN, to repre-
sent vectors, while x; denotes its i-th element. The tilde
sign denotes an uncertain or random parameter, such
as z, without explicitly stating its probability distribu-
tion. We use the convention log0 = max( = —co and
min@ = co. We shall use Ep[-] to represent the expecta-
tion, with respect to the reference distribution P, over
the uncertainty across all time periods, unless other-
wise stated. When the reference distribution is unam-
biguous, P is dropped. Where unambiguous, sums are
assumed to be over the entire range of the indices.

2. Workforce Planning Under Uncertainty
Traditionally, the workforce planning problem is set
up over a finite time horizon t € [T];, where t = T is
the last time period to be considered. Often, the ob-
jective is to attain a known staffing level. Employees
are often split into different departments, special-
izations, or job roles. For now, we assume that the
employees belong to just one department or job role.
The interested reader is diverted to Appendix B for
details on the general setting.

Let the stock (5)5’T = ~§’T denote the number of em-
ployees at time t € [T] for all the times up to the last
planning time T, having spent 7 € [M], years at grade
l€[L]. When t = 0, s?’T represents the known initial
data. Each employee in grade ! and having spent 7
years in the grade is paid wage w| and generates a re-
turn of productivity of r}. The organizational structure is
the hierarchy of grades. Similar to existing literature,
we categorize individual contributors into skills strata
1€ W:=[L], where L is the highest skills stratum. These
contributors are supervised by managers, limited by
the maximum number of employees they can manage,
called the span of control c. In our model, managers

occupy the higher grades I € M :={L +1,...,L}, where
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L is the highest grade in the hierarchy. Promotion is the
movement of employees between adjacent strata. For
simplicity, assume that promotion only occurs between
adjacent grades and ignore complications, such as
transfers across departments (see Appendix B for
details).

Employees may be lost through attrition. In the litera-
ture, attrition is often understood as a rate—an annual
proportion of stock §. Instead, we hope to model attrition
as a random variable depending on the decision varia-
bles, so as to capture the interdependence—employees
who were not promoted have a different chance of
leaving compared with those who were. To do so, we
need the following assumption:

Assumption 1.

a. Different employees make independent resignation deci-
sions; and

b. An employee’s probability of resignation depends solely
on his grade and the time spent in that grade.

Arguably, Assumption 1 is debatable on both
counts. In practice, resignation decisions of different
employees might not be independent. For example,
employees from the same department might leave
due to similar reasons, possibly even influencing each
other to leave. Moreover, resignation decisions by em-
ployees are also endogenous with the promotion deci-
sions made; for example, it is conceivable that if there
are more employees promoted, there may be a per-
ceived impression that there are fewer opportunities
for advancement amongst the remaining employees,
which might promote higher levels of resignation. In
general, part (b) of the assumption would also not be
true. It is well known that resignation decisions de-
pend on a wide range of factors, both idiosyncratic to
the employee and shared across all employees, such
as organizational culture.

Despite these reasons, we have chosen to make this
assumption for the reason that it does make the for-
mulation tractable, and, additionally, there are some
features that we can build into the model that can alle-
viate the impact of this assumption. In the discussion
after Proposition 1, we will discuss how the definition
of the uncertainty set will allow our model to be ro-
bust to the independence assumption. Additionally,
we also note that Assumption 1(b) is already compar-
atively relaxed compared with traditional Markov
models that assume that the probability of resignation
depends solely on the grade.

For both of these assumptions, our model permits
an additional modification that can mitigate or reduce
their impact. Specifically, our model allows us to
group employees into categories i€Z. This would
amount to adding an index i, which represents these

groupings, to every state variable, decision variable,
and uncertainty. The benefit of this is that Assumption
1 may be relaxed. For example, suppose a clustering
was first performed on the employee’s likelihood of
resignation, using a wide set of predictors and side
information, including past evaluations, demographics,
reporting lines, and even engagement scores. Then,
Assumption 1(b) would now read as “An employee’s
probability of resignation depends solely on his
grade, the time spent in that grade, and the cluster i to
which they belong.” As such, factors that we believe
predict attrition and factors that might lead to the lack
of independence previously can all be incorporated into
the data set. Based on this, we can construct clusters i
and, hence, implicitly capture the effect of these factors
in our model. More of this is discussed in Appendix B.

Assumption 1 allows us to model the attrition pro-
cess via the binomial distribution, where Bin(x, ) rep-
resents the number of successes under x number of trials,
each with success probability g > 0. In our case, x repre-
sents the stock before attrition, and g represents the chance
an employee stays within an organization till the next
year (also called “retention”). Specifically, define g} as the
probability that an employee that has spent 7 time in
grade [ will voluntarily remain in the organization till the
next year, assuming they are not promoted.

2.1. HR Decisions

The workforce planner makes two types of decisions in
this process, which articulate into the organizational struc-
ture. The first is the promotion of employees. Specifically,
let pf’f € [0, 1] represent the decision variable of the fraction
of employees that have spent 7 years in grade [ at time ¢ >
1 to be retained in grade I. The remaining fraction 1 —p;”
forms both the promotees and those dismissed.

As such, the Binomial model induces the following
dynamics forall t € [T],7 € [M] and € [L]:

s~ Bin(s] " p ). )

The sequence of events is as follows: Amongst all of

the employees 5 f_l’T_l, the planner makes the decision

to only retain 3" "'p!™""! of them in this grade. At-
trition then sets in, with each of these employees
experiencing a 1 —g; chance of resigning.

The second type of decision to be made is the num-
ber of newcomers to each grade I. Notice that s rep-
resents the number of employees who have spent zero
years at grade [ at time ¢ > 1. This is precisely the new-
comers to grade I. Let this be a decision variable.

As such, we are able to determine the net inflow of
employees into the organization at grade [ at time .

Denote this random variable by fz,t, and it is given by
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Figure 1. Flow Balance Amongst Hiring, Dismissal, and Promotion Decisions

New hires

N

Dismissals <

Net inflow

Promotees &
FIant a4 _p[fl,T)
p i ! Dismissals

|

—  Promotees

Newcomers
- Grade [+ 1

Removed

Ea-p)

the following expression. Figure 1 illustrates how this
expression is derived.

~t 1,7
hl+1 _Sl+1 Z (

'T’)Vt e[T], Vie[L]. )

~t ~t )
Consequently, whenever h;,; >0, h;,;, new hires are

made to replenish the stock. Otherwise, —ﬁ; 41 of em-
ployees removed from grade [ will be dismissed. As
an illustration, suppose sf;rol =4, and five employees
are to be removed from grade /. The interpretation is
that out of all the employees from grade /, HR is to
choose one to be terminated and four to be promoted.
In practice, HR can choose to terminate the worst-
performing employee in that grade and promote the
best four or to use any other metric they so desire.
Observe that at the boundary, we have s/, =0 to de-
note the situation when all employees removed from
grade L will be dismissed.

2.2. Target-Meeting Constraints

As we motivated in the introduction, the organization
plans for various target-meeting constraints during
the Strategic Workforce Planning process that must be
satisfied. These constraints can be affected by uncer-
tain attrition. These include, inter alia, productivity,
budget, headcount, dismissal threshold, and manage-
rial span of control.

1. Productivity constraint: 3, 5;r{ > P, Vt € [T].

2. Headcount constraint: 3, 5 ~” <H,, Vte|T],

3. Budget constraint: 3, 3} Twl <B;, Vte|[T].

4. Span of control constraint: For each [ e M, let W,
C[I-1] be the employee grades supervised by the
manager. Then,

DELEDIEY

AeEW,
T

Vie M, Vte[T].

