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Abstract. We study dynamic matching in an infinite-horizon stochastic market. Although
all agents are potentially compatible with each other, some are hard to match and others
are easy tomatch. Agents prefer to bematched as soon as possible, andmatches are formed
either bilaterally or indirectly through chains. We adopt an asymptotic approach and
compute tight bounds on the limit of waiting time of agents under myopic policies that
differ in matching technology and prioritization. We find that when hard-to-match agents
arrive less frequently than easy-to-match ones, (i) bilateral matching is almost as efficient
as chains (waiting times scale similarly under both, though chains always outperform
bilateral matching by a constant factor), and (ii) assigning priorities to hard-to-match
agents improves their waiting times. When hard-to-match agents arrive more frequently,
chains are much more efficient than bilateral matching, and prioritization has no impact.
Furthermore, somewhat surprisingly, we find that in a heterogeneous market and under
bilateral matching, increasing the arrival rate of hard-to-match agents has a nonmonotone
effect on waiting times. This behavior is in contrast with that of a homogeneous dynamic
market, where increasing arrival rate always improves waiting time, and it highlights
fundamental differences between heterogeneous and homogeneous dynamic markets.
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1. Introduction
This paper is concerned with the problem of matching
in a dynamic marketplace, where heterogeneous
agents arrive over time to the market looking to
exchange an indivisible item for another compatible
item. A key feature of the market is its exogenous
thickness, as determined by the types of agents and
their arrival rates to the marketplace. For example, in
kidney exchange, some patient–donor pairs are very
hard tomatch, whereas others are very easy tomatch. In
online labor markets, employers have different qualifi-
cation requirements and workers have different skills.

Efficiency is determined by the matching policy
and the matching technology. The former determines
which exchanges to be implemented and when, and
in particular which priorities, to assign to different
types of agents. The latter determines the forms of
matches that can take place. For example, whereas
kidney exchanges were first conducted through bi-
lateral exchanges (two-way cycles; Roth et al. 2005),
multihospital platforms are now facilitating many of

their transplants through chains initiated by altruistic
donors (Anderson et al. 2015). In many matching mar-
kets, such as dating, only bilateral matches take place.
We are interested in the behavior of simple myopic

policies under different matching technologies and
different thickness levels of the market. Myopic
policies form matches as soon as they become avail-
able, but may vary with respect to how they priori-
tize agents in the events of ties. Our framework will
allow to discuss policy questions such as: What is the
effect of prioritizing different types of agents? How
does disproportional change in arrival of different
types influence market efficiency? What is the impact
of merging matching marketplaces with different
thickness levels on different types?
Two comments are in place. First, restricting at-

tention to myopic policies is motivated by current
practices in kidney exchange platforms in the United
States. Ashlagi et al. (2017) uses simulations based
on empirical data from multiple exchange programs
to show matching myopically is nearly harmless.
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Anderson et al. (2017) arrive at a similar conclusion
in theoretical work. Although they consider a stylized
model with homogeneous agents, their result can be
generalized to our heterogeneous model. (Although
this is not the focus of this paper, see Section 1.1 for fur-
ther details regarding their model and Section EC.8 in
the online appendix for a generalization of their result.)

Second, the literature on dynamic matching in
sparse environments has focused on homogeneous
agents (Akbarpour et al. 2014, Anderson et al. 2017).
The motivation for this paper stems from the het-
erogeneity of agents in the marketplace.

For our purposes, we propose a simple infinite-
horizon model with two types of agents, easy to
match (E) and hard to match (H). Agents of each type
T arrive to the marketplace according to an in-
dependent Poisson process with rate λT. Each agent
arrives with an indivisible item that she wishes to
exchange. We assume a stochastic demand structure,
where each agent of type T finds the item of any other
agent compatible independently with probability pT.
A key feature of the model is that pH is significantly
smaller than pE. Agents are indifferent between com-
patible items but prefer to be matched as early as
possible. Moreover, agents in our model depart the
market after being matched. We therefore adopt the
average waiting time of agents in steady state as a
measure for efficiency; more precisely, we focus on
the average waiting time of H agents, because the
waiting time of E agents is negligible compared with
that of H agents. For a more detailed discussion, see
Section 2. Although our model is highly stylized, it
captures some important features observed in kidney
exchange pools (see Section 2.1, where we provide a
brief background that further motivates this study).

Two settings are considered, distinguished by how
matchings are formed (feasible exchanges): bilateral
(two-way cycles) and chains. Our main findings are
the following. First, we find that market thickness
plays a crucial role in the desired matching technol-
ogy; when easy-to-match agents arrive more fre-
quently to the market than hard-to-match ones, the
average waiting time of H agents scales similarly
under chains and bilateral matchings. But there is
a sharp increase in the average waiting time of H
agents as soon as hard-to-match agents arrive more
frequently, highlighting the importance of chains
in marketplaces with a majority of hard-to-match
agents. Second, we find that, under bilateral match-
ing, increasing arrival rates of hard-to-match agents
may negatively affect hard-to-match agents by in-
creasing their waiting times. Under chains, however,
increasing arrival rates always shortens waiting times.
Third, the impact of prioritization in bilateral matching
also depends on the market composition; when hard-to-
match agents are the minority type, assigning them

priority improves their waiting times. However, when
theyare inmajority, suchprioritizationhas no significant
impact. To be precise, we are only able to prove that
prioritizingH agents leads to shorter or equal waiting
times (ofH agents); however, numerically we confirm
that such prioritization indeed leads to strictly shorter
waiting times.
Next we describe our results more formally under

the bilateral and chain settings. In our analysis, we
compute the average waiting time of H agents under
various myopic policies as pH → 0.

1.1. Bilateral Matching
Two myopic policies are considered for bilateral
matching, differing in the types of agents they pri-
oritize. Although it appears natural to prioritize hard-
to-match agents, it is also interesting to consider the
prioritization of easy-to-match agents, as these may
have better outside options. (In practice, agents may
leave the market for a variety of reasons including
finding an outside option.) Under a stochastic de-
parture model, shorter waiting times correspond to
fewer departures because both quantities are pro-
portional with the market size. We leave the rigorous
treatment of a model with departure as an open
question. We find that, regardless of how agents are
prioritized, when λH <λE, waiting time scales with
1/pH , and when λH >λE, waiting time scales with
1/p2H . When easy-to-match agents arrive more fre-
quently, prioritizing H agents results in shorter waiting
times thanprioritizingE agents. However,whenλH >λE,
the average waiting time in the limit is identical under
both types of priorities.
We further provide comparative statics for the case

in which H agents are prioritized. Increasing λE al-
ways decreases waiting times. However, the average
waiting time is nonmonotone when increasing λH. It
has an increasing trend up to a certain threshold,
which depends on λE, and then it decreases. (Note
that in a homogeneous model with only H agents,
Little’s law implies that increasing λH always de-
creases waiting times.) These findings have two main
implications: (i) thickening the market by increasing
arrival rates of hard-to-match agents can result in longer
waiting times depending on the existing arrival rates,
and (ii) merging two marketplaces with different com-
positions, that is, different ratios between the two arrival
rates, may not be beneficial for both.

1.2. Chain Matching
Under the chain setting, we consider policies termed
ChainMatch(d) for markets endowed with d altruistic
donors who initiate chains that continue indefinitely.
In a chain, each agent is matched by (receives an item
from) some agent and matches another. Whenever
the last agent of a chain can match a new arriving
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agent, the policy forms a new chain segment, which is
a maximal sequence of matches resulting from a local
search, in which the next matched agent is selected
randomly while breaking ties in favor of H agents (so
the policy does not always identify the longest pos-
sible chain segment, which requires a global search
and may be computationally hard). We prove an
upper bound on the average waiting time that scales
with 1/pH for all positive arrival rates. We also find
that even in the regime λE >λH, where the waiting
time scales similarly under both matching technolo-
gies, chains result in lower waiting times than bi-
lateral matching.

We provide comparative statics over the arrival
rates of both types. We show (analytically for pE � 1
and numerically for pE < 1), that the average waiting
time decreases when the arrival rate of either type
increases. When pE � 1, we further find that the av-
erage waiting time is independent of the constant d.
Similar patterns hold numerically when pE < 1. Fi-
nally, we are able to compute the average chain seg-
ment (which plays an important operational role for
example in kidney exchange). An increase in λE or d
decreases the average length of a chain segment. In
contrast, increasing λH has the opposite effect.

Next we provide brief intuition for some of the main
findings, beginning with why the market composi-
tion and the desired matching technology are tightly
connected. Under the bilateral setting, when easy-to-
match agents arrive more frequently, almost all hard-
to-match agents will be matched with easy-to-match
ones resulting in a scaling of 1/pH ; on the other hand,
when hard-to-match agents arrive more frequently,
many of them will have to match with each other,
resulting in a scaling of 1/p2H, which is the inverse of
the probability that two H agents can match each
other. In contrast, matching through chains does not
require such “coincidence of wants” between pairs of
H agents even when H agents are the majority (Roth
et al. 2007). This results in a waiting time that scales
with 1/pH regardless of the composition. We further
find that the heterogeneity in the marketplace may lead
to nontrivial effects when increasing participation.

The intuition for why, in the bilateral setting,
H agents may be harmed when attracting more H
agents to the market is the following: When λH <λE,
increasing λH reduces the chance that an existing H
agent will match with the next arriving E agent.
However, when λH >λE, increasing λH implies, on
one hand, that more H agents must match with each
other, and, on the other hand, it reduces the time
to form H-H matches. The first effect is initially
stronger, but the second effect dominates once λH is
sufficiently large. A similar effect happens in kidney
exchange where O–A blood type patient–donor pairs
that cannot match with each other compete to match

with scarce pairs with blood type O donors. Note,
however, that in our setting, all agents can potentially
match with each other; in particular, this effect ex-
tends to sets of pairs that are blood type compatible
with each other, like O–O pairs, some of which are
much harder to match than others. We elaborate
and provide intuition for other results throughout
this paper.
Understanding the impact of market composition

by providing comparative statics requires us to not
only compute the scaling of asymptotic behavior of
average waiting time, but also to characterize the
exact limits. Such exact characterization in a hetero-
geneous model is particularly challenging, as we
need to analyze two-dimensional Markov chains. For
bilateral matching polices, we directly analyze the un-
derlying two-dimensional spatially nonhomogeneous
random walks. One of the main challenges in our
analysis is the need to jointly bound the distribu-
tion in both dimensions, because applying methods
such as Lyapunov functions or analyzing marginal
probability distributions would not result in tight
bounds. In doing so, we prove two auxiliary lemmas
on concentration bounds for a general class of two-
dimensional random walks that can be of interest for
studying similar random walks that may arise in other
applications. For chain policies, we first couple the
underlying Markov process with a one-dimensional
process where no E agent joins the market. Analysis of
the resulting one-dimensional Markov chain presents
new challenges, as transitions between nonneighbor-
ing states happen because of the possibility of forming
arbitrarily long chain segments. However, we show that
the chain-segment formation process exhibits a memo-
ryless property, which proves helpful in computing the
waiting time limits.

