
Online Scheduling with Multi-State Machines∗

Dawsen Hwang‡ Patrick Jaillet§

August 2015; revised July 2016, March 2017, November 2017

Abstract

In this paper, we propose a general framework for online scheduling problems
in which each machine has multiple states that lead to different processing times.
For these problems, in addition to deciding how to assign jobs to machines, we also
need to set the states of the machines each time they are assigned jobs. For a wide
range of machine environments, job processing characteristics and constraints, and
cost functions, we develop a 5.14-competitive deterministic online algorithm and a
3.65-competitive randomized online algorithm.

The online weighted traveling repairman problem belongs to this general frame-
work, and both our deterministic and randomized online algorithms lead to lower
competitive ratios than the current existing ones in the literature. In addition, we
include a complete proof that the online algorithm ReOpt (re-optimizing the route
of the repairman whenever a new request is released) is almost surely asymptotically
optimal for a probabilistic version of this problem.

Keywords: online algorithms; competitive analysis; machine scheduling; multi-
state; traveling repairman; deterministic and randomized algorithms

1 Introduction

In an online scheduling problem, jobs are released over time and an online algorithm,
knowing only the jobs released so far, is to assign jobs to machines in an online fashion
to minimize a given cost function of all job completion times. Competitive analysis is
a standard performance metric for evaluating an online algorithm, and is based on the
concept of competitive ratio, which, in our context, is defined as the supremum of the
ratio (among all problem instances) between the overall cost of the online algorithm and
that of the optimal offline algorithm which has the full knowledge ahead of time about
all jobs to be released. A lower competitive ratio implies a better online algorithm.

One limitation in the majority of the scheduling literature (in particular when deal-
ing with the online version of the problems) is the assumption that the processing time
of a job depends only on its assigned machine. This assumption is not realistic in
applications where each machine has multiple states that lead to different processing

∗Accepted for publications in Networks. Research funded in part by AFOSR grant FA9550-10-1-0437,
and by ONR grants N00014-12-1-0033 and N00014-15-1-2083

‡Google, Chicago, IL 60607; dawsen@google.com. Research done while at the Department of Elec-
trical Engineering and Computer Science, MIT, Cambridge, MA, 02139; dawsen@mit.edu

§Department of Electrical Engineering and Computer Science, Operations Research Center, MIT,
Cambridge, MA, 02139; jaillet@mit.edu

1

times. This is the case for many manufacturing problems such as producing paper bags,
semiconductors, and automobiles [2, 28, 42, 46]. For example, Pinedo [42] describes an
application in a paper bag factory, where a machine has different states, each corre-
sponding to the size of bags and the combination of colors the machine can produce.
Problems involving multiple machine states are typically studied in the offline (but not
the online) setting and under the simplification that each job can only be processed
in the minimal-processing-time state. However, this simplification fails to consider the
state-transition time, which may also be important in an overall time-objective. In this
paper, we study the more general set-up where we remove the above-mentioned sim-
plification, and where we consider an online setting. In particular, as we will see, our
algorithms will need to balance the tradeoff between minimizing the processing time
and the state-transition time.

1.1 Our Contributions

First, we formulate a new class of online scheduling problems. In this setting, each
machine has a state that can be controlled over time and the processing time of jobs de-
pends on the machine state. In addition, we introduce a family of generic cost functions
for these problems that can describe several practical objectives such as minimizing the
total weighted completion time and the quota-collecting makespan. The offline version
of this new online scheduling problem is NP-hard, because it includes the Weighted
Traveling Repairman Problem (WTRP) as a special case. Therefore, solving the offline
version efficiently is challenging per se. We restrict our attention to quantifying the
competitive ratio and do not consider the computational complexity aspect of an online
algorithm.

Second, for this new generic class of scheduling problems, we derive deterministic
and randomized online algorithms (PAC and RPAC1) using a plan-and-commit ap-
proach, where algorithms plan the schedule of jobs and the control of machine states at
predefined geometric time steps, and commit to the plan (regardless of newly released
jobs between these time steps). The analyses of the specific plan-and-commit-based
online algorithms in the classical online scheduling and online WTRP literature use
a summation-transformation proof technique. However, this proof technique cannot
be applied to our versions of algorithms, which makes it difficult to obtain a provable
low competitive ratio. We address this challenge by using a factor-revealing-linear-
program-based proof technique, and obtain a low-competitive-ratio online algorithm for
all problems in the general framework. Our competitive ratios (5.14 for PAC and 3.65
for RPAC1) are smaller than the existing ones for the online WTRP (a special case in
the general framework) in both deterministic and randomized settings (where the best
existing results are 5.83 and 3.87, respectively).

Third, for a probabilistic version of the online WTRP, we provide a complete proof
that the algorithm ReOpt (re-optimizing the route of the server whenever a new request
is revealed in a greedy fashion) is almost surely asymptotically optimal as the number
of requests approaches infinity.

2

1.2 Related Work

There has been extensive research on problems related to ours. Here we give a review
of relevant work, organized around three main categories, as follows.

Scheduling Problems: The area of scheduling has a rich literature. The central ques-
tion in a scheduling problem is to determine at what time and to which machine each job
is assigned to minimize a given cost function. Different machine environments (single
machine, parallel (identical) machines, or unrelated machines, etc.), processing charac-
teristics and constraints (preemption/preemption-repeat/non-preemption, release date
constraints, precedence constraints, etc.), and cost functions (makespan, total comple-
tion time, etc.) result in many different versions of scheduling problems. We adopt the
conventional three-fold notation α|β|γ first introduced in [19] for describing some of the
classical scheduling problems. The α field represents the machine environment, the β
field represents the processing characteristics and constraints, and the γ field represents
the cost function. For example 1|rj |

∑

wjcj refers to the problem of minimizing the
total weighted completion time on one machine subject to release-date constraints, and
P |rj |

∑

wjcj is the corresponding problem when there are m identical parallel machines.
The reader is referred to [19] and [42] for comprehensive reviews.

The predominant models in the scheduling literature assume the processing time of
a job to be a function of the machine-job pair assignment. There are two models that
do not require this assumption, and they are mostly studied in the offline case. The
first such model corresponds to scheduling problems with controllable processing time
(for surveys, see [40, 43]). In this model, the processing time of a job depends on the
resource allocated to the machine, and costs for allocating resources are imposed. The
second such model corresponds to scheduling problems with sequence-dependent set-up
time (for surveys, see [1, 2]). In this model, the overall processing time of a job depends
on the job processed by the machine right before it. Kim and Bobrowski [29] and Vinod
and Sridharan [45] study this last model in a dynamic setting, when jobs arrive over
time and obtain simulation-based results. However, to the best of our knowledge, no
previous work along these two directions has considered a competitive analysis for online
algorithms when the processing time of a job is not a function of the machine-job pair,
except for the special cases of online Vehicle Routing Problems VRPs (discussed later).
We study general online scheduling problems whose offline setting goes beyond the
sequence-dependent processing time model, and design online algorithms with provable
competitive ratios.

Online scheduling has been studied extensively for the basic model where the pro-
cessing time of a job is a function of the machine-job pair. Among these problems,
most relevant to our work are the ones with the cost function being the total (weighted)
completion time of all jobs [3, 12, 13, 16, 18, 21, 33, 37, 38, 41, 44]. The goal in this
line of research is to derive online algorithms with the smallest competitive ratios. Re-
cently, Günther et al. [20] develop an algorithmic approach that can approximate the
best-possible competitive ratios for many versions of these problems. We note that the
solution techniques described in most of the papers cited above cannot be adapted to fit
our problems because the effect of the machine states on the processing time is not taken
into account. The only possible exception is [21] whose ideas can be used to design algo-
rithms for our problems (see the discussion below in the solution techniques). However,
our approach involves other design ideas which allow us to get improved competitive

3

ratios.

Online Vehicle Routing Problems: In the online VRPs, a server with a unit speed
limit is to visit requests that are located in a metric space and released over time. The
server is originally located at a prescribed depot. Different characteristics of requests
(weights, precedence constraints, capacity constraints, etc.), cost functions (the quota-
collecting makespan, total weighted completion time, etc.), and underlying metric spaces
(the non-negative real line, the real line, general continuous metric spaces, discrete
metric spaces, etc.) result in different problems. The reader is referred to [24] for a
survey.

The online VRPs are special cases of our new class of scheduling problems when
we view the servers as the machines and the location of a server as the state of the
corresponding machine. The online VRPs are more restrictive because when a machine
(a server) finishes processing a job (a request), the machine state (the server location)
always corresponds to the location of that job and thus cannot be selected by the
algorithm. The specific class of cost functions we study here covers classical online
VRPs such as the online WTRP (discussed more later), the nomadic version of the
online quota traveling salesman problem [5, 6, 22], and the latency online dial-a-ride
problem (with infinite capacity) [11, 14, 32] (see Remark 2.3 for detail). Therefore, our
general online algorithms can be applied to the above online VRPs. Our algorithms
and competitive analyses can also be applied to the latency online dial-a-ride problem
with capacity constraints. Moreover, both our deterministic and randomized online
algorithms achieve better competitive ratios than the existing ones for the online WTRP
and the latency online dial-a-ride problem (with or without capacity constraints).

The online WTRP is a version of the online VRP in which the objective is to min-
imize the total weighted completion time. We provide here a more detailed literature
review about the online WTRP because the technical aspect of this problem is relevant
to ours. Feuerstein and Stougie [14] propose a deterministic 9-competitive online algo-
rithm and show that no deterministic online algorithm has a competitive ratio lower
than 2.41 when the metric space is the non-negative real line. With some minor modi-
fications, the 9-competitive online algorithm becomes 3.5-competitive when the metric
space is the non-negative real line [32]. Krumke et al. [31] prove that 2 and 2.33 are
lower bounds on the competitive ratios of any randomized online algorithm for the real
line and for general metric spaces respectively. Jaillet and Wagner [23] and Krumke et
al. [31] propose two different deterministic online algorithms with a competitive ratio of
5.83 for general metric spaces. The randomized versions of these two online algorithms
both have a competitive ratio of 3.87.

The latency online dial-a-ride problem is a variant of the WTRP. In this problem,
a request contains a source location and a destination location, and the server needs
to transport the request from the source to the destination. The 5.83-competitive de-
terministic and 3.87-competitive randomized online algorithms for the online WTRP
can also be applied to the latency online dial-a-ride problems (with or without capacity
constraints) [23, 31]. For the online latency online dial-a-ride problem with capacity 1,
Feuerstein and Stougie [14] prove that any deterministic online algorithm has a com-
petitive ratio of at least 3 when the metric space contains the real line.

An interesting algorithm for the online WTRP is ReOpt, which re-optimizes and
follows the route that minimizes the total weighted completion time of requests that
have not been served whenever a new request is released. The algorithm ReOpt belongs

4

to the class of zealous algorithms, defined by Blom et al. [9], in which the server always
travels with the maximum speed when there are requests that have not been served and
may change directions only when either it arrives at a request location or a new request
is released. To the best of our knowledge, the only zealous algorithm for which a com-
petitive analysis has been applied is a 6.04-competitive deterministic online algorithm
proposed by Ausiello et al. [7] for the real line. Therefore, it is unknown whether the
competitive ratio of ReOpt is finite or not, even for the real line.

Jaillet and Wagner [25] give the only known performance guarantee for ReOpt. They
show that, under some stochastic assumptions, ReOpt is almost surely asymptotically
optimal, i.e., it has a competitive ratio of 1 almost surely when the number of requests
goes to infinity. However, the proof of this result relies on the validity of a statement
(Lemma 5 in [25]) whose proof is problematic and cannot easily be fixed. Instead, we
propose in this paper an alternative complete proof.

Solution Techniques: The core idea in the design of our algorithms is to divide
time into geometric steps, and control the machine states and assign jobs to machines
at each time step via solving a specific auxiliary (offline) problem. Jaillet and Wag-
ner [23] and Krumke et al. [31] apply this idea with an auxiliary problem consisting
of maximizing the total weight of the requests to be completed by the next time step,
and derive a 5.83-competitive deterministic algorithm and a 3.87-competitive random-
ized algorithm for the online WTRP. When applied to the classical online scheduling
problems 1|rj |

∑

wjcj and P |rj |
∑

wjcj , the idea of using such an auxiliary problem
leads to a 4-competitive deterministic algorithm and a 2.89-competitive randomized
algorithm [21]. The competitive ratios of these algorithms are obtained based on a
summation-transformation proof approach, which compares the cost of the online algo-
rithm and that of the optimal offline algorithm using the following transformation of
summation:

∑

wjcj =
∫∞
x=0

∑

j:cj≥xwj dx. This transformation provides an expression
suitable for comparing the costs between the online and the optimal offline algorithms
because at each time step, the total weight of requests not completed by a deadline
(proportional to the time step itself) of the solution to the auxiliary offline problem
is at most that of the optimal offline algorithm. This particular auxiliary problem
and the summation-transformation proof technique have also been applied to derive
polynomial-time approximation algorithms for the (offline) TRP [10, 17].

Instead of the actual completion time, the above auxiliary problem only considers
whether a request is served by a deadline, which is a major drawback due to its “low
resolution”. Ideally, in addition to maximizing the total weight that can be completed by
the next time step, we want the auxiliary offline problem to simultaneously minimize the
total weighted completion time of requests that are completed by the next time step. For
the classical online scheduling problem 1|rj |

∑

wjCj, Hall et al. [21] address this issue by
using a two-stage optimization approach: finding the optimal order for serving those jobs
so as to minimize the total weighted completion time after solving the original auxiliary
problem. The modified schedule is feasible for 1|rj |

∑

wjCj because the total processing
time does not depend on the order in which the jobs are scheduled. With this two-stage
optimization approach, Hall et al. [21] obtain a 3-competitive deterministic algorithm for
1|rj |

∑

wjCj . However, this approach does not have an analogy for the online WTRP
because the completion time of the last request depends on the order in which the
requests are served and thus the order that minimizes the total weighted completion
time can be infeasible with respect to the deadline constraint. Here we attempt to

5

solve two optimization problems simultaneously by setting the objective functions to
be the summation of the two original ones. At a conceptual level, Koutsoupias and
Papadimitriou [30] use this idea in the design of the well-known (2k−1)-competitive
Work Function Algorithm (WFA) for the online k-server problem, but their approach
bears no similarity to ours on a technical level.

The summation-transformation proof technique described earlier does not provide
useful competitive ratios for our algorithms. Therefore, we derive a competitive analy-
sis using factor-revealing Linear Programs (LPs), i.e., LPs whose objective values corre-
spond to the quantity of interest (in our case, an upper bound on the competitive ratio).
Although the factor-revealing-LP approach has been used to calculate the approximation
ratio or competitive ratio of algorithms in many problems [4, 15, 26, 27, 34, 35, 36, 39],
its application to our problems remains challenging because of the particular choice
of suitable variables, objectives, and constraints for factor-revealing LPs strategies to
become successful.

1.3 Organization

In Section 2, we formulate a new class of online scheduling problems where each machine
has multiple states, and the processing time of jobs depends on the states of the ma-
chines. In addition, we define a new family of cost functions including several classical
ones such as the total weighted completion time. Finally, we show that the online VRPs
are special cases of the newly defined online scheduling problems.

In Section 3, we consider the online WTRP because the solution to this special case
provides intuition on how to approach the general case. We define a new family of
parameterized online algorithms, analyze the algorithms, and find the parameters that
give the lowest provable competitive ratios. By doing so, we obtain a 5.14-competitive
deterministic online algorithm and a 3.65-competitive randomized online algorithm. We
cannot prove that the analysis is tight as the best lower bounds we have obtained on
the competitive ratios of the above two algorithms are 4 and 2.82 respectively. Finally,
we consider a probabilistic formulation of the online WTRP and provide an alternative
complete proof that ReOpt is almost surely asymptotically optimal as the number of
requests approaches infinity.

In Section 4, we consider general online scheduling problems with multi-state ma-
chines when the cost belongs to our new family of cost functions (following some minor
technical assumptions, as discussed in Appendix A). The analysis for the parameterized
online algorithms designed for the online WTRP as in [23, 31] cannot easily be applied
to the general setting, because the cost functions are not necessarily linear in the com-
pletion times of jobs. Therefore, we construct online algorithms for the general problems
based on the parameters that lead to the best provable competitive ratios for the on-
line WTRP, and analyze only the resulting online algorithms. By doing so, we obtain
5.14-competitive deterministic and 3.65-competitive randomized online algorithms.

Finally, in Section 5, we summarize our results and conclude with four open prob-
lems.

6

2 Problem Formulation

In Section 2.1, we formally describe the online scheduling problem with multi-state ma-
chines. In addition, we introduce a generic class of cost functions, which we call the
total costs of active projects. In Section 2.2, we formally describe the online WTRP and
show that the online WTRP is a special case of the new class of scheduling problems.

2.1 Online Scheduling with Multi-State Machines

Machines: We assume that we have m machines, indexed by i ∈ [m] , {1, 2, . . . ,m},
where each machine i can process at most one job at a time. Each machine i has an
internal state si that can be controlled over time t ∈ R≥0. The state of machine i is
assumed to take values in a metric space (Mi, di), with the initial state being a prescribed
origin Oi ∈Mi. The distance di(s

1
i , s

2
i), s

1
i , s

2
i ∈Mi, is defined to be the minimum time

required for the state of machine i to change from s1i to s2i . When being directed to go
from state s1i to s2i , machine i commits itself to a time duration of di(s

1
i , s

2
i) and cannot

process any job during that period.

Problem Instances and Jobs: A problem instance I is composed of a finite set of n
jobs, indexed by j ∈ [n], where the size n is different across problem instances. Each job
j is characterized by a release date rj ∈ R≥0, a function pij : Mi → R≥0 of processing
time for each machine i ∈ [m], and some other characteristics ρj belonging to a set P
(to be defined later):

• The release date rj is the earliest time at which any machine can start processing
job j. Without loss of generality, we assume 0 ≤ r1 ≤ r2 ≤ · · · ≤ rn.