Removed

~t—1,1

Grade [

-p

We can simplify this by letting
—cf ifA=1
=11 ifAew
0  otherwise

then the constraint may simply be written as
S8b, <0, VEe[T], Vie M.

5. Dismissal threshold constraint: —hl 1 <Fl+1, Vte
[T], VI € [L], meaning that no more than Fi,; >0 em-
ployees ought to be dismissed. Equivalently, this is

Z~t 17(

Table 1 describes all of the variables and parameters
defined above in the model.

tlT)_sl+1<Fl+1 (3)

2.3. On Productivity Constraints

Although we only consider a single form for the
productivity constraint, the model permits the planner
to include as many productivity constraints as neces-
sary, and they do not need to be in the same units. The
only restriction is that the constraints must be linear in
Nt . This turns out to be reasonably general—many
measures of productivity can be described as such. We
describe the following examples:

1. Quantity/quality of completed work: Suppose an
employee having worked for 7 years at grade [ can fin-
ish 7} pieces of work in an allocated time, then the total
quantity of work completed is 3,7{5;". This is in the
linear form required.

2. Time (or average time) to complete tasks: Again, if
an employee having worked for 7 years at grade [ takes

uj to finish a task, then 37 u/7]5; 7557 is the total time taken

T4 T
1"
o173
erage time to complete tasks. Hence, an average time

to complete all the tasks, and 37, 5" is the av-
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Table 1. List of Parameters and Variables

Dimensions Description
T Last modeling time
M Largest possible years-in-grade
L Largest possible grade
State and decision variables
g Random variable of the number of employees having spent 7 >0 years at grade I at time ¢
fll’ Random variable of the net inflow of employees into the organization at grade / at time ¢
s Decision variable of the number of newcomers to grade / at time ¢
P Decision variable of the proportion of employees having spent 7 > 0 years at grade ! to be retained at time ¢
Parameters
s?“ Current employees having spent 7 years at grade [
q; Retention probability of an officer having spent 7 years in grade [
i Productivity rate of having spent 7 years in grade !
P; Productivity target to be achieved at time f
H, Headcount target to be kept within at time ¢

Wage of an officer having spent 7 years in grade |
By Budget target to be kept within at time ¢
Span of control of a manager having spent 7 years in grade |

i, Target to keep the number of dismissed officers from grade / within at time ¢
uiry are fully compatible with our model. Using the notation
constraint 3, ——LL—5" <U' has the equivalent ex- fully comp &
oS in our paper,

pression 3 (uf — U")rf5;" <0, which is in the linear
form as desired.

3. Less common forms of productivity can also be
considered—for example, chance of defective product.
Suppose it is necessary to keep the chance of a defective
product under some bound €. Suppose every employee
has an independent probability 1 — j;T) of creating a de-
fective product. Then, the probability that no defective

product is created amongst all the goods is Hfjf)’f 5.

Then, the constraint becomes 3 r/log (j}” )35 <log(l-e),
which is in the desired form.

In particular, measuring the quality and quantity of
finished work could be a daunting task. Assuming
that a data set of observed work quantities and em-
ployee demographics, containing time-in-grade infor-
mation, is given, one can, in the simplest case, take an
average over all employees in the same grade and
having spent the same time in that grade to obtain the
curve r{. As this is subjected to potential noise, an ad-
ditional smoothing in form of a parametric regression
could also be performed. In the numerical simulations
later, we shall see how this could be done. Once 7] is
obtained, the productivity constraint 3 75" >R!
could be written.

A common approach to parametrically smooth the
curve 1} is via learning curves—for example, using
the form that appears in Shafer et al. (2001). In learn-
ing curves, the productivity of the employee is as-
sumed to vary with the amount of work experience—
in other words, time-in-grade. As such, learning curves

(4)

T+V
i

rf=nl—
! nl(T+v+¢l

where 7 is the accumulated experience, here in the
context of our exposition, understood as the time-in-
grade, and 7, v, and 1, are fitted parameters denoting
the maximum asymptotic productivity that can be
reached for that grade /, contribution from prior expe-
rience, and a learning rate term idiosyncratic to the
grade I, respectively. Similar to the previous case,
once the parametric learning-curve model is obtained,
one simply needs to iterate over discrete times-in-
grade 7 € [M], to obtain the vector 7] to compose the
productivity constraint ZJ}E;'T >P;. We present a
simple case study in Appendix B.3 to illustrate specifi-
cally how this is done on a synthetic data set.

Recently, it has been increasingly popular to use
wider sets of employee data to predict employee
performance. With the addition of an index i to rep-
resent employee clusters, our model is able to re-
main compatible with such data-driven predictive
analytics methodologies. More is discussed in
Appendix B.

The above approach assumes the expected produc-
tivity rate on each employee. More generally, it is also
possible to model productivity of individual officers
as being independently and identically drawn from a
productivity distribution. In this case, we phrase the
productivity constraints as

S (s) = by 5)

It
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where 7/ (s), representing the total random productiv-
ity contributions by s employees, each with a random
independent and identically distributed productivity
rate of 7};, is defined as

Fi(s)= D)7

i€[s]

2.4. Decision Criterion

In the literature, one might minimize the costs of
maintaining a workforce, maximize the total produc-
tivity of employees, or deal with these multiple objec-
tives in the goal-programming sense (for example, in
Price and Piskor 1972). However, it could be difficult
to prescribe the trade-offs between costs and produc-
tivity (e.g., for a maintenance crew), say, in goal
programming.

It may also be appropriate in some business con-
texts neither to maximize output nor minimize oper-
ating costs, but to run the least risk of disruption,
such as a service center. Without a clear objective
function, we instead pursue an optimization model
that minimizes this risk. It sounds tempting to mini-
mize the joint probability of constraint violation, sim-
ilar to the P-model proposed by Charnes and Cooper
(1963), which, often and in particular in this case, has
intractable formulations. In fact, our goal doesn’t ne-
cessitate the minimization of the chance of constraint
violation per se. Instead, we simply desire a policy
that does not fare too poorly—in other words, a course
of action with some guarantees over the risks of
violation.

Aumann and Serrano’s (2008) index has this func-
tionality. Let Z be the set of all random variables on
our probability space (Q,L,P). Define the Aumann
and Serrano (2008) index as the functional u:Z —
R U{oo}:

plz] =inf{k > 0: C[z] <0}, (6)
in terms of the certainty equivalence
klog(Elexp (z/k)]) ifk>0
Cilz] =1 E[Z] if k=00
esssup z if k=0.

Here, Z represents the size of the violation—a positive
number constitutes a violation and vice versa. The ex-
ponential disutility penalizes ever larger violations.

Proposition 1. The Aumann and Serrano (2008) index
obeys the following properties:

1. Satisficing: u[z] = 0 ifand only if P[Z < 0] = 1.

2. Infeasibility: If E[Z] > 0, then u[z] = .

3. Convexity: u is convex in z.

4. Probabilistic guarantees: For u[zZ] > 0and ¢ >0,
P[Z > ¢] <exp(-¢/ulZ]).
5. Robustness guarantees: For any probability measure Q
absolutely continuous in P and Q # P,
Eolz] _ s
< ulz|,
o(olp) <!

where D(Q||P) is the Kullback-Leibler divergence of Q
from the reference distribution P.

