
Online Traveling Salesman Problems with Rejection Options∗

Patrick Jaillet‡ Xin Lu§

March 2013; revised December 2013; accepted July 2014

Abstract

In this paper we consider online versions of the Traveling Salesman Problem (TSP) on metric
spaces for which requests to visit points are not mandatory. Associated with each request is a
penalty (if rejected). Requests are revealed over time (at their release dates) to a server who
must decide which requests to accept and serve in order to minimize a linear combination of the
time to serve all accepted requests and the total penalties of all rejected requests. In the basic
online version of the problem, a request can be accepted any time after its release date. In the
real-time online version, a request must be accepted or rejected at the time of its release date.

For the basic version, we provide a best possible 2-competitive online algorithm for the
problem on a general metric space. For the real-time version, we first consider special metric
spaces: on the non-negative real line, we provide a best possible 2.5-competitive polynomial
time online algorithm; on the real line, we prove a lower bound of 2.64 on any competitive ratios
and give a 3-competitive online algorithm. We then consider the case of a general metric space
and prove a Ω(

√
lnn) lower bound on the competitive ratio of any online algorithms. Finally,

among the restricted class of online algorithms with prior knowledge about the total number of
requests n, we propose an asymptotically best possible O(

√
lnn)-competitive algorithm.

key words: online, competitive analysis, traveling salesman problem

1 Introduction

In the classical Traveling Salesman Problem (TSP) in a metric space, we are given an origin, a

set of points in that space, and the task is to find a tour of minimum total length, beginning and

ending at the origin, that visits each point at least once. If one introduces a “time” aspect to the

problem by considering a server visiting these points with a given constant speed, the objective

can equivalently be stated as to minimize the time required to complete a tour. When requests to

visit points include release dates, i.e., when a point can only be visited on or after its release date,

we obtain the so-called “TSP with release dates”. Removing the need to visit all requests, one can

associate a penalty with each request to visit a point. The server can then decide which points to

serve and the objective is to minimize a linear combination of the time to go through all accepted

requests plus the penalties of the rejected ones.

∗Research funded in part by ONR, grants N00014-09-1-0326 and N00014-12-1-0033, and by AFOSR, grant FA9550-
10-1-0437
‡Laboratory for Information and Decision Systems, Department of Electrical Engineering and Computer Science,

and Operations Research Center, MIT, Cambridge, MA, 02139; jaillet@mit.edu
§Operations Research Center, MIT, Cambridge, MA, 02139; luxin@mit.edu

1

This paper is a follow-up companion to our recently published article [10], where we consider

online versions of the TSP with release dates and rejection penalty. In that article, the decisions

to accept or reject requests could be done any time after their release dates. In the current paper,

we also consider the case when the decisions must be made immediately at the release dates. To

distinguish these two versions, the first model is called the basic version, and the second one is

called the real-time version.

1.1 Formal definitions of the problems

Online TSP with Rejection Options

Instance: A metric spaceM with a given origin o and a distance metric d(·, ·). A series

of n requests represented by triples (li, ri, pi)1≤i≤n, where li ∈ M is the location (point

in metric space) of request i, ri ∈ R+ is its release date (first time after which it can be

served), and pi ∈ R+ is its penalty (for not being served). The problem begins at time

0; the server is initially idle at the origin (initial state), can travel at unit speed (when

not idle), and eventually must be back and idle at the origin (final state). The earliest

time the server reaches this final state is called the makespan.

Offline context: The number of requests n is known to the offline server. All requests

are revealed to the offline server at time 0.

Online context: The number of requests n is not known to the online server. Requests

are revealed to the online server at their release dates ri ≥ 0; assume r1 ≤ r2 · · · ≤ rn.

There are two online versions:

Basic: The online server can accept or reject a request any time after the

request’s release date.

Real-time: The online server must accept or reject a request immediately at

the time of the request’s release date. Decisions are then final.

Objective: In all cases, minimize {the makespan to serve all accepted requests plus the

total penalties of all rejected requests} among all feasible solutions.

The offline problem is thus a TSP with release dates and penalty, and the two online versions of

the problem differ as to when decisions to accept or reject a request can be done.

1.2 Our contributions

For the basic online version of the TSP, we provide a best possible 2-competitive online algorithm in

a general metric space, improving the 2.28-competitive ratio of [10]. A slightly modified version of

our algorithm can be applied to the prize-collecting TSP as defined in [3]. Our modified algorithm

remains 2-competitive for any variations of that problem, improving the 7/3-competitive ratio of [3].

2

For the real-time version, we provide a best possible 2.5-competitive polynomial time online

algorithm on the non-negative real line. On the real line, we prove a lower bound of 2.64 on any

competitive ratios and give a 3-competitive online algorithm. Finally, we consider the case of a

general metric space and prove a Ω(
√

lnn) lower bound on the competitive ratio of any online

algorithms. Among the restricted class of online algorithms with prior knowledge about the total

number of requests n, we also propose an asymptotically best possible O(
√

lnn)-competitive one.

1.3 Literature review

The Traveling Salesman Problem (TSP), along with its many variations, has received wide attention

from different communities. Several books, including those of Lawler et al. [16] and Korte and

Vygen [14] offer comprehensive coverage of results about the classical variants. The problems for

which points do not need to be all visited have comparatively received less attention, and most

of the work originated in the mid-80s, with a paper by Balas [6] on the prize collecting traveling

salesman problem. A good survey about various models and solution strategies about these variants

up to 2005 can be found in [8].

With respect to the literature on online versions of the TSP as considered in this paper, it started

with the paper by Ausiello et al. [5], in which the authors introduce and study the online version of

the TSP with release dates. We refer the readers to our previous companion paper [10] for a more

detailed account of the key literature on online TSP and its variants since then, including [2, 17,

7, 11, 21, 1, 4, 3, 12, 18]. Most related to this current paper, are those dealing with online routing

problems which do not require the server to visit every revealed request ([4, 3, 10]).

Let us conclude this review by noting that other online models of the TSP have been proposed

in the literature, including some recent papers. In one model, closely related to graph exploration,

new requests are revealed locally during the traversal of a tour (i.e., an arrival at a node reveals

any adjacent nodes that must also be visited). In that case, constant-competitive algorithms are

also known for many cases ([13, 19, 9]). In another model, the nodes of an unknown graph with

metric edge cost appear one by one and must be connected in such a way that the resulting tour

has low cost. Without additional power, no online algorithms can guarantee constant-competitive

ratio. In [20], the authors investigate under what conditions, allowing some recourse (e.g., limited

edge rearrangement per iteration) would lead to constant-competitive algorithms.

Outline: The remainder of the paper is as follows: after introducing some key notations and

assumptions in Section 2, we first present our main result on the basic online version for the TSP in

a general metric space in Section 3. We then concentrate on the real-time version of the problem in

Section 4, presenting results on the non-negative real line, on the real line, and on a general metric

space. We offer few concluding remarks in Section 5.

3

2 Notations

The formal definitions of the problems considered in this paper have been given in Section 1.1. We

assume that we have at our disposal an exact algorithm (a black box) that solves any instance of

the corresponding offline problems.

An instance I consisting of n requests is gradually revealed. The online server observes a series

of partial instances {Ik}1≤k≤n, where Ik is the instance consisting of the first k requests. For the

instance Ik, let Copt(k) be the objective value of an optimal offline solution, τk be the corresponding

optimal route (tour or path), Tk be the corresponding makespan, and Sk be the set of accepted

requests by the black box. Given a route τ , we also use τ as a function τ(t) : R+ →M, where τ(t)

is the position of the server who follows τ at t. L(τ) represents the length of the route, i.e. the

shortest time to travel through it, ignoring release dates of requests.