• The function pij, i ∈ [m], is defined such that for any state si ∈ Mi, pij(si) is
the required time for machine i to process job j when in state si. In the basic
setting, we do not allow preemption, meaning that once machine i in state si
starts processing job j at time t, t ∈ R≥0, both the machine i and the job j
commit themselves for the duration pij(si): the machine i cannot process any
other job and the job j cannot be processed by any other machine during that
period. Also, we assume we cannot control the machine state when it is processing
any jobs, and processing a job does not change the machine state. As a result,
the completion time of job j, denoted by cj , will be cj , t + pij(si).

• The other characteristics ρj are used to define the cost, which we will discuss next.

• In the offline version of the problem, the number of jobs n and the characteristics
of all the jobs are known ahead of time. In the online version, the number of jobs
n is not known ahead of time and the characteristics of job j are revealed to the
online algorithms at its release date rj.

Cost Functions: We introduce a generic class of cost functions, which we call the
total costs of active projects. Before describing its mathematical formulation, we first
introduce the intuition behind it and illustrate the idea with two examples.

In our setting, the overall cost is the summation of the costs contributed by projects.
The list of projects is given in advance irrespective of the problem instance. Each

7

project corresponds to completing a set of jobs whose characteristics collectively satisfy
some conditions; the project is said to be active when the jobs released so far include
a subset of jobs whose characteristics collectively satisfy those conditions. Only active
projects are counted in the overall cost. The cost of an active project is a function of the
completion time of that project (i.e., the earliest time when all jobs in one of the sets
defining the project are completed). For simplicity, we call the above completion-time-
to-cost function the cost function of that project. A project’s cost function is realized
when it becomes active, using the characteristics of jobs released so far. Note that the
characteristics of the jobs determine both the “activeness” and the cost function of each
project. Therefore, we need to define P and ρj ∈ P , j ∈ I, accordingly (recall that
ρj ∈ P gives the characteristics of job j other than rj and {pij}mi=1).

This class of cost functions covers many classical ones, including the following two
examples:

1. The total weighted completion time (
∑

wjcj).

2. The quota-collecting makespan, i.e., the earliest time when the total value (vj ∈
R>0) of completed jobs achieves a prescribed quota Q ∈ R>0. This corresponds
to minS|

∑
j∈S vj≥Q maxj∈S cj.

In the first example, a (possibly countably infinite) number of projects, which can be
labeled as N, are involved, where project j ∈ N corresponds to completing a particular
job j. Project j is active if and only if job j is in the problem instance. Following
the definition, the completion time of an active project j is the same as the completion
time of the job j. At the time when project j becomes active, wj is revealed to online
algorithms, and the cost function is defined to be hj(x) = wjx, x ∈ R≥0. Because
we need wj to calculate the cost function of project j, wj is included as one of the
characteristic of job j, setting P = R>0 and ρj = wj .

In the second example, there is only one project, which consists of completing a
set of jobs whose total value achieves/exceeds a given quota Q. The project is active
if there exists a subset of jobs in the instance whose total value achieves/exceeds the
quota. We need the value vj of each job j to determine whether the project is active.
Therefore, we include vj in the characteristics of a job by setting P = R>0 and ρj = vj .
If the project is active, then the cost function is simply the identity function. Now
let us formally describe the definition behind the total costs of active projects. In this
setting, a (finite or infinite) collection of projects K is given a priori, independent of
the problem instance. Each project k ∈ K is defined by a satisfying set indicator 1k,
which defines whether a particular set of jobs’ characteristics collectively satisfy the
conditions specified by project k; and a cost function hk, which relates the completion
time of project k to the amount it contributes to the overall cost:

• The satisfying set indicator 1k of a project k ∈ K is a binary function that maps
a subset S of jobs with corresponding characteristics (ρj |j ∈ S) to whether the
characteristics of jobs in S collectively satisfy the conditions specified by project
k or not. Note that in a problem instance, there might be zero, one, or multiple
sets S such that 1k(S, (ρj |j ∈ S)) = 1. For each problem instance I, the notation
K(I) denotes the set of all active projects, or mathematically,

K(I) , {k|k ∈ K,∃S ⊂ I such that 1k(S, (ρj |j ∈ S)) = 1}.

8

The completion time of an active project k ∈ K(I), denoted by xk, is defined to
be the earliest time at which all jobs in one of the satisfying sets are completed,
or mathematically,

xk , min
S⊂I,1k(S,(ρj |j∈S))=1

max
j∈S

cj.

• The cost function hk of a project k ∈ K(I) relates the completion time xk to
the cost contributed by project k. As discussed earlier, the cost function hk can
depend on the following characteristics of jobs:

(ρj |j ∈ I, rj ≤ min
S⊂I,1k(S,(ρj |j∈S))=1

max
j′∈S

rj′)

where the quantity given by the MinMax operator is the time when project k
becomes active (recall that rj is the release date of job j).

The cost defined by the total costs of active projects is then

cost(I) ,
∑

k∈K(I)

hk (xk) .

In Table 1, we describe how the following three classical cost functions can be described
using our framework: the total weighted completion time (

∑

j wjcj), the quota-collecting
makespan (minS|

∑
j∈S vj≥Q maxj∈S cj), and the discounted total weighted completion

time (
∑

j wj(1− e−rcj)).

Table 1: Three classical cost functions formulated as the total costs of active projects

Cost K P ρj S|1k(S, (ρj |j ∈ S)) = 1 hk(x)
∑

j wjcj N R>0 wj S = {k} ρkx

minS|
∑

j∈S vj≥Q maxj∈S cj {1} R>0 vj
∑

j∈S ρj ≥ Q x
∑

j wj(1− e−rcj) N R>0 wj S = {k} ρk(1− e−rx)

For our results to hold, we need to impose the following assumption on the cost
functions:

Assumption 2.1. For any k ∈ K(I), hk is non-decreasing and concave, and hk(0) = 0.

We assume that hk is non-decreasing because a greater completion time for a project
does not decrease its cost for most practical applications. We assume hk(0) = 0 because
a project completed at the start should not contribute any cost. Concavity captures
many practical cost functions, including the three in Table 1. This assumption is appli-
cable to problems where the unit-time cost for a project k until completion is decreasing
in time, that is, when hk(t + δ) − hk(t) is decreasing in t for any δ > 0. For discussion
on the necessity of imposing such an assumption, see Appendix B.

Algorithms: In this paper, an algorithm determines the states of the machines and the
schedule of jobs over time t ∈ R≥0 subject to the constraints regarding machines and jobs
described earlier. Based on the available information of the problem instances at time t,
we classify the algorithms into offline algorithms that know the entire problem instance I
from the start, and online algorithms that know only jobs with release dates up to time t,

9

i.e., It , {(rj , {pij}mi=1, ρj)|rj ≤ t}. The goal is to design online algorithms with strong
performance in term of competitive analysis without consideration of computational
complexity.

Online algorithms can be further classified as deterministic or randomized online
algorithms. A deterministic online algorithm determines the machines states and the
assignment of jobs at time t as a function of It. A randomized online algorithm ran-
domizes over a collection of deterministic online algorithms.

For notational convenience, for a deterministic (online or offline) algorithm called
ALG, we denote by cALG

j the corresponding completion time of job j ∈ I and xALG
k the

corresponding completion time of project k ∈ K(I). In addition, we denote the cost of
the problem instance I under the deterministic algorithm ALG as

ALG(I) ,
∑

k∈K(I)

hk
(

xALG
k

)

.

For a randomized online algorithm called ALG, defined by a collection of determin-
istic algorithms {ALG(ω)} where ω is drawn from a probability distribution ∆, we
denote ALG(I) as the expected cost under the problem instance I, i.e., ALG(I) ,

Eω∼∆(ALG(ω)(I)). We drop I and ω when it is clear from context.
For each problem instance I, we define OPT (I) as the infimum of the costs among

all algorithms, i.e.,
OPT (I) , inf

ALG
ALG(I).

When the infimum is attainable, OPT (I) corresponds to the cost of an optimal offline
algorithm. Here we use the infimum rather than the minimum in the expression of
OPT (I) because we use its value as a baseline for evaluating the online algorithms,
but are not concerned about whether this value can be achieved by any specific offline
algorithm and how this value can be computed.

However, we can show that the infimum is achievable under some technical assump-
tions (see Appendix A) using an argument similar to that of Lemma A.3.

In this paper, we wish to design online algorithms with costs “close” to OPT(I).
This performance metric can be formalized as the competitive ratio, as described below:

Definition 2.2 (Competitive Analysis). An online algorithm ALG is c-competitive,
c ∈ R≥1, if for any problem instance I,

ALG(I) ≤ cOPT (I).

The competitive ratio of ALG is the infimum of c such that ALG is c-competitive.

2.2 Online Weighted Traveling Repairman Problem

In this section we show how the online Weighted Traveling Repairman Problem (WTRP)
can be seen as a special case of the general framework described in Section 2.1.

Let us first describe the online WTRP in precise terms. In this problem, a single
server (the repairman), initially located at a depot D ∈ M, travels in a metric space
(M, d) with a unit speed limit in order to visit requests located in the metric space. A
problem instance consists of a finite list of n requests, indexed as 1, 2, . . . , n, where n is
instance-specific. Each request j ∈ [n] has a release date r′j ∈ R≥0, a location lj ∈ M,

10

and a weight w′
j ∈ R>0. The completion time of request j is the earliest time greater

than or equal to r′j at which the server arrives at lj (the on-site service time is zero).
The objective is to minimize the total weighted completion time.

Let us now show how we can formulate the online WTRP as a scheduling problem
within our general framework. In this formulation, there is only one machine, i.e.,
m = 1. The machine state represents the server location, i.e., (M1, d1) = (M, d) and
O1 = D. Each request corresponds to a job with the same release date. The location of
a request is included in the definition of the processing time of the corresponding job:
when the state of the machine is at the location of the request, the processing time is
0; otherwise, the processing time is infinity, i.e.,

p1j(x) =

{

0 if x = lj ,

∞ if x 6= lj .

The characteristics of jobs and the projects are defined so that the cost is the total
weighted completion time, as described in Table 1.

Remark 2.3. The release date and the processing time in the above formulation are
applicable to many variants of the VRPs. For example, when the cost function is the
quota-collecting makespan as described in Table 1, the problem becomes the nomadic
version of the online quota traveling salesman problem [5, 6, 22]. If we allow precedence
constraints in the problem formulation, our general framework can cover the latency
online dial-a-ride problems (with infinite capacity) [11, 14, 32]. In any of these two
problems, a request j is characterized by (r′j , uj , vj , w

′
j), where r′j and w′

j are the release
date and the weights, and uj and vj are the source and destination locations of the
request, and the request has to be delivered from uj to vj. Our general framework can
describe this request by setting two jobs, labeled as 2j−1 and 2j, where r2j−1 = r2j = r′j ,

p1,2j−1(x) =

{

0 if x = uj,

∞ if x 6= uj,
p1,2j(x) =

{

0 if x = vj ,

∞ if x 6= vj ,

w2j−1 = 0 and w2j = w′
j, and imposing the precedence constraint that we cannot start

job 2j until we have completed job 2j−1. We can describe the latency online dial-a-ride
problems by setting the cost function to be the total weighted completion time.

3 The Online Weighted Traveling Repairman Problem

In this section, we study the online WTRP as formulated in Section 2.2. More precisely,
in Section 3.1, we propose and analyze a family of deterministic online algorithms. In
Section 3.2, we consider the randomized versions of these algorithms. In Section 3.3,
we study a probabilistic version of the online WTRP, and provide a proof that ReOpt
is almost surely asymptotically optimal.

3.1 (α, β)-Plan-and-Commit

In Section 3.1.1, we propose a family of algorithms, parameterized by a pair of numbers
(α, β) satisfying α ∈ (0, 1] and β ∈ [α,∞). In Section 3.1.2, we analyze the proposed
algorithms and provide upper and lower bounds on the competitive ratios, and determine
the parameters (α, β) that lead to the smallest provable competitive ratio.

11

3.1.1 The Algorithms

For each pair of real numbers (α, β) such that α ∈ (0, 1] and β ∈ [α,∞), we define a
deterministic online algorithm (α, β)-Plan-and-Commit (PACα,β) as follows:

Algorithm 1 (α, β)-Plan-and-Commit Algorithms (PACα,β) for the online WTRP

1. Initialization

The server stays at the depot D during the entire initialization phase.

(a) At time t = 0, set τ ← min {d(D, lj)|j ∈ I0, lj 6= D}. By convention, if
{j ∈ I0, lj 6= D} is an empty set, then set τ ←∞.

(b) At time t ∈ (0, τ), if a request is revealed, then set t1 ← t and end the
initialization phase.

(c) At time t = τ , set t1 ← τ and end the initialization phase. (If both
{j ∈ I0, lj 6= D} and I \ I0 are empty sets, then τ remains ∞ and there will
be no end to the initialization phase.)

At the time when the initialization phase ends: For all positive integer l, set
tl ← t1 × (1 + 2α)l−1. Define R1 , It1 .

2. Repeat for l = 1, 2, . . . ,

(a) Plan: At time t = tl, calculate what an offline algorithm, ALGl, would have
done between time 0 and αtl to minimize

∑

j∈Rl

wjfα,β(cj , tl).

Denote by Al the set of requests in Rl completed by ALGl before time αtl.

(b) Commit:

• During time t ∈ [tl, (1 + α)tl], follow a delayed version of the route of
ALGl (delayed by tl).

• During time t ∈ [(1+α)tl, (1+2α)tl], return to the depot D by traveling
through the reverse of the route of ALGl.

(c) At time tl+1, define Rl+1 , (Rl \Al) ∪ (Itl+1
\ Itl).

The algorithm PACα,β has two major phases: initialization and iterations.

Initialization Phase: The server stays at the depot D during the entire duration of
this phase. The phase begins at time 0 and, assuming it ends, transitions to the second
phase at a time t1, which is a time variable computed by the algorithm PACα,β. Let us
explain how our algorithms compute t1. For reasons that will be clear when we analyze
the algorithms, the value t1 must satisfy the following two conditions:

1. The time t1 needs to be non-zero to ensure the geometric series {tl , t1(1 +
2α)l−1}∞l=1 is unbounded (recall that we have assumed α > 0 so 1 + 2α > 1).

2. No request j can be completed before time t1/(1 + 2α) by any online or offline
algorithm (including OPT) except for the simple case where rj = 0 and lj = D.

12

The online algorithms calculate t1 as follows. Let τ be a time variable updated by
PACα,β that will end up being t1 when the initialization ends. At time t = 0, PACα,β

sets τ to be either the distance between the depot and the nearest (but not at the depot)
request with release date 0, or ∞ if there are no requests with release date 0 which are
away from the depot. Note that because the server has a unit speed limit, we can set
the value of the time variable τ to be a distance. After time 0, if no request is released
before τ , then PACα,β sets t1 = τ . Otherwise, PACα,β sets t1 to be the earliest release
date of such requests. Note that in the case where all the requests are at the depot and
are with release dates 0, the initialization phase will never end. However, in this case,
the completion time of all requests will be 0 for all online and offline algorithms, and
hence the cost will be 0 for both the optimal offline algorithm and PACα,β . Therefore,
such problem instances have no impact on the competitive ratio of the algorithm and
we can ignore them when analyzing the competitive ratio.

Clearly, Condition 1 is satisfied from the way we have defined t1. To see that
Condition 2 is also satisfied, we note that the server has a unit speed limit. Therefore,
request j cannot be visited before time d(lj ,D). Furthermore, request j cannot be
visited before its release date rj . Thus, for any online or offline algorithm ALG, cALG

j ≥
max (rj, d(lj ,D)). On the other hand, the variable t1 determined by PACα,β is at most
minj max (rj, d(lj ,D)). Therefore, for any online or offline algorithm ALG, t1/(1+2α) <
t1 ≤ cALG

j .
Before starting the first iteration of the second phase at time t1, we define R1 to

be the set of all requests with release date at most t1, i.e., R1 , It1 , and we define
tl = t1 × (1 + 2α)l−1 for all l ≥ 1.

Iterations Phase: For any l ≥ 1, the lth iteration begins at time tl and ends at time
tl+1, i.e., [tl, tl+1]. The algorithm is called Plan-and-Commit because it plans the route
at time tl and is committed to follow that route until time tl+1, regardless of the requests
released between time tl and tl+1.

At time tl, we define an auxiliary offline problem as follows:

minimize
∑

j∈Rl

wjfα,β(cj , tl)

where

fα,β(x, y) ,

{

x if x ≤ αy

βy if x > αy

and the set Rl is defined either in the initialization phase (if l = 1) or in the previous
iteration (if l ≥ 2). It is clear that an optimal solution exists for this auxiliary problem
whose objective value can be attained by an algorithm. This is because the number
of permutations of jobs in Rl is finite, and for each permutation (giving the order the
requests are served) the best way to serve them is to travel between them along shortest
paths, and if necessary, wait at the location of a request until it is released before
traveling to the next one. Call the optimal algorithm ALGl, and let cALGl

j , j ∈ Rl,
be the corresponding optimal completion times. Note that ALGl is an algorithm that
starts at time 0. Also, even though all optimal completion times are well defined by
ALGl, for any job j for which cALGl

j > αtl, the completion time is replaced by a penalty
term βtl in the objective value of the auxiliary problem.

13

In other words, one can think of αtl as a deadline for the auxiliary problem. For
each job in Rl whose completion will exceed αtl, and so will be part of the set Rl+1 in
the auxiliary offline problem associated with the next iteration (remember that tl+1 =
(1 + 2α)tl), then its contribution to the objective function at iteration l is instead
associated with the term βtl.

In the extreme case when β → ∞, the auxiliary offline problem puts an emphasis
on requests that can be completed before the next time step. The other parameter α
represents a tradeoff between using more information in the auxiliary offline problem
and having a smaller ratio between successive time steps. To see this, we note that the
route of the optimal solution in the auxiliary offline problem is only related to requests
revealed up to time αtl. Therefore, when α is larger, we use more information for the
design of ALGl. However, when α is larger, the deadline αtl is also larger, and the
online algorithm needs to spend more time to visit the requests served by ALGl up to
time αtl.