Proof. The first four properties are well established
(see, for instance, Brown and Sim 2008). The last prop-
erty arises from the dual representation of the certain-
ty equivalence relating to the Kullback-Leibler (KL)
divergence (see, for example, Lim and Shanthikumar
2007) given by

Celz] = S%p {Eqlz] -kDQIIP)}. O @)

The first property states that there is no risk if there
is no chance of violation. The second dictates that if vi-
olations are always expected, then the risk is always in-
finite. The third requires convexity, and the fourth
is our desired guarantee against constraint violation,
which is the consequence of Markov’s inequality.
Hence, u[Z] captures the notion of risk—the lower p[Z]
is, the sharper the guarantee against ever larger viola-
tions ¢ of the constraint. The last property connects the
index with the notion of robust optimization. It implies
that even if the true probability distribution were to de-
viate from PP, the worst-case expectation of the underly-
ing random variable, normalized by its KL divergence
from the reference distribution, is bounded below by
the index. Intuitively, a lower index is associated with
higher tolerance of distributional ambiguity against the
impact of constraint violation.

Robustness is critical—any model would naturally
be sensitive to the specification of the attrition esti-
mates gq;. In reality, estimating g/ from the data could
be subject to large errors (see Figure 2). These errors
would arise from a few sources. First, there could be
factors affecting resignations that vary over the time
span of the data set—for example, the outlook of the
economic sector to which the business belongs. Sec-
ond, by considering the additional dimension of time-
in-grade, a greater number of data points is required
to achieve the same error per estimate. These errors
cannot be fully eradicated, even after parsing the
estimates through a smoothing model (be it a Loess
regression, such as in Figure 3, or a survival-based
model). Without Proposition 1, the model would suf-
fer from similar model-misspecification errors, as ex-
perienced by assuming the probability distributions
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Figure 2. (Color online) Empirical Retention Rates with Time-in-Grade Observed in the Dataset in the Numerical Study
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in other stochastic programming approaches in the
literature.

Moreover, the robustness guarantee property does
also mitigate the independence assumption (Assump-
tion 1) to some extent. In this case, the reference distri-
bution P would be the assumed empirical distribution
and that which we have assumed to be independent
across employees. Suppose that the true distribution
Q was indeed dependent, but with marginals that
are identical to P. The Kullback-Leibler divergence is
known to capture this difference: D(Q||P) = D(Qyll
Py) +D(Qyl[Py), if P=PyPy is independent, with
equality if and only if Q =Q4Qy is independent—

that is, the sum of KL-divergences over the marginal
distributions is less than the KL-divergence over
the full distributions, which is a consequence of
the properties of Shannon entropy (Shannon 1948).
Hence, by being robust over the set of all distribu-
tions that are within some radius in terms of the KL
divergence distance from the reference distribution,
the model also encompasses dependent distributions
that are not too far away from the reference distribu-
tion. In other words, the optimal solution obtained
would provide a lower bound in terms of the perfor-
mance to any solution obtained by using any of these
distributions.

Figure 3. (Color online) Loess-Smoothed Attrition Rates for Each Grade
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Although it might have been possible to pick an un-
certainty set that does not require the assumption of
independence—for example, a moment uncertainty
set (such as one that defines the mean and variance on
the number of employees who resigned)—however, it
would be difficult to define a tractable formulation. In
particular, it would be difficult to decouple the effects
of our decisions (promotions) from the definition of
the uncertainty set itself (the mean number of resign-
ing employees) or to deal with the multiperiod and se-
quential decision nature of the problem. Our model,
by assuming independence, allows us to decompose
these two components after some careful reformula-
tion. In contrast, we have paid a small cost in ex-
change for this tractability, because the robustness
property of the model alleviates having confined our-
selves to independent distributions.

Aumann and Serrano’s (2008) index fits well to
our multiobjective setting, where we have to assess
the combined risk of violating any of the operational
constraints. Specifically, given a set of linear con-
straints, {X;<Gj,j€ J}, we evaluate the combined
risk under uncertainty via the following decision

criterion,
0;

1nf{k >0 : Ck[

j€J

!.1 = max {[J

1<0 V]ej} (8)
i

which picks the value of u[-] arising from the worst-
performing constraint j. This criterion gives rise to the
probabilistic guarantees,

f gz o] sewiom) oz
and robustness guarantees,
Eq[% - G;]/6;
— =iy SH VQ
DEIp) "

for all constraints, j € 7, as a result of Proposition 1.

Across constraints, 0;>0 are the normalization
parameters that calibrate the uncertainty aversion of
violating each constraint—for example, say, to empha-
size that the budget constraint is more critical than the
headcount or across time, such as a stronger aversion
to earlier time violation than in the future, as with dis-
counting. In practice, the constraint would be normal-
ized by the target—for instance, 6; = |G;|—and, hence,
violations are understood as proportional to the target
Gj, making it comparable across different constraints
and across different units of measurement.

2.5. Model Formulation
We now state our proposed Strategic Workforce Plan-
ning Under Uncertainty (SWPU) model, arising from (8):

infk
st G| (Z”T— )so vt € [T]
I It
Ce 2( 5wy - )so vte[T]
I It
Cx §(H—Z§f“r}) <0 VtelT]
t It
Ck %ng(b,ﬁ/\‘so vte[T], Ve M
tl AT
Cil—~ (Z~t111( flTl)_sM_pr) <0 Vte[T],Vle][L]

k>0,5°>059 =0,0<p/" <1 VtelT] Vie[L], Vre[M],

©)
where the random variables have the decision-
dependent marginal distributions presented in (1).
Note that it is not immediately clear whether we
can formulate Problem (9) as a tractable optimization
problem, because the problem is not convex in the de-
cision variables, even if k is fixed.

3. Tractable Conic Optimization Model
To convexify Problem (9), we perform a change of var-
iables to obtain the following formulation:

inf k
1

bt
@ 5" —H;
t\I,7

zht
62 §/wf ~
i \Tx

Cy o (P, ng*r,’)

st. G <O0Vte[T]

@)
~

<0Vte[T]

<0Vte|[T]

Chl o7 Zé”b}\ <O0Vte[T], VieM

AT

Ci QLS( S (- - i F;H)
L\ T
k>0,d/ =0,0<d" <d™ 40 =)Vt e [T], Vi€ [L], V1 € [M],
(10)
where the underlying random variables have the fol-

lowing dynamics

~t 1,7-1
1 ~Bln(

<O0Vte|[T], Vie][L]

t/"r

dt 11' 1’ql VtE[T], V1 e [M], VZE[L]

(11)
We use the convention that d;"/ d;_l’T_l =0 whenever

le’T_l = 0. We call the optimal k* the risk level associ-
ated with this specification of constraints.