1.3. Related Work
A close stream of related papers study dynamic
matching in models, in which agents’ preferences
are based on compatibility, that is, agents are in-
different between whom they match with (Ünver
2010, Akbarpour et al. 2014, Anderson et al. 2017).
The impact of the matching technology is addressed

in markets comprised of only easy-to-match agents
(Ünver 2010;withmultiple coarse types) or only hard-
to-match ones (Anderson et al. 2017). Ünver (2010)
finds that short cycles are sufficient for efficiency.
Anderson et al. (2017) consider markets in which all
agents are ex ante symmetric and hard to match. They
study the waiting-time scaling behavior of myopic
policies that attempt to match each agent upon arrival
in three settings of exchanges, two-way exchanges,
two- and three-way exchanges, and chains, and they
find that moving from two-way or three-way ex-
changes to chains significantly reduces the average
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waiting time. See also Dickerson et al. (2012b), who
demonstrate the benefit of chains using simulations in
dynamic kidney exchange pools. Our paper bridges the
gap by looking at amodelwith both hard- and easy-to-
match agents and thus allowing for different levels
of thickness in the market. Ding et al. (2015) study a
similar two-type model in a static setting and quantify
the effectiveness of matching through chains taking a
novel random walk approach.

The papers above also find that, by and large,
myopic policies are near optimal: Ünver (2010) ana-
lyzes a kidney exchange model with different types
and deterministic compatibility structure across types
and finds that matching upon arrival is near optimal,
even though some waiting with certain types to
facilitate three-way exchanges adds some benefits
(see also Gurvich and Ward 2014, who study a sim-
ilar compatibility-based inventory control model).
Anderson et al. (2017) consider a homogeneous model
without departures (similar to our model with λE � 0)
and find that there is little benefit from waiting be-
fore matching under both matching technologies
of short cycles and chains (the waiting-time scales
with the same factor with or without waiting before
matching). Akbarpour et al. (2014) consider a homo-
geneous model with departures and find that the
optimality gap of the policy that matches without
waiting remains constant as the match probability
decreases. Moreover, using data-driven simulations,
Ashlagi et al. (2017) study the impact of match-run
frequency and show that among polices that match
periodically (e.g., every week or every day), high match-
ing frequencies perform best. Nonmyopic policies have
also been studied; for example, Dickerson et al. (2012a)
studied forward-looking polices by casting the dynamic
matching problem as a high-dimensional dynamic pro-
gram and developed a heuristic to overcome the curse
of dimensionality. This paper builds on these findings
and analyzes only myopic policies that search for a
match upon arrival of a new agent.

We elaborate on the relation between our paper
and that by Anderson et al. (2017), which is closest to
our paper. Studying myopic policies under a homo-
geneous setting resulted in valuable insights. Some
insights, however, do not carry over to heterogeneous
settings like kidney exchange (see Section 2.1). For
instance, merging markets is often sought as a solu-
tion to improve efficiency. A homogeneous model
predicts that increasing arrival rates (or merging
markets) will always decrease waiting times. In
contrast, we find that merging heterogeneous mar-
kets may not decrease waiting times for bothmarkets.
The homogeneous model by Anderson et al. (2017)
predicts very infrequent but very long chain seg-
ments. Our model predicts shorter chain segments,

which better fits empirical evidence. (Chain segments
typically consist of only a few pairs.) Furthermore, we
remark that some questions cannot be addressed in a
homogeneous setting. For instance, kidney exchange
programs attempt to attract easy-to-match pairs
(Ashlagi and Roth 2014), but the impact of such an
increase cannot be investigated in a homogeneous
model. As another example, exchange programs usually
assign high priority to hard-to-match pairs; the effect of
such prioritization cannot be studied in a homogeneous
model. Overall it is natural and important to study
richer models to address relevant policy questions.
Another stream of related research considers models

of agents’ preferences that do not depend only on
compatibility. These papers find that policies that
match without waiting are inefficient (Doval 2014,
Kadam and Kotowski 2018, Baccara et al. 2015,
Fershtman andPavan 2015) because somewaiting can
improve the quality of matches (for related results
in queueing models, see Bloch and Cantala 2014,
Leshno 2014).
Our work is also related to the problem ofmatching

multiclass customers to multiclass servers studied
in queueing literature (e.g., Caldentey et al. 2009,
Adan and Weiss 2012).
In our model, an agent can be thought of as a

customer–server pair, and the compatibility between
any two agents is probabilistic; thus, we will not have
a finite number of queues.
Finally, our work is related to the online matching

literature that studies online matching in which the
underlying graph is bipartite and agents on one side
of the graph are all present in the market and only
agents on the other side arrive over time (Karp et al.
1990, Goel and Mehta 2008, Feldman et al. 2009,
Manshadi et al. 2011, Jaillet and Lu 2013).

1.4. Organization
In Section 2, we introduce the model, polices, and
the underlying stochastic processes. In Section 2.1,
we provide a brief background on kidney exchange
further motivating our framework and study. In
Section 3, we present the main theoretical results, and
Section 4 complements the results with numerical
experiments. Section 5 outlines the main proof ideas
and techniques along with the details of Markov
chains induced by each policy. Section 6 concludes.
For the sake of brevity, we include only proofs of
selected results in the main text. The detailed proofs
of the rest of the statements are deferred to clearly
marked sections in the online appendix.

2. Model
We study an infinite-horizon dynamic matching market,
where each arriving agent is endowed with a single
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item she wants to exchange for another item she finds
compatible. Agents are indifferent between compati-
ble items and wish to exchange as early as possible,
their cost of waiting being proportional to the wait-
ing time.

There are two types of agents, H and E, referred to
as hard to match and easy to match, respectively.
Beginning at time t � 0, agents of type T ∈ {H,E} arrive
to the market according to an independent Poisson
process with rate λT > 0.

Any agent of type H (E) finds the item of any other
agent compatible independently with probability
pH (pE). Our analysis is asymptotic in pH → 0, whereas
pE is a fixed constant. So, on average, anH agent finds
significantly fewer items compatible than an E agent.
We say that an agent j is matched by agent i if agent j
receives agent i’s item. An agent leaves the market
only when she is matched, that is, she receives a
compatible item.

We study matching policies in two different set-
tings, distinguished by how agents can exchange
items. In the first setting, two agents can exchange
items bilaterally in a cyclic fashion. In the second
setting, agents exchange items through chains; at time
t � 0, there are d special agents called altruistic agents
who are willing to give an item without getting
anything in return. (All other agents that will arrive to
the market are regular agents who want to exchange
their item for another item.) Note that having altru-
istic agents is an intrinsic property of themarket in the
sense that some markets do not have access to such
agents. Each agent in a chain receives a compatible
item from one agent and gives to the next. At any
given time, there are exactly d ≥ 1 agents who are
either altruistic or received an item but have not given
their item. The latter are called bridge agents. We
sometimes refer to altruistic agents also as bridge
agents. The transactions between two bridge agents
in a given chain is called a chain segment. We assume
that matches in a chain segment are conducted in-
stantaneously. A policy is a mapping from the history
of exchanges and the state of the marketplace to a
set of feasible exchanges involving nonoverlapping
sets of agents.

We adopt the average waiting time in steady state
as themeasure of the efficiency of a policy (thewaiting
of an agent is the difference between her departure
time and her arrival time). In our model, the average
waiting time of one type of agents is equivalent to the
average number of agents of that type in the mar-
ketplace divided by the arrival rate of that type, be-
cause these two quantities are proportional to each
other by Little’s law.

It is convenient to think about the state of the
marketplace at any time in terms of a compatibility
graph, which is a directed graph with each agent

represented by a node, and a directed edge from i to
j means that agent j finds agent i’s item compatible.
Let &t � (9t,%t) denote the (observed) compatibility
graph at time t. When a new agent arrives, directed
edges are formed in each direction independently,
and with probabilities corresponding to the agents’
types, between the arriving agent and each agent in
the marketplace. A bilateral exchange is a directed
cycle of length two in the compatibility graph, and a
chain segment is a directed path in this graph starting
from a bridge or altruistic agent.
We study the following myopic policies, which

attempt to match agents upon arrival.

Definition 1 [BilateralMatch(T ) for T ∈ {H,E}]. Upon ar-
rival of a new agent, if a cycle of length 2 can be formed
with the newly arrived agent, it is removed. If more
than one such cycle exists, priority is assigned to cycles
with agents of type T. Further ties are broken uniformly
at random.

Definition 2 [ChainMatch(d )]. There are d bridge or al-
truistic agents in the market at any given time. We
describe first the policy for d � 1. Consider a new ar-
riving agent i1. If i1 does not have an incoming edge
from the bridge agent, then no matches happen.
Otherwise, a chain segment begins with matching i1 by
the bridge agent and advances as follows. First, we
search for an unmatched H agent that has an incoming
edge from i1. If there is one or more such H agents, we
select one uniformly at random; otherwise, if no such
an H exists, we search for an unmatched E agent that
has an incoming edge from i1 (again breaking ties
uniformly at random). This process repeats itself im-
mediately from the selected agent (selected agents
cannot be reselected) until we reach an agent that
cannot match any other agent, forming a disjoint path.
All agents in the disjoint path leave the market except
the last agent who then becomes a bridge agent.
When there are d> 1 altruistic/bridge agents, if there

is at least one directed edge from one of them to the
newly arrived agent, one of such edges is selected
uniformly at random. As the process moves forward,
each altruistic agent eventually gives her item to an
arriving agent and starts a chain.

Under the ChainMatch(d) policy, upon arrival of a
new agent, a maximal chain segment (path) is iden-
tified through local search originating from a bridge
agent. Our local search chain-segment formation
process bears similarity to phase 1 of the two-phase
clearing procedure of Ding et al. (2015). Note that the
chain segment has a positive length if and only if at
least one bridge/altruistic agent has a directed edge
to the new agent.
For brevity, we often refer to BilateralMatch(E),

BilateralMatch(H), and ChainMatch(d), by @H , @E,
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and #(d), respectively. All the policies above are
Markov policies, and thus define a continuous-time
Markov chain (CTMC). The following observation
will allow us to ignore the edges within the market
when analyzing the underlying stochastic processes.

Observation 1. For each policy @H, @E, and #(d), we
can construct a two-dimensional CTMC where states
correspond to the number of waiting H and E agents
and that has a consistent evolution with that of the
market under the corresponding policy.

The observation is immediate for the bilateral
policies@H and@E; because of their myopic behavior,
there are no two-length cycles in the market except
with a new arriving agent, implying that the corre-
sponding Markov chains can be fully specified using
only the set of vertices. For the #(d) policy, the ob-
servation is more subtle. Note that under this policy,
there is no outgoing edge from a bridge agent to any
waiting agent, again because of the myopic behavior
of the policy. The first time we examine whether
there is an edge from i to j, we effectively flip a bias
coinwithprobability pH (pE) if the agent j is of typeH (E).
Importantly, we examine at most once whether a directed
edge from i to j exists by the definition of the policy,
because i either leaves themarket or becomes a bridge
agent, in which case it will never match to j. Because
both the edge formation and the matching policies do
not depend on agents’ identities (rather only on their
types), we can merely keep track of the number of
agents of each type.