For a given online algorithm A, we let CA(k) be the total cost incurred by the online server on

the instance Ik. We measure the quality of this online algorithm via its competitive ratio, i.e., the

smallest upper bound on CA(n)/Copt(n) for any instances of any size n. If there exists such a finite

upper-bound c, then we say that A is c-competitive, and, in case no other online algorithms have

smaller competitive ratios, we say that A is best possible. If a finite upper bound does not exist,

then one can characterize the asymptotic behavior of the competitive ratios as a function of n (n

representing the problem size) by providing functions f and g such that an Ω(f(n)) and O(g(n))

are asymptotic lower and upper bounds on the competitive ratios for the problem.

3 Basic Version of the Online Problem

We focus here on the basic version of the problem. In Jaillet and Lu [10], we show a lower bound

of 2 on the competitive ratio of any online algorithms for this problem, even under the simple case

of the non-negative real-line:

Theorem ([10]). Any c-competitive online algorithm on R+ must have c ≥ 2.

In the remainder of the section, we first propose an online algorithm whose competitive ratio

matches this lower bound in any general metric spaces. We then consider the design of a polynomial

time online algorithm for this problem and, we finally address a slight generalization of the problem,

involving both penalty for rejection of a request and prize for collection, if a request is accepted

and served.

3.1 Best possible 2-competitive online algorithm

In the proposed algorithm, the online server makes use of the offline black box only when at the

origin, and, any time at the origin, waits an appropriate amount of time (to be defined) before it

starts on a new route. While engaged on a route, the server ignores all new requests. We label this

algorithm WOGI for “Wait, Optimize, Go, and Ignore”. In the sense that this algorithm ignores all

4

additional requests while en route, this “stubborn” behavior is shared with algorithms which have

been proposed for other online routing problems, such as the online traveling repairman problem

(see in particular the INTERVAL algorithm of [15], and the BREAK algorithm of [11]).

Before presenting the algorithm in details, let us first define some notations. We use i as a

counter indicating how many times the online server has left the origin. We let ui be the number of

requests that have been released so far when the online server leaves the origin for the ith time. We

let Pi be the set of all requests among the first ui requests that have not been served by the online

server when it returns to the origin for the ith time. We let si be the first request, not among the

first ui−1 requests, which the online server visits on route τui (so si > ui−1).

Our algorithm is designed in such a way that when the online server leaves the origin for the

ith time, it has two candidate routes to follow. It either follows the route τui exactly, or it uses a

WOGI shortcut τui,ui−1 , defined as follows: it skips the first requests on τui whose indices are no

greater than ui−1, goes directly to request si, and then follows the remaining part of τui .

Figure 1 below provides an illustration of a WOGI shortcut. In this example, five requests

o

1

35

2
4

route τ5 by black box

o

1

35

2
4

WOGI shortcut τ5,2

Figure 1: WOGI Shortcuts

are released sequentially. The route τ5 on the left, computed by the black box, passes through

requests 1, 5, 3, and 2. According to the definitions above, s5 = 3. As showed on the right, the

WOGI shortcut τ5,2 skips request 1 and goes directly to request 3. Note that no request is skipped

afterwards. Assume that the server have returned to the origin once and request 1 has not been

served, then P2 = {1, 4}. Even if some requests are released shortly after the server leaves the

origin to follow τ5,2, they are not included in P2.

We are now ready to provide a full description of Algorithm WOGI:

Algorithm 1 (WOGI).

0. Initialization: counter i = 0, u0 = 0, and P0 = ∅.

1. Assume k requests have been released. If Sk ⊂ {1, 2, ..., ui}, wait for the next released request,
and go to Step 1; otherwise, go to Step 2.

2. Assume k requests have been released, the WOGI server waits until max{Copt(k), tk,ui}, where
tk,ui

.
= 2Copt(k) − L(τk,ui) −

∑
j>ui,j /∈Sk

pj −
∑

j∈Pi
pj is the latest time to leave the origin

5

to follow τk,ui and maintain a competitive ratio of 2. If a new request is released during the
waiting time, go to Step 1; otherwise, update ui+1 = k, i = i+ 1, and go to Step 3.

3. The WOGI server takes one of the two routes and ignores all new requests before reaching
back the origin:

3a. If tui,ui−1 ≥ Copt(ui), he follows the WOGI shortcut τui,ui−1. After finishing the route,
go to Step 4.

3b. If tui,ui−1 < Copt(ui), he follows τui. After finishing the route, go to Step 4.

4. Update Pi. Go to Step 1.

Let us first look at some properties of WOGI:

Lemma 1. rsi+1 ≥ Copt(ui).

Proof. If i = 0, Copt(0) = 0. Thus, the lemma is trivially true. If i > 0, let t be the time when the
WOGI server leaves the origin for the ith time. According to Step 2, t ≥ Copt(ui). On the other
hand, at time t, only ui requests are released. Thus, ∀j > ui, rj ≥ t ≥ Copt(ui). In particular, it is
true for j = si+1 > ui.

Lemma 2. tui+1,ui ≥ 2Copt(ui)−
∑

j∈Pi
pj.

Proof. If i = 0, Copt(0) = 0. The lemma is trivially true. If i > 0, the offline server cannot visit
request si+1 before its release time rsi+1 . Thus, Tui+1 ≥ rsi+1 + L(τui+1,ui)− |lsi+1 |. Therefore,

tui+1,ui = 2Copt(ui+1)− L(τui+1,ui)−
∑

j>ui,j /∈Sui+1
pj −

∑
j∈Pi

pj

= 2Tui+1 + 2
∑

1≤j≤ui+1,j /∈Sui+1
pj − L(τui+1,ui)−

∑
j>ui,j /∈Sui+1

pj −
∑

j∈Pi
pj

≥ 2rsi+1 + 2L(τui+1,ui)− 2|lsi+1 |+ 2
∑

1≤j≤ui+1,j /∈Sui+1
pj − L(τui+1,ui)

−
∑

j>ui,j /∈Sui+1
pj −

∑
j∈Pi

pj

≥ 2rsi+1 + L(τui+1,ui)− 2|lsi+1 | −
∑

j∈Pi
pj

≥ 2rsi+1 −
∑

j∈Pi
pj .

According to Lemma 1, rsi+1 ≥ Copt(ui), we conclude tui+1,ui ≥ 2Copt(ui)−
∑

j∈Pi
pj .

Lemma 3. The WOGI server returns to the origin for the ith time before 2Copt(ui)−
∑

j∈Pi
pj.

Proof. We use induction on i to prove this lemma. It is trivially true for i = 0.
Consider i. By induction, the server finishes his (i− 1)th trip before 2Copt(ui−1)−

∑
j∈Pi−1

pj .
According to Lemma 2, 2Copt(ui−1) −

∑
j∈Pi−1

pj ≤ tui,ui−1 . Thus, the WOGI is at the origin

at max{tui,ui−1 , Copt(ui)}. According to Step 2, he leaves the origin for the ith time at exactly
max{tui,ui−1 , Copt(ui)}. Based on which of the two is larger, we have two cases:

1. If tui,ui−1 ≥ Copt(ui), then the WOGI server will take the shortcut τui+1,ui , and arrive at
the origin at time tui,ui−1 + L(τui+1,ui) = 2Copt(ui) −

∑
ui−1<j≤ui,j /∈Sui

pj −
∑

j∈Pi−1
pj ≤

2Copt(ui)−
∑

j∈Pi
pj . The last inequality is due to Pi ⊂ Pi−1 ∪ {j : ui−1 < j ≤ ui, j /∈ Sui}.

2. If tui,ui−1 < Copt(ui), then the server will follow τui , and arrive at the origin at time Copt(ui) +
L(τui) ≤ Copt(ui) + Tui = 2Copt(ui)−

∑
j /∈Sui

pj ≤ 2Copt(ui)−
∑

j∈Pi
pj . The last inequality

is due to Pi ⊂ Scui , because τui pass through all requests in Sui .

6

We now can prove our main result:

Theorem 1. Algorithm WOGI is 2-competitive and best possible.