Proposition 2. Models (9) and (10) are equivalent. In par-
ticular, given an optimal solution to Problem (10), we can
obtain the corresponding solution to Problem (9) by letting
s =diY and pitvl=d AV with pitv T =0

whenever d,t T =0.
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Proof. Consider the feasible solution in Problem (9),

t0 _ 0 071 _ 07
asd;;; =s/; and d; =5}, welet

7

tt _ t=11-1 3t—1,7-1
dl —Fl dl

for all te[T],l€[L], T € [M]. Observe from (1), when-
ever pi "1 =0, then §"""™*" = 0 almost surely for all
t' > 0. Equation (11) indicates that this is also true for the
decision-dependent random variables in Problem (10).
Therefore, the solution would also be feasible in Problem
(10). Conversely, consider a feasible solution in Problem

(10), and let sy’ =di°, and p; "' =di"/diT !, with
t—1,7—1

; =0 whenever df_“_l = 0. By inspection, this so-
lution would be feasible in Problem (9). O

The decision variable d;* has the convenient inter-
pretation that it is the number of employees that have
stayed for 7 years in grade [ in the absence of any
attrition:

Proposition 3. For all t€[T],l€[L], T € [M], we have
that dy* = esssup 5, = E[5]]/y], where [ = [T,cpi-

Proof. The results follows easily from (11). O

Hence, under Proposition 3, the feasible set of
Problem (10) is a polyhedron whenever k = 0 or k = co.
To obtain nontrivial solutions, we assume that the
constraints are such that k € (0, co)—that is, there does
not exist a solution that satisfies all constraints with
certainty—and that there exists a solution such that all
the constraints can be met in expectation. Organiza-
tions operating in the former regime are overly non-
chalant in setting targets, while those operating in
the latter are deemed unrealistic. Subsequently, we
will show that for a given k > 0, the feasible set of
Problem (10) is convex in d. As we have explained,
quite apart from other approaches, the decision crite-
rion based on the Aumann and Serrano (2008) index,
which is associated with robustness guarantees, per-
mits modest divergence from the above assumptions,
while ensuring the organizational constraints are
satisfied as well as possible under distributional
ambiguity.

3.1. Pipeline Invariance
This model turns out to be tractable. We first notice a
useful property about the dynamics we have defined:

Property 1 (Pipeline Invariance). Let g € (0,1) be fixed.
Let §(x) ~ Bin(x, q) be a family of Binomial-distributed ran-
dom variables with parameter x € X CZ;. We say that
they are pipeline invariant when

Elexp (5(x))] =exp(x-p(y)), Vxe X, VyeR, (12)

and p(-), which we call the relay function, is given by the
expression,

p(y) =log(1 —q+ge’). (13)

Pipeline invariance preserves the exponential func-
tional form under the action of taking expectations. It
turns out that pipeline invariance is satisfied by distri-
butions other than the Binomial, such as the Poisson
random variable Pois(x) with rate parameter x or the
Chi-squared distribution x?(df) with degrees of free-
dom df. Moreover, their relay functions are convex
over the domain.

As the consequence of pipeline invariance, the con-
straints in (10) have convex reformulations.

Theorem 1 (Pipeline Reformulation). If integrality of §' is
relaxed, then for any y € R,

Celys;"| = nf kg

st d"pj(y/k) <&
it it (gt A et ey gttt
1 ! ! ! S¢
Vt' € [min {t, 7} —1]
(14)

where pj(y) :=log(1—q] +q/e¥).

Proof of Theorem 1. We present the proof in
Appendix A. O

Remark 1. Relaxing integrality of 5§ is common in the
literature (for example, it also appears in Gans and
Zhou 2002). When integrality is relaxed, the random
variable Z ~ Bin(x,q) is understood as being defined
by the corresponding moment-generating function
Elexp (2t)] = ((1—q) + g exp (t))' and that esssupZ = x.
When x is large, integrality is less a concern—inaccu-
racies arising from the approximation are minimal.

Remark 2. The constraints in Problem (14) have the
form

dlog (1 —q+ge") <&,
when it is defined on d > 0. At d = 0, observe that

lim 4j0d log (1 — g +ge*/?) = max{0,C}, and the con-
straint should interpreted as (< &,0 < atd =0.

Proposition 4 (Independence of Pipelines). Under As-
sumption 1, any two state variables §§'T and §§;T', 1+1 and

T # 7 in the same time t are independent, conditional on
decisions {dlt"T (te[T],te [M]O} in the previous time peri-

odst' <t.

Proof. We relegate the proof to Appendix A. O

Remark 3.

a. Notice that this result does not require indepen-
dence across modeling time t. This is neither true in gen-
eral nor required in Theorem 2.
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b. Assumption 1 alone is msuff1c1ent for this proposi-
tion. The specific definition of d;° as a decision variable
is required.

Theorem 1 depends on the repeated application of
pipeline invariance. The idea is that the functional
form exp (-) is preserved within the expectation, hence
enabling us to evaluate E[exp (-)] repeatedly over time.
In this process, it creates a nested series of relay func-
tions p, which, being convex, can be represented as
auxiliary variables & in epigraph form. This is illustra-
tive of the concept of pipelines, which the stock in each
grade [ is aligned in:

0,0 0,0 =11 =22
Po= {51 /87,877, }
01 1512 223
Po= {51 sS17 a8 }
1,0 21 532
Po= {Sz sS1 S }
2,0 2,0 =31 =42
Pro= {sl /817,57, }

An employee belonging to a particular pipeline re-
mains in the same pipeline across time. Attrition
erodes the stock in the pipelines over time, and pro-
motion redistributes across pipelines. Such an inter-
pretation also explains why the independence result
in Proposition 4 works—each state variable is a sto-
chastic function of its predecessor in its pipeline—that
is, retraced to its ancestor, either an initial condition or
a decision variable.

The following results illustrate that considering in-
dividual variations in productivity as in (5) can be ac-
cepted under the Model Formulation (10).

Proposition 5. The general productivity constraints in
(5), where individual variations in productivity is consid-

ered, Ck[ei?(P, - Z,/T?}(éfﬂ))] <0, has the equivalent form

as a normal productivity constraint,

g

It
63k) )

Proof of Proposition 5. By Proposition 4, ?f(Ef’T)

Cr

where

17 (k) = 6’klog|E

exp

are independent random variables for different grade
I 'and time-in-grade 7. As such, we have

sl

It

Cr

=P,/0° —ch[ ( )/63].

Observe that

Gi[F(si)/63] = klogE

i
eXp[ 2 ké3]
ielz ¢

SE

=klogE exp

0’k

exp (Gfk log ( kr63)
t

= Ci[rf (k)37 /67,

and hence the results follow. O

Theorem 2. If integrality of §' is relaxed, then constraints
of the form,

Ck <0, (15)

(Z S/ uf — ut)/e
L

may be reformulated as the convex set of constraints

Zsl up +k Z & ng“ ", (16)

1<t’<t TZt

dy" pf (uf /k0) < & V1 € [M],

| pj (é[“””/di") <&V e[t-1]Te[M=t+t].

Proof. Independence as a result of Proposition 4 al-
lows the sum to be taken out of the certainty equiva-
lence operator Ci[-], which can be evaluated using
Theorem 1. O

The remaining challenge is to deal with the dismiss-
al threshold constraint. Thankfully:

Proposition 6 (Redistribution Constraint). Under the
same assumptions as Theorem 2, for fixed I, the constraint

Cr <0,

dt 1,7— 1_dtT
st-1r-1 £,0
( 5 - gi-ir-1 dl+1_Fl+1 /9
T I

(17)

is equivalent to the set of equations

a0 —dt +k > &

I<t'<t >t-1

dtfl,”[ _ dt,'[+1
g st e
1

ét’+l/1+l

't 7|l v,

d, " py s <
1

+kz El‘r [+2<P1+1+d[0

1+1

V' e[t-2],te[M—-t+t +1].
(18)

Proof. The proof is similar to the proof of Theorem 2;
as such, it is omitted. Again, note that for fixed k, the
problem remains convex. O
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3.2. Solving the Model

To solve the SWPU model, one can perform a bisec-
tion search on k. For a fixed k, the feasible set of Prob-
lem (10) can be expressed as a conic optimization
problem involving exponential cones.