In the remainder of this paper, for any policy 3, we
focus on the state space {[H3

t ,E
3
t ]; t ≥ 0}, which cap-

tures the number of hard- and easy-to-match agents at
any time t, and we denote the corresponding tran-
sition rate matrix by Q3.

Given the self-regulating dynamic undergoing each
matching process, one would expect that all three
(irreducible) CTMCs reach steady state. A rigorous
statement and proof is provided in Section EC.7 of
the online appendix. Hereafter, we are concerned
only with steady-state analysis. For policy 3, we
denote its steady-state distribution by π3. The ran-
dom vector [H3,E3] is the random number of H and
E agents in steady state; that is, the vector is dis-
tributed according to distribution π3. Finally, we
define w3

H (w3
E ) to be the average waiting time of

type H (E) agents under policy 3. Little’s law im-
plies that

w3
H � E[H3]

λH
and w3

E � E[E3]
λE

. (1)

Because in our model pH → 0 while pE is kept con-
stant, and all policies are myopic, one would expect
thatw3

E is negligible comparedwithw3
H . We verify this

claim below using numerical simulations and ana-
lytical proofs (see Lemmas EC.1 and EC.2 in the online
appendix). We therefore focus on analyzing the av-
erage waiting time of H agents under different
policies.
In Section 3, we derive asymptotic results (pH → 0)

for w3
H for different sets of parameters λH , λE, and

pE. We note that w3
H is indeed a function of four

parameters, and a more precise notation would be
w3

H(λH , λE, pH , pE), but we drop these parameters for
the sake of brevity.

2.1. Motivating Application: Kidney Exchange
2.1.1. Background. There is a large shortage of kid-
neys for transplants (as of 2017, the average waiting
time was between three and five years in the United
States), and many live donors are incompatible with
their intended recipients. Kidney exchange allows
such patient–donor pairs to swap donors so that each
patient can receive a kidney from a compatible donor.
There have been efforts to create large platforms to
increase opportunities for kidney exchanges (Roth
et al. 2004, Nikzad et al. 2017).
Exchanges are conducted through cycles or chains

(for a detailed description of kidney exchange, see
Sönmez et al. 2017). Typically, pairs do not give a
kidney prior to receiving one. This creates logisti-
cal barriers requiring cycles to be limited to two or
three pairs. Chains, however, can be organized non-
simultaneously, and thus can be longer (Roth et al.
2006, Rees et al. 2009).
For a transplant to take place, the patient needs to

be both blood type and tissue type compatible with a
donor. The common measure of patient sensitivity is
the panel reactive antibody (PRA), which captures
the likelihood the patient is tissue type incompatible
with a donor chosen at random in the population,
based on her antibodies.
Numerous kidney exchange platforms operate in

the United States, varying in size, composition, and
policies. Some are national platforms (with many
participating hospitals) like the Alliance for Paired
Donation (APD) and the National Kidney Registry
(NKR). Others are regional or even single-center pro-
grams like Methodist Hospital in San Antonio (MSA).

2.1.2. Data. Next we provide some figures about the
pool composition. Kidney exchange platforms are
selected to have a large fraction of highly sensitized
patients (Ashlagi et al. 2012). Figure 1 (left panel) plots
the PRA distributions of patients enrolled at the
NKR, APD, and MSA. Most patients are either highly
sensitized (PRA above 95) or have low sensitization
(PRA below 5). Note that blood type compatibility is
not incorporated in this aggregate PRA distribution.
Figure 1 (right panel) provides the same distributions
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for patients belonging to blood type–compatible pairs
(e.g., O–O patient–donor pairs), who can match with
each other if they are tissue type compatible. These
distributions can be roughly viewed as bimodal;
note that among blood type–compatible pairs, there
are more patients with high-sensitization than low-
sensitization.

The percentage of high-PRA patients also varies
across programs outside the United States. In Aus-
tralia, 42% of registered candidates have a PRA
greater than 90 (Ferrari et al. 2012), and in the United
Kingdom, 46% of patients have a PRA greater than 85
(Johnson et al. 2008), whereas in Canada, only 36% of
patients have a PRA of 80 or more (Malik and Cole
2014). In the Netherlands, Glorie et al. (2014) estimate
that 30% of patients have a PRA above 97.

Like the PRA distribution, the pool compositions
also vary with respect to blood type distributions
of patient–donor pairs. Ashlagi et al. (2017) report
thatO–O pairs make up 26% of the MSA pool but only
20.81% of the APD pool; the percentages of pairs
that contain an O donor in the APD and MSA pools
are 34.4% and 50.3%, respectively.

These platforms also differ in size. During the pe-
riod of the data, the MSA and APD had enrollment
rates of roughly 180 pairs per year, whereas the NKR
had an enrollment rate of about 360 pairs per year.
Access to altruistic donors also varies, with roughly 1,
8, and 50 altruistic donors per year for theMSA, APD,
and NKR, respectively.

2.1.3. Matching. Although more than 80% of the trans-
plants at the NKR and the APD have been conducted
through chains (Anderson et al. 2015, National Kidney
Registry 2017), some platforms (such as the MSA and
those in Belgium and the Czech Republic) match their
pairs mostly through cycles because of limited access to
altruistic donors. In countries like France, Poland, and
Portugal, chains are infeasible because altruistic dona-
tions are not permitted (Biro et al. 2017).

Exchange platforms in the United States adopt typi-
cally myopic-like matching policies that periodically
search for matches. The APD, MSA, and NKR search
for exchanges on a daily basis, and United Network
for Organ Sharing searches for exchanges biweekly.
There is some concern that this behavior is inefficient
(and arguably a result of competition). However, nu-
merical simulations by Ashlagi et al. (2017) suggest
that in steady state, there is essentially no harm from
frequent matching (though having multiple small
platforms does harm efficiency). Moreover, MSA is
not facing any competition. However, some coun-
tries, such as Canada, the United Kingdom, the
Netherlands, and Australia, search for exchanges
every three or four months (Ferrari et al. 2014).
Matching policies at most platforms assign high

weights to highly sensitized patients (easy-to-match
patients match quickly; Ashlagi et al. 2017, National
Kidney Registry 2017). We note, however, that MSA
and the NKR assign high priority to compatible pairs,
which are very easy to match. (This is because such
pairs could choose to go through a direct transplant
if they are not matched quickly.) Platforms typically
have multiple desiderata. However, implicit first-order-
related goals are to reduce waiting times and facilitate
many transplants (National Kidney Registry 2017).

2.1.4. Policy. Various challenges arise from variation
across kidney exchange pools with respect to their
compositions and even operational issues: What
priorities should be assigned to different types of
patients? What is the impact of attracting more easy-
to-match pairs and even compatible pairs? See also
Agarwal et al. (2018) and Sönmez et al. (2017) for
incentive schemes toward thickening the pool with
such pairs. How important is it to incorporate chains
and attract altruistic donors?
There are also several initiatives to merge kid-

ney exchange platforms to increase efficiency and
matching opportunities for highly sensitized patients

Figure 1. (Color online) PRA Distributions of Patients Enrolled at the NKR (January 2012 to December 2014), APD (January
2007 to August 2016), and MSA (July 2013 to February 2017)

Note. The left panel shows all patients, and the right panel shows patients belonging to blood type–compatible pairs.
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(e.g., for merging the Austrian and the Czech Re-
public programs, see Böhmig et al. 2017; for Israel
and Cyprus, see Siegel-Itzkovich 2017; furthermore,
for augmenting national programs through global
kidney exchange, see Nikzad et al. 2017). It is natural
to study what the impact of merging programs is on
different types of patients.

This paper does not intend to model the details of
kidney exchange. However, our stylized model does
capture some important features in kidney exchange
and will hopefully generate some useful insights.

3. Main Results
We analyze the average waiting time under the
myopic policies defined in Section 2. For bilateral
matching polices, we identify a stark threshold in
the scaling of waiting time when moving from the
regimewhere a majority of arrivals are hard-to-match
agents to the regime where the majority of arrivals
are easy to match. Such a contrast does not exist
when agents are matched through chains. We further
study the impact of arrival rates of the two types on
the market performance under the three polices.

3.1. Bilateral Matching
This section considers the setting in which agents
match only through bilateral exchanges, that is, through
two-way cycles.

Theorem 1. Under the BilateralMatch(H) policy and
in steady state, the average waiting time w@H

H satisfies the
following:

• If λH <λE, then limpH→0 pHw@H
H � ln

(
λE

λE−λH
)

pEλH
.

• If λH >λE, then limpH→0 p2Hw
@H
H � ln

(
2λH

λH+λE
)

λH
.

Theorem 1 provides not only the scaling laws on
w@H

H but also the associated constants. The following
corollaries provide comparative statics with respect
to λH .

Corollary 1. Consider the BilateralMatch(H) policy and
fix λE. The limiting average waiting time w@H

H increases with
λH in the interval λH <λE.

Corollary 2. Consider the BilateralMatch(H) policy and
fix λE. The limiting average waiting time w@H

H increases with
λH in the interval λE <λH < x*λE and decreases in the in-
terval λH > x*λE, where x* ≈ 2.18 is the unique solution of

(x + 1) ln(2 − 2/(x + 1)) � 1. (2)

The above theorem and corollaries provide several
messages on the impact of thickness on the perfor-
mance of bilateral matching. First, the main factor in
the asymptotic behavior ofw@H

H is which type of agent
has a larger arrival rate. Some intuition for the scal-
ing factors is the following. Agents’ average waiting

time is inversely proportional to the probability of a
bilateral match occurring. Under a myopic bilateral
policy, no existing pair of agents in the market can
match with each other. For an arriving H agent, the
probability of forming a bilateral match with an
existing E agent is pEpH , and with an existing H agent
is p2H. When λH <λE, almost all H agents are matched
with E agents, resulting in an average waiting time
that scales with 1/pEpH. When H agents arrive more
frequently than E agents, there are simply not enough
E agents to match with H agents. So a nonnegligible
fraction of H agents match with each other and thus the
scaling of the average waiting time increases to 1/p2H .