The online server follows a delayed version of the route of ALGl (delayed by tl) for
a duration of αtl starting at time tl. The server then travels through the reverse of the
route of ALGl and returns to the depot D at time (1 + 2α)tl = tl+1.

We denote by Al those requests in Rl that have a completion time no greater than
αtl under the offline algorithm ALGl. Following the definition of Al, for all j in Al, the

completion time of our algorithm, c
PACα,β

j , satisfies

c
PACα,β

j ≤ tl + cALGl

j . (1)

At time tl+1, we finish the lth iteration by defining Rl+1 to be Rl minus Al plus the
requests with release dates in the time interval (tl, tl+1], i.e., Rl+1 , (Rl\Al)∪(Itl+1

\Itl),1
which is guaranteed to be a superset of all released and not visited requests at time tl+1.

We close the description of the algorithm by discussing three possible alternative
options one could imagine for the design of ALGl, and their impacts on the results we
have obtained on competitive analysis, as described in Section 3.1.2.

1. Approximating the auxiliary problem: If ALGl is an approximate solution to
the auxiliary offline problem, then, in general, the analysis in Section 3.1.2 fails
because Lemma 3.9 requires ALGl to be an exact optimal solution.

2. Replacing the release dates of requests in Rl by 0: Since the online algorithm fol-
lows a delayed version of ALGl, it may appear that the release dates of requests in
Rl are not relevant and could be replaced with 0 when solving the auxiliary offline
problem. However, doing so will break our analysis, in particular, Lemma 3.12.
One intuition for why it is important to keep the release dates of requests in Rl

when designing ALGl goes as follows. The release date of a request is a lower
bound on the completion time of the request in any online or offline algorithm,
so the optimal offline algorithm has a “tendency” to serve requests with smaller
release dates earlier. By keeping the release dates of requests in Rl, ALGl and
PACα,β would also have a “tendency” to serve requests with smaller release dates
earlier, and thus become more like the optimal offline algorithm, which is useful for
achieving a lower competitive ratio. Removing the release dates while designing
ALGl would eliminate this useful feature.

1The sets Itl+1
and Itl are derived from the definitions of It, tl+1, and tl.

14

3. Re-optimizing after computing Al: At each iteration l, if we replace ALGl by
an alternative algorithm ALG′

l that minimizes the total completion time of re-
quests in Al subject to the constraints that all requests in Al are completed and
the server returns to the depot D at time tl+1, then the upper bounds on the
competitive ratios are still valid because the total cost of the online algorithm

corresponding to {ALG′
l}∞l=1 is at most

∑∞
l=1

∑

j∈Al
wj

(

tl + c
ALG′

l

j

)

, which is at

most
∑∞

l=1

∑

j∈Al
wj

(

tl + cALGl

j

)

.

3.1.2 Competitive Analysis

We first describe our results. The detailed proofs regarding the upper bounds and lower
bounds appear in Subsections 3.1.2.1 and 3.1.2.2, respectively.

Upper Bounds: For general pairs of (α, β) satisfying α ∈ (0, 1] and β ≥ α, the low-
est upper bounds that we prove are related to the following linear program, which is
parameterized by a positive integer N :

For β = α
maximize

(C1,C2,...CN ,T0,T1,...,TN−1)∈R
2N
≥0

CN + T0 (LPdet
α,β(N))

subject to

Ci+1 − Ci ≥
iα

N
(Ti − Ti+1) for i = 0, . . . , N − 1

(2a)

Ci+1 − Ci ≤
(i + 1)α

N
(Ti − Ti+1) for i = 0, . . . , N − 1

(2b)

1 ≥ α

2β
CN +

α

2 + 4α
T0 (2c)

CN +
β − 2 iα

N

1 + 2α
T0 ≤ Ci + βTi + C⌈N−2i

1+2α ⌉ +
β − 2 iα

N

1 + 2α
T⌊N−2i

1+2α ⌋ for i = 0, . . . ,

⌊

N

2

⌋

(2d)

where C0 and TN are defined to be 0.
For β > α

maximize
(C1,C2,...CN ,T0,T1,...,TN−1)∈R2N

≥0

CN + T0 (LPdet
α,β(N))

subject to

(2a), (2b), (2c), (2d)

1 ≥ 2α2

(1 + 2α)(β − α)
CN +

α(β − α(1 + 2α))

(1 + 2α)(β − α)
T0 (if β > α) (2e)

where C0 and TN are defined to be 0.

The main result can be stated as follows:

15

Theorem 3.1. Let (α, β) be a pair of real numbers satisfying α ∈ (0, 1] and β ≥ α.
For any positive integer N , the objective value of LPdet

α,β(N) is an upper bound on the
competitive ratio of PACα,β.

Theorem 3.1 allows us to select parameters α and β such that the upper bound
on the competitive ratio is minimized. We numerically calculate the optimal objective
value for all pairs of α, β when they are both multiples of 0.01 by using the software
package Gurobi. As an example, Figure 1 illustrates the optimal objective values of
LPdet

α,β(N) with N = 10000 and α = 1 for different values of β.

Figure 1: Optimal objective values of LPdet
α,β(N) with N = 10000 and α = 1 for different

values of β

0 1 2 3 4 5
5

5.5

6

6.5

7

β

Our observation of all our numerical results indicates that the lowest upper bound
on the competitive ratio among different α and β occurs when (α, β) = (1, 1). As a
result, we believe that (α, β) = (1, 1) is the parameter that minimizes the upper bound
provided by Theorem 3.1. For PAC1,1, we have the following corollary:

Corollary 3.2. The competitive ratio of PAC1,1 is at most 5.14.

Proof. According to Gurobi, the objective value of LPdet
α,β(N) with N = 10000 and

α = β = 1 is slightly below 5.135, and the maximum possible numerical error is smaller
than 0.005. Therefore, using Theorem 3.1, we conclude that the competitive ratio of
PAC1,1 is at most 5.14.

The next corollary (Corollary 3.3) is weaker than Corollary 3.2 but still shows that
the competitive ratio of PAC1,1 is lower than the smallest competitive ratio in the liter-
ature (5.83). We include Corollary 3.3 because we can analytically prove this corollary
(proved in Appendix C).

Corollary 3.3. The competitive ratio of PAC1,1 is at most 39/7 ≈ 5.57.

In addition to the case of α = β = 1, our observation of the numerical results
indicates that as N → ∞, when we fix α ∈ (0, 1], for all β ≥ 2α2 + 3α, the optimal
objective values of LPdet

α,β(N) are the same. For example, in Figure 1, for all β ≥ 5, the

optimal objective values are the same. In fact, for any α ∈ (0, 1], when β ≥ 2α2 + 3α,
our best provable upper bounds on the competitive ratios have a closed-form expression,
as formalized in the following proposition:

Proposition 3.4. For any α ∈ (0, 1], when β ≥ 2α2 + 3α, the competitive ratio of

PACα,β is at most (1+2α)(1+α)
α

.

Lower Bounds: For lower bounds, we have the following main result:

16

Theorem 3.5. For the case where the metric space M contains the real line, for any
α ∈ (0, 1] and β ∈ [α,∞), the competitive ratio of PACα,β is at least 3 + 1

α
; and as

β →∞, the competitive ratio of PACα,β is at least (1+α)(1+2α)
α

.

The second statement of Theorem 3.5 together with Proposition 3.4 show that the
analysis is tight when β → ∞. Furthermore, for the algorithm that achieves the best
provable upper bound on the competitive ratio, PAC1,1, we have the following corollary
for its lower bound:

Corollary 3.6. The competitive ratio of PAC1,1 is at least 4.

Proof. Theorem 3.5 with α = 1 proves this corollary.

3.1.2.1 Upper Bounds on the Competitive Ratios

We first note that, for the sake of determining the upper bounds on the competitive
ratios, we can assume that no request j has both rj = 0 and lj = D. The reason is
the following. If there is a request j such that rj = 0 and lj = D, then for any feasible
algorithm, cj = 0. Therefore, removing this request does not change the cost of any
(online or offline) algorithm. Hence, without loss of generality, we assume no request j
has both rj = 0 and lj = D. We first prove Theorem 3.1 and then Proposition 3.4.

For proving Theorem 3.1, we need to introduce a series of lemmas. First, we show
that {Al}∞l=1 forms a partition of all requests I:

Lemma 3.7. The sequence of subsets {Al}∞l=1 is a partition of I, i.e.,
⋃∞

l=1 Al = I and
for any i 6= j, Ai ∩Aj = ∅.
Proof. It is clear from the definition that for all i 6= j, Ai ∩Aj = ∅, so it is sufficient to
show that I =

⋃∞
l=1 Al.

It is clear that I ⊃ ⋃∞
l=1 Al. Therefore, it is sufficient to prove that I ⊂ ⋃∞

l=1 Al,

which is equivalent to the existence of an integer l̄ such that I =
⋃l̄

l=1 Al. Consider a
number l̄ large enough such that

tl̄−(n−1) > rn and tl̄ − (n− 1) > max{d(D, lj)|j ∈ I}.

At each iteration l such that l ≥ (l̄ − (n − 1)), either Al contains at least one request
or all requests in I must have been completed. Since there are a total of n requests, all
requests must have been completed by the l̄th iteration. As a result, I ⊂ ⋃∞

l=1 Al, which
completes the proof.

Because of Lemma 3.7 and (1), for any problem instance I, PACα,β(I) has the
following upper bound:

PACα,β(I) ≤
∞
∑

l=1

∑

j∈Al

wjc
ALGl

j +
∞
∑

l=1

∑

j∈Al

wjtl = C(α)(I) + T (0)(I), (3)

where for all r ∈ [0, α],

C(r)(I) ,

∞
∑

l=1

∑

j∈Al,c
ALGl
j ≤rtl

wjc
ALGl

j and T (r)(I) ,

∞
∑

l=1

∑

j∈Al,c
ALGl
j >rtl

wjtl.

17

As a result, supI
C(α)(I)
OPT (I) + T (0)(I)

OPT (I) is an upper bound on the competitive ratio of PACα,β.

In order to find a small upper bound on supI
C(α)(I)
OPT (I) + T (0)(I)

OPT (I) , we find inequalities

between {T (r)(I)}r∈[0,α], {C(r)(I)}r∈[0,α] and OPT (I) that are valid for all problem
instances I. For notational convenience, we drop the parameter I when it is clear from
context.

The first sets of inequalities are a direct result of the definition of {T (r)}r∈[0,α] and
{C(r)}r∈[0,α] and are independent of the online algorithm:

Lemma 3.8. For 0 ≤ r ≤ r′ ≤ α,

r(T (r)− T (r′)) ≤ C(r′)− C(r) ≤ r′(T (r)− T (r′)).

Proof. Clearly, for any j ∈ Al such that rtl < cALGl

j ≤ r′tl, we have cALGl

j ≤ r′tl.
Therefore,

∞
∑

l=1

∑

j∈Al,rtl<c
ALGl
j ≤r′tl

wjc
ALGl

j ≤
∞
∑

l=1

∑

j∈Al,rtl<c
ALGl
j ≤r′tl

wjr
′tl = r′

∞
∑

l=1

∑

j∈Al,rtl<c
ALGl
j ≤r′tl

wjtl,

which gives C(r′) − C(r) ≤ r′(T (r) − T (r′)). Similarly, for any j ∈ Al such that
rtl < cALGl

j ≤ r′tl, we have cALGl

j > rtl. Therefore,

∞
∑

l=1

∑

j∈Al,rtl<c
ALGl
j ≤r′tl

wjc
ALGl

j >
∞
∑

l=1

∑

j∈Al,rtl<c
ALGl
j ≤r′tl

wjrtl = r
∞
∑

l=1

∑

j∈Al,rtl<c
ALGl
j ≤r′tl

wjtl,

which gives C(r′)− C(r) ≥ r(T (r)− T (r′)).

The rest of the inequalities are based on the fact that for all positive integers l,
ALGl is an optimal solution to the auxiliary offline problem. In addition, the following
lemma shows that ALGl is also optimal if the summation of the cost in the auxiliary
offline problem was taken over any set of requests satisfying some properties:

Lemma 3.9. For any set S satisfying Al ⊆ S ⊆ ⋃∞
i=l Ai, ALGl is the offline algorithm

that minimizes the cost:
∑

j∈S

wifα,β (cj , tl) .

Proof. Let ALG be any offline algorithm. Any request j in S but not Rl is released after

tl, and thus cALG
j ≥ rj ≥ tl and fα,β

(

cALG
j , tl

)

= βtl. Therefore, we can decompose the

cost into two terms as follows:

∑

j∈S

wifα,β
(

cALG
j , tl

)

=
∑

j∈S∩Rl

wjfα,β
(

cALG
j , tl

)

+
∑

j∈S\Rl

wjβtl. (4)

The second term is independent of the algorithm, so this lemma is equivalent to ALGl

being optimal when the cost consists of the first term only.

18

Any request in Rl but not in S is not in Al, and thus is not completed by ALGl

before time αtl. For those requests j, we have fα,β

(

cALGl

j , tl

)

= βtl. Therefore, suppose

to the contrary that algorithm ALG′
l obtains a lower value for the first term on the right

hand side of Equation (4) than ALGl. Then

∑

j∈Rl

wjfα,β

(

cALGl

j , tl

)

=
∑

j∈S∩Rl

wjfα,β

(

cALGl

j , tl

)

+
∑

j∈Rl\S

wjβtl

>
∑

j∈S∩Rl

wjfα,β

(

c
ALG′

l

j , tl

)

+
∑

j∈Rl\S

wjfα,β

(

c
ALG′

l

j , tl

)

=
∑

j∈Rl

wjfα,β

(

c
ALG′

l

j , tl

)

,

which contradicts the definition of ALGl.

Comparing the costs given by OPT and ALGl for each integer l by using Lemma 3.9
with S =

⋃∞
i=l Ai, we obtain the following lemma:

Lemma 3.10. When β > α,

OPT ≥ 2α2

(1 + 2α)(β − α)
C(α) +

α(β − α(1 + 2α))

(1 + 2α)(β − α)
T (0). (5)

Proof. Consider Lemma 3.9 with S =
⋃∞

i=l Ai. Since ALGl achieves the lowest cost
value, we have

∑

j∈
⋃∞

i=l Ai

wjfα,β
(

cOPT
j , tl

)

≥
∑

j∈
⋃∞

i=l Ai

wjfα,β

(

cALGl

j , tl

)

. (6)

For further discussion, we define A⋆
l to be the set of requests that are completed in

the time interval (αtl−1, αtl] by OPT , that is, for all positive integers l,

A⋆
l ,

{

j|j ∈ I, αtl−1 < cOPT
j ≤ αtl

}

(7)

where t0 ,
t1

1+2α for simplicity. We define {A⋆
l }∞l=1 this way in order to use the following

inequalities:

fα,β
(

cOPT
j , tl

)

≤ αtl +

{

0 for cOPT
j ≤ αtl.

(β − α)tl for cOPT
j > αtl.

Using these inequalities, we have the following upper bound on the left hand side of
(6):

∑

j∈
⋃∞

i=l Ai

wjfα,β
(

cOPT
j , tl

)

≤
∑

j∈
⋃∞

i=l Ai

αwjtl +
∑

j∈(
⋃∞

i=l Ai)∩(
⋃∞

i=l+1
A⋆

i)

(β − α)wjtl.

Because
⋃∞

i=l+1A
⋆
i is a superset of (

⋃∞
i=l Ai) ∩

(
⋃∞

i=l+1A
⋆
i

)

, the inequality above still
holds even if we replace the second term on the right hand side with the summation
over the set

⋃∞
j=l+1A

⋆
j , which is what we will do.

19

On the other hand, we have the following equation for the right hand side of (6):

∑

j∈
⋃∞

i=l Ai

wjfα,β

(

cALGl

j , tl

)

=
∑

j∈Al

wjc
ALGl

j +
∑

j∈
⋃∞

i=l+1
Ai

βwjtl.

Summing the above inequalities and equations over all positive integers l, we obtain

∞
∑

l=1





∑

j∈
⋃∞

i=l Ai

αwjtl +
∑

j∈
⋃∞

i=l+1
A⋆

i

(β − α)wjtl



 ≥
∞
∑

l=1





∑

j∈Al

wjc
ALGl

j +
∑

j∈
⋃∞

i=l+1
Ai

βwjtl



 .

Using Lemma 3.7, the above inequality is equivalent to

∞
∑

l=1





∞
∑

i=l

∑

j∈Ai

αwjtl +

∞
∑

i=l+1

∑

j∈A⋆
i

(β − α)wjtl



 ≥
∞
∑

l=1





∑

j∈Al

wjc
ALGl

j +

∞
∑

i=l+1

∑

j∈Ai

βwjtl



 .

Interchanging the order of the summations on both sides gives

∞
∑

i=1





i
∑

l=1

∑

j∈Ai

αwjtl +
i−1
∑

l=1

∑

j∈A⋆
i

(β − α)wjtl



 ≥
∞
∑

i=1





∑

j∈Ai

wjc
ALGi

j +
i−1
∑

l=1

∑

j∈Ai

βwjtl



 .

Using equations
∑i−1

l=1 tl = ti−t1
2α and

∑i
l=1 tl = ti+1−t1

2α , the above inequality is
equivalent to

∞
∑

i=1





∑

j∈Ai

wj
ti+1 − t1

2
+
∑

j∈A⋆
i

(β − α)wj
ti − t1

2α



≥
∞
∑

i=1





∑

j∈Ai

wjc
ALGi

j +
∑

j∈Ai

βwj
ti − t1

2α



 .