Proof. Assume there are a total of m requests and the WOGI server leaves and returns to the
origin i times. According to Lemma 3, after the ith trip, the server returns to the origin before
time 2Copt(ui) −

∑
j∈Pi

pj and never leaves again. Therefore, total cost CWOGI ≤ 2Copt(ui) −∑
j∈Pi

pj +
∑

j∈Pi
pj +

∑m
j=ui+1 pj = 2Copt(ui) +

∑m
j=ui+1 pj . Since the WOGI server does not

leaves the origin afterwards, ∀ui + 1 ≤ j ≤ m, j /∈ Sm. Thus, CWOGI ≤ 2Copt(ui) +
∑m

j=ui+1 pj =
2Copt(m)−

∑m
j=ui+1 pj ≤ 2Copt(m).

3.2 Polynomial-time algorithms

WOGI repeatedly calls a black box that provides optimal solutions to corresponding offline prob-

lems. However, because these offline problems are NP-hard, WOGI can’t be considered to be a

polynomial-time algorithm, and this makes WOGI impractical for very large size problems. To ad-

dress the complexity issue, we propose here a polynomial time algorithm, WOGI-apx, at the expense

of an increase in the competitive ratio. WOGI-apx is simply the analog of WOGI with an approx-

imation black box. Instead of solving offline TSPs optimally, WOGI-apx uses a ρ-approximation

black box algorithm. Noting that, other than optimality, few properties of offline solutions are used

in proving 2-competitiveness of WOGI, we expect the analysis in Section 3.1 to carry through for

WOGI-apx.

Before presenting and analyzing WOGI-apx, let us first define some notations, which are analogs

of the ones used for WOGI. Given the instance Ik, the offline approximation algorithm provides a

solution that has cost C̃apx(k) ≤ ρCopt(k). Let T̃k be the makespan of the approximation solution,

τ̃k be the corresponding route, and S̃k be the set of requests served by the approximation solution.

ui is the number of released requests when the online server leaves the origin for the ith time. The

rejection set Pi is the set of requests that have not been served when the online server returns to

the origin for the ith time. Request si is the first request on the route τ̃ui whose index is strictly

greater than ui−1. When the online server leaves the origin for the ith time, it has two candidate

routes to follow. It either follows τ̃ui , computed by the approximation solver, or a WOGI shortcut

τ̃ui,ui−1 . The WOGI shortcut τ̃ui,ui−1 skips the first few requests on τ̃ui whose indices are no greater

than ui−1, goes directly to request si−1, and then follows the remaining fraction of τ̃ui .

Now we can present WOGI-apx:

Algorithm 2 (WOGI-apx).

0. Initialization: counter i = 0, u0 = 0, and P0 = ∅.

1. Assume k requests have been released. If S̃k ⊂ {1, .., ui}, wait for the next released request,
and go to Step 1; otherwise, go to Step 2.

7

2. Assume k requests have been released, the WOGI server waits until max{C̃apx(k), tk,ui}, where
tk,ui

.
= 2C̃apx(k)−L(τ̃k,ui)−

∑
j>ui,j /∈S̃k

pj −
∑

j∈Pi
pj. If a new request is released during the

waiting time, go to Step 1; otherwise, update ui+1 = k, i = i+ 1, and go to Step 3.

3. The WOGI server takes one of the two routes and ignores all new requests before reaching
back the origin:

3a. If tui,ui−1 ≥ C̃apx(ui), he follows the WOGI shortcut τ̃ui,ui−1. After finishing the route,
go to Step 4.

3b. If tui,ui−1 < C̃apx(ui), he follows τ̃ui. After finishing the route, go to Step 4.

4. Update Pi+1. i = i+ 1. Go to Step 1.

As Lemma 1 through 3 use no property of the offline solutions from the black box, their analogs

for the approximated version are also valid.

Lemma 4. rsi+1 ≥ C̃apx(ui).

Lemma 5. tui+1,ui ≥ 2C̃apx(ui)−
∑

j∈Pi
pj.

Lemma 6. The WOGI-apx server finishes his ith trip before 2C̃apx(ui)−
∑

j∈Pi
pj.

We omit the proofs because they are the same as the ones for Lemma 1 through 3. We are now

ready to prove our main result. The proof is different from the one of Theorem 1, because unlike

Copt(k), C̃apx(k) is not necessarily non-decreasing in k.

Theorem 2. Algorithm WOGI-apx is 2ρ-competitive.

Proof. Assume there are a total of m requests, and the WOGI-apx server leaves and returns to the
origin i times. According to Lemma 6, after the ith trip, the server returns to the origin before
time 2C̃apx(ui)−

∑
l∈Pi

pl and never leaves again. Therefore, total cost

CWOGI-apx ≤ 2C̃apx(ui)−
∑

j∈Pi
pj +

∑
j∈Pi

pj +
∑m

j=ui+1 pj
= 2C̃apx(ui) +

∑m
j=ui+1 pj .

If ∀ui + 1 ≤ j ≤ m, j /∈ Sm, i.e. none of these requests are served in the optimal offline solution,
then Copt(m) = Copt(ui) +

∑m
j=ui+1 pj . Therefore,

CWOGI-apx ≤ 2C̃apx(ui) +
∑m

j=ui+1 pj
≤ 2ρCopt(ui) +

∑m
j=ui+1 pj ≤ 2ρCopt(m).

If ∃ui+1 ≤ j ≤ m, such that j ∈ Sm, then Copt(m) ≥ rj ≥ C̃apx(ui), where the last inequality is due
to Step 2 in the WOGI-apx. Because of Step 1 of the algorithm, C̃apx(m) = C̃apx(ui)+

∑m
j=ui+1 pj ≥

Copt(ui) +
∑m

j=ui+1 pj , we have ρCopt(m) ≥ C̃apx(m) ≥ Copt(ui) +
∑m

j=ui+1 pj . Therefore,

CWOGI-apx ≤ 2C̃apx(ui) +
∑m

j=ui+1 pj
≤ (2− 1/ρ)C̃apx(ui) + Copt(ui) +

∑m
j=ui+1 pj

≤ (2− 1/ρ)Copt(m) + ρCopt(m)
≤ ρCopt(m) + ρCopt(m) = 2ρCopt(m).

From the discussion above, we can conclude that WOGI-apx is 2ρ-competitive.

8

3.3 A prize-collecting generalization

The prize collecting TSP (PCTSP) is a generalization of the TSP (see [6, 8]), where associated

with each request is a penalty (if rejected) and a prize (if accepted and served). The server must

collect enough prizes exceeding a given quota while minimizing the makespan needed to collect the

prizes plus the total penalty of rejected requests. We consider the online version of this problem.

Online PCTSP

Instance: A metric spaceM with a given origin o and a distance metric d(·, ·). A series

of n requests represented by quadruples (li, ri, pi, wi)1≤i≤n, where li ∈M is the location

(point in metric space) of request i, ri ∈ R+ its release date (first time after which it can

be served), pi ∈ R+ its penalty (for not being served), and wi ∈ R+ its prize (collected

if served). A parameter Wmin ∈ R+ (a quota for prizes to be collected). The problem

begins at time 0; the server is initially idle at the origin (initial state), can travel at unit

speed (when not idle), and eventually must be back and idle at the origin (final state).

The earliest time the server reaches this final state is called the makespan.

Feasible solution: Any subset S ⊂ {1, . . . , n} of requests to be served and a feasible

TSP tour with release dates τ(S) through S so that
∑

i∈S wi ≥Wmin.

Offline context: The number of requests n is known to the offline server. All requests

are revealed to the offline server at time 0.

Online context: The number of requests n is not known to the online server. Requests

are revealed to the online server at their release dates ri ≥ 0; assume r1 ≤ r2 · · · ≤ rn.

The online server can accept or reject a request any time after the request’s release date.

Objective: In all cases, minimize {the makespan to serve all accepted requests plus the

total penalties of all rejected requests} among all feasible solutions.