Proposition 7. The constraint of the form
dlog(1-q+ge") <& ifd>0
(<¢0<¢ ifd=0,

is equivalent to the following constraints:

A=y +aqy <d
(y1,d, — &) e Kg
(y2,d,C— &) € K, (19)

for some y1,12 € R, where the exponential cone is defined as

Ke == {(x1,x2,%3) 1 x1 > x2exp (x3/x2),%2 > 0} _J{(x1,0,x3) : x1>0,x3 <0}

Proof. For d > 0, the nonlinear constraint can be ex-
pressed as

(1-g)dexp(=&/d) +qdexp(C—E&/d) <d,
or equivalently as

A-qy1+qy<d
dexp (=&/d) <
dexp (C—&/d) <y,

for some 1,1 € R. We can also check that when d =0,
the constraints of (19) require y;=1,=0 and

It is well known that exponential cones constraints
can be approximated with a series of second-order
cones (see, for example, Ben-Tal and Nemirovski
2001). More recently, there have also been advances in
the efficient computation of exponential cones, espe-
cially using interior point methods. A commercial
solver, MOSEK ApS (2019), is among the first to in-
clude support for exponential cones. Solvers are al-
ready available in MATLAB (CVX Research 2012) and
also in Julia/JuMP (e.g., Miles et al. 2016), extending
to mixed-integer convex programs. Our model does
not compromise tractability—the number of con-
straints does not grow exponentially with time hori-
zon T or any of the other parameters, such as grades L
or maximum time-in-grade M. Indeed, in Theorem 1,
for each t € [T], the number of exponential cone con-
straints required to reformulate one linear constraint
is of order O(LMT). Hence, in total, O(LMT?) expo-
nential cone constraints are required.

3.1.1. Cutting-Plane Approach. Even in the absence of
nonlinear solvers, we can use the cutting-plane ap-
proach to solve the conic optimization problem. This
approach has the advantage of keeping the model

linear, which has the benefit of having greater availabil-
ity of solvers and incorporating discrete decision varia-
bles. In fact, we use this approach to compute
the solutions.

We observe that for g€ [0,1], the function 6(d, Q)
:=dlog (1 - q+qe/?) is jointly convex and differentia-
ble on d > 0, hence, for all d > 0 and C € R. Hence, we
can replace the nonlinear function by a maximum of
an infinite set of affine functions,

0(d,C) = max {0(do, Co) + 901(do, Co)(d — do) + d02(do, Co)(C — Co)},

0>

where d6; and 99, respectively, denote the partial de-
rivatives of 6, with respect to its first and second argu-
ment. These affine functions can be introduced on the
fly in a standard cutting-plane implementation. This
approach works surprisingly well in our computa-
tional studies. Observe that 6(d,C) ~dlog(l—gq) as
C— —ooand 6(d,C) = C+dlogg as C — co. As such, the
behavior of dlog(1—gq+gqe*/!)<& is asymptotically
linear with respect to (, alluding to why the cutting-
plane method works well in practice.

Lastly, we comment that one can adapt the model,
by using a different k; for each constraint, indexed in a
set j € J and then performing a lexicographic minimi-
zation on k := (k;)c 7 (see Waltz 1967 on how to execute

this procedure). This methodology may be employed
if the decision maker is agnostic to the relative risk
aversions of each constraint and would prefer the
strongest performance achievable. In this paper, we
hope to use 0; to control the tightness of each constraint
and to gather insights from how the cost of greater
risk aversion in one constraint would affect other con-
straints. As such, we do not perform the lexicographic
minimization in this paper. We shall see this at work
later when we examine the flexibility of public-sector
agencies in dismissing employees in Section 4.

4. Strategic Workforce Planning in a Firm
In this section, we illustrate the SWPU model using
real data of > 5,000 employees in the Singapore Civil
Service, who can be safely assumed to have similar
job characteristics and backgrounds, tracked over six
years. These data are collected periodically at the in-
dividualized level, and, for this illustration, we are
able to summarize it into the form of the inputs for
our model. This includes their attrition, performance,
and wage patterns—personnel data that are similarly
collected by most large organizations. Because of
confidentiality, we are unable to reveal more about
the nature of the data, although in the subsequent
description, we will illustrate some features as far as
we are able to share. In this illustration, we shall look
at a five-year time window, T = 5.
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We model L = 4 grades in this organization, two
“individual contributor” grades labeled IC1 and IC2,
which generate a large part of the productivity, and
two manager grades, denoted M1 and M2. Progres-
sion occurs in this order, and skipping of grades is
disallowed. We truncate the maximum number of
years that an employee may remain in any grade to
M =20, where thereafter the employee is assumed to
have retired. At each grade I, we assume that em-
ployees are paid a base wage w; with an annual fixed
increment . Hence, wf = w;+ 1y. The parameters
w; and (; were statistically estimated from wage data
by means of a linear regression and rounded. Be-
cause of its sensitivity, we are unable to disclose
these estimates.

To prescribe the productivity curve of the employ-
ees, we directly obtained the average productivity
curve from the data themselves. Specifically, we
grouped employees into each grade and (discrete)
time-in-grade and then averaged their performances
to obtain 7] across time-in-grade. In this study, the
performance data are measured as a composite of
both quality and quantity of work done by the em-
ployee. They are ranked and also normalized across
the workforce. Figure 4 shows the mean productivity
by years-in-grade, as obtained from the data. It rises
with more years-in-grade, a reflection of the accumu-
lation of experience, before dipping with increasing
employee boredom and disengagement. Manager
span of control is also computed similarly.

Retention rates g were estimated from the data.
Figure 2 illustrates the estimates. Where the data were
sparse, fluctuations were severe. Nonetheless, Propo-
sition 1 provides the guarantee that even if we were to
wrongly estimate the retention rates, we are still ro-
bust, as long as the true distribution is not far off from

Table 2. Specification of Constraints in Numerical Study

Constraint Equation Target Specification
Headcount syt < H; Hi = g,Ho 8h=8
1
Budget ZTsf“wI’ <B; By =gBo =8
Productivity g} 55'.[7’7 >R, R = g;RO g =1+1.05@g-1)
It

our estimate. Later, when analyzing the robustness of
the model, we shall explore this further.

Finally, we specify the constraint targets. From here
on, the targets shall always be fixed as a geometric
rate of growth ¢ from the initial state at time t = 0. We
vary these rates of growth in different simulations.
Table 2 summarizes this. We also require that the pro-
ductivity target grows at a slightly faster rate than the
headcount and budget targets. We set F} = 0—that is,
that zero dismissals is preferred.

Because the certainty equivalence Cj is not scale-
invariant, we normalized all constraints so as to ensure
equitable comparisons (without having to calibrate 0;
separately for each constraint). In other words, the mod-
el penalizes the proportional violation of targets equally
across constraints.

With this specification, the model seeks to minimize
the risk level, k. It returns k, in addition to optimal sol-
utions for the decision variables of newcomers 55’0
(from which we compute net inflow #}) and promo-
tions dy*. To simulate the uncertainty and test the
model, for each analysis, we ran 1,000 simulations
with the random outcomes of employees’ retention
drawn from a binomial distribution of estimated re-
tention rates, g}, as the success probability.

