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Abstract

In the case of early exercise of an American-style call option, we consider the issue

of the existence of a “treshhold value,” namely a boundary which, once exceeded, early

exercise is optimal for all values of the underlying asset which exceed that value. We

discuss optimal exercise thresholds for call options for two-period models, under alternate

contexts: geometric Brownian motion vs. mean-reverting Ornstein-Uhlenbeck process,

with and without seasonality, and with time-dependent strike prices. We show that, other

than the case of geometric Brownian motion without seasonality, there may exist multiple

exercise thresholds.
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On the Existence of a Unique Optimal Threshold Value for the Early Exercise
of Call Options

We are interested in describing early exercise thresholds of a call option, in a two period

model, with respect to the price of the underlying asset. The option may be exercised at

times t1 and t2. We consider four types of stochastic processes, which, under the risk-neutral

measure, are given by:

(i) Geometric Brownian Motion

dSt/St = (r−δ)dt +σdWt

(ii) Geometric Brownian Motion with Seasonality

St = ftDt , dDt/Dt = (r−δ)dt +σdWt

(iii) Mean reverting process

St = exp(Xt), dXt = κ(ξ−Xt)dt +σdWt

(iv) Mean reverting process with Seasonality

St = ft exp(Xt), dXt = κ(ξ−Xt)dt +σdWt

where r,δ,σ, ft ,κ, are non-negative.

In addition, we consider the following payoffs from immediate exercise at times t1, t2:

Payoff at time t2: Call with strike K2, ht2(S) = max(0,(S−K2))

Payoff at time t1: Call with strike K1, ht1(S) = max(0,(S−K1))

and, in general, allow K1 6= K2.

From the payoff at the terminal date, t2, it is obvious that there exists a unique threshold,

namely S∗ = K2, such that exercise is optimal for St2 > S∗, and is not optimal for St2 < S∗. We

will show that on date t1 it is possible, in some of the cases, to have multiple exercise regions.1

In particular, we will show that the optimal exercise policy has at most one threshold in case

1We point out that the two period example is particularly simple, since the continuation value at time t1 is the
value of a European option, for which we have closed form expressions for all four cases.
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(i), while there may be multiple thresholds in cases (ii), (iii), and (iv). In addition, we will

also show that, in cases (iii) and (iv), there is a threshold S∗
large, such that, for St1 > S∗large it is

optimal to exercise the option.

We first prove that in case (i) there is at most one threshold.

Proof. Since the continuation value at time t1 is the Black-Scholes price of a call with ex-

piration t2, and strike K2, it would be straightforward to demonstrate that there is at most

one exercise threshold at time t1. However, to demonstrate that there exists at most a single

threshold we will use a more complicated method that can be extended to multiple periods. In

particular, we have that the continuation value, at time t1, is given by

Vcont = E(e−r(t2−t1)ht2(St2)) = E(e−r(t2−t1) max(0,St2 −K2))

where expectation is with respect to the risk-neutral measure, and is conditional on St1 . From

the equation above, we can calculate the derivative of the continuation value with respect to

the price at time t1, St1 . From the stochastic process for case (i), we have

St2 = St1 exp
(

(r−δ−σ2/2)(t2− t1)+σ(Wt2 −Wt1)
)

and,

d
dSt1

E(e−r(t2−t1)ht2(St2)) = e−r(t2−t1)E(
dht2
dSt2

dSt2
dSt1

) ≤ max(
dht2
dSt2

)e−r(t2−t1) E(St2)

St1
≤ 1

where we used that E(St2) = St1 exp((r−δ)(t2− t1)). Since the immediate exercise value has

a derivative equal to either zero (for St1 < K1), or 1 (for St1 > K1), there can be, at most,

one exercise threshold. We note that this proof generalizes for more than two exercise dates,

effectively proving that, under geometric Brownian motion, Bermudan call options have single

exercise thresholds, independent of their strike structure.
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For case (ii), we can try to proceed as in the proof for case (i). Unfortunately, in this case

we have that

E(St2) =
ft2
ft1

St1e(r−δ)(t2−t1)

which may lead to a bound that is greater than 1, depending on the values of the seasonality

factors ft2 and ft1 . We were able to construct the following example: ft2 = 2, ft1 = 1,K2 =

200,K1 = 100,r = 4%,δ = 8%,σ = 5%, t2− t1 = 1. In this case one can compute the optimal

action and see that it is optimal to wait for St1 < 102.5, and St1 > 106.4, while it is optimal to

exercise for 102.6 < St1 < 106.3. The intuition of having multiple thresholds is the following:

if the seasonality factors were the same, there would be a single threshold, which would be

the stock price when the benefit from taking the dividend early would match the benefit of

waiting. However, the different seasonality factors change the picture. Now, once the time t2

option is deep enough into the money, it delivers more shares than the option at time t1. The

dividend rate complicates matters, as it creates a range in which the benefit of having the early

dividend is greater than the value of waiting, both in terms of protection, and in terms of the

benefit of receiving more shares.