Assume there is a black box that provides the optimal offline solution for PCTSP. For the simplicity

of the algorithm, let us assume that if there is no feasible solution for the offline problem, no request

will be accepted. Let us replace the black box in WOGI by the black box for PCTSP; and the

resulting algorithm is WOGI-PC. Since in the proofs of Lemma 1, 2, 3 and Theorem 1, no property

other than the optimality of the solution provided by the black box is used, these results are also

valid for WOGI-PC. In particular,

Theorem 3. Algorithm WOGI-PC is 2-competitive for PCTSP.

Similarly, assume there is a black box that provides ρ-approximation offline solution for PCTSP. Re-

placing the black box in WOGI-apx by an approximation black box for PCTSP results in algorithm

WOGI-PC-apx. Similar to the argument above, we have:

Theorem 4. Algorithm WOGI-PC-apx is 2ρ-competitive for PCTSP.

9

4 Real-time Version of the Online Problem

In this section, we consider the real-time version of our online problem. The decision to accept or

reject a given request must be made immediately upon its arrival.

4.1 The case of the non-negative real-line R+

We first study the problem when the locations of the requests are all on the non-negative real line,

equipped with the traditional Euclidean distance. In that case, the notation for the location of a

request i, li, will also represent the distance from the origin to the point.

4.1.1 Lower bound on competitive ratios

Theorem 5. Any c-competitive online algorithm on R+ has c ≥ 2.5.

Before proving the theorem, let us first present how we construct instances for Theorem 5. The

same idea is used for Theorem 7 later. A series of requests with small penalties with the same

location and almost the same release date are released until the online algorithm accept one such

request. The online algorithm then faces a dilemma on whether to accept or reject such requests.

On the one hand, accepting one such request too early may not be beneficial, because the offline

solution only pays a small amount of penalties while the online solution must spend some time to

visit the accepted request; on the other hand, accepting one too late may not be beneficial either,

because the offline solution can simply accept and visit all these requests while the online solution

must visit the accepted request and pay a large amount of penalties for rejected ones. Such a

dilemma leads to large competitive ratios. In the proofs of Theorem 5 and Theorem 7, penalties,

locations and release dates are chosen carefully to take advantage of the dilemma.

Proof of Theorem 5. Assume that an online server follows a c-competitive online algorithm, where
c is a finite constant. Let c0 = 2.5 and ε be a small positive number. For an arbitrary integer n,
consider a series of up to n+ 1 requests as follows: (li, ri, pi) = (1, 1 + iε, 3/ci0) for 1 ≤ i ≤ n, and
(ln+1, rn+1, pn+1) = (1, 1 + (n+ 1)ε,∞).

Let t0 be the time when the online server begins to move away from the origin for the first
time. If 0 ≤ t0 < r1, no request would be presented. As a result, CA > 0 and Copt = 0, which
contradicts with the assumption that algorithm A is finite competitive. Thus, t0 ≥ r1. Since the
last possible request has an infinite penalty, any finite competitive online algorithm cannot reject
all requests. Let request m(1 ≤ m ≤ n + 1) be the first request that is accepted by A. After
the online server accepts request m, no more request is presented. We now consider two cases to
compute the competitive ratio:

1. If m ≤ n, then the optimal solution is to reject all m requests. In this case, Copt(m) =
∑m

i=1 pi =
3(cm0 −1)
(c0−1)cm0

, and CA(m) ≥ r1 + 2lm +
∑m−1

i=1 pi ≥
3(cm0 −1)

(c0−1)cm−1
0

. Thus, c ≥ CA(m)
Copt(m) = c0 = 2.5.

2. If m = n+1, then the optimal solution is to accept all n+1 requests. In this case, Copt(n+1) =

rn+1 + ln+1 = 2 + (n+ 1)ε, and CA(n+ 1) ≥ r1 + 2ln+1 +
∑n

i=1 pi = ε+
3(cn+1

0 −1)
(c0−1)cn0

. Using the

10

fact that c0 = 2.5, ε +
3(cn+1

0 −1)
(c0−1)cn0

= ε + 5 − 2/cn0 . Thus, c ≥ CA(n+1)
Copt(n+1) ≥

5−2/cn0 +ε
2+(n+1)ε . By letting

ε = 1/(n+ 1)2, and n→ +∞, we have
5−2/cn0 +ε
2+(n+1)ε → 2.5. Thus, c ≥ 2.5.

4.1.2 An optimal 2.5-competitive online algorithm

The algorithm we propose here is an extension of the “move right if necessary” (MRIN) algorithm

introduced in Blom et al. [7] for the online TSP without rejection options. The acceptance/rejection

decisions are based on the offline optimal solutions. Let us call this algorithm the “estimate and

move right if necessary” (EMRIN) algorithm:

Algorithm 3 (EMRIN).

1. Whenever a new request m comes, if m ∈ Sm, accept it; otherwise reject it.

2. If there is an accepted and unserved request on the right side of the server, move toward it.

3. If there are no accepted and unserved requests on the right side of the server, move back toward
the origin. Upon reaching the origin, become idle.

First, let us show that the total penalty of rejected requests is not large:

Lemma 7. ∀m, Copt(m) ≥
∑

i≤m,i/∈Si
pi.

Proof. We use induction on m. When m = 1, if 1 ∈ S1, Copt(1) ≥ 0 =
∑

i≤1,i/∈Si
pi; otherwise,

Copt(1) = p1 =
∑

i≤1,i/∈Si
pi. Therefore, the assertion is true. Assume now that the assertion

holds for m − 1, and let us consider m. If m ∈ Sm, Copt(m) ≥ Copt(m − 1) ≥
∑

i≤m−1,i/∈Si
pi =∑

i≤m,i/∈Si
pi; otherwise, Copt(m) = Copt(m− 1) + pm ≥

∑
i≤m−1,i/∈Si

pi + pm =
∑

i≤m,i/∈Si
pi.

Then, let us prove our main result:

Theorem 6. Algorithm 3 (EMRIN) is 2.5-competitive, and thus best possible.

Proof. We will use induction on the number of released requests m. When m = 1, if 1 /∈ S1,
CA(1) = Copt(1); otherwise, CA(1) = r1 + 2l1, Copt(1) = max{r1 + l1, 2l1}, and thus CA(1)

Copt(1) ≤ 1.5.

Assume now that the assertion holds for m− 1, and let us consider m:

1. If m /∈ Sm, CA(m) = CA(m − 1) + pm ≤ 2.5Copt(m − 1) + pm ≤ 2.5(Copt(m − 1) + pm) =
2.5Copt(m). Thus, c ≤ 2.5.

2. If m ∈ Sm, assume request k is the rightmost request that is accepted but not be served at
time rm; assume x is the position of the online server at rm.

2a. If x ≤ lk, because request k is an accepted and unserved request, the online server
has been moving right since time rk. Hence, the online server will return to the origin
no later than rk + 2lk. Therefore, CA(m) ≤ rk + 2lk +

∑
i≤m,i/∈Si

pi. Because k ∈ Sk,
Copt(m) ≥ Copt(k) ≥ max{rk + lk, 2lk}. As a result, we conclude CA(m)

Copt(m) ≤
rk+lk
Copt(k) +

lk
Copt(k) +

∑
i≤m,i/∈Si

pi

Copt(m) ≤ 1 + 0.5 + 1 = 2.5.

2b. If x ≥ lk, no extra time is needed to serve request k, because it can be served on
the online’s way back to the origin. Thus, CA(m) = CA(m − 1) ≤ 2.5Copt(m − 1) ≤
2.5Copt(m).

11

4.2 The case of the real-line R

In this section, we study the problem when the locations of the requests are on the real line,

equipped with the traditional Euclidean distance. On the positive (“right”) side of the line, the

notation for the location of a request i, li, will also represent the distance from the origin to the

point. On the negative (“left”) side of the line, the location of a request i, li will be given by a

negative number, and the distance from the origin to the point will be its absolute value |li|.

4.2.1 Lower bounds on competitive ratios

General lower bound

Theorem 7. Any c-competitive online algorithm on R has c ≥ 17+
√

17
8 ≈ 2.64.

Proof. Assume that an online server A follows a given c-competitive online algorithm. For any
given ε > 0, there exists N ∈ N, such that Nε > c(4 + 2ε), and there also exists M ∈ N, such that
15c− 8 < εcM−1.