Second, the arrival rates affect the average waiting
times directly and not necessarily monotonically.
Increasing the arrival rate of E agents always de-
creases the average waiting time. But this is not the
casewithH agents.WhenλH <λE, the averagewaiting
time of H agents increases with λH. So in this re-
gime, where almost all H agents match bilaterally
with E agents, increasing λH reduces the chance of an
arbitrary H agent matching with the next E agent.
When λH >λE, there is a nonmonotone behavior of

the waiting time when increasing λH. Increasing λH

has two effects: (i) more H agents must match bi-
laterally with their same type, which is a negative
effect, and (ii) for an existing H agent, it reduces the
time to match with another H agent, which is a
positive effect. After a certain threshold, the positive
effect from having more H agents dominates the
negative effect.
The key insight from the above discussion is that in

a heterogeneous market, increasing the arrival rate
does not always result in improving the waiting time
because H agents impose a negative externality on
other H agents under certain market compositions.
This cannot be captured in a homogeneous model
with only hard-to-match agents (the model studied
by Anderson et al. 2017). Finally, we comment on the
impact of pE on thewaiting time.When λH <λE,w@H

H is
decreasing in pE. On the other hand, when λH >λE,
w@H

H is independent of pE. The intuition is that in the
former, all H agents match with E agents, and in the
latter, the dominant factor in the average waiting
time is due to two-way exchanges between H agents,
which is independent of pE.
The proof of Theorem 1 amounts to analyzing the

underlying two-dimensional continuous-time spatially
nonhomogeneous random walk. The description of
the random walk is presented in Section 5.1, along
with a heuristic that helps us guess the right con-
stants and build intuition on the behavior of the
random walk. The main idea behind the proof is es-
tablishing concentration results for a two-dimensional
CTMC where the steady-state distribution decays
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geometrically when moving away from the expec-
tation. These concentration results allow us to es-
tablish matching lower and upper bounds on w@H

H
(the proof is outlined in Section 5.1 with details de-
ferred to Section EC.2 of the online appendix). We
note that one of the main challenges in our analysis
is the need to jointly bound the distribution in both
dimensions, because analyzing marginal probability
distributions would not result in tight bounds. As a
byproduct of our analysis, in Section 5.2, we state two
auxiliary lemmas on concentration bounds for a
general class of two-dimensional random walks. The
corollaries follow from basic analysis of the corre-
sponding constants (as a function of λH). Both cor-
ollaries are proved in Section EC.2.2 of the online
appendix.

Theorem 2. Under the BilateralMatch(E) policy and in
steady state, the average waiting time w@E

H satisfies the
following:

• If λH <λE, then
ln
(

λE
λE−λH

)
pEλH

≤ limpH→0 pHw@E
H ≤ ln

(
2λE

λE−λH
)

pEλH
.

• If λH >λE, then limpH→0 p2Hw
@E
H � ln

(
2λH

λH+λE
)

λH
.

Comparing results of Theorems 1 and 2, we observe
thatwhenλH <λE, the averagewaiting time ofH agents
is larger or the same when prioritizing E agents rather
then H agents. (Numerical simulations presented in
Section 4.2 suggest that prioritizing E agents results in
a strictly larger average waiting time.) Nevertheless,
the scaling remains the same. However, when λH >λE,
prioritizing E agents does not impact the waiting time
ofH agents. The intuition is as follows. When λH >λE,
the number of H agents waiting in the market scales
as 1/p2H , suggesting that the chance that an E agent
does not match immediately upon arrival vanishes.
Therefore, assigning priority to E agents is redundant.
We note that for neither policy BilateralMatch(H)
nor BilateralMatch(E) are we able to derive the exact
waiting time behavior when λE � λH. However, our
simulation results, presented in Section EC.10 of the
online appendix, suggest that under both policies, the
waiting time scales with 1/pH .

The proof of Theorem 2 also requires analysis of
the underlying two-dimensional continuous-time spa-
tially nonhomogeneous random walk and, in most
parts, follows a structure similar to that of the proof of
Theorem 1. A detailed description of the randomwalk is
presented in Section 5.3. The proof of the upper and
lower bounds is presented in Section EC.3 of the
online appendix, where establishing the upper bound
requires new ideas beyond the concentration results:
we couple the Markov process underlying policy @E

with another process in which an E agent that cannot
form a match upon arrival turns into an H agent. In
Section 5.3, we provide a rough intuition on why we
cannot close the gap between our upper and lower

bounds on w@E
H for the regime λH <λE. In Section 5.3,

we also provide a heuristic argument that leads us

to guess that the exact limit is
ln
(
λE+λH
λE−λH

)
pEpH

3.2. Chain Matching
In this section, we analyze the ChainMatch(d) policy,
under which agents match myopically through chains.

3.2.1. Waiting-Time Behavior.

Theorem 3. Let d ≥ 1 be a constant (independent of pH).
Under the ChainMatch(d) policy and in steady state, the
average waiting time w#(d)

H satisfies

lim
pH→0

pHw
#(d)
H ≤

ln λH
λE(1−(1−pE)d) + 1
( )

λH
.

The above theorem establishes an upper bound on
w#(d)

H that scales with 1/pH. In Section EC.9 of the
online appendix, we also establish a lower bound on
w#(d)

H that scales with 1/pH . A stronger result is ob-
tained for the special case in which pE � 1.

Proposition 1. Let pE � 1, and let d ≥ 1 be a constant
(independent of pH). Then,

lim
pH→0

pHw
#(d)
H �

ln λH
λE

+ 1
( )
λH

.

Consequently, limpH→0 pHw
#(d)
H decreases with λE and λH.

First, we discuss the intuition behind Proposition 1,
which states that when pE � 1, any constant number
of altruistic agents will result in the same behavior of
w#(d)

H . The positive impact of having d> 1 altruistic
agents stems from the increase in probability of
starting anew chain segment.When anH agent arrives,
the probability that she finds one of the bridge agents
acceptable is 1 − (1 − pH)d, which vanishes as pH → 0.
When an E agent arrives, she will always be matched
by one of the bridge agents and proceed to advance
the chain segment, and thus there is no advantage
in having more than one bridge agent. We also point
out that we suspect the result of Proposition 1 holds
for any finite pH, and one can prove such a result using
a coupling argument similar to the ones we used in
our proofs. However, given that in this paper we are
concerned with asymptotic analysis, we do not in-
clude such a result.
For pE < 1, we give a heuristic argument (in Section

EC.5 of the online appendix) in which we analyze a
related three-dimensional randomwalk by artificially
assuming that chain segments advance according
to an independent Poisson process with a very high
rate μ. (Recall that under the #(d) policy, chain
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segments are formedandexecuted instantaneouslyupon
arrivals.) The heuristic provides an estimated waiting

time that scales as ln λH+λE
λH(1−(1−pH)d)+λE

( )
/(pHλH). In the

limit when pH approaches zero, the constant becomes
ln λH+λE

λE

( )
/λH, which is consistent with Proposition 1.

Numerical simulations that are aligned with the
result of the heuristic argument are presented in
Section 4.5.

The heuristic argument in Section EC.5 of the
online appendix and simulation results of Section 4.5
both suggest that limpH→0 pHw

#(d)
H (pE) � limpH→0 pHw

#(d)
H

(pE � 1). (With a slight abuse of notation, we denote
the expected waiting time of H agents under #(d)
policy with parameter pE by w#(d)

H (pE).) This means
that, in the limit where pH → 0, (1) the variability of
w#(d)

H (pE)with respect to d or pE is negligible compared
with a term of orderΘ(1/pH), and (2) for any 0< pE ≤ 1,
w#(d)

H (pE) is decreasing in both λE and λH. Our simu-
lation results verify these behaviors (see Section 4.3).

The main intuition for why w#(d)
H (pE) does not

vary with d or pE can be summarized as follows.
Under ChainMatch(d), each E agent, immediately
after being matched, initiates a subsegment that in-
cludes a sequence of H agents, that is, has the form
E −H − . . . −H. Note that when pE < 1, a chain seg-
ment can consist of multiple subsegments that are
initiated by some of the E agents waiting in the
market. Denote the expected number of H agents in a
subsegment by E[ΣE]. Observe that with high prob-
ability, an existing H agent is matched through such
a subsegment, because the probability that an ar-
riving H agent starts a subsegment of the form
H −H − . . . −H is vanishing. Furthermore, in steady
state, the number of H agents who join the market
(i.e., they do not match immediately), λH(1 − pH)d,
must equal the number of agents who match through
a subsegment. Thus, the departure rate of H agents
from the market equals λEE[ΣE] + o(1), where o(1)
corresponds to the event that an arriving H agent
starts a subsegment. As the result of this balance
equation, we have E[ΣE] � λH/λE + o(1); that is, E[ΣE]
does not depend on pE or d (up to a negligible additive
factor of order o(1)).

Therefore, regardless of pE and d, in expectation,
each E agent “helps” to match the same number of H
agents. The only difference between the cases pE � 1
and pE < 1 is the timing in which E agents form sub-
segments: When pE � 1, an E agent forms a sub-
segment immediately upon arrival. On the other
hand, when pE < 1, an arriving E agent will join the
market with probability (1 − pE)d. In this case, such
an E agent will start a subsegment (of the form
E −H − . . . −H) after staying in the market for a

random duration, which we denote byX. We can think
of X as the delay in matching the H agents in
the subsegment that starts with the E agent. With
high probability, X remains a constant as pH ap-
proaches zero (this follows from Lemma EC.4 in
Section EC.9 of the online appendix, where we
show that the expected waiting time of an E agent
is a constant). Therefore, the delay caused by the E
agent joining the market remains a constant. Con-
sequently, the waiting time of H agents in a market
withpE < 1 is within o(1/pH) of its counterpart in amarket
with pE � 1. In the online appendix, Section EC.6,
we provide further details for the above argument
and build on this intuition to provide another heu-
ristic argument to show that limpH→0pHw

#(d)
H (pE) �

lim pH→0pHw
#(d)
H (pE�1).

Finally, we comment on the chain-segment for-
mation process. The ChainMatch(d) policy forms
chain segments employing a local search process,
and indeed our analysis relies on such a chain-
segment formation process. This raises the question
of how much the waiting time would improve if we
employed a global search (that searched for the longest
possible chain segment). A precise comparison is be-
yond the scope of our work; however, we make the
following remarks: (1) At the end of Section 4.3, we
numerically study this questions, and we see that
advancing chains locally results in a small loss in
comparison with policies that search globally for the
longest possible chain segment. (2) The lower bound
on the waiting time of any anonymous Markovian
policy (see Anderson et al. 2017 and Proposition EC.4
in Section EC.8 of the online appendix) implies that
the scaling of H agent waiting time cannot be smaller
than 1/pH (unless the policy makes E agents wait for a
very long time, that is, proportional to 1/pH). Theorem 3
shows that the local search method already achieves
such a scaling.
Under the ChainMatch(d) policy, the length of a

chain segment trigged by a newly arrived agent is
unrestricted. As a result, the underlying CTMC is
significantly more complicated to analyze than those
that arise from bilateral policies, and we need other
techniques to prove Theorem 3. To bound w#(d)

H , we
couple the underlying Markov chain with a one-
dimensional chain, in which E agents that are not
matched upon arrival leave the market immediately
(Lemma 3). A key property used in the analysis of the
coupled one-dimensional chain is that chain-segment
formation exhibits a memoryless property. This is
because of the local search process used to advance
a chain segment, which randomly selects the next
agent among all possible agents (favoring H agents).
The proof is presented in Section 5.4. Finally, we note
that for the special case pE � 1, the original CTMC is a
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one-dimensional chain for which we can prove
matching upper and lower bounds on the limit
of w#(d)

H .
Theorems 1 and 3 together highlight the impor-

tance of having altruistic agents that can initiate
chains. In the regime λH >λE, comparing w@H

H and
w#(d)

H is straightforward, as the former scales as 1/p2H
but the latter scales only as 1/pH . The following
corollary (proven in Section EC.4 of the online ap-
pendix) states that in the regime λH <λE, where both
w@H

H and w#(d)
H scale as 1/pH, ChainMatch(d) performs

better.