Note that
∑∞

i=1

∑

j∈Ai
wj =

∑

i∈I wj =
∑∞

i=1

∑

j∈A⋆
i
wj, so the total coefficient of t1

on the left hand side can be expressed as
∑

i∈I wj

(

−1
2 + (β − α)−1

2α

)

=
∑

i∈I wj

(

−β
2α

)

,

which is exactly the coefficient of t1 on the right hand side. Therefore, the terms related
to t1 are cancelled. Using ti+1 = (1 + 2α)ti, the above inequality is equivalent to

∞
∑

i=1





∑

j∈Ai

wj
(1 + 2α)ti

2
+
∑

j∈A⋆
i

(β − α)wj
ti
2α



 ≥
∞
∑

i=1





∑

j∈Ai

wjc
ALGi

j +
∑

j∈Ai

βwj
ti
2α



 ,

or equivalently,

∞
∑

i=1

∑

j∈A⋆
i

(β − α)wj
ti
2α
≥

∞
∑

i=1

∑

j∈Ai

wjc
ALGi

j +
∞
∑

i=1

∑

j∈Ai

wjti

(

β

2α
− 1 + 2α

2

)

.

Multiplying both sides by 2α2

(1+2α)(β−α) and using the definition of C(α)(I) and T (0)(I),
the above inequality is equivalent to the following inequality:

α

1 + 2α

∞
∑

i=1

∑

j∈A⋆
i

wjti ≥
2α2

(1 + 2α)(β − α)
C(α)(I) +

α(β − α(1 + 2α))

(1 + 2α)(β − α)
T (0)(I). (8)

By (6), for all j ∈ A⋆
i ,

αti−1

1+2α = αti−1 < cOPT
i , so the left hand side of (8) is at most

OPT (I), and thus (5) holds.

20

Similarly, comparing the costs given by OPT and ALGl for each integer l by using
Lemma 3.9 with S = Al ∪Al+1, we obtain the following lemma:

Lemma 3.11.

OPT ≥ α

2β
C(α) +

α

2 + 4α
T (0). (9)

Proof. Using Lemma 3.9 with S = Al ∪Al+1, we obtain

∑

j∈Al∪Al+1

wjfα,β
(

cOPT
j , tl

)

≥
∑

j∈Al∪Al+1

wjfα,β

(

cALGl

j , tl

)

=
∑

j∈Al

wjc
ALGl

j +
∑

j∈Al+1

wjβtl.

(10)

The following inequality holds for any x, y ≥ 0:

β

α
x ≥ fα,β (x, y) . (11)

Combining (10) and (11), we obtain

β

α

∑

j∈Al∪Al+1

wjc
OPT
j ≥

∑

j∈Al

wjc
ALGl

j +
∑

j∈Al+1

wjβtl.

Summing over all positive integers l,

β

α

∞
∑

l=1

∑

j∈Al∪Al+1

wjc
OPT
j ≥

∞
∑

l=1

∑

j∈Al

wjc
ALGl

j +

∞
∑

l=1

∑

j∈Al+1

wjβtl.

Using Lemma 3.7,

β

α

∞
∑

l=1





∑

j∈Al

wjc
OPT
j +

∑

j∈Al+1

wjc
OPT
j



 ≥
∞
∑

l=1

∑

j∈Al

wjc
ALGl

j +

∞
∑

l=1

∑

j∈Al+1

wjβtl. (12)

Note that

∞
∑

l=1

∑

j∈Al

wjc
OPT
j = OPT,

∞
∑

l=1

∑

j∈Al+1

wjc
OPT
j = OPT −

∑

j∈A1

wjc
OPT
j ,

∞
∑

l=1

∑

j∈Al

wjc
ALGl

j = C(α), and

∞
∑

l=1

∑

j∈Al+1

wjtl =

∞
∑

l=2

∑

j∈Al

wjtl−1 =

∞
∑

l=1

∑

j∈Al

wjtl−1 −
∑

j∈A1

wjt0 =

∞
∑

l=1

∑

j∈Al

wj
tl

1 + 2α
−
∑

j∈A1

wjt1
2α + 1

=
T (0)

2α + 1
−
∑

j∈A1

wjt1
2α + 1

,

21

where t0 is defined to be t1
1+2α for notational convenience. Therefore, Inequality (12) is

equivalent to

2β

α
OPT − β

α

∑

j∈A1

wjc
OPT
j ≥ C(α) +

β

1 + 2α
T (0)− β

∑

j∈A1

wjt1
2α + 1

.

Condition 2 of t1 described in Section 3.1.1 gives for all j ∈ A1, c
OPT
j ≥ t1

2α+1 . Therefore,

β

α

∑

j∈A1

wjc
OPT
j ≥ β

∑

j∈A1

wjc
OPT
j ≥ β

∑

j∈A1

wjt1
2α + 1

.

Summing the two inequalities above and multiplying all terms by α
2β , we obtain the

lemma.

In the previous two lemmas, for each positive integer l, we compare ALGl with
OPT by using Lemma 3.9 to obtain inequalities between C(α), T (0), and OPT . In
order to obtain more inequalities, we compare ALGl with a family of uncountably
many algorithms. Since comparing ALGl with an algorithm gives an inequality between
{C(r)}r∈[0,α] and {T (r)}r∈[0,α], the following lemma gives uncountably many inequalities
(of which a finite number will be used to obtain (2d)):

Lemma 3.12. For any γ ∈
[

0, α2
]

,

C(α) +
β − 2γ

1 + 2α
T (0) ≤ C(γ) + βT (γ) + C

(

α− 2γ

1 + 2α

)

+
β − 2γ

1 + 2α
T

(

α− 2γ

1 + 2α

)

.

Proof. For each γ ∈ [0, α2] and each positive integer l, we define the offline algorithm
ALGl,l+1(γ) (Figure 2) as the following combination of algorithms ALGl and ALGl+1:

Figure 2: Illustration of ALGl,l+1(γ)

γtl 2γtl αtl

Time t

lo
ca

ti
o
n

o
f

th
e

re
p

a
ir

m
a
n

ALGl,l+1(γ)

ALGl+1

ALGl

1. At time 0 ≤ t ≤ γtl, the server follows the route of ALGl.

2. At time γtl ≤ t ≤ 2γtl, the server travels reversely to arrive at D by time 2γtl.

3. Starting at time 2γtl, the server follows a delayed version (delayed by 2γtl) of
ALGl+1.

22

Comparing ALGl,l+1(γ) with ALGl in Lemma 3.9 with S = Al ∪ Al+1, we obtain the
following inequality:

∑

j∈Al∪Al+1

wjfα,β

(

cALGl

j , tl

)

≤
∑

j∈Al∪Al+1

wjfα,β

(

c
ALGl,l+1(γ)
j , tl

)

. (13)

The left hand side of (13) equals

∑

j∈Al

wjc
ALGl

j + β
∑

j∈Al+1

wjtl.

The part of the summation over Al on the right hand side of (13) is at most

∑

j∈Al,c
ALGl
j ≤γtl

wjc
ALGl

j + β
∑

j∈Al,c
ALGl
j >γtl

wjtl.

The part of the summation over Al+1 on the right hand side of Inequality (13) is at
most

2γ

1 + 2α

∑

j∈Al+1

wjtl+1 +
∑

j∈Al+1,c
ALGl+1
j ≤α−2γ

1+2α
tl+1

wjc
ALGl+1

j +
β − 2γ

1 + 2α

∑

j∈Al+1,c
ALGl+1
j >

α−2γ
1+2α

tl+1

wjtl+1

where we have used the equation tl+1 = (1 + 2α)tl. This expression is not tight only
if the server under ALGl,l+1(γ) happens to visit some locations of requests j in Al+1

earlier than 2γtl + c
ALGl+1

j . Summing over all positive integers l and using Lemma 3.7,
we obtain the lemma.

Now we are ready to prove Theorem 3.1, which we repeat here:

Theorem 3.1. Let (α, β) be a pair of real numbers satisfying α ∈ (0, 1] and β ≥ α.
For any positive integer N , the objective value of LPdet

α,β(N) is an upper bound on the
competitive ratio of PACα,β .

Proof. The idea is to use
{

C(r)
OPT

}

r∈[0,α]
and

{

T (r)
OPT

}

r∈[0,α]
as variables in a linear pro-

gram. Since there are uncountably infinite many variables in
{

C(r)
OPT

}

r∈[0,α]
and in

{

T (r)
OPT

}

r∈[0,α]
, we divide [0, α] into N + 1 arithmetic steps, and for all i = 0, 1, . . . , N ,

we use Ci to represent C(iα
N

)/OPT and Ti to represent T (iα
N

)/OPT . By definition,
C0 = TN = 0, so there is only a total of 2N non-negative real variables {Ci}Ni=1 and
{Ti}N−1

i=0 .
Due to Inequality (3), CN + T0, the objective of LPdet

α,β(N), is an upper bound on
the competitive ratio of PACα,β. Therefore, what is left is to show that the linear
constraints are all valid for all problem instances I. Lemma 3.8 proves Constraints (2a)
and (2b). Lemma 3.10 proves Constraint (2e). Lemma 3.11 proves Constraint (2c). For
each i = 0, 1, . . . , ⌊N2 ⌋, Lemma 3.12 with γ = iα

N
gives

C(α) +
β − 2 iα

N

1 + 2α
T (0) ≤ C

(

iα

N

)

+ βT

(

iα

N

)

+ C

(

α− 2 iα
N

1 + 2α

)

+
β − 2 iα

N

1 + 2α
T

(

α− 2 iα
N

1 + 2α

)

.

23

Because C(r) is non-decreasing in r and T (r) is non-increasing in r, the right hand side
of above inequality is less than or equal to

C

(

iα

N

)

+ βT

(

iα

N

)

+ C

(⌈

N − 2i

1 + 2α

⌉

α

N

)

+
β − 2 iα

N

1 + 2α
T

(⌊

N − 2i

1 + 2α

⌋

α

N

)

,

which proves Constraints (2d). This concludes the proof.

In the proof of Theorem 3.1, we first find inequalities related to terms of the forms

∑

j∈Al,c
ALGl
j ≤rtl

wjc
ALGl

j and
∑

j∈Al,c
ALGl
j >rtl

wjtl

and then we take the summation of the inequalities over all positive integers l to obtain
linear inequalities as constraints. It may seem that we can obtain better bounds by
considering each of the linear inequalities separately without taking the summation
over all integers l. However, it is not the case. Indeed, denote by lmax the maximum
integer l such that Al 6=∞. We observe that the upper bounds on the competitive ratio
of PAC1,1 approach the optimal objective value of LPdet

α,β(N) with α = β = 1 when
lmax increases. Therefore, one cannot hope to find significantly better upper bounds
by considering each of the linear inequalities separately. Now we prove Proposition 3.4,
which we repeat here:

Proposition 3.4. For any α ∈ (0, 1], when β ≥ 2α2 + 3α, the competitive ratio of

PACα,β is at most (1+2α)(1+α)
α

.

Proof. Recall that (5) states

OPT ≥ 2α2

(1 + 2α)(β − α)
C(α) +

α(β − α(1 + 2α))

(1 + 2α)(β − α)
T (0).

Considering Lemma 3.8 with r = 0 and r′ = α, we obtain

0 ≥ C(α)− αT (0). (14)

The inequality
(1 + 2α)(1 + α)

α
× (5) +

β − (2α2 + 3α)

β − α
× (14)

gives

(1 + 2α)(1 + α)

α
OPT ≥2α(1 + α)

β − α
C(α) +

(β − α(1 + 2α))(1 + α)

β − α
T (0)

+
β − (2α2 + 3α)

β − α
C(α)− (β − (2α2 + 3α))α

β − α
T (0),

where for the right hand side of the inequality, we can put the two terms related to C(α)
together and the two terms related to T (0) together and obtain a simplified expression of
C(α) + T (0). This inequality, together with Inequality (3), proves the proposition.

24

3.1.2.2 Lower Bounds on the Competitive Ratios

In this section, we prove Theorem 3.5. For the case of general β and the case of β →∞,
we need to introduce Lemmas 3.13 and 3.14, respectively.

Lemma 3.13. For α ∈ (0, 1], for each ǫ > 0, define I(ǫ) to be the problem instance that
contains only one request with r1 = 1, l1 = (1 + 2α)kα + ǫ, and w1 = 1, where k is the
smallest integer such that (1 + 2α)kα > 1. Then for all β ≥ α,

lim
ǫ→0+

PACα,β(I(ǫ))

OPT (I(ǫ))
≥ 3 +

1

α
.

Proof. We first consider the cost of the optimal offline algorithm. One feasible offline
algorithm is to let the server travel to the location of the request l1 with full speed
starting at time 0. The server arrives at time l1, and l1 > r1 because we have picked k
such that l1 > (1 + 2α)kα > 1 = r1. As a result,

OPT (I(ǫ)) ≤ l1 = (1 + 2α)kα + ǫ. (15)

Now let us consider the cost of PACα,β. For this problem instance, t1 = r1 = 1,
tk+1 = (1+2α)k, and tk+2 = (1+2α)k+1. Because the completion time of the request in
any offline algorithm is at least the location l1, which is greater than αtk+1, the request
cannot be completed in the first k + 1 iterations. As a result, the cost of the online
algorithm has the following lower bound:

PACα,β(I(ǫ))=c
PACα,β

1 ≥ tk+2 + l1=(1 + 2α)k+1+(1 + 2α)kα + ǫ > (1 + 2α)k(1 + 3α).
(16)

Considering (15) and (16), the lemma holds.

Lemma 3.14. For α ∈ (0, 1], for each ǫ > 0, define the problem instance I(ǫ) to have
the following three requests:

(rj , lj , wj) ,











(1,−((1 + 2α)kα2 − ǫ), ǫ2) for j = 1,

((1 + 2α)kα, (1 + 2α)kα, ǫ) for j = 2,

((1 + 2α)kα + ǫ, (1 + 2α)kα + ǫ, 1) for j = 3,

where k is the smallest positive integer such that (1 + 2α)kα > 1. Then

lim
ǫ→0+

lim
β→∞

PACα,β(I(ǫ))

OPT (I(ǫ))
≥ (1 + α)(1 + 2α)

α
.

Proof. The cost of the optimal algorithm is lower than the cost of the algorithm ALG
that travels to l3 starting at time 0 and then travels to l1 with maximum speed. Under
algorithm ALG, the completion time of Request 3 equals l3, and for ǫ < 1, the comple-
tion time of any other request is bounded above by a constant with respect to ǫ, e.g.,
3α(1 + 2α)kα + 1. In addition, the total weight for the first two requests approaches 0
as ǫ→ 0+. As a result, as ǫ→ 0+,

OPT (I(ǫ)) ≤ ALG(I(ǫ)) =

2
∑

j=1

wjc
ALG
j + w3c

ALG
3 → (1 + 2α)kα. (17)

25

Now let us consider the online algorithm PACα,β. The key observation is that
requests 1 and 3 are completed in the last iteration (which is the (k + 2)th iteration)
and Request 3 is visited after Request 1. Therefore, most of the weight (w3) will have
a large completion time.

The first request defines t1 = 1, tk = (1 + 2α)k−1, tk+1 = (1 + 2α)k, and tk+2 =
(1 + 2α)k+1. For a fixed α and a fixed problem instance I(ǫ), when β is large enough,
PACα,β maximizes the total weight of requests that can be completed at each iteration.
Because of the definition of k, (1 + 2α)kα2 > α. Therefore, for all small enough ǫ, we
have |l1| > α. For such ǫ, the first request cannot be completed in the first k iterations
because tkα = (1 + 2α)k−1α2 ≤ α < |l1|, where the first inequality comes from the fact
that k is the “smallest” positive integer such that (1 + 2α)kα > 1. Therefore, the first
request is in Rk+1. At time tk+1, the auxiliary offline algorithm ALGk+1 will complete
only the second request, because its weight ǫ is greater than that of the first request
ǫ2, and it is impossible to complete both of the first two requests. As a result, the first
request will not be completed in the second iteration, and thus is in Rk+2. Therefore,
the set Rk+2 contains the first and the third requests.

At time tk+2, the only way to complete both requests in Rk+2 (the first and the
third requests in I(ǫ)) is to visit l1 first. Thus,

lim
β→∞

c
PACα,β

k+2 ≥ tk+2 + 2|l1|+ |l3| = (1 + 2α)k+1(1 + α)− ǫ.

Therefore,

lim
β→∞

PACα,β(I(ǫ)) ≥ lim
β→∞

w3c
PACα,β

3 = (1 + 2α)k+1(1 + α)− ǫ. (18)

Combining (17) and (18), the lemma holds.

Now we are ready to prove Theorem 3.5, which we repeat here:

Theorem 3.5. For the case where the metric space M contains the real line, for any
α ∈ (0, 1] and β ∈ [α,∞), the competitive ratio of PACα,β is at least 3 + 1

α
; and as

β →∞, the competitive ratio of PACα,β is at least (1+α)(1+2α)
α

.

Proof. It is sufficient to prove the case where M = R and D = 0.
Lemma 3.13 proves the first statement of the theorem.
Lemma 3.14 implies the following statement: For any real number ρ < (1+α)(1+2α)

α
,

there exists an adversarial problem instance I on which the ratio between PACα,β(I)
and OPT (I) is greater than ρ for all large enough β. Thus, Lemma 3.14 proves the
second statement of the theorem, which completes the proof.

3.2 Randomized (α, β)-Plan-and-Commit

We now turn our attention to randomized online algorithms. In Section 3.2.1, we look
at the family of randomized online algorithms, parameterized by a pair of numbers
(α, β) satisfying α ∈ (0, 1] and β ∈ [α,∞). In Section 3.2.2, we analyze the proposed
algorithms and provide upper and lower bounds on the competitive ratios, and determine
the parameters (α, β) that lead to the smallest provable competitive ratios.

26

3.2.1 The Algorithms

For each pair of real numbers (α, β) such that α ∈ (0, 1] and β ∈ [α,∞) we define in
Algorithm 2 a randomized online algorithm called RPACα,β.

Algorithm 2 Randomized (α, β)-Plan-and-Commit Algorithm (RPACα,β) for the on-
line WTRP

1. Initialization

(a) At time t = 0, set τ ← min {d(D, lj)|j ∈ I0, lj 6= D}. By convention, if
{j ∈ I0, lj 6= D} is an empty set, then set τ ←∞.

(b) At time t ∈ (0, τ), if a request is revealed, then set t1 ← t and end the
initialization phase.