Figure 4. (Color online) Profile of Performance with Time-in-Grade

Performance Profile with Years-in-grade

Performance

10 15 20

Years-in-grade
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The model was solved by using the cutting-plane
algorithm, as detailed in Algorithm 1. Because of the
asymptotically linear structure of the conic con-
straints, the algorithm reaches within high accuracy
very quickly. In computational tests, the model al-
ways solves within five minutes on an Intel® i7-6650U
dual-core processor, with the worst constraint requir-
ing no more than seven cutting planes to get within
10 accuracy of estimating the constraint.

4.1. Robustness

We first examine the robustness properties of the
model. By design, the model provides guarantees
against constraint violation. To illustrate this, we com-
pare our model against a deterministic model. The de-
terministic model is not intended as a comparative
benchmark to ascertain the strength of our model.
Because our robust model recovers the deterministic
model as k — oo, the latter is a guidepost for us to un-
derstand the degree of performance traded off for ro-
bustness. For the description of the deterministic
model, please refer to Appendix A.3.

We first ran the model for growth rate g = 1.02—
that is, the organization is allowed to grow by 2% an-
nually. Our model seeks the minimum risk level k*. In
this case, k* = 35, which yields the exponential enve-
lope of the probability of constraint violation.

In Figure 5, we plot, for the headcount constraint,
the actual materialized deviation from target H;—
3.5 based on the uncertainty. A positive figure
indicates that the headcount target was not exceeded,
and its magnitude gives the slack; a negative value

Table 3. Comparison of Constraint Violation in Robust and
Deterministic Models

Deviation from Hj Robust Deterministic
Median 8.07 —4.40
Mean 7.18 -5.57
1%t Quartile -14.29 —27.42

indicates constraint violation and its magnitude, the
extent. The line represents the Markov guarantee,
where the probability of constraint violation should be
no more than one-third. As Figure 5 illustrates, this
guarantee is very loose—only 2% of the simulations
exceeded this bound.

We now compare this against the deterministic
model. The simulated deviations from the headcount
target for each model are compared in Table 3. Our
model provides guarantees against constraint viola-
tion, and if violations occur, they do so with a smaller
magnitude.

However, one can expect that the gains in the guar-
antees may not be universal for different specification
of the targets. To illustrate this, let us vary the produc-
tivity target P, (via g,), while keeping all other targets
fixed. Intuitively, there should be a monotone rela-
tionship between P, and k*—the higher P,, that is, the
higher the productivity target that must be met, the
more difficult it is to do so, and, hence, the risk level
k* of failing should be expected to rise. We try this for
three configurations: ¢, =1.023 (where k* is large),
gp=1.021 (an intermediate region), and g, =1.015
(where k* is small). Table 4 summarizes the statistics

Figure 5. (Color online) Simulated Violation of Headcount Target in Year f = 1

Deviation from Headcount Target (t = 1)
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Table 4. Different Regimes of Tightness of Targets

Tougher target

Violation of constraint 8y =1.023(k" ~ 232)

Intermediate
&y = 1.021(k" =~ 35)

Easier target
gy = 1.015(k* = 10)

Growth rate (risk level) Robust Deterministic Robust Deterministic Robust Deterministic
Deviation from Py

Median deviation -4.09 543 30.19 96.70 127.10 379.36

Mean deviation -5.16 4.14 29.13 97.63 123.16 379.07

15 Quartile —43.7 —28.60 -1.74 65.59 88.39 344.40
Deviation from Hs

Median deviation 17.95 15.81 41.64 18.39 111.18 14.51

Mean deviation 18.91 16.59 42.02 18.45 113.48 13.92

15 Quartile -14.30 -14.19 12.64 -12.61 82.18 -16.49

for these three regimes, under a comparison between
the robust and deterministic models.

In Table 4, we compare two constraints. The first is
the productivity constraint at time T. This was the ob-
jective in the deterministic model, and, hence, we
should reasonably expect the deterministic model to
outperform the robust model in all instances. Their
difference can be understood as the price to pay for
robustness. In the second, we compare the headcount
constraint. Across the different regimes, because the
deterministic model is agnostic to the risk of con-
straint violation, the distribution in the deviation from
the headcount target is approximately the same. Here,
however, we can see the action of the robust model.

We observe three kinds of scenarios:

1. When k* is very large (first regime), the problem
is near infeasible. In this case, the guarantees on con-
straint violation erode away, and the robust model
approximates the deterministic model. The guaran-
tees are so minimal that it is effectively suboptimal.
In other words, when the system is near its limits of
operability, robustness is a luxury that cannot be
afforded.

2. When k* is very small, we are in the third regime.
Here, the guarantees are very sharp—so sharp, it is
overconservative. As seen in Table 4, the loss in pro-
ductivity is sizeable. On the other hand, the determin-
istic model is not without reproach—a huge trade-off
between headcount and productivity was made, by
virtue of the fact that productivity was the objective. A
reasonable course of action at this point is to tighten
the target.

3. There is an intermediate region where the trade-
off is balanced to some extent. In the second regime,
the robust model does not incur a large cost to produc-
tivity, yet provides reasonable guarantees against con-
straint violation.

In the last segment of this analysis on robustness,
we examine whether the optimal solution is robust to
the input parameters of attrition rates. To do so, we

smooth the attrition rates (one minus the retention
rates in Figure 2) using a Loess regression and prune
negative values. The smoothed attrition rates are
shown in Figure 3. Here, points represent the raw esti-
mates and lines the smoothed outcome. We then per-
form the same analysis we have done before.

With smoothing, the risk level rises to k* ~ 44 from
the previous k* ~ 35. Additionally, we also examine
the optimal policies for promotion (in Figure 6, which
can be compared against the optimal policy without
smoothing in Figure 7) and hiring (in Figure 8, where
the original policy is in points and the smoothed ver-
sion is lined). We can see that there are only slight dif-
ferences between the optimal policies suggested by
the two models.

4.2. Time-Based Progression
In this section, we examine insights that can be
gleaned for HR. In the first instance, we are interested
in the question: When is it optimal to promote employ-
ees? In other words, how long should I keep an em-
ployee at a particular grade before promoting them?
We study p*. Recall that p}*, which is equivalent to
the ratio di"""*! /d/’", is the proportion of employees at
time t whom we retain at grade [ for an additional
year, having already spent 7 years at this grade I. As
such, the closer this ratio is to one, the fewer employ-
ees we are promoting. For the purposes of fairness
and continuity, HR would set a limit to the maximum
proportion of employees at a grade that may be pro-
moted in any year. Our partners do not wish for their
limit to be shared. As such, for illustrative purposes, we
have chosen the bar of 50%: d;’* /d;""~" > 0.5. Figure 7
shows the policy for progressing employees at grade
IC1 to grade IC2, as prescribed by the SWPU model.
The prescribed policy is a threshold—the model be-
lieves that employees should not progress to the next
grade until they have accumulated a minimum num-
ber of years, after which they should be promoted with



1058

Jaillet, Loke, and Sim: Workforce Planning Under Uncertainty
Operations Research, 2022, vol. 70, no. 2, pp. 1042-1065, © 2021 INFORMS

Figure 6. (Color online) Policy for Progressing from IC1 to IC2 Under Smoothing
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haste. There is a certain logic in this. In the early years,
the productivity of employees rises with time spent in
that grade due to the learning curve (Figure 4). As such,
promoting employees too early incurs an opportunity
cost of potential productivity. The model avoids this.
After some point, remaining for too long at the same
grade can have a disengaging effect on employees, and

they may leave the organization (Figure 2). The model
also avoids this, by expediting their promotion after
some time. In other words, the model seeks a balance
between the productivity an employee brings and the
risk of losing the employee. This finding lends numeri-
cal support not just to the choice of “time-based pro-
gression,” but also its rationale.