Corollary 3. For any λH, λE, pE, and d, if λH <λE, then
limpH→0 pHw

#(d)
H < limpH→0 pHw@H

H .

In Section 4.4, we further compare BilateralMatch(H)
to ChainMatch(d) to understand the importance of
attracting easy-to-match agents in markets that have
limited access to altruistic agents.

3.2.2. Chain-Segment Length. We analyze here the
expected lengths of chain segments formed under
the ChainMatch(d) policy. Although we focus on the
average waiting time to measure efficiency, lengths
of chain segments also play a significant role in the
operational efficiency of the market. In kidney ex-
change, for example, executing a chain segment takes
time and bears the risk of match failures. These
practical considerations motivate extending the analy-
sis to the limiting behavior of chain segments.

First, we define the chain segment length. Let
[H#(d)

k ,E#(d)
k ] denote the (discrete-time) Markov chain

embedded in the CTMC [H#(d)
t ,E#(d)

t ] resulting from
observing the system at arrival epochs. Note that each
time an agent arrives, the Markov chain advances in
discrete time from k to k + 1. Define

Lk � Hk + Ek −Hk+1 − Ek+1 + 1,

and let L be its corresponding random variable in
steady state. If the arriving agent cannot be matched
by the bridge agent, she will join the market, and
therefore Lk � 0; otherwise, a chain segment of length
Lk ≥ 1 will be formed. The following proposition
characterizes the chain-segment length in the limit.

Proposition 2. Under the ChainMatch(d) policy and in
steady state,

lim
pH→0

E[L | L ≥ 1] � λH + λE(1 − pE)d
λE(1 − (1 − pE)d) + 1.

The proof is presented in Section EC.4 of the online
appendix. We note that the expected chain length is
decreasing in both λE and d, but increasing in λH.
Intuitively, with more E agents or more bridge agents,

chain segments will be formed at a higher rate and
thus be shorter (for a fixed λH). However, increasing
λH does not significantly impact the frequency of
chain-segment formation, but given that more H
agents join the market within two consecutive chain
segments, the length of the chain segment grows.

4. Numerical Studies
In this section, we present a set of numerical simu-
lations that complement the theoretical results of the
previous section. In Section 4.1, we look at how
merging markets with different compositions affect
eachmarket. Section 4.2 explores the impact of giving
priorities when using the bilateral matching policy.
Section 4.3 presents comparative statics for chain
matching when pE < 1, and Section 4.4 highlights the
advantage of having chains. Finally, Section 4.5 com-
pares our theoretical bounds (for cases for which we
do not have matching upper and lower bounds) to
heuristic guesses and simulations.
All simulations in this section are conducted by

first computing the average number of agents in the
market and then applying Little’s law (1). To compute
the number of agents, we simulate the discrete-time
Markov chain embedded in the corresponding CTMC
resulting from observing the system at arrival epochs.
We denote by T the number of arrivals (not counting
the d initial altruistic agents in the case of #(d)). To
remove the transient behavior, the numbers reported
correspond to the time average over the second half
of the simulation.

4.1. Merging Markets
We consider here the effects from merging two
markets, with arrival rates (λH,1, λE,1) and (λH,2, λE,2)
under bilateral exchanges using the BilateralMatch(H)
policy. This expands Theorem 1, which provides com-
parative statics in the limit when pH tends to zero.
We consider two numerical examples to illustrate

these effects. In both examples, the arrival rates to the
first market are kept fixed, whereas the arrivals rates
to the secondmarket vary. For any pair of arrivals, we
compare the waiting time wH,1 of H agents in the first
market with the average waiting time wH,1−2 in the
merged market. The results are plotted in Figure 2.
Consistent with our prediction, merging can result
in one of the markets being worse off. Note that this
can happen even if the majority type is the same for
both markets (e.g., when λH,1 >λE,1 and λH,2 >λE,2).
This highlights the effect of arrival rates beyond their
impact on the scaling factor. We note that the con-
stants computed in Theorem 1 allow us to determine
whether the first market is better or worse off for any
(λH,2, λE,2), and to compute the boundary separating
the two regions, in the limit pH → 0.
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4.2. Impact of Priorities in Bilateral Matching
We compare here the average waiting time of H agents
under the BilateralMatch(H) and BilateralMatch(E)
policies. From Theorems 1 and 2, it follows that (i)
when λH >λE, asymptotically, the average waiting
time of H agents is the same under both policies, but
(ii) when λH <λE, the average waiting time of H
agents under @H is at most the average waiting time
under @E. However, numerical simulations suggest
that the average waiting time of H agents is indeed
strictly smaller under @H than under @E (Figure 3,
left). For instance, in simulation setting of Figure 3,
when λH � 4 and λE � 5 , we havew@E

H � 534, whereas
w@H

H � 388. The average waiting times of E agents are
plotted in Figure 3 (right).

The main insight is that the benefit from assigning
priority to hard-to-match agents varies based on the
composition of the market. Furthermore, our qualitative
insights can be useful in understanding the trade-offs
that may arise in markets where easy-to-match agents
have outside options. For example, when λH >λE, there
is no trade-off from prioritizing E agents. This issue
arises in kidney exchange, where very easy-to-match
patient–donor pairs (such as compatible pairs) may
choose to get transplanted elsewhere.

4.3. Comparative Statics in Chain Matching
with pE < 1

We run simulations usingChainMatch(d) to numerically
explore the effects that varying λE, λH, and d can have

Figure 3. (Color online) Comparison of the Average Waiting Time of H/E Agents Under the BilateralMatch(H) and
BilateralMatch(E) Policies

Note. The figure shows wH (left) and wE (right) for @H and @E, as a function of λH , for fixed λE � 5, T � 2 · 106, pE � 0.5, and pH � 0.002.

Figure 2. (Color online) Change in the Waiting Time for H Agents of the First Market, wH,1−2 − wH,1, as a Function of
(λH,2, λE,2), for pE � 0.5, pH � 0.02, After T � 105 Iterations

Notes. The left plot corresponds to λH,1 � 1, λE,1 � 1.3, and right plot corresponds to λH,1 � 1.3, λE,1 � 1. The purple line separates the region
where the waiting time increases after merging (below the line) and the region where it decreases (above the line). Merging the first market with a
second market can harm the waiting times of H agents in the first market regardless of whether it has more easy- than hard-to-match agents (left
plot) or the opposite (right plot).
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onw#(d)
H .Wefind thatw#(d)

H decreases as the arrival rate
of either type increases (Figure 4, top left and top
right). Moreover, the value of an additional altruistic
agent also diminishes with increasing λE, λH , or d.
Furthermore, as pH decreases, the impact of dvanishes
(Figure 4, bottom left). Recall from Proposition 1 that
when pE � 1, w#(d)

H (i) decreases in λE, (ii) decreases in
λH , and (iii) does not depend on d. Although proving
(i)–(iii) for pE < 1 remains an open problem, the top left,
top right, and bottom left panels of Figure 4 numeri-
cally show (i)–(iii), respectively, when pE � 0.5.

Furthermore, the bottom right plot in Figure 4
plots w#(d)

H when pE ranges from 0.1 to 1, and it shows

thatw#(d)
H does not varywith pE. (We refer the reader to

Section EC.6 of the online appendix for a heuristic

argument on why, in the limit, w#(d)
H does not vary

with pE and d.)
Next, in Figure 5, we study the loss from employing

a local search for forming chain segments rather than
looking for the maximum-length path at each chain
segment formation. For this, we define a new policy,
Max-Chains, that, upon starting a chain segment,
searches for the chain segment that maximizes lexi-
cographically the number ofH agents matched, while
breaking ties over matching more agents over all.
We observe that the benefit of using Max-Chains

is small when λH is small compared with λE, and it
increases as λH increases. If we consider λE/2 ≤ λH ≤
2λE as the practical range relevant to the kidney ex-
change programs, our simulations suggest that the
loss ranges between 5% and 15%.

Figure 4. (Color online) Comparative Statics of the Average Waiting Time of H Agents Under the ChainMatch(d) Policy with
Respect to Arrival Rates, Number of Altruistic Agents, and Compatibility Probabilities

Notes. The top left shows w#(d)
H as a function of λE, for varying values of d, for fixed λH � 2, T � 105, pE � 0.5, and pH � 0.02. The top right shows

w#(d)
H as a function of λH , for varying values of d, for fixed λE � 2, T � 105, pE � 0.5, and pH � 0.02. The bottom left shows normalized waiting

times (i.e., pHw
#(d)
H ) in the case of chains as a function of − log(pH), for varying values of d, for fixed λH � 2, λE � 1, T � 105, and pE � 0.5. The

bottom right shows w#(d)
H as a function of pE, for different values of d, for fixed λE � 1, λH � 2, T � 106, and pH � 0.02.
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4.4. Impact of the Matching Technology: Bilateral
vs. Chain Matching

Theorems 1 and 3 imply that for any arrival rates
(λH, λE), matching through chains even with only one
initial altruistic agent [i.e., under ChainMatch(1)]
results in shorter average waiting time for H agents.
The theoretical gap is significant when λH >λE. We
run numerical simulations for a variety of parameters
to examine these differences (see Figure 6).

To further highlight the benefit of matching through
chains, we consider the following scenario: Suppose
market 1 has rates (λH,1, λE,1) with λH,1 <λE,1 and is
endowed with d altruistic agents and employs policy
ChainMatch(d). Now consider a second market with
arrival rates (λH,2, λE,2) that does not have any altru-
istic agents and therefore employs BilateralMatch(H).

Further suppose λH,1 � λH,2 � λH . How many more
E agents does market 2 need to attract to be able to
compete with market 1 in terms of average waiting
times ofH agents? In the limit pH → 0, by Theorems 1
and 3, for this to happen, it is necessary that

ln λH
λE,1(1−(1−pE)d) + 1
( )

λH
≥
ln λE,2

λE,2−λH

( )
λHpE

,

which is equivalent to

λE,2 ≥ λH(λH +λE,1(1−(1−pE)d))pE
(λH +λE,1(1−(1−pE)d))pE − (λE,1(1− (1− pE)d))pE .

Note that the above condition is only a necessary
condition and valid in the limit pH → 0. In the case
where pE � 1, Proposition 1 makes this also a suffi-
cient condition, and it simplifies to λE,2 ≥ λH + λE,1.
In Table 1, we report the numerical values for λE,2
such that in simulations w@H

H,2 � w#(d)
H,1 .

4.5. Theoretical Bounds vs. Heuristics
vs. Simulation

In two cases, our theoretical results yield bounds that
are not tight. However, in each of these cases, we
generate a heuristic guess for the exact behavior. We
plot here the simulation results, our heuristically
generated guess (described later in Section 5.3 and

Figure 5. (Color online) Waiting Times wH for Chains Conducted with Local Search (#(d)) and Max-Chains as a Function of
λH , for Fixed λE � 2, T � 105, pE � 0.5, and pH � 0.002

Figure 6. (Color online) Comparison of the Average
Waiting Time of H Agents Under the BilateralMatch(H)
Policy and the ChainMatch(d) Policy with 1 and 20
Altruistic Agents

Note. The figure shows wH , for @H , #(1), and #(20), as a function of
λH , for fixed λE � 5, T � 2*106, pE � 0.5, and pH � 0.02.