Case (iii) is similar to case (i), and we can try to perform the same calculation as in the

proof of case (i). We have

Xt2 = Xt1e−κ(t2−t1) +ξ(1− e−κ(t2−t1))+

∫ t2

t1
eκ(s−t2)σdWs

and
dSt2
dSt1

=
dSt2
dXt2

dXt2
dXt1

dXt1
dSt1

Since Sti = exp(Xti), we have that

dSti
dXti

= Sti, i = 1,2
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and

dSt2
dSt1

=
St2
St1

e−κ(t2−t1) = exp
(

Xt1(e
−κ(t2−t1)−1)+ξ(1− e−κ(t2−t1))−κ(t2− t1)+

∫ t2

t1
eκ(s−t2)σdWs

)

Finally, we have that

d
dSt1

E(e−r(t2−t1)ht2(St2)) = e−r(t2−t1)E(
dht2
dSt2

dSt2
dXt2

dXt2
dXt1

dXt1
dSt1

)

≤ max(
dht2
dSt2

)E(
dSt2
dXt2

dXt2
dXt1

dXt1
dSt1

)

≤ exp
(

−r(t2 − t1)+Xt1(e
−κ(t2−t1)−1)+ξ(1− e−κ(t2−t1))−κ(t2− t1)

)

(1)

From Equation 1, we have that, for large enough values of the underlying price, the derivative

of the contiuation value becomes arbitrarily small. This is due to the mean reversion of the

stochastic process and implies that there exists a value S∗
large, such that for St1 > S∗large, it is

optimal to exercise the option. Moreover, if the upper bound on the derivative of the continu-

ation value is less than one at the value when it first becomes optimal to exercise the option at

time t1, then the threshold is unique.

Unfortunately the expression in Equation 1, is only an upper bound for the derivative of

the continuation value, and it is possible for the derivative of the continuation value to have

the following behavior: for small values of St1 it may be smaller than 1 and positive, then,

for an intermediate range, it may be greater than one, and eventually it may again become

smaller than one. If this behavior occurs, it would be possible to have multiple exercise

thresholds. Indeed, we were able to construct such an example, with the following param-

eters: κ = 0.05,σ = 0.7, t2 − t1 = 0.08333,eξ = 120,r = 0.05,K2 = 100,K1 = 96. For these

parameters, it is optimal to wait for S ≤ 121, it is optimal to exercise for 122 ≤ S ≤ 282, it

is optimal to wait for 283 ≤ S ≤ 4914 and it is optimal to exercise for S ≥ 4915. This ex-

ample demonstrates the possibility of multiple exercise/no-exercise thresholds. We have the

following intuition: we can think of this case as a example of geometric Brownian motion

with state-dependent dividends. For low prices the dividend is negative, while for high prices
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the dividend is positive. Early exercise for low prices occurs due to the difference in strike

prices, when even though one has a negative dividend, the time t1 option may be deep in the

money, while the time t2 option may be still out of the money. Then, as the price rises, the time

t2 option comes into the money, while the dividend is still negative. It then becomes optimal

to wait. Finally, for high prices, the dividend becomes large and it again becomes optimal to

exercise.2

Given the above discussion, it is not surprising that under case (iv) there may also exist

multiple thresholds. Indeed, such an example is given for the parameter values κ = 0.05,σ =

0.6, t2 − t1 = 0.08333,eξ = 120,r = 0.05,K2 = 100,K1 = 96, ft2 = 1.01, ft1 = 1. For these

parameters, it is optimal to wait for S ≤ 119, it is optimal to exercise for 120 ≤ S ≤ 188, it is

optimal to wait for 189 ≤ S ≤ 16633 and it is optimal to exercise for S ≥ 16634.

We point out that in cases (iii) and (iv), the existence of multiple thresholds depends on the

mean reversion rate κ. If the value of κ is large enough, there exists only a single threshold.

In all the examples of swing options we considered we have never encountered a case with

multiple thresholds when using the parameter values that were calibrated from the natural gas

data.

2We have been unable to construct a counter-example in the case where the strike prices are the same, or for
cases where the strike price at the terminal date t2 is lower than the strike price at the initial date t1; i.e. K2 ≤ K1.
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