Again we use the idea mentioned in Section 4.1.1 to construct an example. In this example,
three series of requests are presented.

First, consider a series of up to N requests as follows: (li, ri, pi) = (1, 1 + iε
N , ε) for 1 ≤ i ≤ N .

Note that A cannot reject them all. Otherwise, the cost will be Nε > c(4 + 2ε), while the optimal
cost is at most 2 + ε, which is a contradiction. Assume the first request accepted by A is n1.
Truncate the first series: only the first n1 requests are presented.

Consider a second series of up to N requests as follows: (ln1+i, rn1+i, pn1+i) = (−1, 1+ε+ iε
N , ε),

for 1 ≤ i ≤ N . Note that A cannot reject them all. Otherwise, the cost will be at least Nε >
c(4+2ε), while the optimal cost is at most 4+2ε, which is a contradiction. Assume the first request
in this second series accepted by A is n1 +n2. Truncate the second series: only the first n2 requests
in the second series are presented. Let P1 = (n1 − 1)ε, P2 = (n2 − 1)ε, a1 = min{2 + 2ε, P1 + ε},
and a2 = min{2 + 2ε, P2 + ε}.

At time 1 + ε + n2ε
N , A has two requests at ±1 to visit. Without loss of generality, assume

A is visiting 1 before visiting −1. Assume t0 is the first time when A is at the origin after
visiting 1. Note that the optimal cost is at most a1 + a2. In order to be c-competitive, we have
3 ≤ t0 ≤ (c− 1)(a1 + a2)− 2 ≤ 5c− 2.

Consider a third series of up to M requests as follows: ln1+n2+i = t0 − 2, rn1+n2+i = t0 + iε
M+1 ,

pn1+n2+i = max{0, 3t0−2−(c−1)(P1+P2)−(2c+1)ε
ci

}, for 1 ≤ i ≤ M . We claim that A has to reject all
these M requests. Otherwise, assume the first one accepted is n1 +n2 +m; then truncate the third
series so that only the first m requests in the third series are presented. The online server’s cost is
at least 3t0− 2 +P1 +P2 +

∑m−1
i=1 pn1+n2+i ≥ c(a1 + a2 +

∑m
i=1 pn1+n2+i) + ε, while optimal cost is

at most a1 + a2 +
∑m

i=1 pn1+n2+i, which is a contradiction.
Then, we present the last request (ln1+n2+M+1, rM+1+n1+n2 , pM+1+n1+n2) = (t0 − 2, t0 + ε,∞).

Because of its infinite penalty, A has to accept this request. Thus, online server’s cost is at
least 3t0 − 2 + P1 + P2 +

∑M
i=1 pi+n1+n2 . Noting that

∑M
i=1 pi+n1+n2 = p1+n1+n2

∑M
i=1

1
ci−1 =

c
c−1p1+n1+n2 −

p1+n1+n2

cM−cM−1 , p1+n1+n2 ≤ 3t0 − 2 ≤ 15c− 8, cM − cM−1 > cM−1, and 15c− 8 < cM−1ε,

we then have ≥ 3t0 − 2 + P1 + P2 + 3t0−2−(2c+1)ε
c−1 − (P1 + P2) − ε = c(3t0−2)

c−1 − 3cε
c−1 . The optimal

cost is at most 2t0 − 2 + ε. Consequently, c · (2t0 − 2 + ε) ≥ c(3t0−2)
c−1 − 3cε

c−1 ⇒ 2c − 4 − (c + 2)ε ≤
(2c−5)t0 ≤ (2c−5)((c−1)(a1 +a2)−2) ≤ (2c−5)(4c+ (4c4)ε)−6. By letting ε→ 0, we conclude

2c− 4 ≤ (2c− 5)(4c− 6)⇒ c ≥ 17+
√

17
8 .

12

4.2.2 A 3-competitive online algorithm

This algorithm uses a different offline subroutine, hereafter called black box 2, that solves a variant

of the offline problem where the server starts initially at a point x that may be different from the

origin.

Algorithm 4 (ReOpt).

1. Whenever a new request m comes, if m ∈ Sm, then accept it; otherwise, reject it.

2. At any time when a new request is accepted, reoptimize (using black box 2) and follow the
corresponding new optimal route to serve all accepted and unserved requests.

First, let us show that the total penalty of rejected requests is not very large. Consider if only

the first k requests are released, let Lk = min
1≤i≤k,i∈Sk

{li, 0} be the leftmost accepted request and

Rk = max
1≤i≤k,i∈Sk

{li, 0} be the rightmost accepted request. Then,

Lemma 8. If k ∈ Sk and lk < 0, then ∀l ∈ (lk, 0],
∑

i:li<l
pi ≥ l − lk.

Proof. Consider the route τk that the offline server follows if only the first k requests are released.
Let τk(t) be the server’s position at time t. Assume that request k is served at time t0(≥ rk).
Let t1 = max{t : τk(t) = l, t < t0} and t2 = min{t : τk(t) = l, t > t0}. Consider another feasible
solution:

τ ′k(t) =


τk(t), t ≤ t1
l, t1 < t ≤ t0
τk(t− (t2 − t0)), t ≥ t0

.

Since both solutions have the same motion before t1, all requests served by τk before t1 are also
served by the new solution. Furthermore, because the interval covered by τk after t2 is also covered
by τ ′k after t0 and all the first k requests are released before t0, every request that is served by τk
after t2 will be served by τ ′k. Therefore, all requests served by τk but not by τ ′k are served by τk
between t1 and t2. Because of the definition of t1 and t2, all those requests are located beyond l.
Thus, τk saves at most

∑
i:li<l

pi on penalties and spends t2 − t0 more units of time on traveling.
From τk, we have

∑
i:li<l

pi ≥ t2 − t0 ≥ l − lk, where the last inequality is due to the unit speed of
the offline server.

By symmetry, we also have:

Lemma 9. If k ∈ Sk and lk > 0, then ∀l ∈ [0, lk),
∑

i:li>l
pi ≥ lk − l.

Then we are ready to prove the competitive ratio of ReOpt:

Theorem 8. Algorithm 4 (ReOpt) is 3-competitive.

Proof. Assume n requests are released:

1. If n ∈ Sn. Both the online and offline servers accept request n. Let Lon = min{0, li : i ∈ Si}
be the leftmost request accepted by the online server, Ron = max{0, li : i ∈ Si} be the
rightmost request accepted by the online server, Loff = min{0, li : i ∈ Sn} be the leftmost
request accepted by the offline server, and Roff = max{0, li : i ∈ Sn} be the rightmost
request accepted by the offline server. From the description of ReOpt, the online server never

13

moves beyond interval [Lon, Ron]. In Lemma 9, let k = argmaxi{0, li : i ∈ Si}, we have
Ron ≤ Roff +

∑
i:li>Roff

pi. Similarly, −Lon ≤ −Loff +
∑

i:li<Loff
pi. Therefore, the online

server serves all accepted requests and returns to the origin no later than rn − 2Lon + 2Ron.
Thus,

CReOpt(n) ≤ rn − 2Lon + 2Ron +
∑

i≤n,i/∈Si
pi

≤ rn + (−2Loff + 2
∑

i:li<Loff
pi) + (2Roff + 2

∑
i:li>Roff

pi) +
∑

i≤n,i/∈Si
pi

≤ (rn +
∑

i/∈Sn
pi) + (2Roff − 2Loff +

∑
i/∈Sn

pi) +
∑

i≤n,i/∈Si
pi

≤ 3Copt(n).

2. If ∀i ∈ {1, 2, · · · , n}, i /∈ Si, then CReOpt(n) =
∑n

i=1 pi = Copt(n).