Table 1. λE,2 as a Function of pE and d, for pH � 0.02, λH � 1,
and λE,1 � 2, T � 106

pE 0.1 0.3 0.5 0.9 1.0

d = 1 20.75 8.45 5.4 3.3 3.0
d = 10 27.15 10.25 6.55 3.9 3.6
d = 50 66.05 24.8 15.1 9.0 8.15
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Section EC.5 of the online appendix), and the theo-
retical bounds for a variety of parameters. The first
case is under the policy BilateralMatch(E) when λH <λE.
Figure 7 shows that our heuristic analysis (described

in Section 5.3) results in a guess of
ln
(
λE+λH
λE−λH

)
pEpH

that co-
incides with the simulation results. The figure further
illustrates the behavior of our theoretical bounds for
different parameters.

The second case is under the policy ChainMatch(d)
when pE < 1. Here too, Figure 8 shows that our heu-
ristic guess ln λH+λE

λH(1−(1−pH)d)+λE

( )
/pH (described in Section

EC.5 of the online appendix) coincides with the nu-
merical simulations.

5. Proof Ideas and Outline of Analysis
The analysis of each policy follows a similar pattern,
although technically, analyzing the bilateral setting
and the chain setting is very different. For bilateral
policies, we first offer a heuristic that will help in
guessing the value of E[H3] (which is proportional
to the average waiting time) and then proceed to
rigorously analyze E[H3]. For the chain policy, we
first couple the underlying Markov chain with a one-
dimensional chain whose number of H agents serves
as an upper bound on the number of H agents under
the ChainMatch(d) policy. We then proceed to ana-
lyze the expected number of H agents in the coupled
chain. In all three settings, the main idea is to prove

Figure 7. (Color online) Numerical Study of the Tightness of Theoretical Bounds on the Average Waiting Time of H Agents
Under the BilateralMatch(E) Policy

Notes. The left panel shows w@E
H as a function of λH , for λE � 5, T � 105, pE � 0.5, and pH � 0.002. The right panel shows w@E

H as a function of λE,
for λH � 1, T � 105, pE � 0.5, and pH � 0.002.

Figure 8. (Color online) Numerical Study of the Tightness of Theoretical Bounds on the Average Waiting Time of H Agents
Under the ChainMatch(d) Policy

Notes. The left panel showsw#(1)
H as a function of λH , for λE � 3, T � 105, pE � 0.5, and pH � 0.002. The right panel showsw#(1)

H as a function of λE,
for λH � 3, T � 105, pE � 0.5, and pH � 0.002.
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that H3 is concentrated around E[H3] without di-
rectly computing the steady-state distribution, and
based on the exponential decay of the tail distribution
when moving away from the expected value.

We often use the following notations to avoid terms
that vanish in the limit pH → 0. Let f , g : [0, 1] → R.
We write that f � o(g) if limpH→0

f (pH)
g(pH) � 0 and write

that f � O(g) if lim suppH→0
f (pH)
g(pH) <∞.

5.1. The BilateralMatch(H) Policy
In this section, we analyze the policy@H, which forms
myopically bilateral exchanges while prioritizing
H agents. Under this policy, the evolution of the
number of H and E agents in the market can be
modeled by a CTMC [Ht,Et] ∈ N2 with the following
transition rates:

Q@H ([h, e], [h + 1, e]) � λH(1 − p2H)h(1 − pEpH)e, (3a)

Q@H ([h, e], [h − 1, e]) � λH(1 − (1 − p2H)h)
+ λE(1 − (1 − pEpH)h), (3b)

Q@H ([h, e], [h, e + 1]) � λE(1 − pEpH)h(1 − p2E)e, (3c)

Q@H ([h, e], [h, e − 1]) � λH(1 − p2H)h(1 − (1 − pEpH)e)
+ λE(1 − pEpH)h(1 − (1 − p2E)e)).

(3d)

The rates are computed based on the Poisson thinning
property, simple counting arguments, and our as-
sumption that edges are formed independently.

• Rightward rate [Equation (3a)]: moving from
[h, e] to [h + 1, e] happens when anH agent arrives and
cannot form a cycle with any of the existing H agents
(with probability (1 − p2H)h) or with any of the existing
E agents (with probability (1 − pEpH)e).

• Leftward rate [Equation (3b)]: moving from [h, e]
to [h − 1, e] happens when an H agent arrives and
forms a cycle with at least one of the existingH agents
(probability (1 − (1 − p2H)h)) or an E agent arrives and
forms a cycle with at least one of the existingH agents
(probability (1 − (1 − pEpH)h)).
• Upward rate [Equation (3c)]: moving from [h, e]

to [h, e + 1] happens when an E agent arrives and
cannot form a cycle with any of the existing H agents
(probability (1 − pEpH)h) or with any of the existing
E agents (probability (1 − p2E)e).
• Downward rate [Equation (3d)]: moving from

[h, e] to [h, e − 1] happens when anH agent arrives and
cannot form a cycle with any of the existing H agents
(probability (1 − p2H)h) but can form a cycle with an
existing E agent (probability (1 − (1 − pEpH)e)), or an
E agent arrives that cannot form a cycle with any of
the existing H agents (probability (1 − pEpH)h) but can
form a cycle with an existing E agent (probability
(1 − (1 − p2E)e)).
Note that the process is a two-dimensional,

continuous-time, spatially nonhomogeneous random
walk. Figure 9 illustrates this randomwalk alongwith
its transition rates. Also observe that the leftward and
downward rates (3b) and (3d) depend on the priority
assigned to H agents, and these rates will change when
prioritizing E agents, as we will see in the Section 5.3.
However, fixing the priority, changing the tie-breaking
rule between agents of the same type (e.g., favoring
agentswith longerwaiting times instead of selecting one
at random), does not change the transition rates.
In Section EC.7 of the online appendix, we prove

that the above (irreducible) CTMC is positive re-
current, and therefore reaches steady state. This is
intuitive given the above transition rates and the
“self-regulating” behavior of the process. The larger

Figure 9. Transition Rates (Solid Arrows) Under the CTMC Induced by the @H Policy
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the market, the larger the probability that an arriving
agent can form a cycle.

The drifts are given in (3a)–(3d), and therefore,

E λH(1 −p2H)H@H (1− pEpH)E@H− λH(1 − (1−p2H)H@H )
[
− λE(1 − (1 − pEpH)H@H )

]
� 0, (4a)

E[λE(1 − pEpH)H@H (1 − p2E)E@H − λH(1 − p2H)H@H

· (1 − (1 − pEpH)E@H ) − λE(1 − pEpH)H@H

· (1 − (1 − p2E)E@H )] � 0. (4b)

Assuming that the random variablesH@H and E@H are
very concentrated around their expectations, a rea-
sonable approximation is to move the expectation
inside the functions and solve the above system of
nonlinear equations, and thus obtain approximations
for E[H@H ] and E[E@H ]:

• For λH <λE, if we plug

[H@H ,E@H ] �
[
ln

(
λE

λE−λH

)
pEpH

,
− ln(2)

ln(1 − p2E)

]

into (4a) and (4b), the right-hand sides will be O(pH)
terms.

• For λH >λE, if we plug

[H@H ,E@H ] �
[
ln

(
2λH

λH+λE

)
p2H

, 0

]

into (4a) and (4b), the right-hand sides will be
O(p2H) terms.

This heuristic exercise provides us the correct value
of E[H@H ] in both cases. To establish this value rigor-
ously and prove Theorem 1, we show, in the following
two propositions, that H@H is highly concentrated
around its mean.

Proposition 3 (Lower Bound). Under@H and in steady state,
• if λH <λE, there exists a constant c1 such that

P H@H ≤ 1
pEpH

ln
λE

λE − λH

( )
− c1p

1/4
H

( )[ ]
≤ o(pH);

• if λH >λE, there exists a constant c2 such that

P H@H ≤ 1
p2H

ln
2λH

λE + λH

( )
− c2

����
pH

√( )[ ]
≤ o(pH).

Note that although we do have closed-form formulas
for c1, c2 (similarly for c3, c4, defined in the next
proposition), these values are not informative. We
refer the reader to the proofs for more details.

Proposition 4 (Upper Bound). Under @H and in steady
state, for any k ≥ 0,

• if λH <λE, there exists a function γ(pH) � 1 − ����
pH

√ +
o( ����

pH
√ ) and a constant c3 such that

P H@H ≥ 1
pEpH

ln
λE

λE − λH

( )
+ c3

����
pH

√( )
+ k

[ ]
≤ γ(pH)k
1− γ(pH) ;

• if λH >λE, there exists a function γ′(pH) � 1 − ����
pH

√ +
o( ����

pH
√ ) and a constant c4 such that

P H@H ≥ 1
p2H

ln
2λH

λE + λH

( )
+ c4

����
pH

√( )
+ k

[ ]
≤ γ′(pH)k
1 − γ′(pH) .

Note that in both cases in Proposition 4, if k � p−3/4H ,
then the right-hand side becomes o(p2H). The proof
of Theorem 1 is a straightforward application of
these propositions, and the details are presented in
Section EC.2.1 of the online appendix. To prove
these propositions, we derive exponentially decaying
bounds on tails of the steady-state distribution of
H@H and E@H . In the next subsection, we present two
auxiliary lemmas that establish such bounds for a
general class of two-dimensional continuous-time
random walks that includes the random walk defined
above. The proof of Propositions 3 and 4 amount to
applying these lemmas with appropriately defined
parameters. The proofs are presented in Sections EC.2.4
and EC.2.3 of the online appendix, respectively.

5.2. Concentration Bounds for a General Class
of Two-Dimensional Random Walks

In the analysis of both BilateralMatch(H) and Bilateral-
Match(E) policies, we repeatedly bound the left tail
or the right tail of the steady-state distribution of
the number of H agents in the market. These bounds
rely on certain properties of the corresponding two-
dimensional continuous-time random walks, which
allow us to establish exponential decay on each tail
of the steady-state distribution. To avoid repeating
these concentration results for each particular setting,
we take a unifying approach and state the following
twoauxiliary lemmas that establish concentration results
for a general class of two-dimensional random walks
under certain conditions. These lemmasmaybe useful in
other applications that give rise to similar randomwalks.

Lemma 1 (Lower Bound). Let [Xt,Yt] ∈ N2 be a positive
recurrent continuous-time random walk with transition rate
matrix Q, and let [X,Y] be a corresponding random vector
following its steady-state distribution. Suppose the following
conditions exist:

1. a set S ⊂ N and a constant ε> 0 such that P[Y �∈ S] ≤ ε;
2. a nonincreasing function f : N 
→ (0,∞) such that

∀y ∈ S, Q([x, y], [x + 1, y]) ≥ f (x);
3. a nondecreasing function g : N 
→ (0,∞) such that

∀y ∈ S, Q([x, y], [x − 1, y]) ≤ g(x).
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Then, for all ρ< 1 and η ∈ N such that g(η+1)
f (η) < ρ, and

any k> 0, we have

P[X ≤ η − k] ≤ ηε 1 + 1
f (η) − g(η + 1)

( )
+ ρk

1 − ρ
.