(c) At time t = τ , set t1 ← τ and end the initialization phase.

At the time when the initialization phase ends: For all positive integer l, set
tl ← t1 × (1 + 2α)l−1. Draw ω ∼ u[0, 1) and for all positive integer l, set tl ←
tl × (1 + 2α)ω . Wait until time t1, define R1 , It1 .

2. Repeat for l = 1, 2, . . . , do what PACα,β does with the tl computed by this
algorithm.

RPACα,β is quite similar to the deterministic online PACα,β. The only difference is
that, at the end of the initialization phase, after getting the geometric time series {tl}∞l=1

similar to what the deterministic algorithm PACα,β does, RPACα,β draws a random
variable ω uniformly from [0, 1), and multiplies each tl by the same random variable
(1 + 2α)ω for all l, i.e., setting tl ← tl × (1 + 2α)ω. Therefore, for the RPACα,β, t1 is
a random variable. Clearly, Conditions 1 and 2 about t1 described in Section 3.1.1 are
satisfied for all realization of ω. Furthermore, for all realization of ω, (1) is satisfied.

3.2.2 Competitive Analysis

Again we first describe our results and provide the proofs regarding the upper bounds
and lower bounds in Subsections 3.2.2.1 and 3.2.2.2, respectively.

Upper Bounds: Similar to the results for the deterministic online algorithms, for gen-
eral pairs of (α, β) satisfying α ∈ (0, 1] and β ≥ α, the lowest upper bounds that we
prove are related to the following linear program, which is parameterized by a positive
integer N :

For β = α
maximize

(C1,C2,...CN ,T0,T1,...,TN−1)∈R
2N
≥0

CN + T0 (LPrand
α,β (N))

subject to

Constraints (2a), (2b), (2c), (2d)

where C0 and TN are defined to be 0.

27

For β > α
maximize

(C1,C2,...CN ,T0,T1,...,TN−1)∈R
2N
≥0

CN + T0 (LPrand
α,β (N))

subject to

Constraints (2a), (2b), (2c), (2d)

1 ≥ α ln(1 + 2α)

β − α
CN +

(β − α(1 + 2α)) ln(1 + 2α)

2(β − α)
T0 (19)

where C0 and TN are defined to be 0.

The main result can then be stated as:

Theorem 3.15. Let (α, β) be a pair of real numbers satisfying α ∈ (0, 1] and β ≥ α.
For any positive integer N , the objective value of LPrand

α,β (N) is an upper bound on the
competitive ratio of RPACα,β.

Similar to the case of the deterministic algorithms, Theorem 3.15 allows us to select
parameters α and β such that the upper bound on the competitive ratio is minimized.
We numerically calculate the optimal objective value for all pairs of α, β when they are
both multiples of 0.01 by using Gurobi. For example, Figure 3 illustrates the optimal
objective values of LPrand

α,β (N) with N = 10000 and α = 1 for different values of β.

Figure 3: Optimal objective values of LPrand
α,β (N) with N = 10000 and α = 1 for different

values of β

0 1 2 3 4 5
3.5

4

4.5

5

5.5

6

6.5

β

Again the observation of all our numerical results indicates that the lowest upper
bound on the competitive ratio among different α and β occurs at all (1, β) with β ≥ 5.
Therefore, we believe that for all β ≥ 5, (1, β) minimizes the provable competitive ratio
in our analysis. In fact, for the case α = 1 and β ≥ 5, we have a closed-form expression
for the competitive ratio. More generally, for any α ∈ (0, 1], when β ≥ 2α2 + 3α, our
best provable upper bound on the competitive ratio has a closed-form expression, as
formalized in the following proposition:

Proposition 3.16. For any α ∈ (0, 1], when β ≥ 2α2 + 3α, the competitive ratio of

RPACα,β is at most 2(1+α)
ln(1+2α) .

The expression of the upper bound on the competitive ratio given by Proposition 3.16
is the same as that of the existing online algorithms INTERVAL [31] and BREAK [23],
if one chooses the same common ratio for the geometric time steps. However, we achieve
lower competitive ratios because our algorithms have a wider range ((1, 3]) of possible

28

common ratios to choose from, compared to the existing algorithms (
(

1, 1 +
√

2
]

). The
existing algorithms solve an auxiliary offline problem right after the server completes a
delayed version of the solution given by the auxiliary offline algorithm in the previous
time step. However, because the online algorithm must be compared to the optimal
offline algorithm that starts from the depot, in the analysis, the auxiliary offline solution
is compared with one that returns to the depot through the shortest path and then
follows the optimal solution (of the auxiliary offline problem). By doing so, the existing
online algorithm cannot use the information revealed before returning to the depot,
which ultimately limits the range of possible common ratios between time steps. On the
other hand, our algorithm addresses this issue by solving the auxiliary offline problem
after the server returns to the depot, which leads to a wider range of possible common
ratios between time steps.

In summary, the following corollary describes the combinations of (α, β) that achieve
the smallest competitive ratio that we can obtain:

Corollary 3.17. For any β ≥ 5, the competitive ratio of RPAC1,β is at most 4/ ln(3) ≈
3.64.

Proof. Proposition 3.16 with α = 1 proves the corollary.

Lower Bounds: Regarding lower bounds, we have the following theorem:

Theorem 3.18. For the case where the metric space M contains the real line, for any
α ∈ (0, 1] and β ∈ [α,∞), the competitive ratio of RPACα,β is at least 1 + 2α

ln(1+2α) ; and

as β →∞, the competitive ratio of RPACα,β is at least 2(1+α)
ln(1+2α) .

The second statement of Theorem 3.18 together with Proposition 3.16 show that
the analysis is tight when β → ∞. Furthermore, for the algorithm that achieves the
best provable upper bound on the competitive ratio, PAC1,β with β ≥ 5, we have the
following corollary for its lower bound:

Corollary 3.19. For all β ≥ 5, the competitive ratio of PAC1,β is at least 1+ 2
ln 3 > 2.82.

Proof. Theorem 3.18 with α = 1 proves this corollary.

3.2.2.1 Upper Bounds on the Competitive Ratios

The proofs related to the upper bounds are similar to those in Section 3.1.2.1. Here
we highlight the differences. First, similar to Section 3.1.2.1, we assume, without loss
of generality, that no request j has both rj = 0 and lj = D. In what follows, we first
prove Theorem 3.15 and then Proposition 3.16.

For proving Theorem 3.15, we must first note that for any realization of ω, Con-
ditions 1 and 2 about t1 described in Section 3.1.1 are satisfied. Therefore, for all ω,
Lemma 3.7 is valid for RPACα,β.

Due to Lemma 3.7 and (1), for any problem instance I, RPACα,β(I) has the follow-
ing upper bound:

RPACα,β(I) ≤
∞
∑

l=1

∑

j∈Al

wjc
ALGl

j +

∞
∑

l=1

∑

j∈Al

wjtl = C(α)(I) + T (0)(I), (20)

29

where for all r ∈ [0, α],

C(r)(I) ,
∞
∑

l=1

E







∑

j∈Al,c
ALGl
j ≤rtl

wjc
ALGl

j






and T (r)(I) ,

∞
∑

l=1

E







∑

j∈Al,c
ALGl
j >rtl

wjtl






.

Unlike the deterministic algorithm PACα,β(I), here the notations {C(r)(I)}r∈[0,α]
and {T (r)(I)}r∈[0,α] represent the expected values of the corresponding functions. Note

that due to (20), supI
C(α)(I)
OPT (I) + T (0)(I)

OPT (I) is an upper bound on the competitive ratio. In

order to find a small upper bound on supI
C(α)(I)
OPT (I) + T (0)(I)

OPT (I) , we find inequalities between

{T (r)(I)}r∈[0,α], {C(r)(I)}r∈[0,α] and OPT (I) that are valid for all problem instances
I. For notational convenience, we drop the parameter I when it is clear from context.
Clearly, the inequalities described in Lemmas 3.8-3.12 are still valid when conditioned
on any particular realization of ω. Taking the expectations, those inequalities are all
valid for the notations {T (r)(I)}r∈[0,α], {C(r)(I)}r∈[0,α] defined here. Here we slightly
abuse notations and refer to Lemmas 3.8-3.12 as with the notations {T (r)(I)}r∈[0,α],
{C(r)(I)}r∈[0,α] defined here for RPACα,β.

To find better upper bounds, we improve upon Lemma 3.10 and prove the following
lemma:

Lemma 3.20. When β > α,

OPT ≥ α ln(1 + 2α)

β − α
C(α) +

(β − α(1 + 2α)) ln(1 + 2α)

2(β − α)
T (0). (21)

Proof. We follow the proof of Lemma 3.10. For RPACα,β, since (8) is valid for any
realization of ω, it is also valid when we take expectations on both sides. For each
j ∈ I, the minimum value αtl such that cOPT

j ≤ αtl has the following expected value:

∫ 1

0
(1 + 2α)xcOPT

j dx =
2α

ln(1 + 2α)
cOPT
j . (22)

This equation gives us the following equation:

E





∞
∑

i=1

∑

j∈A⋆
i

wjti



 =
∑

j∈I

2

ln(1 + 2α)
wjc

OPT
j =

2

ln(1 + 2α)
OPT (I). (23)

Taking expectation on both sides of (8), using (23), and rearranging terms properly, we
obtain (21), which proves the lemma.

Now we are ready to prove Theorem 3.15, which we repeat here:

Theorem 3.15. Let (α, β) be a pair of real numbers satisfying α ∈ (0, 1] and β ≥ α.
For any positive integer N , the objective value of LPrand

α,β (N) is an upper bound on the
competitive ratio of RPACα,β.

30

Proof. The idea is to use
{

C(r)
OPT

}

r∈[0,α]
and

{

T (r)
OPT

}

r∈[0,α]
as variables in a linear pro-

gram. Since there are uncountably infinite many variables in
{

C(r)
OPT

}

r∈[0,α]
and in

{

T (r)
OPT

}

r∈[0,α]
, we divide [0, α] into N + 1 arithmetic steps, and for all i = 0, 1, . . . , N ,

we use Ci to represent C(iα
N

)/OPT and Ti to represent T (iα
N

)/OPT . By definition,
C0 = TN = 0, so there is only a total of 2N non-negative real variables {Ci}Ni=1 and
{Ti}N−1

i=0 .
Due to Inequality (20), CN + T0, the objective of LPrand

α,β (N), is an upper bound on
the competitive ratio of RPACα,β. Therefore, what is left is to show that the linear
constraints are all valid for all problem instances I. Lemma 3.8 proves Constraints (2a)
and (2b). Lemma 3.11 proves Constraint (2c). Lemma 3.12 proves the Constraints (2d)
for all i. Finally, Lemma 3.20 proves Constraint (19). This concludes the proof.

Now we prove Proposition 3.16, which we repeat here:

Proposition 3.16. For any α ∈ (0, 1], when β ≥ 2α2 + 3α, the competitive ratio of

RPACα,β is at most 2(1+α)
ln(1+2α) .

Proof. Considering Lemma 3.8 with r = 0 and r′ = α, we obtain

0 ≥ C(α)− αT (0). (24)

The inequality
2(1 + α)

ln(1 + 2α)
× (21) +

β − (2α2 + 3α)

β − α
× (24)

and Inequality (20) prove the proposition.

3.2.2.2 Lower Bounds on the Competitive Ratios

In this section, we prove Theorem 3.18. For the case of general β and the case of β →∞,
we need to introduce Lemmas 3.21 and 3.22, respectively.

Lemma 3.21. Define I to be the problem instance that only has one request with
(r1, l1, w1) = (1, 1, 1). Then

RPACα,β(I)

OPT (I)
= 1 +

2α

ln(1 + 2α)
.

Proof. Clearly, OPT (I) = 1. On the other hand, the expected cost of RPACα,β is

RPACα,β(I) = 1 + E(t1) = 1 +

∫ 1

0
(1 + 2α)x dx = 1 +

2α

ln(1 + 2α)
.

31

Lemma 3.22. For each ǫ > 0, define I(ǫ) to be the problem instance with the following
2M + 1 requests:

(rj , lj , wj) ,











(ǫ, ǫ2j, ǫ3) for j = 1, . . . ,M

(ǫ,−ǫ2 (j −M) , ǫ6) for j = M + 1, . . . , 2M

(α,α, 1) for j = 2M + 1

where M ,
⌊

1
ǫ2

⌋

. Then

lim
ǫ→0+

lim
β→∞

RPACα,β(I(ǫ))

OPT (I(ǫ))
≥ 2(1 + α)

ln(1 + 2α)
.

Proof. The cost of the optimal algorithm is lower than the cost of the algorithm ALG
that travels to location 1 starting at time 0 and then travels to −1 with maximum speed.
The completion time of request (2M + 1), which carries most of the weight, is α, and
the completion time of all other requests is at most 3. Moreover, as ǫ → 0+, the total
weight of the first 2M requests approaches 0. As a result, as ǫ→ 0+, the cost of OPT
has the following upper bound:

OPT (I(ǫ)) ≤ ALG(I(ǫ))→ w2M+1c
ALG
2M+1 = α. (25)

Let us now consider the randomized algorithm RPACα,β. For a fixed α and a fixed
problem instance I(ǫ), when β is large enough, the online algorithm maximizes the
total weight of requests that can be completed at each iteration. The problem instance
I(ǫ) is designed so that when ǫ is small enough, the total weight of the (M + 1)th through
the 2M th requests is smaller than the weight of any other request. Therefore, none of
the above mentioned M requests will be completed at iteration l if tl < 1.

For each realization of ω, let k be the smallest integer such that tk ≥ 1. The expected
value of tk is

E (tk) =

∫ 1

0
(1 + 2α)x dx =

2α

ln(1 + 2α)
.

At time tk, the optimal offline auxiliary algorithm ALGk maximizes the number of
requests that are completed among the (M + 1)th to the 2M th requests subject to the
constraint that the server arrives at location α by time αtk. As a result, the completion
time of the (2M + 1)th request in any realization of ω has the following lower bound:

c
RPACα,β

2M+1 = tk + cALGk

2M+1 ≥ (1 + α)tk − 2ǫ2.

Considering this and the expected value of tk calculated above, as ǫ→ 0+, we obtain the
following inequality for the expected total weighted completion time of the randomized
online algorithm:

RPACα,β(I(ǫ)) ≥ E

(

w2M+1c
RPACα,β

2M+1

)

≥ E
(

(1 + α)tk − 2ǫ2
)

→ 2α(1 + α)

ln(1 + 2α)
. (26)

Considering (25) and (26), the lemma holds.

Now we are ready to prove Theorem 3.18, which we repeat here:

32

Theorem 3.18. For the case where the metric space M contains the real line, for any
α ∈ (0, 1] and β ∈ [α,∞), the competitive ratio of RPACα,β is at least 1+ 2α

ln(1+2α) ; and

as β →∞, the competitive ratio of RPACα,β is at least 2(1+α)
ln(1+2α) .

Proof. It is sufficient to prove the case where M = R and D = 0.
Lemma 3.21 proves the first statement of the theorem.
Lemma 3.22 implies the following statement: For any real number ρ < 2(1+α)

ln(1+2α) ,

there exists an adversarial problem instance I on which the ratio between RPACα,β(I)
and OPT (I) is greater than ρ for all large enough β. Thus, Lemma 3.14 proves the
second statement of the theorem, which completes the proof.

3.3 Probabilistic Version

In this section, we consider a probabilistic version of the online WTRP discussed in Jail-
let and Wagner [25] and which makes the following stochastic assumptions:

Assumption 3.23 (Locations). The metric space is an M-dimensional Euclidean space,
and the locations are independently drawn from an identical distribution over a compact
support in the metric space.

Assumption 3.24 (Release Dates). For all j ∈ [n], rj =
∑j

i=1 Yi where Y1, Y2, . . . , Yn

are independent random variables drawn from an identical distribution of non-negative
support with a finite mean and variance.

Assumption 3.25 (Weights). The weight of each request has positive upper and lower
bounds, i.e., there exists 0 < w < w̄ such that for all j ∈ [n], wj ∈ [w, w̄].

We are specifically interested here in the asymptotic behavior of a simple online algo-
rithm, called ReOpt, that simply re-optimizes the route of the server whenever a new
request is released. The algorithm can be formally described as follows:

Algorithm 3 Online algorithm ReOpt

1. If all released requests are completed, the server stays at its location.

2. When a request is released, the server calculates and follows the route to minimize
the total weighted completion time of the released but not completed requests
(starting at the server’s current location).

The following theorem is a special case of Theorem 3 in [25]:

Theorem 3.26. (from [25]) For any sequence of problem instances {Ii}∞i=1 where for
any i < n, Ii is the set of the first i requests in In, almost surely,

lim
n→∞

ReOpt(In)

OPT (In)
= 1.

It turns out that the proof of Theorem 3 as given in [25] is problematic. Indeed, it
relies on a lemma (Lemma 5 in [25]) whose full proof needs the assumption that, for all

33

problem instances,

max
j∈{1,2,...,n−1}

c
ReOptn−1

j ≤ rn +
3

2
TSPn−1. (27)

To see that (27) does not necessary hold, consider the problem instance that has the
following five requests in 2-dimensional Euclidean space:

(rj , lj , wj) ,































(0, (0,−10), 1) for j = 1.

(0, (0,−9), 104) for j = 2.

(0, (0, 9), 106) for j = 3.

(0, (0, 10), 102) for j = 4.

(1, (0, 0), 1) for j = 5.

When the first four requests are released, algorithm ReOpt4 travels in the order of
locations l3, l2, l4, and then l1. Therefore, maxj∈{1,2,...,n−1} c

ReOptn−1

j = 66. On the
other hand, the TSP tour for the first four requests has a length of 40. Therefore,
rn + 3

2TSPn−1 = 61 < 66, which contradicts (27). Despite best efforts, we haven’t been
able to find a way to circumvent that issue within the proof framework given in [25].
Instead we provide here an alternative and complete proof for Theorem 3.26.