3. Assume m is the last request such that m ∈ Sm. According to Case 1, CReOpt(m) ≤ 3Copt(m).
Since, i /∈ Si for all i ∈ [m+ 1, n], we have CReOpt(i) = CReOpt(i− 1) + pi, which is due to the
optimality of CReOpt(i) and CReOpt(i−1). Therefore, CReOpt(n) = CReOpt(m)+

∑n
i=m+1 pi ≤

3Copt(m) +
∑n

i=m+1 pi ≤ 3(Copt(m) +
∑n

i=m+1 pi) = 3Copt(n).

Note that 3 is a tight competitive ratio for ReOpt as the following example illustrates. Let ε

be an arbitrarily small positive number, k be an arbitrary large integer, and let the instance

consist of the following 2k + 3 requests: (l1, r1, p1) = (1, 0, 2 − 1/k), (l2, r2, p2) = (−2/k, ε/k,∞),

(l3, r3, p3) = (1, 1/k,∞), (li, ri, pi) = (−2/k, (i− 1)/k,∞), 4 ≤ i ≤ 2k + 3. It is easy to check that

CReOpt = 6 + 4/k and Copt = 2 + 4/k. By letting k →∞, we have c ≥ 3.

4.3 The case of general metric spaces

In this subsection, we first construct a series of special metric spaces, for which we prove that there

are no online algorithms with a constant competitive ratio, and show a Ω(
√

lnn) lower bound on

any competitive ratios (where n is the number of requests in the given instance of the problem).

Then, among the restricted class of online algorithms with prior knowledge about the total number

of requests n, we propose one which is O(
√

lnn)-competitive; hence, asymptotically best possible

among that class.

4.3.1 Lower bound on competitive ratios

Splitting operation: Such an operation on an edge AB of length l consists in splitting it into

countably infinite many copies, each represented by a middle points {Ci}i∈N such that: each Ci

satisfies: ACi = BCi = l/2; and any path from one middle point Ci1 to another middle point Ci2

must pass through either A or B.

The metric spaces {Mj}j∈N: The spaces {Mj}j∈N are created iteratively by the splitting oper-

ation described above. Given one space Mj , we split each of its edge into countably infinite many

copies to create Mj+1:

• M0: A line segment A0A1 of length 1.

14

BA

C1

C2

C3

C4

l/2

l/2

l/2

l/2

l/2

l/2

l/2

l/2

Figure 2: Splitting Operation

• M1: Split A0A1 into copies with middle points A1/2,i1 .

• M2:

– For every i1, split A0A1/2,i1 into copies with middle points A1/4,i1i2 (Here the part before

the comma indicates the point’s distance from A0. The part after the comma indicates

its location, e.g. A1/4,11 is a middle point of A0A1/2,1, but d(A1/4,11, A1/2,2) 6= 1/4.);

– For every i1, split A1/2,i1A1 into copies with middle points A3/4,i1i2 ;

• etc, ...

A1A0

A1/2,1

A1/2,2

A1/4,11

A1/4,12

A1/4,21

A1/4,22

A3/4,11

A3/4,12

A3/4,21

A3/4,22

Figure 3: An illustration of M2

A point is called α-point if its distance from A0 is α. For instance, A1/2,i1 are all 1/2-points and

A3/4,i1i2 are all 3/4-points. Let V0 = {A0, A1} and Vj be the set of middle points created when

creating the space Mj . For example, V2 = {A1/4,i1i2 , A3/4,i1i2 |∀i1, i2}. By the construction of the

spaces and the splitting operations, the distance between two nearest points in Vj is 1/2j−1, and

the distance between Vj and Vj−1 is 1/2j .

Proof of unbounded competitive ratio: In order to present requests one by one to the online

server, the release dates of all successive requests should be different. However, for simplicity in

15

the exposition of our proofs, all release dates are set to be 0. Simply assume that the online server

is given each request one by one, and has to make an acceptance/rejection decision before the next

one is revealed. (Formally one could instead assume that for all i ≥ 1, ri = iε, where ε is an

arbitrarily small positive number.)

Theorem 9. For any m ∈ N , there is no algorithm with a competitive ratio less than m− 1.

Proof. Consider the following instance defined on the metric space M2m2 . The online server is at
A0 initially. First, two requests with infinite penalties are released at A0 and A1. Then requests
with penalties 1/m are released one by one at 1/2-points {A1/2,i1} until the online server rejects
one of them. We will later show that this is well defined, i.e. the online server must reject one such
request. Assume he accepts A1/2,1, · · · , A1/2,a1−1 and rejects A1/2,a1

. Then, release requests with
penalties 1/(2m) at 1/4-th points A1/4,a1i2 until the online server rejects one (again our formal proof
shows that this is a well defined stopping criteria), and at 3/4-th point A3/4,a1i2 until the online

server rejects one. Repeat this procedure at 1/8, 3/8, 5/8, 7/8, ..., 1/22m2
, ..., (22m2−1)/22m2

-points.
The penalty of a request at a point in Vj is 1/(2j−1m). First, let us show that requests accepted
by the online server are not close to each other:

Lemma 10. Consider any two requests that are accepted by the online server. Assume that one
request is at a point in Vj1 and the other is at a point to Vj2 (j1 and j2 may or may not be different).
Then, the distance between those two requests is at least 1/2j1 + 1/2j2.

Proof. Because of the way the instance and the metric spaces are constructed, any path from one
request to the other must pass through a point in set Vmin{j1,j2}−1. Since the distance between
Vj1 and Vmin{j1,j2}−1 is 1/2j1 and the distance between Vj2 and Vmin{j1,j2}−1 is 1/2j2 , the distance
between these two requests is at least 1/2j1 + 1/2j2 .

Lemma 10, combined with the fact that any request at a point in Vj has a penalty 1/(2j−1m),
indicates that the distance between two requests accepted by the online server is at least m/2 times
the sum of the penalties of the two requests. Therefore, if the total penalty of requests accepted by
the online server is P , the online server must travel at least mP units of time to serve all of them.
Then, let us show that the instance is well defined, i.e. the online server cannot accept all requests:

Lemma 11. Assume the online algorithm is (m− 1)-competitive. For any 1 ≤ j ≤ 2m2, let kj be
the total number of requests at points in Vj that are accepted by the online server. Then, kj ≤ m22j.

Proof. Assume there exists j such that kj > m22j . Consider the instance in which no request at

points in
⋃2m2

i=j+1 Vi is presented. We will show that the algorithm is worse than (m−1)-competitive
for the instance.

First, let us consider the cost of the online server. Since the total penalty of accepted requests
is

∑j
i=1 ki/(2

i−1m), from the discussion above, the online server must spend at least
∑j

i=1 ki/2
i

units of time serving these requests. Because for each 1 ≤ i ≤ j the total penalty of rejected
requests at points in Vi is 1/m, the total penalty of rejected requests is j/m. Thus, the online cost
is

∑j
i=1 ki/2

i−1 + j/m.
Then, let us consider a feasible solution B and its cost. Requests rejected by the online server are

accepted and requests accepted by the online server are rejected. Noting a carefully chosen shortest
path fromA0 toA1 passes through all requests rejected by the online server, the new feasible solution
spends 2 units of time to visit these rejected requests. Thus, CB =

∑j
i=1 ki/(2

i−1m) + 2.

16

Since the online algorithm is (m− 1)-competitive, Conline ≤ (m− 1)COPT ≤ (m− 1)CB. Thus,
kj/(2

j−1m) ≤
∑j

i=1 ki/(2
i−1m) + j/m ≤ 2(m − 1) < 2m, which implies kj ≤ m22j . Contradict

with our assumption.

We are now ready to finish the prove Theorem 9. According to the proof of Lemma 11, the

online cost is at least
∑2m2

i=1 kj/2
i−1 + 2m; there exists a feasible solution B whose cost CB is∑2m2

i=1 ki/(2
i−1m) + 2. However, Conline ≥ mCB ≥ mCOPT . Thus, the online algorithm is not

(m− 1)-competitive.

Asymptotic lower bound: From the detailed proof of Theorem 9, at most m22j requests are

presented at points in Vj . At most n ≤ m222m2
requests make any online algorithm worse than

(m− 1)-competitive. In other words, we have showed:

Theorem 10. Any c-competitive online algorithm on an instance with n requests must have c ≥
Ω(
√

lnn), even assuming n is given in advance.