Proof of Lemma 1. Let π(x, y) be the joint distribution
of [X,Y], and let πX(x) � ∑

y≥0 π(x, y) be the marginal
distribution of X. In steady state, conservation of flow
implies the following:∑

y∈S
π(x + 1, y)Q([x + 1, y], [x, y])

+∑
y/∈S

π(x + 1, y)Q([x + 1, y], [x, y])

� ∑
y∈S

π(x, y)Q([x, y], [x + 1, y])

+∑
y/∈S

π(x, y)Q([x, y], [x + 1, y]).

Using Conditions 2 and 3, we upper bound the left-
hand side and lower bound the right-hand side, which
results in

g(x + 1)P[X � x + 1,Y ∈ S] + P[X � x + 1,Y /∈ S]
≥ f (x)P[X � x,Y ∈ S].

LetπS(x) � P[X � x,Y ∈ S] � ∑
y∈S π(x, y). Observe that

by Condition 1 we have πX(x) ≤ πS(x) + ε. Using the
fact that g is nondecreasing and f is nonincreasing,
we get, for x ≤ η,

πS(x) ≤ g(x + 1)
f (x) πS(x + 1) + P[Y /∈ S]

f (x)
≤ ρπS(x + 1) + ε

f (η) .

We can subtract ε/f (η)
1−ρ from both sides and iterate: for

all j ≥ 0,

πS(η − j) − ε/f (η)
1 − ρ

≤ ρ j πS(η) − ε/f (η)
1 − ρ

( )
≤ ρ j.

This allows us to conclude that for any k> 0,

P[X ≤ η − k] � ∑η−k
i�0

πX(i) ≤ (η − k)ε +∑η
j�k

πS(η − j)

≤ (η − k)ε 1 + 1/f (η)
1 − ρ

( )
+∑η

j�k
ρj

≤ ηε 1 + 1
f (η)(1 − ρ)

( )
+ ρk

1 − ρ
.

□

Lemma 2 (Upper Bound). Let [Xt,Yt] ∈ N2 be a positive
recurrent continuous-time random walk with transition rate
matrix Q, and let [X,Y] be a corresponding random vector
following its steady-state distribution. Suppose the following
conditions exist:

1. amapping S : N 
→ 2N and two constants c ∈ R+, δ ∈
(0, 1) such that

P[Y �∈ S(x)] ≤ cδx;
2. two functions f , g : N 
→ (0,∞) such that ∀y ∈ S,

Q([x, y], [x + 1, y]) ≤ f (x) and Q([x, y], [x − 1, y]) ≥ g(x).
Then, for all η> 0 and ρ ∈ [δ, 1) such that ∀x ≥ η,

f (x)
g(x+1) ≤ ρ, and δx

g(x+1) ≤ ρx

g(η+1) , and for any k> 0, we have

P[X ≥ η + k] ≤ ρk

1 − ρ
1 + c + c(k + 1)

g(η + 1) − f (η)
( )

.

Note that the above conditions are weaker than that
of Lemma 1 (where f is nonincreasing, g is non-
decreasing, and f (η)

g(η+1) ≤ ρ). We will need this for the
proofs of Propositions 3 and EC.2, where the corre-
sponding function g is not monotone.
The proof of Lemma 2 follows similar arguments

to that of Lemma 1 and is deferred to Section EC.1 of
the online appendix.

5.3. The BilateralMatch(E ) Policy
The policy @E forms myopically bilateral exchanges
while prioritizing E agents. The transition rates of
the underlying CTMC are as follows:

Q@E([h, e], [h + 1, e]) � λH(1 − p2H)h(1 − pEpH)e, (5a)

Q@E([h, e], [h − 1, e]) � λH(1 − pEpH)e(1 − (1 − p2H)h)
+ λE(1 − p2E)e(1 − (1 − pEpH)h),

(5b)

Q@E([h, e], [h, e + 1]) � λE(1 − pEpH)h(1 − p2E)e, (5c)

Q@E([h, e], [h, e − 1]) � λH(1 − (1 − pEpH)e)
+ λE(1 − (1 − p2E)e). (5d)

The rates are computed similarly to those under the
BilateralMatch(H) policy. Observe that prioritizing E
results in different leftward and downward rates (5b)
and (5d) than the corresponding rates under Bilat-
eralMatch(H). In particular, note that in the leftward
rate (moving from [h, e] to [h − 1, e]), the probability
that an arriving E agent matches an existing H agent
depends now on the current number of E agents. This
dependency does not exist in BilateralMatch(H). This
makes the analysis of BilateralMatch(E) more difficult
because we need to compute tight bounds also on the
number of E agents in the market. Although we are
able to prove such bounds in the case λH >λE, we are
not able to do so in the case λH <λE.
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As before, we set the expected drifts at steady state
in both dimensions to zero, resulting in the following
system of equations:

E[λH(1 − p2H)H@E (1 − pEpH)E@E

− λH(1 − pEpH)E@E (1 − (1 − p2H)H@E )
− λE(1 − p2E)E@E (1 − (1 − pEpH)H@E )] � 0, (6a)

E[λE(1− pEpH)H@E (1 − p2E)E@E − λH(1 − (1 − pEpH)E@E )
− λE(1 − (1 − p2E)E@E )] � 0.

(6b)

As in the heuristic analysis for BilateralMatch(H), we
can obtain the following approximations for E[H@E]
and E[E@E]:

• For the case λH <λE, if we plug

ln
(
λE+λH
λE−λH

)
pEpH

,
ln

(
λE+λH
2λE

)
ln(1 − p2E)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

into (6a) and (6b), the right-hand sides will be O(pH)
terms.
• For the case, λH >λE, if we plug

ln
(

2λH
λH+λE

)
p2H

, 0
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
into (6a) and (6b), the right-hand sides will be O(p2H)
terms.

As stated in Theorem 2, for the case λH >λE, the
constant for the limit of E[H@E ]

λH
coincides with the so-

lution given by the above heuristic. For the case,
λH <λE, the constant resulting from the above heuristic
argument lies in between the constants of the lower and
upper bounds we can prove (in Theorem 2), that is,

ln λE
λE−λH

( )
pE

≤
ln λE+λH

λE−λH

( )
pE

≤
ln 2λE

λE−λH

( )
pE

.

In Figure 7, we numerically show that
ln
(
λE+λH
λE−λH

)
pE

is in-
deed the right constant.

The proof of the case λH >λE, and the lower bound
when λH <λE in Theorem 2, follows similar steps as
that of Theorem 1, and it uses the concentration re-
sults of the lemmas stated in the previous subsection.
The difficulty in closing the gap between our lower
and upper bounds for the case λH <λE comes from
the dependency of the leftward rate on the current
number of E agents [i.e., the second term in (5b)]. Our
bounds on the right tail of the distribution of the
number of E agents are not tight enough to result in
matching lower and upper bounds. Closing this gap
remains an open question. A notable difference is that
in (3a) and (3b), knowing that E is bounded above by

a constant (independent of pH) is enough to get
matching upper and lower bounds (up to a vanishing
term). This, however, is not the case in (5b). To prove
the upper bound in the case λH <λE, we couple the
Markov process underlying policy @E with another
process in which an E agent that cannot form a match
upon arrival turns into anH agent. See Section EC.3.2.

5.4. The ChainMatch(d ) Policy
This section proves Theorem 3 and Proposition 1. As
we could establish only an upper bound for the av-
erage waiting time when pE < 1, we refer the reader to
Section EC.5 of the online appendix for a heuristic
analysis that leads us to guess the constant thatwe can
numerically verify to be the correct one (see Figure 8).
Instead of directly analyzing the ChainMatch(d) policy

under our setting, we consider a modified setting, in
which an E agent that does not match immediately
upon arrival is removed from the system. We refer to
this new setting under the policy ChainMatch(d) as
#̂(d). Observe that H#̂(d)

t is a one-dimensional CTMC
with the following transition rates:

Q#̂(d)(h, h + 1) � λH(1 − pH)d, (7a)

Q#̂(d)(h, h − i) � (
λH(1 − (1 − pH)d) + λE(1 − (1 − pE)d))
· (1 − pH)h−i ∏

i−1

j�0
(1 − (1 − pH)h−j),

i ∈ {1, 2, . . . , h}.
(7b)

The first expression, (7a), corresponds to rate at which
an H agent arrives but cannot be matched by a bridge
agent. The second expression, (7b), corresponds to the
rate at which an agent arrives, is matched by a bridge
agent, and forms a chain segment of length i. Observe
that the case i � 0 is possible and corresponds to an
arriving agent that can be matched by a bridge agent
but cannot continue the chain further. In that case, the
CTMC does not transition, and we consider the chain seg-
ment to have length 1. In Section EC.7 of the online ap-
pendix,weshowthat theaboveCTMCreachessteadystate.
We introduce some notation to simplify (7b). Set

Λ � λH(1 − (1 − pH)d) + λE(1 − (1 − pE)d), which is the
rate at which a new chain segment (possibly of length 1)
starts, regardless of the current state, and let Sh be
the random number of agents removed from the
system, starting from state h. Using the notation from
Section 3.2.2, note that Sh + 1 corresponds to the length
of the chain segment Lk for the one-dimensional Mar-
kov chain. For any i ≤ h, we can write

Q#̂(d)(h, h − i) � ΛP[Sh � i]
� Λ(1 − pH)h−i ∏

i−1

j�0
(1 − (1 − pH)h−j). (8)
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Observe that we have

P[Sh ≥ k] � ∏
k−1

j�0
(1 − (1 − pH)h−j). (9)

Theproofproceedsby showing thatE[H#̂(d)] serves as an
upper bound for E[H#(d)] (Lemma 3) and then com-
puting the limit of E[H#̂(d)] (Proposition 5). Before that,
wemake the following crucial observation: the process of
chain-segment formation under #̂(d) exhibits a memo-
ryless property; that is, for any state h and any ĩ ≤ i ≤ h,

P[Sh � i] � (1 − pH)h−i ∏
i−1

j�0
(1 − (1 − pH)h−j)

� ∏
ĩ−1

j�0
(
1 − (1 − pH)h−j) (1 − pH)(h−ĩ)−(i−ĩ)

[

· ∏
(i−ĩ)−1

j�0
1 − (1 − pH)(h−ĩ)−j
( )]

� P[Sh ≥ ĩ]P[Sh−ĩ � i − ĩ].

(10)

In other words, the event of forming a chain segment
of length i can be decomposed into two independent
events: forming a chain segment of length at least ĩ and
then forming a chain segment of length i − ĩ starting
with h − ĩ agents in the market. This heavily relies on
the fact that chain segments proceed in a local search
(one by one) fashion and the independence assump-
tion. Indeed, the chain-segment formation in the original
two-dimensional chain #(d) has a similar property.