In order to do so, let TSPi be the length of the shortest tour among the depot and
the locations of the requests in Ii (TSP stands for the Traveling Salesman Problem).
We need the following lemma that relates ReOpt(In) to TSPn:

Lemma 3.27.

ReOpt(In) ≤
n
∑

j=1

wj (rj + O (log n)TSPn) .

In order to prove Lemma 3.27, let us define ReOpti, for any positive integer i, as the
route of the server under ReOpt when the problem instance consists of only the requests
in Ii. The proof uses two intermediate lemmas.

The first one states that for each positive integer i, the total weight of unserved
requests decreases “exponentially” under ReOpti with a rate related to TSPi:

Lemma 3.28. For any integer k ≥ 0, 1 ≤ i ≤ n,

∑

c
ReOpti
j >ri+3kTSPi

wi ≤ 2−k
i
∑

j=1

wi

where all summations are restricted to 1 ≤ j ≤ i.

Proof. For any t ≥ ri, we define an alternative route Altt (of ReOpti) as follows:

1. Follow ReOpti up to time t.

2. Return to the depot using the shortest path.

3. Follow the tour TSPi.

34

The time it takes for the second step is at most 1
2TSPi and for the third step is TSPi.

Therefore, the completion time is at most t+ 3
2TSPi for all requests (recall that in this

lemma, we consider only requests in Ii.) Thus, the cost of the alternative route Altt(I
i)

is at most

Altt(I
i) ≤

∑

c
ReOpti
j ≤t

wjc
ReOpti
j +

∑

c
ReOpti
j >t

wj

(

t +
3

2
TSPi

)

where we restrict the summations to j ∈ [i] throughout the proof of this lemma. Because
ReOpti achieves the lowest cost among all routes that are the same before time ri, the
cost of Altt for the first i requests is no smaller than that of ReOpti. Thus,

∑

c
ReOpti
j >t

wj

(

t +
3

2
TSPi

)

≥
∑

c
ReOpti
j >t

wjc
ReOpti
j

≥
∑

t+3TSPi≥c
ReOpti
j >t

wjt +
∑

c
ReOpti
j >t+3TSPi

wj(t + 3TSPi).

Canceling the same term wjt and dividing both sides by 3TSPi, we obtain

1

2

∑

c
ReOpti
j >t

wj ≥
∑

c
ReOpti
j >t+3TSPi

wj.

This inequality, together with mathematical induction, completes the proof.

The second intermediate lemma gives an iterative relation for {ReOpti(I
i)}∞i=1:

Lemma 3.29. For any positive integers i and k,

ReOpti+1(I
i+1) ≤ ReOpti(I

i)+

(

ri+1 +

(

3k +
3

2

)

TSPi+1

)

wi+1+
3

2
TSPi+12−k

i
∑

j=1

wj .

Proof. We consider the following alternative route Alt (of ReOpti+1):

1. Follow ReOpti until time ri + 3kTSPi. (If this value is less than ri+1, then go to
step 2 at time ri+1.)

2. Travel to the origin.

3. Follow the tour TSPi+1.

For all j ∈ [i], if cReOpti
j ≤ max{ri + 3kTSPi, ri+1}, then cAlt

j = cReOpti
j ; otherwise,

cReOpti
j > max{ri + 3kTSPi, ri+1} and thus

cAlt
j ≤ max{ri + 3kTSPi, ri+1}+

1

2
TSPi + TSPi+1 < cReOpti

j +
3

2
TSPi+1.

35

In addition, we have the following upper bound on the completion time of request i+ 1:

cAlt
i+1 ≤ max{ri + 3kTSPi, ri+1}+

1

2
TSPi + TSPi+1

≤ri+1 + 3kTSPi +
1

2
TSPi + TSPi+1 ≤ ri+1 +

(

3k +
3

2

)

TSPi+1.

According to Lemma 3.28, the total weight of requests in Ii such that cReOpti
j > ri +

3kTSPi is at most 2−k
∑i

j=1wj . As a result, we have

Alt(Ii+1) ≤ ReOpti(I
i) +

(

ri+1 +

(

3k +
3

2

)

TSPi+1

)

wi+1 +
3

2
TSPi+12−k

i
∑

j=1

wj.

According to the definition of ReOpti+1, we have ReOpti+1(I
i+1) ≤ Alt(Ii+1), which

completes the proof.

Now we are ready to prove Lemma 3.27, which we repeat here:

Lemma 3.27.

ReOpt(In) ≤
n
∑

j=1

wj (rj + O (log n)TSPn) .

Proof. According to Lemma 3.29 and mathematical induction, for any positive integer
k,

ReOpt(In) = ReOptn(In) ≤
n
∑

j=1

wj

(

rj +

(

3k +
3

2
+

3

2
n2−k

)

TSPn

)

.

Setting k = ⌈log n⌉, we have

ReOpt(In) ≤
n
∑

j=1

wj

(

rj +

(

3 (log n + 1) +
3

2
+

3

2
n2− logn

)

TSPn

)

=

n
∑

j=1

wj (rj + (3 log n + 6)TSPn) . (n2− logn = 1)

We can now complete the proof of Theorem 3.26, which we repeat here:

Theorem 3.26. For any sequence of problem instances {Ii}∞i=1 where for any i < n, Ii

is the set of the first i requests in In, almost surely,

lim
n→∞

ReOpt(In)

OPT (In)
= 1.

Proof. For all j ∈ [n], we have cj ≥ rj. Thus, OPT (In) ≥ ∑n
j=1wjrj. With this

inequality, Lemma 3.27, and Assumption 3.25, we have

ReOpt(In)

OPT (In)
≤ 1 +

∑n
j=1wjO (log n)TSPn

∑n
j=1wjrj

≤ 1 +
nw̄O(log n)TSPn

w
∑n

j=1 rj
.

36

According to Beardwood et al. [8] and Assumption 3.23, TSPn = O(n1− 1

M) almost
surely. On the other hand, according to Assumption 3.24,

∑n
j=1 rj can be written as

∑n
i=1(n + 1 − i)Yi, which is Θ(n2) almost surely according to the strong law of large

numbers. Therefore, with probability one,

nw̄O(log n)TSPn

w
∑n

j=1 rj
=

w̄

w
O(n− 1

M log n),

which approaches 0 as n goes to infinity.

4 Online Scheduling with Multi-State Machines

In this section, we develop online algorithms for the general online scheduling problems
with multi-state machines, as defined in Section 2.1, and based on the best (α, β) pair
found in the previous section. We assume r1 > 0 to simplify the initialization phase of
the algorithms and the corresponding analysis. However, it is clear that we can modify
the algorithms and analysis without increasing the upper bounds on the competitive
ratios for cases where r1 = 0.2 As a minor caveat, we impose some mild technical
assumptions as discussed in Appendix A.2.

In Section 4.1, we propose a deterministic online algorithm Plan-and-Commit (PAC)
and prove that the competitive ratio is at most 5.14. In Section 4.2, for each α ≤ 1,
we propose a randomized online algorithm Randomized α-Plan-and-Commit (RPACα).
We show that the best possible algorithm in this class is RPAC1, which has a compet-
itive ratio of 4/ ln(3) ≈ 3.64.

4.1 Plan-and-Commit

4.1.1 The Algorithm

In this section, we describe the algorithm Plan-and-Commit (PAC), which, when ap-
plied to the online WTRP, is PAC1,1 with minor modifications. It goes as follows:

The PAC algorithm is again composed of two phases (initialization and iterations):
The first phase starts at time 0 and ends at time r1. During that phase, PAC does

not change the states of the machines and does not process any jobs. At time r1, before
finishing the initialization phase, PAC defines {tl , r13l−1}∞l=1, and R1 , K(It1).

The second phase consists of iterations. For each positive integer l, the lth iteration
([tl, tl+1]) starts at time tl and ends at time tl+1. At time tl, PAC calculates what would
an offline algorithm ALGl have done starting at time 0 to minimize the following cost:

∑

k∈Rl

hk (min (xk, tl)) ,

where Rl roughly represents all uncompleted projects that are active with respect to
the partially revealed problem instance Itl . For l = 1, Rl is defined in the initialization
phase; for l ≥ 2, Rl is defined at the end of the (l− 1)th iteration. Here we assume that

2This can be done by replacing the initialization phase with one that is similar to the one in Algo-
rithm 1: at time 0, find the minimum non-zero completion time of an active project τ , and then end
the initialization phase at the minimum between τ and the minimum non-zero release date of a job.

37

Algorithm 4 The deterministic Plan-and-Commit algorithm (PAC) for general of
online scheduling problems with multi-state machines

1. Initialization: Wait until the first job is released (at time r1). At time r1, for all
positive integers l, define tl ← r1 × (1 + 2α)l−1. Define R1 , K(It1).

2. Repeat for l = 1, 2, . . . ,

(a) Plan: At time t = tl, calculate what would an offline algorithm, ALGl, have
done starting at time 0 to minimize

∑

k∈Rl
hk (min (xk, tl)).

(b) Commit:

• At time t ∈ [tl, 2tl], follow a delayed version (delayed by tl) of algorithm
ALGl with the following two minor modifications mentioned in the main
text.

• At time t ∈ [2tl, 3tl], control the machine states so that all machines i
are at their original states Oi at time 3tl.

(c) At time tl+1, define Rl+1 , (Rl \Al)∪ (K(Itl+1
) \K(Itl)) where Al , {k|k ∈

Rl, x
ALGl

k ≤ tl}.

such an offline algorithm ALGl exists, which is not necessarily true if the assumptions
in Appendix A.2 are not imposed. See Appendix A for a detailed discussion. Note
that at the first iteration, staying at the depot is one of the optimal solutions to the
auxiliary offline problem. Therefore, in the first iteration we let ALG1 be this algorithm
and hence

A1 = ∅. (28)

From time tl to time 2tl, PAC follows a delayed version (delayed by tl) of algorithm
ALGl with the following two modifications: First, if between time 0 and time tl, ALGl

processes some jobs that PAC has already completed before time tl, then PAC does
not process those jobs (but still controls the states of the machines). Second, for each
machine i ∈ [m], PAC stops controlling the state of machine i and stops processing
any jobs on machine i when the last job processed by machine i with completion time
at most tl under ALGl is completed. By doing so, PAC is not processing any job nor
controlling any machine state at time 2tl. The algorithm PAC defines Al to be the
projects in Rl that are completed by time tl under the offline algorithm ALGl, i.e.,
Al , {k|k ∈ Rl, x

ALGl

k ≤ tl}. Following the definition, for all k ∈ Al,

xPAC
k ≤ tl + xALGl

k . (29)

In addition for reasons mentioned for the online WTRP case, (29) is not necessarily
tight because the jobs required for completing a project k can be completed jointly in
multiple previous iterations.

From time 2tl to time tl+1, PAC controls the machine states so that all machines
i are at their original states Oi at time tl+1. This is feasible because the state spaces
of the machines correspond to symmetric metric spaces. At time tl+1, before entering

38

the next iteration, PAC defines Rl+1 to be Rl minus Al plus the projects that become
active between time tl and tl+1, i.e., Rl+1 , (Rl \ Al) ∪ (K(Itl+1

) \K(Itl)).

4.1.2 Competitive Analysis

Since the online WTRP is a special case, the lower bounds proved in Section 3.1.2.2 are
still valid for this algorithm. Here we discuss our results regarding the upper bounds
on the competitive ratios.

Similar to the results for the online WTRP, for general pairs of (α, β) satisfying
α ∈ (0, 1] and β ≥ α, the lowest upper bounds that we obtain are related to the
following linear program, which is parameterized by a positive integer N :

maximize
Xi≥0 for all i=1,2,...,N and Ti,j≥0 for all i=0,...,N−1,j=1,2,...,N

XN + T0,N (LPdet(N))

subject to

Ti,j+1 + Ti,j−1 ≤ 2Ti,j for

{

i = 0, . . . , N

j = 1, . . . , N − 1

(30a)

Xi+1 −Xi ≥ Ti,i − Ti+1,i for i = 0, . . . , N − 1 (30b)

Xi+1 −Xi ≤ Ti,i+1 − Ti+1,i+1 for i = 0, . . . , N − 1 (30c)

T
0,⌊N

3 ⌋
+XN ≤ 2. (30d)

XN + T
0,⌊N

3 ⌋
≤ Xi + Ti,N +X⌈N−2i

3 ⌉ + T
0,⌈ 2i

3 ⌉
+ T⌊N−2i

3 ⌋,⌈N−2i
3 ⌉ for i = 0, . . . ,

⌊

N

2

⌋

(30e)

where X0 is defined to be 0 and for all i = 0, 1, . . . , N , Ti,0 and TN,i are defined to be 0.

Our main result is the following theorem:

Theorem 4.1. For any positive integer N , the optimal objective value of LPdet(N) is
an upper bound on the competitive ratio of PAC.

Proof. The proof of Theorem 4.1 is similar to that of Theorem 3.1 for the online WTRP.
In the following proof, we omit arguments that are essentially the same as that of
Theorem 3.1.

We first notice that using a similar argument as the proof of Lemma 3.7, we can
show that {Al}∞l=1 forms a partition of active projects K(I). Because of (29) and the
concavity of hk, PAC(I) has the following upper bound:

PAC(I) ≤
∞
∑

l=1

∑

k∈Al

hk

(

xALGl

k

)

+

∞
∑

l=1

∑

k∈Al

hk (tl) , X(1)(I) + T (0, 1)(I)

where

X(r)(I) ,
∞
∑

l=1

∑

k∈Al,x
ALGl
k ≤rtl

hk

(

xALGl

k

)

and T (r, v)(I) ,
∞
∑

l=1

∑

k∈Al,x
ALGl
k >rtl

hk (vtl) .

As a result,

sup
I

X(1)(I)

OPT (I)
+

T (0, 1)(I)

OPT (I)

39

is an upper bound on the competitive ratio of PAC. We drop the parameter I and
view {X(r)

OPT
}r∈[0,1] and {T (r,v)

OPT
}r,v∈[0,1] as variables in an LP. We then find linear inequal-

ities between {X(r)}r∈[0,1], {T (r, v)}r,v∈[0,1] and OPT that are valid for all problem
instances I, and translate those inequalities into linear constraints in the LP. There
are uncountably infinite many variables X(r) and T (r, v), so we cannot solve the LP
numerically. Therefore, for all positive integers N , we define LPdet(N) by dividing [0, 1]
into N +1 arithmetic steps, and for all i = 0, 1, . . . , N , letting Xi represent X(i

N
)/OPT

and for all i, j = 0, 1, . . . , N , letting Ti,j represent T (i
N
, j
N

)/OPT . By definition, for
all i = 0, 1, . . . , N , X0 = Ti,0 = TN,i = 0. Therefore, there is only a total of N2 + N

non-negative real variables {Xi}Ni=1 and {Ti,j}N−1
i=0

N

j=1.
Constraints (30a) follow from the concavity of functions hk. Constraints (30b)

and (30c) follow from the definition of {T (r, v)}r,v∈[0,1] and {X(r)}r∈[0,1], and can be
proven using an argument similar to the proof of Lemma 3.8. The property (28) says
that A1 is empty, and this fact is useful for proving the other constraints. Similar to
Lemma 3.9, ALGl is the algorithm that minimizes the cost if the summation is taken
over Al ∪Al+1, i.e., the cost

∑

k∈Al∪Al+1

hk (min (xk, tl)) . (31)

Similar to Lemma 3.11, comparing cost (31) of ALGl and that of OPT , we obtain
the following linear inequality:

T

(

0,
1

3

)

+ X(1) ≤ 2OPT.

This inequality gives us (30d). Similar to Lemma 3.12, for all integers l and all r ∈
[

0, 12
]

,
define algorithm ALGl,l+1(r) to be the algorithm that does the following.

1. At time 0 ≤ t ≤ rtl, follow algorithm ALGl.

2. At time rtl ≤ t ≤ 2rtl, control the machine states in a way such that the states of
the machines i are Oi at time 2rtl.

3. Starting at time 2rtl, follow a delayed version (delayed by 2rtl) of algorithm
ALGl+1 with the two modifications that are also used in PAC.

Comparing cost (31) of ALGl and that of ALGl,l+1(r), we obtain

∑

k∈Al

hk

(

xALGl

k

)

+
∑

k∈Al+1

hk (tl) ≤
∑

k∈Al,x
ALGl
k

≤rtl

hk

(

xALGl

k

)

+
∑

k∈Al,x
ALGl
k

>rtl

hk (tl)

+
∑

k∈Al+1,x
ALGl+1

k ≤(1−2r)tl

hk

(

2rtl + x
ALGl+1

k

)

+
∑

k∈Al+1,x
ALGl+1

k >(1−2r)tl

hk (tl) .

Using inequalities that come from hk being concave, hk

(

2rtl + x
ALGl+1

k

)

≤ hk (2rtl) +

hk

(

x
ALGl+1

k

)

and hk (tl) ≤ hk (2rtl) + hk ((1− 2r)tl), and taking the summation over

40

all integers l, we obtain the following inequality:

X(1) + T

(

0,
1

3

)

≤ X(r) + T (r, 1) + T

(

0,
2r

3

)

+ X

(

1− 2r

3

)

+ T

(

1− 2r

3
,

1− 2r

3

)

.

For all i = 0, . . . ,
⌊

N
2

⌋

, the above inequality with r = i
N

, together with the fact that
X(r) is non-decreasing in r, and T (r, v) is non-increasing in r and non-decreasing in v,
gives

X(1) + T

(

0,

⌊

N

3

⌋

1

N

)

≤ X(1) + T

(

0,
1

3

)

≤X
(

i

N

)

+ T

(

i

N
, 1

)

+ T

(

0,
2 i
N

3

)

+ X

(

1− 2 i
N

3

)

+ T

(

1− 2 i
N

3
,
1− 2 i

N

3

)

≤X
(

i

N

)

+ T

(

i

N
, 1

)

+ T

(

0,

⌈

2i

3

⌉

1

N

)

+ X

(⌈

N − 2i

3

⌉

1

N

)

+ T

(⌊

N − 2i

3

⌋

1

N
,

⌈

N − 2i

3

⌉

1

N

)

,

which gives Constraints (30e). Thus, the proof is completed.