4.3.2 Best possible O(
√

lnn)-competitive algorithm when n is known

The algorithm proposed in this section requires a priori knowledge on the total number of requests.

It is not clear that there exists an algorithm that achieves the same competitive ratio without such

a knowledge.

For the simplicity of the algorithm and its analysis, we would like to consider problems without

release dates. All requests arrive in sequence. The online algorithm must accept or reject a request

before seeing the next. After making all the decisions, the online algorithm then decides how to

serve all accepted requests. We argue that removing release dates (but preserving the order) only

changes competitive ratios by at most 2:

Lemma 12. Given an online algorithm A that is designed to solve the instances with all release
dates 0(but still have to make decisions sequentially before knowing future requests), it can be

transformed to another online algorithm A′, such that for any instance I,
CA′(I)

COPT (I)
≤ CA(I ′)

COPT (I ′)
+2,

where I ′ is almost the same instance as I, the only difference is all release dates are 0 in I ′, but
the order of requests remains.

Proof. Consider the following algorithm A′:

Whenever a new request m comes, the server applies algorithm A on the instance
consisting of first m requests with release dates all zeros, to make an accept/reject
decision for the new request. If he accepts the new one, he goes back to the origin and
then follows the newly computed route; otherwise, he just continues his current route.

Assume for instance I, ρ =
CA′ (I)
COPT (I) and the last request accepted by offline server is request m.

According to the construction, the online server will go back to the origin at time rm and then
follows his last route. Note that at time rm, the server is at most rm units of distance away from
the origin, thus, CA′(I) ≤ rm + rm + CA(I ′) ≤ 2COPT (I) + ρCOPT (I ′) ≤ (2 + ρ)COPT (I).

As mentioned in Section 4.1.1, accepting a request at a faraway location with a small penalty may

not be beneficial; however, if many requests with small penalties are close to each other, it may be

beneficial to accept them. Let us first define the concept of distance for a group of requests:

17

Definition 1. Given a set U of requests and a route τ , define T (U, τ) as the shortest time to visit
all requests in U along τ if τ passes all requests in U ; otherwise, define as ∞.

According to the definition, a server can begin at any request in U , visit all the other requests in

U , and then go back to its initial position within 2T (U, τ) units of time. A group of requests that

are close and have a large overall penalty may be beneficial to visit. More formally,

Definition 2. If τ passes all requests in U , given any nonempty subset of U : {i1, i2, ..., ik},
there exists a division of U =

⋃k
l=1 Il, such that ikl ∈ Il, ∀l = 1, ..., k, and

∑k
l=1 T (Il, τ) ≤√

lnn(
∑

i∈U pi −
∑k

l=1 pil), then we call τ a good route to visit U .

We are now ready to present our algorithm. It consists of two stages: decision making and route

traversing. In the decision making stage, decisions to accept or reject requests are made one by

one. At the end of step k, Pk ⊂ {1, ..., k} is the set of requests that have not been selected for a

visit so far, and Vk = {1, ..., k}\Q is the set of requests to be visited (i.e. those who have been

accepted, and those who have been rejected but will be served anyway). Every request i receives

a label bi during the decision making stage, which will be used for construct a route later. i > bi

indicates request i is accepted by the online algorithm; bi < i < ∞ indicates request i is rejected

but visited; bi =∞ indicates request i is rejected and not visited.

DECISION MAKING:

0. Initialization. P0 = ∅, V0 = {0}, and k = 1.

1. Request k is accepted if and only if there exists a subset Qk ⊂ Pk−1 and a good route

µk to visit Qk ∪ {k}, such that T (Qk ∪ {k}, µk) + d(Qk ∪ {k}, Vk−1) ≤ (
∑

i∈Qk
pi +

pk)
√

lnn.

2. If request k is accepted, assume j ∈ Vk−1 satisfies d(Qk∪{k}, j) = d(Qk∪{k}, Vk−1).

Update Pk = Pk−1\Qk, Vk = Vk−1 ∪ {k} ∪Qk update labels: bk = j and bi = k for

all i ∈ Qk.

3. If request k is rejected, update Pk = Pk−1 ∪ {k}, Vk = Vk−1, and bk =∞.

4. k = k + 1. Go to Step 1.

Let Sa be the subset of requests accepted by the online algorithm. After making accept/reject

decisions, a route is constructed iteratively, based on the information gathered in the DECISION

18

MAKING stage. Traveling along the route, the online server visits requests in Sa and in Vn:

ROUTE CONSTRUCTION:

0. Initialization. τ̃0 = τn, and k = 1.

1. If k ∈ Sa and τ̃k−1 covers at least one request in Qk∪{k}, let requests ci1 , ci2 , · · · , ciw
be all the requests in Qk ∪ {k} that are covered by τ̃k−1. Find the division of

Qk ∪ {k} =
w⋃
t=1

It that satisfies the condition in the definition of good routes.

Construct τ̃k as follows, it is the same as τ̃k−1 except for w detours: when arriving

at request cit , (1 ≤ t ≤ w), follow the shortest route to visit It, go back to cit , and

then continue to follow τ̃k−1.

2. If k ∈ Sa and τ does not cover any request in Qk ∪ {k}, construct τ̃k as follows: it

is the same as τ̃k−1 except for a detour: when arriving at request bk, follow the

shortest route to visit all the requests in Qk, go back to bk, and then continue to

follow τ̃k−1.

3. If k /∈ Sa, τ̃k = τ̃k−1.

4. k = k + 1. Go to Step 1.

The cost of the resulting solution comes from two parts: the penalties of rejected requests and the

time to visit requests. We will provide upper bounds for both parts. First, let us consider the

penalty part. Let W be the set of requests that are accepted by the optimal offline solution, but

rejected by the online solution. Following is a upper bound for penalties of requests in W :

Lemma 13.
∑

k∈W pk ≤ (2
√

lnn+ 1)Copt(n).

Proof. We divide requests in W into some subsets by the following algorithm:

0. Initialization: W1 = W,k = 1.

1. Divide all requests in Wk into mk subsets, such that each subset consists of one or
several successive requests, in every subset Ajk(1 ≤ j ≤ mk), the largest index is

smaller than the smallest label, and τn is a good route to visit Ajk. The division
has the fewest subsets among all possible divisions.

2. If mk ≤ 1, terminate; otherwise, go to Step 3.

3. Let Bk = {j|
∑

i∈Aj
k
pi ≥ max{

∑
i∈Aj−1

k
pi,

∑
i∈Aj+1

k
pi}}. Let Wk+1 =

⋃
j∈Bk

Ajk.

4. Update k = k + 1. Go to step 1.

We first show the existence of divisions that satisfy the requirements in Step 1: a trivial division

19

consists of |Wk| singletons. Thus, this algorithm is well defined. Noting that
⋃
j∈Bk

Ajk is also a
feasible division of Wk+1, from the minimum number of subsets, we have mk+1 ≤ |Bk| ≤ mk/2.
Furthermore, because m1 ≤ |W | ≤ n, the algorithm terminates after at most lnn iterations. Let
K be the number of iterations before termination.

We then consider any two adjacent subset Ajk and Aj+1
k in iteration k < K. We will show that

T (Ajk ∪ A
j+1
k , τn) ≥

√
lnnmin{

∑
i∈Aj

k
pi,

∑
i∈Aj+1

k
pi}. Without loss of generality, let us assume

max
i∈Aj

k
i < max

i∈Aj+1
k

i. Consider min
i∈Aj

k
bi:

1. If min
i∈Aj

k
bi < max

i∈Aj+1
k

i, let z = arg min
i∈Aj

k
bi. When request max

i∈Aj+1
k

i is released, all

requests in Aj+1
k are released and not covered by τ , and z is covered by τ . Noting that τn is

a good route to visit Aj+1
k , we have

∑
i∈Aj+1

k
pi
√

lnn < T (Aj+1
k , τn) + d(Aj+1

k , z); or request

max
i∈Aj+1

k
i will be accepted. Therefore, T (Ajk ∪ A

j+1
k , τn) ≥ T (Aj+1

k , τn) + d(Aj+1
k , z) >∑

i∈Aj+1
k

pi
√

lnn.