We now show that E[H#̂(d)] is an upper bound
for E[H#(d)].
Lemma 3. The expected number of H agents in steady state
under #̂(d) satisfies

E[H#(d)] ≤ E[H#̂(d)].
Proof of Lemma 3. The proof is based on a coupling
argument. Consider two copies of the arrival process,
one under the setting of #(d) and one under #̂(d). Let
[H#(d)

k ,E#(d)
k ] and H#̂(d)

k denote the embedded discrete-
time Markov chain resulting from observing the two
dynamic systems at arrival epochs. We prove a stron-
ger result: at any step k, H#(d)

k ≤ H#̂(d)
k . We prove this

using the following coupling:
1. Upon arrival of an H agent, we flip a biased coin

with probability (1 − pH)d. If the coin flip is heads, the
H agent cannot start a chain segment, and both H#(d)

k+1
and H#̂(d)

k+1 increment by one. If the coin flip is tails, the
H agent starts a chain segment in both systems.
Suppose that [H#(d)

k ,E#(d)
k ] � [h, e] and H#̂(d)

k � h̃, and
let [LH[h,e],LE[h,e]] denote the random number of H and E

agents in the chain segment formed under #(d) at
state [h, e]. Similarly, let Sh̃ be the length of chain
segment formed under #̂(d) at state (h̃). We distin-
guish between three cases:

a. h̃ ≥ h and the event {Sh̃ < (h̃ − h)} occurs.We let
[LH[h,e],LE[h,e]] be realized independently of Sh̃.

b. h̃ ≥ h and the event {Sh̃ ≥ (h̃ − h)} occurs. In
this case, the memoryless property of #̂(d) in (10)
can be rewritten as P[Sh̃ � i | Sh̃ ≥ (h̃ − h)] � P[Sh �
i − (h̃ − h)]. This divides the chain-segment formation
into two independent events: a subchain segment of
length (h̃ − h) is formed, and then a subchain segment
of length ξ, where ξ is a random variable drawn from
the distribution of Sh. Now we focus on the chain-
segment formation under#(d). BecauseH agents get a
higher priority, the chain segment can be computed in
steps. Starting with [h, e] agents, we first look for a
subchain segmentLH1 consisting of onlyH agents.When
this chain segment cannot be continued further with only
H agents, we look for an E agent to continue the chain.
If this happens (with probability 1 − (1 − pE)e(

), we look
for a second subchain segment LH2 of only H agents, etc.
Note that the first subchain segment LH1 also has the
same distribution as Sh. We can therefore set LH1 � ξ.
All further subchain segments LHi are realized
independently.

c. h̃< h. We let [LH[h,e],LE[h,e]] and Sh̃ be realized
independently.

2. Upon arrival of an E agent, we flip a biased coin
with probability (1 − pE)d. If the flip is heads, the E
agent cannot start a chain segment in either system,
and we have H#(d)

k+1 � H#(d)
k and H#̂(d)

k+1 � H#̂(d)
k . On the

other hand, if the flip is tails, the E agent starts a chain
segment in both systems. The chain-segment formation
in this case is exactly the same as the one for anH arrival.
Having the above coupling, we finish the proof

by induction. The base case k � 0 is trivial: H#(d)
0 �

H#̂(d)
0 � 0. Suppose H#(d)

k ≤ H#̂(d)
k holds for k. We show

that it also holds for k + 1: If an H/E arrival does not
start a chain segment, then, by coupling construction,
H#(d)

k+1 ≤ H#̂(d)
k+1 . If anH arrival does start a chain segment,

then we are either in Case 1a or 1b. In the former, the
length of the chain segment in #̂(d) was not even
long enough to bring the number of H agents back
to H#(d)

k � h; therefore, H#(d)
k+1 ≤ H#̂(d)

k+1 holds. In the latter
case, again by coupling construction, LH[h,e] ≥ Sh + (h̃ − h),
which implies that H#(d)

k+1 ≤ H#̂(d)
k+1 holds. A similar argu-

ment holds if an E arrival starts a chain segment. □

The next proposition computes E[H#̂(d)] in the limit.
Together with Lemma 3, this completes the proof of
Theorem 3.
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Proposition 5. Under #̂(d) and in steady state, the ex-
pected number of H agents satisfies

lim
pH→0

pHE[H#̂(d)] � ln 1 + λH

λE(1 − (1 − pE)d)
( )

.

Proof of Proposition 5. Let π be the steady-state prob-
ability distribution. By the conservation of flow from
state h to h + 1, we have

π(h)λH(1 − pH)d �
∑
k≥1

π(h + k) ∑
i≤h

Q#̂(d)(h + k, i)
( )

.

Note that
∑

i≤h Q#̂(d)(h + k, i) is the total leftward flow
starting from state h + k and ending at state i ≤ h.
Using (8) and (9), we have∑

i≤h
Q#̂(d)(h + k, i) � ΛP[Sh+k ≥ k],

and therefore,

π(h)λH(1 − pH)d � Λ
∑
k≥1

π(h + k)P[Sh+k ≥ k]. (11)

Observe that applying definition (9), we have P[Sh+k ≥
k] � P[Sh+k ≥ k − 1]P[Sh+1 ≥ 1]. Therefore, we can re-
write (11) as

π(h)λH(1−pH)d � Λ π(h + 1)P[Sh+1≥1] + P[Sh+1 ≥ 1]
(

·∑
k≥2

π(h + k)P[Sh+k ≥ k − 1]
)
.

(12)

Similarly, we write the conservation of flow from
state h + 1 to h + 2:

π(h + 1)λH(1 − pH)d � Λ
∑
k≥1

π(h + 1 + k)P[Sh+k+1 ≥ k]

� Λ
∑
k′≥2

π(h + k′)P[Sh+k′ ≥k′ − 1],

(13)

where the last step follows from a change of variable
k′ � k + 1. Note that the summation in the right-
hand side of (13) also appears in the second term
of the right-hand side of (12). Substituting

∑
k′≥2 π(h +

k′)P[Sh+k′ ≥ k′ − 1] with π(h + 1)λH(1 − pH)d/Λ in (12)
gives that

π(h)λH(1 − pH)d � π(h + 1)P[Sh+1 ≥ 1]
· (Λ + λH(1 − pH)d). (14)

We can now compute E[H#̂(d)] by proving an upper
and lower bound separately. We use the fact that for
states far enough from the expectation, the distri-
bution decays geometrically.

We start with the upper bound. Let η �
ln 1 + λH

λE(1−(1−pE)d)
( )

/pH + 1/
����
pH

√
. We know from (9) that

P[Sh+1 ≥ 1] � 1 − (1 − pH)h+1. This implies that for h ≥ η,

P[Sh+1 ≥ 1] ≥ 1 − (1 − pH)η+1
� 1 − e(η+1) ln(1−pH)

� 1 − λE(1 − (1 − pE)d)
λH + λE(1 − (1 − pE)d) (1 −

����
pH

√ )
+ o(pH),

where we used the Taylor expansion ln(1 − x) �
−x − x2/2 − x3/3 − . . ..
Using (14) for h ≥ η, we have

π(h + 1)
π(h) � λH(1 − pH)d

P[Sh+1 ≥ 1](Λ + λH(1 − pH)d)
≤ λH(1 − pH)d
λH + λE(1 − (1 − pE)d) ����

pH
√ + o( ����

pH
√ )

� 1 − c
����
pH

√ + o( ����
pH

√ ) �: δ, (15)

where c � λE(1−(1−pE)d)
λH

. Having (15), we upper bound
E[H#̂(d)] as follows:

E[H#̂(d)] � ∑
h≤η+p−3/4H

π(h) + ∑
h≥η+p−3/4H +1

π(h)

≤ η + p−3/4H + π(η) δ
p−3/4H +1

(1 − δ)

�
ln 1 + λH

λE(1−(1−pE)d)
( )

pH
+ o(1/pH).

Similarly, we lower bound E[H#̂(d)]: Let η̂ �
ln 1 + λH

λE(1−(1−pE)d)
( )

/pH − 1/
����
pH

√
. We can find ĉ such

that for h ≤ η̂,

π(h)
π(h + 1) ≤ 1 − ĉ

����
pH

√ + o( ����
pH

√ ).

The above inequality combined with Markov inequality
enables us to lower bound E[H#̂(d)] as follows:

E[H#̂(d)] ≥ (η − p−3/4H ) 1 − ∑η−p−3/4H

h�0
π(h)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
ln 1 + λH

λE(1−(1−pE)d)
( )

pH
+ o(1/pH). □

Finally, note in the special case pE � 1, an arriv-
ing E agent is matched immediately by a bridge
agent, implying that E#(d)

t � 0 and H#(d)
t � H#̂(d)

t . Con-
sequently Proposition 5 implies the limit stated in
Proposition 1.
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6. Final Comments
In matching markets where monetary transfers are
not allowed, exogenous thickness increases exchange
opportunities (Roth 2008). Using a simple dynamic
model with heterogeneous agents, we find a tight con-
nection between market thickness and the desired match-
ing technology; matching through chains is significantly
more efficient than (simple) bilateral matching only when
themarket is sufficiently thin. Furthermore, increasing
the arrival rate of hard-to-match agents may have, under
bilateral matching, an adverse effect on such agents.

An important dynamic matching market is kidney
exchange, which enables incompatible patient–donor
pairs to exchange donors. Although our stylized model
abstracts away from many details in this market, our
findingsmay provide some useful insights into policy
issues. When merging markets, which is an ongoing
effort in various countries (see Section 2.1), or attracting
different types of pairs, there may be negative effects
on some pairs. This effect is well known for pairs with
type O patients and non–type O donors who compete
to match with scarce type O donors in the pool (Roth
et al. 2007). Our findings suggest that this negative effect
extends also to blood type–compatible pairs (like O–O),
many of which have very highly sensitized patients.

Understanding these externalities is a key step
toward aligning incentives toward cooperation be-
tween the relevant players (Ashlagi and Roth 2012).
Our findings further provide some insights about
trade-offs from prioritizing different types of pairs.

Next we discuss some limitations and possible
extensions. One interesting challenge is to quantify
the exact loss from restricting attention to myopic
policies that do not wait before matching, rather than
finding the optimal Markovian policy that may make
some agents wait to increase matching opportunities.

As is shown in Anderson et al. (2017), one can show
that our policies achieve the same scaling as the best
anonymous Markovian policy (see Proposition EC.4
in Section EC.8 of the online appendix), but charac-
terizing the best constants is an open question. An-
other interesting direction is to extend the model
to allow departures. For example, Akbarpour et al.
(2014) allow agents to depart prior to being matched
and consider the match rate as the measure for effi-
ciency. Finally, our focus has been onmarketplaces, in
which any pair of agents has a nonzero probability of
forming a match. We found that the composition of
the market crucially impacts the efficiency of the
market. An interesting direction for future research
would be to extend this study to two-sided market-
places and, in particular, explore what features de-
termine waiting times, for example, whether it is more
beneficial to be on the short side or have a large ex ante
match probability.
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