Using Theorem 4.1, we obtain the following upper bound on the competitive ratio
of PAC:

Corollary 4.2. The competitive ratio of PAC is at most 5.14.

Proof. Using Gurobi, the optimal objective value of LPdet(N) with N = 1200 is smaller
than 5.14 (already taking into account numerical errors). Hence, Theorem 4.1 implies
this corollary.

The next corollary (Corollary 4.3) is weaker than Corollary 4.2 but still shows that
the competitive ratio of PAC is lower than the best competitive ratio in the literature
for the online WTRP (5.83). We include Corollary 4.3 because we can analytically prove
this corollary (proved in Appendix D).

Corollary 4.3. The competitive ratio of PAC is at most 39/7 ≈ 5.57.

4.2 Randomized α-Plan-and-Commit

4.2.1 The Algorithm

Here we describe the randomized online algorithm α-Plan-and-Commit (RPACα); see
Algorithm 5, which, when applied to the online WTRP, is RPAC1,∞ with minor mod-
ifications.

The RPACα algorithm has a single random variable ω, uniformly distributed in
[0, 1). We use RPACα(ω) to denote the algorithm with realization ω. For any ω ∈ [0, 1),
RPACα(ω) has two major phases: initialization and iterations.

In the first phase, RPACα(ω) does the same thing as PAC defined in Section 4.1
except that now {tl ← (1 + 2α)l−1+ωr1}∞l=1 and R1 is defined at time t1. We drop the
dependency on ω when writing tl for simplicity.

41

Algorithm 5 The Randomized α-Plan-and-Commit (RPACα) for general online
scheduling problems with multi-state machines

1. Initialization: Draw ω ∼ u[0, 1). Wait until the first job is released (at time
r1). At time r1, for all positive integer l, define tl ← r1 × (1 + 2α)l−1+ω . Define
R1 , K(It1).

2. Repeat for l = 1, 2, . . . ,

(a) Plan: At time t = tl, calculate what would an offline algorithm, ALGl, have
done starting at time 0 to minimize
∑

k∈Rl
(hk (tl+1)− hk (tl))1 (xk > αtl).

(b) Commit:

• At time t ∈ [tl, (1 + α)tl], follow a delayed version (delayed by tl) of
algorithm ALGl with the two minor modifications mentioned in the main
text.

• At time t ∈ [(1 + α)tl, (1 + 2α)tl], control the machine states so that all
machines i are at their original states Oi at time (1 + 2α)tl.

(c) At time tl+1, define Rl+1 , (Rl \Al)∪ (K(Itl+1
) \K(Itl)) where Al , {k|k ∈

Rl, x
ALGl

k ≤ tl}.

The second phase is composed of iterations. The lth iteration ([tl, tl+1]) begins at tl
and ends at tl+1. At time tl, RPACα(ω) calculates the optimal offline algorithm ALGl

that would have minimized the following cost function:

∑

k∈Rl

(hk (tl+1)− hk (tl))1 (xk > αtl) , (32)

where 1 is the indicator function with value 1 if the argument of the function is a true
statement and 0 otherwise; and Rl is defined either in the initialization phase (when
l = 1) or the previous iteration (when l ≥ 2). The existence of such an algorithm ALGl

is obvious because the cost (32) depends only on whether each xk is greater than αtl or
not, which depends only on the set of jobs that are completed by time αtl, and there
are at most 2n such sets. The intuition for choosing this cost is to minimize the increase
of the original cost due to the projects that are not completed at each iteration.

From time tl to (1+α)tl, RPACα(ω) follows a delayed and modified version of ALGl,
where the modifications are analogues of those for PAC described in Section 4.1. The
algorithm RPACα(ω) defines Al , {k|k ∈ Rl, x

ALGl

k ≤ tl}. By doing so, for all k ∈ Al,

x
RPACα(ω)
k ≤ tl + xALGl

k . (33)

Between time (1 + α)tl and tl+1, RPACα(ω) controls the machine states such that all
machines are at their original states at time tl+1. At time tl+1, before entering the next
iteration, RPACα(ω) defines Rl+1 , (Rl \ Al) ∪ (K(Itl+1

) \K(Itl)).
3

3The sets K(Itl+1
) and K(Itl) are derived from the definitions of K(I), It, tl, and tl+1.

42

4.2.2 Competitive Analysis

The main result is the following theorem:

Theorem 4.4. For all α ∈ (0, 1], the competitive ratio of RPACα is 2(1+α)
ln(1+2α) .

The proof of the theorem requires the following lemma that is an analogue of
Lemma 3.9.

Lemma 4.5. For all positive integers l and any realization ω ∈ [0, 1):
∑

k∈K(I)

(hk (tl+1)− hk (tl))1
(

x
RPACα(ω)
k > (1 + α)tl

)

≤
∑

k∈K(I)

(hk (tl+1)− hk (tl))1
(

xOPT
k > αtl

)

.

Proof. Obviously, for all i ≤ l − 1 and k ∈ Ai, x
RPACα(ω)
k < (1 + α)tl. On the other

hand, for any project k ∈ K(I) \⋃l−1
i=1 Ai such that xALGl

k ≤ αtl, k is in Al. According

to (33), x
RPACα(ω)
k ≤ tl + xALGl

k ≤ (1 + α)tl. Therefore,

∑

k∈K(I)

(hk (tl+1)− hk (tl))1
(

x
RPACα(ω)
k > (1 + α)tl

)

≤
∑

k∈K(I)\
⋃l−1

i=1
Ai

(hk (tl+1)− hk (tl))1
(

xALGl

k > αtl

)

.

Similar to Lemma 3.9, ALGl satisfies the following inequality:
∑

k∈K(I)\
⋃l−1

i=1
Ai

(hk (tl+1)− hk (tl))1
(

xALGl

k > αtl

)

≤
∑

k∈K(I)\
⋃l−1

i=1
Ai

(hk (tl+1)− hk (tl))1
(

xOPT
k > αtl

)

. (34)

Combining the two inequalities above, we obtain the lemma.

Now we are ready to prove Theorem 4.4, which we repeat here:

Theorem 4.4. For all α ∈ (0, 1], the competitive ratio of RPACα is 2(1+α)
ln(1+2α) .

Proof. The lower bound is simple. For the special case of the online WTRP, RPACα

is reduced to RPACα,∞. According to Theorem 3.16, the competitive ratio of RPACα

is at least 2(1+α)
ln(1+2α) .

Now let us begin to prove the upper bound. For a project k such that (1 +α)tl+1 ≥
x
RPACα(ω)
k > (1 + α)tl, we have the upper bound on the cost incurred by the project:

hk

(

x
RPACα(ω)
k

)

≤ hk ((1 + α)tl+1) ≤ (1 + α)hk (tl+1) . Taking the summation over

all active projects k and rearranging terms, we have the following upper bound on
RPACα(ω)(I):

RPACα(ω)(I)

1 + α
≤
∑

k∈K(I)

hk(t0) +

∞
∑

l=0

∑

k∈K(I)

(hk (tl+1)− hk (tl))1
(

x
RPACα(ω)
k > (1 + α)tl

)

43

where we have defined t0 , t1/(1+2α) for simplicity. Using Lemma 4.5 and exchanging
the order of the double summations, we obtain

RPACα(ω)(I)

1 + α
≤

∑

k∈K(I)

∞
∑

l=0

hk (tl+1)1
(

αtl+1 ≥ xOPT
k > αtl

)

. (35)

Note that different realizations of ω give different sequences of {tl}∞l=1. Therefore, for
a fixed k, the integer l such that αtl+1 ≥ xOPT

k > αtl can be different. However, due to
the distribution of ω, we know that when l is the integer such that αtl+1 ≥ xOPT

k > αtl,
the distribution of αtl+1 is the same as that of xOPT

k (1 + 2α)x where x is uniform over
[0, 1). Furthermore, because hk is concave and hk(0) = 0, for αtl+1 ≥ xOPT

k , we have

αhk (tl+1) ≤ hk (αtl+1) ≤
αtl+1

xOPT
k

hk
(

xOPT
k

)

.

Therefore, taking the expectation on both sides of (35), we obtain

E (RPACα(ω)(I)) ≤ 1 + α

α

∑

k∈K(I)

(
∫ 1

0
(1 + 2α)x dx

)

hk
(

xOPT
k

)

=
2(1 + α)

ln(1 + 2α)
OPT (I).

(36)

Using Theorem 4.4, we have the following corollary regarding the lowest upper bound
on the competitive ratios that we can prove:

Corollary 4.6. The competitive ratio of RPAC1 is 4/ ln(3) ≈ 3.64.

Proof. Theorem 4.4 with α = 1 proves that the competitive ratio is at most 4/ ln(3).
Theorem 3.18 with α = 1 proves that the competitive ratio is at least 4/ ln(3). Thus
the corollary holds.

Remark 4.7. Here we consider the effect of ALGl being an approximation. For each
pair of numbers ρ ≥ 1 and γ ≤ 1, we say that ALGl is a (ρ, γ)-approximation if the
following inequality holds:

∑

k∈Rl

(hk (tl+1)−hk (tl))1
(

xALGl

k > αtl

)

≤ ρ sup
alg

∑

k∈Rl

(hk (tl+1)−hk (tl))1
(

xALG
k > γαtl

)

.

In other words, the cost of an (ρ, γ)-approximated algorithm is no more than ρ times of
the optimal algorithm that operates with a shorter period (γ portion) of time.

If for all integers l, ALGl is replaced with a (ρ, γ)-approximation, then the com-

petitive ratio of RPACα becomes 2(1+α)ρ
ln(1+2α)γ . Here the analysis goes through because

when we are applying an analogue of Lemma 3.9 to prove (34), the selected set is a
superset of Rl. For the deterministic version of this algorithm (where ω = 0 with prob-
ability one), replacing

∫ 1
0 (1 + 2α)x dx with 1 + 2α in (36), we obtain a competitive

ratio of (1+α)(1+2α)ρ
αγ

. Among all α ∈ (0, 1], the minimum is achieved at α =
√

2 with a

competitive ratio of (1 +
√

2)2 ρ
γ
≈ 5.83 ρ

γ
.

44

5 Concluding Remarks

In this paper, we have formulated a new class of online scheduling problems, the online
scheduling problem with multi-state machines, which takes into account the case for
which each machine has multiple states and the processing time of a job depends on the
state of the machine. In addition, we formulated a new family of cost functions, which
we named the total costs of active projects, that covers many practical cost functions
such as the total weighted completion time and the quota-collecting makespan. For the
general cases where the objective is to minimize the total costs of active projects in the
online scheduling problem with multi-state machines, we derive a 5.14-competitive de-
terministic online algorithm PAC, and a 3.65-competitive randomized online algorithm
RPAC1. When applying these algorithms to the online WTRP, we obtain competitive
ratios lower than the best in the literature. Finally, we provided a complete proof that
ReOpt is almost surely asymptotically optimal for the online WTRP.

Even though we have made progress in considering a new class of online scheduling
problems, some problems remain open. We conclude this paper by listing four such
problems.

Open Problem 1. For each α ∈ (0, 1] and β ≥ α, what are the competitive ratios of
PACα,β and RPACα,β for the online WTRP? What is the competitive ratio of PAC
for general online scheduling problems with multi-state machines?

Either a tighter analysis of the algorithm or a better adversarial problem instance,
or both, could address this open problem.

Open Problem 2. What is the competitive ratio of ReOpt for the online WTRP?
What about the competitive ratio for general online scheduling problems with multi-
state machines?

Although ReOpt is almost surely asymptotically optimal under some stochastic as-
sumptions, we do not know whether ReOpt has a constant competitive ratio under
an adversarial model (for both the online WTRP and the general online scheduling
problems with multi-state machines).

Open Problem 3. What are the competitive ratios of the best-possible deterministic
and randomized online algorithms for the online WTRP when the metric space is the
non-negative real line, the real line, and the 2-dimensional Euclidean space?

In the online VRPs, the difficulties in determining the best-possible competitive
ratios typically arise when going from the non-negative real line to the real line, or
when going from 1D (real line) to 2D, while going from 2D to general metric spaces is
usually straightforward.

Open Problem 4. What are the competitive ratios of the best-possible deterministic
and randomized online algorithms for the online WTRP for general metric spaces?
What about the competitive ratio for general online scheduling problems with multi-
state machines?

This problem is probably the central one that we would like to get an answer to. The
best-possible online algorithms could be ReOpt, PACα,β (RPACα,β for the randomized
case), or other algorithms.

45

References

[1] A. Allahverdi, J.N. Gupta, and T. Aldowaisan, A review of scheduling research
involving setup considerations, Omega 27 (1999), 219–239.

[2] A. Allahverdi, C. Ng, T. Cheng, and M.Y. Kovalyov, A survey of scheduling prob-
lems with setup times or costs, Eur J Oper Res 187 (2008), 985–1032.

[3] E.J. Anderson and C.N. Potts, Online scheduling of a single machine to minimize
total weighted completion time, Math Oper Res 29 (2004), 686–697.

[4] A. Archer and A. Blasiak, Improved approximation algorithms for the minimum
latency problem via prize-collecting strolls, Proc 21st Ann ACM-SIAM Symp Discr
Algorithms, Society for Industrial and Applied Mathematics, 2010, pp. 429–447.

[5] G. Ausiello, V. Bonifaci, and L. Laura, The online prize-collecting traveling sales-
man problem, Informat Process Lett 107 (2008), 199–204.

[6] G. Ausiello, M. Demange, L. Laura, and V. Paschos, Algorithms for the on-line
quota traveling salesman problem, Informat Process Lett 92 (2004), 89–94.

[7] G. Ausiello, L. Laura, and E. Pini, A diligent algorithm for OL-TRP on the line,
Technical report 03-06, Department of Computer and Systems Science, University
of Rome “La Sapienza”, Rome, Italy, 2006.

[8] J. Beardwood, J.H. Halton, and J.M. Hammersley, The shortest path through many
points, Math Proc Cambridge Philosophical Soc, Vol. 55, Cambridge Univ Press,
1959, pp. 299–327.

[9] M. Blom, S.O. Krumke, W.E. de Paepe, and L. Stougie, The online TSP against
fair adversaries, INFORMS J Comput 13 (2001), 138–148.

[10] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Su-
dan, The minimum latency problem, Proc 26th Ann ACM Symp Theory Comput,
Association for Computing Machinery, 1994, pp. 163–171.

[11] V. Bonifaci, M. Lipmann, and L. Stougie, Online multi-server dial-a-ride prob-
lems, TU/e, Eindhoven University of Technology, Department of Mathematics and
Computing Science, 2006.

[12] C. Chung, T. Nonner, and A. Souza, SRPT is 1.86-competitive for completion
time scheduling, Proc 21st Ann ACM-SIAM Symp Discr Algorithms, Society for
Industrial and Applied Mathematics, 2010, pp. 1373–1388.

[13] J. Correa and M. Wagner, LP-based online scheduling: From single to parallel
machines, Math Program 119 (2007), 109–136.

[14] E. Feuerstein and L. Stougie, On-line single-server dial-a-ride problems, Theoret
Comput Sci 268 (2001), 91–105.

[15] G. Goel and A. Mehta, Online budgeted matching in random input models with ap-
plications to adwords, Proc 19th Ann ACM-SIAM Symp Discr Algorithms, Society
for Industrial and Applied Mathematics, 2008, pp. 982–991.

46

[16] M.X. Goemans, Improved approximation algorithms for scheduling with release
dates, Proc 8th Ann ACM-SIAM Symp Discr Algorithms, Society for Industrial
and Applied Mathematics, 1997, pp. 591–598.

[17] M.X. Goemans and J. Kleinberg, An improved approximation ratio for the mini-
mum latency problem, Math Program 82 (1998), 111–124.

[18] M.X. Goemans, M. Queyranne, A.S. Schulz, M. Skutella, and Y. Wang, Single
machine scheduling with release dates, SIAM J Discr Math 15 (2002), 165–192.

[19] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.R. Kan, Optimization and approx-
imation in deterministic sequencing and scheduling: A survey, Ann Discr Math 5
(1979), 287–326.

[20] E. Günther, O. Maurer, N. Megow, and A. Wiese, A new approach to online
scheduling: Approximating the optimal competitive ratio, Proc 24th Ann ACM-
SIAM Symp Discr Algorithms, Society for Industrial and Applied Mathematics,
2013, pp. 118–128.

[21] L.A. Hall, A.S. Schulz, D.B. Shmoys, and J. Wein, Scheduling to minimize average
completion time: Off-line and on-line approximation algorithms, Math Oper Res
22 (1997), 513–544.

[22] P. Jaillet and X. Lu, Online traveling salesman problems with service flexibility,
Networks 58 (2011), 137–146.

[23] P. Jaillet and M.R. Wagner, Online routing problems: Value of advanced informa-
tion as improved competitive ratios, Transportation Sci 40 (2006), 200–210.

[24] P. Jaillet and M.R. Wagner, “Online vehicle routing problems: A survey,” The vehi-
cle routing problem: Latest advances and new challenges, B. Golden, S. Raghavan,
and E. Wasil (Editors), Springer US, 2008, pp. 221–237.

[25] P. Jaillet and M.R. Wagner, Almost sure asymptotic optimality for online routing
and machine scheduling problems, Networks 55 (2010), 2–12.

[26] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V.V. Vazirani, Greedy facility
location algorithms analyzed using dual fitting with factor-revealing LP, J ACM
50 (2003), 795–824.

[27] K. Jain, M. Mahdian, and A. Saberi, A new greedy approach for facility location
problems, Proc 34th Ann ACM Symp Theory Comput, Association for Computing
Machinery, 2002, pp. 731–740.

[28] D.W. Kim, K.H. Kim, W. Jang, and F.F. Chen, Unrelated parallel machine schedul-
ing with setup times using simulated annealing, Robotics Computer-Integrated
Manufacturing 18 (2002), 223–231.

[29] S. Kim and P. Bobrowski, Impact of sequence-dependent setup time on job shop
scheduling performance, Int J Production Res 32 (1994), 1503–1520.