2. If min
i∈Aj

k
bi < max

i∈Aj+1
k

i, then τ is not a good route to visit Ajk ∪ A
j+1
k ; otherwise, the two

subsets can be merged to one. According to the definition of good routes ,we can show that
T (Ajk ∪A

j+1
k , τn) ≥ min{

∑
i∈Aj

k
pi
√

lnn,
∑

i∈Aj+1
k

pi
√

lnn}.

From the above inequality, we have

2Copt(n) ≥
∑mk

j=1 T (Ajk ∪A
j+1
k , τn)

≥
∑mk

j=1 min{
∑

i∈Aj
k
pi
√

lnn,
∑

i∈Aj+1
k

pi
√

lnn}
≥

∑
j /∈Bk

∑
i∈Aj

k
pi
√

lnn

=
∑

i∈Wk\Wk+1
pi
√

lnn

In the last iteration, from the requirement of divisions, mini∈WK
bi ≥ maxi∈WK

i. Hence when
request maxi∈WK

i is revealed, all requests in WK are still in Pmaxi∈WK
i−1. On the other hand,

request maxi∈WK
i is not accepted. Combined with the fact that τn is a good route to visit WK ,

we have Copt(n) ≥
∑

i∈WK
pi
√

lnn.

By summing these inequalities up, we conclude
∑

k∈W pk ≤ (2
√

lnn+ 1)Copt(n).

Consider now the route τ̃n that visits all requests in Vn. We have a corresponding lemma:

Lemma 14. L(τ̃n) ≤ (2
√

lnn+ 1)Copt(n).

Proof. Let us establish the upper bound L(τ̃n) by considering L(τ̃k)− L(τ̃k−1) for all 1 ≤ k ≤ n:

1. If k ∈ Sa and τ̃k−1 passes at least one request in Qk ∪ {k}, then according to the definition of
good route, L(τ̃k)− L(τ̃k−1) ≤ 2

√
lnn

∑
t∈Qk∪{k}\Sn

pt.

2. If k ∈ Sa and τ̃k−1 does not cover any request in Qk ∪ {k}, then L(τ̃k) − L(τ̃k−1) ≤ 2T (Qk ∪
{k}, µk) + 2d(Qk ∪ {k}, Rk−1) ≤ 2

√
lnn

∑
t∈Qk∪{k} pt ≤ 2

√
lnn

∑
t∈Qk∪{k}\Sn

pt.

3. If k /∈ Sa, then L(τ̃k) = L(τ̃k−1).

Since every request in Rn belongs to at most one of Qi, by summing these inequalities up, we
have L(τ̃n) ≤ L(τn) + 2

√
lnn

∑
t∈Rn

pt ≤ (2
√

lnn+ 1)Copt(n).

After providing upper bounds on both parts, we can now conclude:

20

Theorem 11. The algorithm is O(
√

lnn)-competitive.

Proof. Since the requests rejected by the online server are in Rn ∪W ,

Con(n) ≤
∑

i∈Rn
pi +

∑
i∈W pi + L(τ̃n)

≤ Copt(n) + (2
√

lnn+ 1)Copt(n) + (2
√

lnn+ 1)Copt(n)

= (4
√

lnn+ 3)Copt(n).

Therefore, the algorithm is O(
√

lnn)-competitive.

5 Conclusions

From our results it is clear that, from a competitive analysis perspective, the basic versions of our

online problem are easier to tackle than their real-time versions - the corresponding competitive

ratios are much smaller. There are some key questions left open in this paper:

We have not presented results in this paper on the version for which the server doesn’t have

to return home to a specific location at the end. It turns out that this version is more difficult to

solve for an online server - the lack of certainty about where to end proves to be yet another source

of difficulty in an adversarial situation.

Also, it would be of interest to know if the introduction of quota for prizes to collect fundamen-

tally changes the nature of the results for the real-time online version of our problems.

Acknowledgements

We thank the anonymous referees for their thoughtful and detailed comments, which improved the

quality and clarity of our paper.

References

[1] L. Allulli, G. Ausiello, and L. Laura. On the power of lookahead in on-line vehicle routing prob-

lems. In Proceedings of the Eleventh International Computing and Combinatorics Conference,

Lecture Notes in Computer Science, volume 3595, pages 728–736, 2005.

[2] N. Ascheuer, S. Krumke, and J. Rambau. Online dial-a-ride problems: Minimizing the com-

pletion time. In Proceedings of the 17th International Symposium on Theoretical Aspects of

Computer Science, Lecture Notes in Computer Science, volume 1770, pages 639–650, 2000.

[3] G. Ausiello, V. Bonifaci, and L. Laura. The on-line prize-collecting traveling salesman problem.

Information Processing Letters, 107(6):199–204, 2008.

[4] G. Ausiello, M. Demange, L. Laura, and V. Paschos. Algorithms for the on-line quota traveling

salesman problem. Information Processing Letters, 92(2):89–94, 2004.

21

[5] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo. Algorithms for the on-line

travelling salesman. Algorithmica, 29(4):560–581, 2001.

[6] E. Balas. The prize collecting traveling salesman problem. Networks, 19:621–636, 1989.

[7] M. Blom, S.O. Krumke, W.E. de Paepe, and L. Stougie. The online TSP against fair adver-

saries. INFORMS Journal on Computing, 13(2):138–148, 2001.

[8] D. Feillet, P. Dejax, and M. Gendreau. Traveling salesman problems with profits. Transporta-

tion Science, 39:188–205, 2005.

[9] Y. Higashikawa, N. Katoh, S. Langerman, and S. Tanigawa. Online graph exploration al-

gorithms for cycles and trees by multiple searchers. Journal of Combinatorial Optimization,

pages 1–16, 2012.

[10] P. Jaillet and X. Lu. Online traveling salesman problems with service flexibility. Networks,

58:137–146, 2011.

[11] P. Jaillet and M. Wagner. Online routing problems: value of advanced information as improved

competitive ratios. Transportation Science, 40(2):200–210, 2006.

[12] P. Jaillet and M. Wagner. Generalized online routing: New competitive ratios, resource aug-

mentation and asymptotic analyses. Operations Research, 56:745–757, 2008.

[13] B. Kalyanasundaram and K.R. Pruhs. Constructing competitive tours from local information.

Theoretical Computer Science, 130(1):125–138, 1994.

[14] B. Korte and J. Vygen. Combinatorial Optimization, Theory and Algorithms. Springer, second

edition, 2002.

[15] S. Krumke, W. de Paepe, D. Poensgen, and L. Stougie. News from the online traveling

repairman. Theoretical Computer Science, 295:279–294, 2003.

[16] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. The Traveling Salesman

Problem, A Guided Tour of Combinatorial Optimization. John Wiley & Sons Ltd., 1985.

[17] M. Lipmann. On-line Routing. PhD thesis, Technische Universiteit Eindhoven, 2003.

[18] X. Lu. Online Optimization Problems. PhD thesis, Operations Research Center, MIT, June

2013.

[19] N. Megow, K. Mehlhorn, and P. Schweitzer. Online graph exploration: New results on old and

new algorithms. In Automata, Languages and Programming, volume 6756 of Lecture Notes in

Computer Science, pages 478–489. Springer Berlin Heidelberg, 2011.

22

[20] N. Megow, M. Skutella, J. Verschae, and A. Wiese. The power of recourse for online mst and

tsp. In Automata, Languages, and Programming, volume 7391 of Lecture Notes in Computer

Science, pages 689–700. Springer Berlin Heidelberg, 2012.

[21] M. Wagner. Online Optimization in Routing and Scheduling. PhD thesis, Operations Research

Center, MIT, June 2006.

23