Figure 7. (Color online) Policy for Progressing from IC1 to IC2 at Optimal Solution

Promotion Ratios for Employees from IC1 to IC2 Strata
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Figure 8. (Color online) Policy for Hiring Across Grade and Time Under Smoothing

Comparison of Hiring Policy Under Smoothing
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4.3. Factors Affecting the Risk Level
In this second piece of analysis, we shall examine the
impact that the growth rate ¢ has on the optimal risk
level k*. As before, we fixed the allowed growth rates
of headcount, budget, and productivity to be a function
of ¢. Now, we vary g. Figure 9 plots the relationship.
From Figure 9, we infer that there is a higher risk
level when the growth rate is smaller. This mirrors
common wisdom that it is easier to grow firms than to
downsize. The explanation the model gives is this:
Risk originates from the uncertainty—resignations.

Figure 9. (Color online) Risk Level k* at Different Growth Rates g

o o
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The higher the growth rate g, the greater the number
of new recruits. Recruitment of employees fills the va-
cancies created by those who left and, thus, mitigates
the uncertainty. As such, the more employees that can
be recruited, the larger the capacity of HR to manage
the risks arising from resignation, and, thus, the lower
the risk on the overall.

The simple consequence of this is that there are in-
herent operational risks to a lack of organizational re-
newal. Yet, this is not necessarily a straightforward
question to address. For example, in an organization
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Figure 10. (Color online) Risk Level k* with Different Scaling of Attrition a
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with a higher attrition level, we can expect two com-
peting forces at work. One, the higher the attrition,
the greater the uncertainty, and, hence, the higher the
risk. Two, the higher the attrition, the greater the ca-
pacity to hire because there are more vacancies to re-
place; hence, the lower the risk. We study which effect
really plays out in our data set.

In our model, g/ represents the retention rate of offi-
cers having spent time 7 at grade I. Hence, the attrition
rate is af =1-gq;. We now artificially suppress or
boost the attrition rate by a factor of a, via af =a-af.

If a < 1, the attrition rate is suppressed, and vice versa.
As such, we have a new g =1 -aj.

Figure 10 plots what happens to the risk level k* as
we vary a. With lower attrition, the risk level k* rises.
This is a grim consequence for advanced economies,
where an aging population is beginning to take hold.
As older employees are often less employable in the
workforce, they tend to move between organizations
less frequently than younger employees. As such,
with an aging population, firms can expect to see attri-
tion rates fall across the board. Instead, they will be

Figure 11. (Color online) Risk Level k* with Tightening of Hiring Constraint
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Figure 12. (Color online) Largest Number of Employees Released in any of the 1,000 Simulations

Largest Violation across Grades
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faced with ever-rising challenges in managing their
workforce. This is not to mention that the shrinking
workforce would force many firms to reduce their
growth rates, which further heightens the risk.

For the final insight, we look at varying the tight-
ness of a constraint. Specifically, we shall examine the
importance of organizational renewal. For our part-
ners, they were interested to see whether the inherent
difficulty of public-sector organizations to lay off their
employees—and, hence, a limited capacity for organi-
zational renewal—would result in greater difficulties
in managing their workforce and, if so, how large
these difficulties are. To elucidate this, we perform the
following analysis. Recall that we could calibrate 6; to
dictate the tightness of the bounds for the correspond-
ing constraint j. Now, we do so for the dismissal
threshold constraint. The lower the value of 6;, the
more averse the model is to releasing employees. Fig-
ures 11 and 12 tell us the consequences of this.

In Figure 11, we can see that the difference between
not allowing any and allowing some dismissals is an
almost doubling of the risk level. Figure 12 illustrates
the trade-off. We plot here the largest number of em-
ployees released amongst the 1,000 simulations. If this
number is negative, it means that in all the simula-
tions, there wasn’t a single case where an employee
was released. At risk level k* ~ 35 and 6 = 1, about 40
employees were released in total across the grades.
If the decision maker is to refrain from releasing any
of these employees, then 6 must be decreased to
107%. This would incur an almost 50% increase in the
risk level.

This quantifies the natural challenges faced by public-
sector organizations compared with their private-sector

Grades
= ICl
IC2
B Ml
107 10" 10°
Theta

counterparts. In this regard, it is therefore paramount
that public agencies find new and innovative ways to re-
juvenate and renew their workforce.

5. Conclusions

We have presented a tractable model for workforce
planning. Although we illustrate our model on data
from a public agency, the model can still be utilized in
some profit-seeking firms. We have also illustrated
HR insights and provided numerical quantification of
such risks that firms can face, such as the need for or-
ganizational renewal.

At its root, the SWPU model is an application of the
concept of pipeline invariance under the context of
multiperiod optimization. The general intuition is
that, although it is difficult to perform multiperiod op-
timization, we may alleviate these difficulties if we de-
clare a formal structure (here, pipeline invariance) on
how the decisions and the uncertainty are related and,
hence, exploit this structure to gain tractable formula-
tions. On this note, we hope, in the future, to construct
a formal framework for using pipeline invariance in
multiperiod optimization problems.
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Appendix A. Proofs Omitted from the Main Text

A.1. Proof of Theorem 1
The idea is to show by induction on 7/ =1,...
that the following relationship holds:

,min{t, t}

[ky~tr/dtf] ll’lf Ck[k(t T'+1,1— T+1S;‘ T, T—T /di—’r’,’r—’r’
St dt +1,1- t+1 (y/dt ¥ 4+1,7- t+l)<£t S AT e[7'].

(A1)

Here, we have abused the notation slightly, as the Cj op-
erator on the left-hand side is an expectation over all un-
certain 5" until v <t, whereas the right-hand side is only
up till times v <t -1’

First, notice that the induction step going from 7’ to
7' +1 is inherent from the form of (A.1)—simply take
y =& As such, it suffices to prove only the step

7/ = 1. We evaluate as follows:
Celkys!™ /di™] = klog E[exp (y§t & /df‘)],
=klogE< [Et [exp (yéf” /d;’T)]], (A.2)

=101 d;'r Y
exp( - JiT PlT(dtr))}
1 !
(A3)

Here, we have used iterated expectations in (A.2) and
then pipeline invariance in (A.3). At this point, notice that

=klogE<

i’ pr (y/d”) is jointly convex in both y and d;", as pf is a

convex function. As such, we may represent it in the epi-
graph format d;"pf(y/d;") < &)"
7’ =1 case.

When v =min{t 7}, we achieve the result in the
theorem. O

. Hence, this proves the

A.2. Proof of Proposition 4
Observe that two state variables §§ and sl, "1+1" and
7# 7' in the same time f can be associated with different
sets of employees that do not overlap. Hence, under As-
sumption 1, the random states should also be independent.
We shall do so by induction on t>0. When t = 0, this is
trivially true, because s° are the initial conditions. Suppose
any two different 3/ and 3"

er E[IL{§;+1,TS,.}IL

are independent. First, consid-

@ <].}]. If T =0, then §§+1’T is a decision vari-
o

able; hence, this is trivially true. Suppose now that > 1 and
thatif ' =1, then v/ #1 -1,

E[Lgrrey L oy | = B[E[Lgrnrgy

6 wralleran]) 49

= E[ﬂ{g;;r/ Sj}]E[HG;H’TSi} ﬂ{gi,r—lg,}”, (AS)

= B [E[E[ Ly Lo |
(A6)

= B[ oy [E[ L | (A7)

The line (A.5) follows because of the independence between

55,’7 and §;’T_l, as assumed in the induction hypothesis; and

the Equation (A.6) follows because E|1 e ST.}| 1 @t g,}] is

just a function of §;’T_1 due to the dynamics defined in (11),
and, thus, independence again allows the splitting of expect-
ations. Now, we perform the next step. Again, similar logic
applies if 7 = 0; otherwise,

E[1 gy Lgpne o] =E[E[t eyt P

ty])

(A8)

= B[t e B[ Ly Loy ||
(A9)
= B[ e [B[E[ 2 oy | T
(A.10)
=L [E[Lgmrg] A1)

where (A.9) follows because of the independence between

§§’+17 and St'f 1

larly for (A.lO).