[30] E. Koutsoupias and C.H. Papadimitriou, On the k-server conjecture, J ACM 42
(1995), 971–983.

47

[31] S.O. Krumke, W.E. de Paepe, D. Poensgen, and L. Stougie, News from the online
traveling repairman, Theoret Comput Sci 295 (2003), 279–294.

[32] M. Lipmann, On-line routing problems, Ph.D. Thesis, Technische Universiteit Eind-
hoven, 2003.

[33] P. Liu and X. Lu, On-line scheduling of parallel machines to minimize total com-
pletion times, Comput Oper Res 36 (2009), 2647–2652.

[34] M. Mahdian, H. Nazerzadeh, and A. Saberi, Allocating online advertisement space
with unreliable estimates, Proc 8th ACM Conference Electronic Commerce, Asso-
ciation for Computing Machinery, 2007, pp. 288–294.

[35] M. Mahdian and Q. Yan, Online bipartite matching with random arrivals: An ap-
proach based on strongly factor-revealing LPs, Proc 43rd Ann ACM Symp Theory
Comput, Association for Computing Machinery, 2011, pp. 597–606.

[36] M. Mahdian, Y. Ye, and J. Zhang, Improved approximation algorithms for metric
facility location problems, 5th Int Workshop, Approx 2002 Proc, 2002, pp. 229–242.

[37] N. Megow and A.S. Schulz, On-line scheduling to minimize average completion
time revisited, Oper Res Lett 32 (2004), 485–490.

[38] N. Megow, M. Uetz, and T. Vredeveld, Models and algorithms for stochastic online
scheduling, Math Oper Res 31 (2006), 513–525.

[39] V. Mirrokni, S. Oveis Gharan, and M. Zadimoghaddam, Simultaneous approxi-
mations for adversarial and stochastic online budgeted allocation, Proc 23rd Ann
ACM-SIAM Symp Discr Algorithms, Society for Industrial and Applied Mathe-
matics, 2012, pp. 1690–1701.

[40] E. Nowicki and S. Zdrza lka, A survey of results for sequencing problems with
controllable processing times, Discr Appl Math 26 (1990), 271–287.

[41] C. Phillips, C. Stein, and J. Wein, “Scheduling jobs that arrive over time,” Al-
gorithms and data structures, S.G. Akl, F. Dehne, J.R. Sack, and N. Santoro
(Editors), Springer Berlin Heidelberg, 1995, pp. 86–97.

[42] M.L. Pinedo, Scheduling: Theory, algorithms, and systems, Springer International
Publishing, 2016.

[43] D. Shabtay and G. Steiner, A survey of scheduling with controllable processing
times, Discr Appl Math 155 (2007), 1643–1666.

[44] D.B. Shmoys, J. Wein, and D.P. Williamson, Scheduling parallel machines on-line,
SIAM J Comput 24 (1995), 1313–1331.

[45] V. Vinod and R. Sridharan, Dynamic job-shop scheduling with sequence-dependent
setup times: Simulation modeling and analysis, Int J Advanced Manufacturing
Technology 36 (2008), 355–372.

[46] Y. Yi and D. Wang, Soft computing for scheduling with batch setup times and
earliness-tardiness penalties on parallel machines, J Intelligent Manufacturing 14
(2003), 311–322.

48

A On the Existence of ALGl

In this section, we discuss the existence of ALGl. In Appendix A.1, we show that ALGl

does not always exist by providing an example. In Appendix A.2, we provide a sufficient
condition under which ALGl must exist.

A.1 A Nonexistence Example

Assume m = 1, M1 = N, O1 = 1, and d1(i, j) = 1 for all i 6= j. Assume the cost is the
total unweighted completion time (hence hk(x) = x). Let there be only one job with
r1 = 1, and

p11(i) =

{

∞ if i = 1,

1 + 1
i

if i ≥ 2.

In the first iteration (l = 1), the job cannot be completed. In the second iteration
(l = 2), the goal is to minimize h1(min(x1, t2)), which equals min(c1, 3). If processed in
state i, i ∈ N \ {1}, the best possible completion time of job 1 is 2 + 1/i (1 for directing
the state from 1 to i, 1 + 1/i for the processing time). On the other hand, if processed
in State 1, the completion time is infinity. Hence, the infimum of the cost is 2, but is
not achievable by any offline algorithm. Therefore, such an offline algorithm ALG2 does
not exist.

A.2 A Sufficient Condition for the Existence of ALGl

In this section, we show that the optimal offline algorithm ALGl exists when two mild
technical assumptions are imposed. Before further discussion, we first note that it is
necessary for ALGl to be the exact optimal solution. Otherwise, our analysis will not
work due to Lemma 3.9 (even if ALGl achieves an approximation ratio of 1 + ǫ).

The first assumption is about the metric space:

Assumption A.1 (Compactness). For any machine i ∈ [m] and any k ∈ R≥0, the
subset of the metric space {s : s ∈Mi, di(Oi, s) ≤ k} is compact.

This assumption is valid in many metric spaces of practical use such as a closed
subset of a multi-dimensional Euclidean space and a discrete metric space such that the
number of points within any finite distance from Oi is finite. This assumption is violated
for some artificially designed metric spaces such as the one discussed in Appendix A.1.

The second assumption is regarding the processing time:

Assumption A.2 (Lower-semicontinuity). For any i ∈ [m] and j ∈ [n], pij is lower-
semicontinuous.

This assumption is valid in many practical settings such as the online vehicle routing
problems and the case where all processing time functions are continuous. However, for
artificially designed functions that violate this assumption, ALGl does not necessarily
exist. For example, assume m = 1, M1 = [0, 1], d1(i, j) = |i − j|, and O1 = 0. Assume

49

the cost is the total unweighted completion time (hence hk(x) = x). Let there be only
one job with r1 = 1, and

p11(s) =

{

∞ for s = 0.5,

|s− 0.5| for s 6= 0.5.

Because the processing time is always non-zero, x1 = c1 > r1 = t1. Therefore, the job
is not completed in the first iteration. In the second iteration, the goal is to minimize
h1(min(x1, 3)), which equals min(c1, 3). When being processed in any states s 6= 0.5,
the optimal completion time for the job is 1 + |s − 0.5| (1 for the release date and
|s− 0.5| for the processing time.) Therefore, the infimum of min(x1, t2) equals 1, but is
not achievable by any offline algorithm.

The primary result in this section is the following lemma:

Lemma A.3. With Assumptions A.1 and A.2, there exists an (offline) algorithm that
minimizes the following cost:

∑

k∈Rl

hk (min (xk, tl)) .

Proof. Let {ALGi}∞i=1 be a sequence of algorithms such that

lim
i→∞

∑

k∈Rl

hk

(

min
(

xALGi

k , tl

))

= inf
ALG

∑

k∈Rl

hk
(

min
(

xALG
k , tl

))

,

where two algorithms ALGi and ALGi′ are allowed to be the same even if i 6= i′.
Now let us consider the following sequence of n-dimensional real vectors: S ,

{(min(cALGi

1 , tl), min(cALGi

2 , tl), . . . , min(cALGi

n , tl))}∞i=1. Since the vectors are in a com-
pact subset of the n-dimensional Euclidean space ([0, tl]

n), there exists a limit point.
Without loss of generality, we assume S converges to a limit point, and denote this limit
point (v1, v2, . . . , vn), i.e., for all j ∈ [n], set vj , limi→∞ min(cALGi

j , tl). It is sufficient to

prove that there is an algorithm ALG′ such that for all jobs j ∈ [n], min(cALG′

j , tl) ≤ vj
because for all k ∈ Rl, min(xk, tl) is a non-decreasing function of {min(cj , tl)}nj=1.

Let us now construct such an algorithm ALG′. If vj = tl, then we are not concerned
about the completion time of job j under ALG′ because min(cj , tl) ≤ tl independent
of the algorithm. Therefore, for simplicity, we can assume for all j ∈ [n], vj < tl,
and all jobs are completed by one of the machines under algorithm ALGi (for all large
enough i). With this assumption, there exists a subsequence of algorithms {ALGi}∞i=1

such that each job is processed by the same machine among the algorithms because
there are a finite number (mn) of possible combinations. Without loss of generality, we
assume {ALGi}∞i=1 is itself such a subsequence. Now we consider jobs processed by each
machine separately. For simplicity, we say that all jobs are processed by Machine 1. We
denote by ρ a permutation of [n] such that {vρ(j)}nj=1 is non-decreasing. For all positive

integers i and jobs j ∈ [n], we denote by sj,i the state of Machine 1 under which job ρ(j)
is processed under algorithm ALGi. Because of the compactness (A.1) assumption, the
sequence {(s1,i, s2,i, . . . , sn,i)}∞i=1 has a limit point (s̄1, s̄2, . . . , s̄n) where for all j ∈ [n],
s̄j ∈ S1. We allow ALG′ to process jobs in the order of ρ(1), ρ(2), . . . , ρ(n) at states
s̄1, s̄2, . . . , s̄n, respectively.

50

It is sufficient to prove that for all j ∈ [n], cALG′

ρ(j) ≤ limi→∞ cALGi

ρ(j) . To prove this,

first note that cALG′

ρ(j) =
∑j

i=1 d(s̄j−1, s̄j) + p1ρ(j)(s̄
j) and cALGi

ρ(j) ≥ ∑j
i=1 d(si,j−1, si,j) +

p1ρ(j)(s
i,j), where s̄0 , O1 and for all i, si,0 , O1 for simplicity. The conclusion follows

directly from the fact that {sj,i}∞i=1 converges to s̄j and the lower-semicontinuity (A.2)
assumption.

B On the Necessity of Assumption 2.1

In this section, we show that it is necessary to impose Assumption 2.1 for our results
to hold. In particular, we show the following proposition:

Proposition B.1. When removing Assumption 2.1, for any positive value N , there
exists a cost function such that the competitive ratio of PAC is at least N .

Proof. Consider a variant of the online WTRP where each request j is associated with
ρj = (wj , vj) and the cost function is

∑n
i=1wj1(cALG

j ≥ vj), where 1(cALG
j ≥ vj) is 1

when cALG
j ≥ vj and 0 otherwise. Further let the metric space be the real line (M = R)

and the depot be at 0 (D = 0). For any number M > 0, consider a problem instance
I(M) with n = 3 and

(rj , lj , wj , vj) =











(0.5, 0.5, 1, 0.5) for j = 1,

(1,−1, 1, 1.5) for j = 2,

(1, 1,M, 2) for j = 3.

We first calculate PAC(I(M)). When the problem instance is I(M), t1 = 0.5 and
PAC completes request 1 at the first iteration and cPAC

1 = 1. The second iteration
is calculated at time t2 = 1.5, and ALG2 can complete only one of requests 2 and 3
before time 1.5. Completing request 2 has cost w21(1 ≥ v2) + w31(1.5 ≥ v3) = 0,
and completing request 3 has cost w21(1.5 ≥ v2) + w31(1 ≥ v3) = 1, and hence ALG2

completes request 2 before time 1.5. Therefore, PAC completes request 2 at the second
iteration and cPAC

1 = 2.5. Finally, PAC completes request 3 at the third iteration and
cPAC
3 = t3 + 1 = 5.5. Overall, PAC(I(M)) = 1 + 1 + M = M + 2.

On the other hand, an offline algorithm could complete request 1 at time 0.5, request
3 at time 1, and request 2 at time 3, resulting in a total cost of 2, and thus OPT (I) ≤ 2.

Therefore, PAC(I(2N − 2))/OPT (I(2N − 2)) ≥ 2N/2 = N , which completes the
proof.

C Proof of Corollary 3.3

Here we prove Corollary 3.3, which we repeat here:

Corollary 3.3. The competitive ratio of PAC1,1 is at most 39/7 ≈ 5.57.

Proof. Using Theorem 3.1, it is sufficient to prove that for some positive integer N , the
optimal objective value of LPdet

α,β(N) at α = β = 1 is at most 39/7 ≈ 5.57. To have a

simpler expression of (2d), we choose N = 5 so that when i = 1, i =
⌈

N−2i
1+2α

⌉

=
⌊

N−2i
1+2α

⌋

=1.

51

Comparing (2a) and (2b), for all i = 0, 1, . . . , 4, (i+1)α
N

(Ti − Ti+1) ≥ Ci+1 − Ci ≥
iα
N

(Ti − Ti+1), and thus Ti − Ti+1 ≥ 0. Therefore, (2a) gives, for all i = 1, 2, . . . , 4,
Ci+1 − Ci ≥ iα

N
(Ti − Ti+1) ≥ α

N
(Ti − Ti+1) = 1

5(Ti − Ti+1). Taking the summation over
all i = 1, . . . , 4, we obtain C5 −C1 ≥ 1

5(T1 − T5) = 1
5T1, or equivalently,

C1 +
1

5
T1 ≤ C5. (37)

Therefore,

C5 +
1

5
T0 ≤ C1 + T1 + C1 +

1

5
T1 ((2d) with i = 1)

= 2C1 +
6

5
T1

≤ 6C1 +
6

5
T1 (C1 ≥ 0)

≤ 6C5, ((37))

or equivalently,

−5C5 +
1

5
T0 ≤ 0. (38)

Constraint (2c) gives

1

2
C5 +

1

6
T0 ≤ 1. (39)

Multiplying both sides of (38) by 5
14 and both sides of (39) by 39

7 , and then taking
the summation, we obtain C5 + T0 ≤ 39

7 , which implies the optimal objective value of

LPdet
α,β(N) at α = β = 1 and N = 5 is at most 39/7 ≈ 5.57 and thus completes the

proof.

D Proof of Corollary 4.3

Here we prove Corollary 4.3, which we repeat here:

Corollary 4.3. The competitive ratio of PAC is at most 39/7 ≈ 5.57.

Proof. Using Theorem 4.1, it is sufficient to prove that the optimal objective value of
LPdet(N) for some N is at most 39/7. To have simpler expressions of (30d) and (30e),
we choose N = 15 so that when i = 3, N−2i

3 , N
3 , and 2i

3 are integers.
Constraint (30e) with i = 3 gives

X15 + T0,5 ≤ X3 + T3,15 + X3 + T0,2 + T3,3. (40)

The above inequality involves X3 and X15. In what follows, we derive a lower bound

52

for X15 −X3. Summing over (30b) for i = 3, 4, . . . , 14, we obtain

X15 −X3 ≥
14
∑

i=3

Ti,i − Ti+1,i

=T3,3 +
13
∑

i=3

(Ti+1,i+1 − Ti+1,i)− T15,14

=T3,3 +
13
∑

i=3

(Ti+1,i+1 − Ti+1,i) . (T15,14 = 0) (41)

In what follows, we show for all i = 3, . . . , 13, Ti+1,i+1−Ti+1,i ≥ 0. Comparing (30b) and
(30c), for all i = 0, 1, . . . , 14, Ti,i+1−Ti+1,i+1 ≥ Xi+1−Xi ≥ Ti,i−Ti+1,i, or equivalently,
Ti,i+1 − Ti,i ≥ Ti+1,i+1 − Ti+1,i. Constraints (30a) with i = 1, 2, . . . , 14 and j = i give
Ti,i+1 + Ti,i−1 ≤ 2Ti,i, or equivalently, Ti,i − Ti,i−1 ≥ Ti,i+1 − Ti,i. Combining the two
inequalities above, we obtain, for all i = 1, . . . , 14, Ti,i−Ti,i−1 ≥ Ti+1,i+1−Ti+1,i. Using
this inequality repeatedly, for all i = 1, . . . , 14, Ti,i−Ti,i−1 ≥ T15,15−T15,14 = 0. Hence,
for all i = 3, . . . , 13, Ti+1,i+1 − Ti+1,i ≥ 0. As a result, (41) gives X15 −X3 ≥ T3,3, or
equivalently,

X3 + T3,3 ≤ X15. (42)

Inequality (40) motivates us to prove the following three inequalities based on Con-
straints (30a). Constraints (30a) with i = 3 gives, for all j = 1, . . . , 14, T3,j−1 − 2T3,j +
T3,j+1 ≤ 0. As a result,

− 5T3,3 + T3,15

=4T3,0 − 5T3,3 + T3,15 (T3,0 = 0)

=
3
∑

j=1

4j(T3,j−1 − 2T3,j + T3,j+1) +
14
∑

j=4

(15− j)(T3,j−1 − 2T3,j + T3,j+1) ≤ 0,

or equivalently,

T3,15 ≤ 5T3,3. (43)

Similarly, when i = 0, for all j = 1, . . . , 14, T0,j−1 − 2T0,j + T0,j+1 ≤ 0. As a result,

3T0,15 + 10T0,2 − 13T0,5

=

5
∑

j=3

10(j − 2)(T0,j−1 − 2T0,j + T0,j+1) +

14
∑

j=6

3(15 − j)(T0,j−1 − 2T0,j + T0,j+1) ≤ 0.

(44)

In addition,

T0,15 − 3T0,5

=T0,15 − 3T0,5 + 2T0,0 (T0,0 = 0)

=

5
∑

j=1

2j(T3,j−1 − 2T3,j + T3,j+1) +

14
∑

j=6

(15− j)(T3,j−1 − 2T3,j + T3,j+1) ≤ 0. (45)

53

Going back to (40), we have

X15 + T0,5 ≤X3 + T3,15 + X3 + T0,2 + T3,3 ((40))

≤2X3 + 6T3,3 + T0,2 ((43))

≤6(X3 + T3,3) + T0,2 (X3 ≥ 0)

≤6X15 + T0,2, ((42))

or equivalently,

−5X15 + T0,5 − T0,2 ≤ 0. (46)

From (30d), we have

T0,5 + X15 ≤ 2. (47)

Multiplying both sides of (46) by 10, (47) by 78, (44) by 1, and (45) by 25, and taking the
summation, we have 28X15 + 28T0,15 ≤ 156, which means X15 +T0,15 ≤ 156/28 = 39/7.
Therefore, the optimal objective value of LPdet(N) with N = 15 is at most 39/7, which
concludes the proof.

54