, as proven in the previous step, and simi-

A.3. Description of the Deterministic Model

We write the deterministic model below. We shall take
productivity in the last time period (Pr) as the objective.
Note that from Proposition 3, the deterministic model is
obtained from the robust formulation in the limit k — co.

max Z )/TdT °

s.t. Z yrdy" <Hy Vte[T)
It
Svidiwi < B Vte[T]
Sy > Py vte[T]

It

> yrdihf, <0 vte[T], Vle M

AT

ZVT 1(dt vt d?”) d;-?l +Fy

d’LEl =0,0<d" <d VAV =07 vie (T, Vie|L], VT e [M]
(A.12)

Vte[T], Vie[L-1]

Appendix B. Extensions and Generality of
the Model

In this subsection, we discuss how the model could be ap-
plied to two aspects, the first regarding its connection to
employee archetypes and clustering and the second re-
garding departmental transfers. These extensions are
made possible because our model permits the categoriza-
tion of employees under some index set i €Z, by which
we meant that we can append the index i to all of our
state variables sl , decision variables dl *, etc. This is akin
to building many copies of the organizational structure
that do not intersect, but where they operate under com-
mon organizational target-meeting constraints—for exam-
ple, headcount ZiZZISlz <H'

In the most general setting, i could represent each em-
ployee, both existing and potential future hires. In this set-
ting, however, all of the parameters would have to be
known. These include the likelihood of resignations 1 - gj;

and productivities i This might be more consistent with



Jaillet, Loke, and Sim: Workforce Planning Under Uncertainty
Operations Research, 2022, vol. 70, no. 2, pp. 1042-1065, © 2021 INFORMS

1063

existing paradigms in predictive analytics, where one is
able to establish predictions for the likelihood of resigna-
tion at different times-in-grade for every employee with
different covariates—for example, given a data set of side
information of employees X;, one constructs the predictive
model q}j~q,7|Xi, such as via a survival model, or qi;
~ 11X, T, through, say, a classification methodology, like a
random forest. Such side information X; could contain in-
formation of employees on their demographics, work en-
vironment and outcomes, or job nature, to name a few.
Similar may be said about the productivities, where ma-
chine learning could be applied to predict the productivi-
ty trajectories of employees, or via a learning curve
(which we shall illustrate in the later subsection).

The drawback of such an approach would be the high
dimension of the optimization problem to be solved, as
introduced by the index 7, which now increases the com-
plexity by the scale of the number of employees. Also,
there are some subtleties with dealing with how the in-
flow could be modeled.

Instead, the more reasonable approach might be to group
employees into clusters. Suppose now that employees are
instead labeled as e € £; then, we can consider a partitioning
of the employees into subsets £ = |U;E;. These subsets can be
constructed either as a demarcated grouping—for example,
departments—or via data-driven methods—for example,
clustering on side information of the employees i|X,.

B.1. Clustering on Employee Archetypes

Many organizations understand their employees along the
lines of employee archetypes. In this first application, we
can consider i€Z to represent an employee archetype.
In a broader sense, the concept of using archetypes to un-
derstand retention, performance, and hiring preferences is
well established. Moving forward, there will be greater
application of data-driven methods to do so, where the ar-
chetypes of employees are constructed through employee-
side information. Already, the practice of utilizing latent
class analysis to construct archetypes in the domain of HR
has existed (e.g., in Perelman et al. 2019). With the onset
of analytics, it is increasingly popular to perform cluster-
ing (or any dictionary learning algorithms) in order to
construct the archetypes i € 7. These archetypes can have
a very high accuracy in predicting the retention of em-
ployees g, or their level of performance rj;. Our model
fully supports such approaches.

B.2. Modeling Departmental Transfers
Suppose i represents the department that the employee is in. Re-

d~[ 10— 1dt‘11‘l d

call in our Dynamics (3), we had use P - to model

the number of employees removed from grade [, where sf’fl rep-
resents the number promoted and the difference those fired
(after subtracting for the new hires). Let us introduce the new

notation /' i/ (dt Lt gh T) to represent the proportion of em-

ployees who are removed from grade [ stipulated for transfer
from department i into another department j. Table B.1 illus-
trates the count of all employees under this notation.

Notice from Table B.1 that the number of employees re-
tained and those transferred from department i to j are in
the tractable form required for Theorem 2. Similarly, we
have the nonpositive constraint applied on the officers
fired. When evaluating this under the entropic risk opera-
tor, by independence, each component of the sum will
split, and we will arrive at a tractability result similar to
Proposition 6. This illustrates how the model may be ex-
tended to departmental flows without losing tractability.

B.3. Describing Productivity Using Learning Curves
In this subsection, we illustrate specifically how learning
curves may be used within the framework of our model.

Let each employee be denoted by the index ee€ U,
where & is the collection of all employees in the grade I.
Assume that we have longitudinal past performance data
of each employees at time point f and grade I, denoted
R.(I,t). Then, the learning-curve approach involves fitting
the observed data R.(l,t) to the following form (assuming
that of Shafer et al. 2001):

( T+, )
= )
@7 Mt +v,+1,
where 7 is the time-in-grade; 7); is the maximum asymptotic
productivity that can be reached for the grade I, in which
employee e € & is in; v, is employee ¢’s prior experience; and
Y, a term idiosyncratic to employee e.

In this situation, we can compile the productivity esti-
mate for the grade by taking the average estimated
productivities:

" Z Z’?( T+, )
LRlEl& O el Nt+ve+v,

ee&; el

(B.1)

(B.2)

If in the case, where we are assuming that each employee
segment i is precisely the employees themselves, such as
in the earlier discussion at the start of this section, then
the learning curves may be directly used: rj,:=7(,. As a

brief remark, we note that in order to supply the model
enough information, we would also require the counter-
factual estimates of the employee’s performance at higher
grades, I’ > I. This can be obtained in two ways. The first
is to find a group of closely matching employees, in terms
of their side information, and to consider a weighted sum

Table B.1. Illustration of the Flows under a Departmental Transfer Model

From department

itoj Promoted Retained Fired Total
11 B 4T ~t=1,71-1 d 1,01t phbT t,T ~t-1,7-1
s 0 Z~t 1,0-1 Pji+ 5| e st-1- 1A B S0t Z~t 10-1 Pjij+l Sl

4 d, i+ T 11+1 Siis1 P! l il 4 S ~ Mg Sj+1 g1

1+1

1+1
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of their productivities as a means of imputing this esti-
mate. The second is to examine the history of past
employees and to estimate the amount of change that the
accumulated prior experience v, and idiosyncratic term 1,
would change under promotion. Whichever the case, as
our model is constructed to be robust to wrong estimation
in the parameters, the errors in estimation would be miti-
gated by the optimization procedure.
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