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Abstract— Intelligent Transportation Systems (ITS) often 

operate on large road networks, and typically collect traffic 

data with high temporal resolution. Consequently, ITS need to 

handle massive volumes of data, and methods to represent that 

data in more compact representations are sorely needed. 

Subspace methods such as Principal Component Analysis 

(PCA) can create accurate low-dimensional models. However, 

such models are not readily interpretable, as the principal 

components usually involve a large number of links in the 

traffic network. In contrast, the CUR matrix decomposition 

leads to low-dimensional models where the components 

correspond to individual links in the network; the resulting 

models can be easily interpreted, and can also be used for 

compressed sensing of the traffic network. In this paper, the 

CUR matrix decomposition is applied for two purposes: (1) 

compression of traffic data; (2) compressed sensing of traffic 

data. In the former, only data from a “random” subset of links 

and time instances is stored. In the latter, data for the entire 

traffic network is inferred from measurements at a “random” 

subset of links. Numerical results for a large traffic network in 

Singapore demonstrate the feasibility of the proposed approach.  

I. INTRODUCTION 

Enhancements in sensor technologies such as GPS probes 

have led to rapid development in the field of Intelligent 

Transportation Systems (ITS). These systems are usually 

deployed in large metropolitan areas. Consequently, they 

have to deal with datasets from thousands of road segments 

with high temporal resolution [1]. The scale of the networks 

poses many challenges for ITS systems. One challenge is to 

infer meaningful spatial and temporal trends in large and 

diverse networks [2]. Such relations can be useful for many 

ITS applications, as we exploit them to develop highly 

accurate low-dimensional models for large and diverse road 

networks. Low-dimensional models can help to lower the 

strain on computational resources of ITS. Techniques such as 

Principal Component Analysis (PCA) have been proposed to 

create low-dimensional representations of road networks, for 

applications such as data compression [3]. Although methods 

such as PCA yield accurate low-rank approximations, they 

are hard to interpret in terms of individual links in the 

network.  The principal components may involve hundreds 

or even thousands of links, and therefore, it is not 
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straightforward to comprehend the role of individual links in 

the low-dimensional models. 

In this paper, we explore the CUR matrix decomposition 

[4-6] to model large-scale traffic networks.  Unlike other 

subspace methods such as PCA, CUR creates low-rank 

approximations where individual links of the traffic network 

correspond to basis vectors. In other words, the low-

dimensional CUR model only depends on a subset of links 

(e.g., only 10% of the links). As a result, we obtain highly 

interpretable representation of large and diverse networks. 

Moreover, to infer the state of the entire network through 

CUR decomposition, only measurements of a limited number 

of links is required, paving the way to powerful compressed 

sensing algorithms for large-scale traffic networks. So far, 

CUR decomposition has not yet been utilized in the context 

of urban traffic modeling. CUR methods have found 

applications in many fields such as social networks [4], 

image processing [7, 8], and biology [8]. 

Previous studies related to low-dimensional 

representations for traffic networks mainly deal with PCA [3, 

9-12]. Djukic et al. applied PCA on small network with OD 

pair data [9, 10]. In another study, Asif et al. applied 

different subspace methods for compression of traffic speed 

[11]. These studies showed that subspace methods such as 

PCA and discrete cosine transform (DCT) can efficiently 

compress traffic data [11]. However, they fail to provide 

insight about traffic behavior at specific roads and time 

periods. In contrast, the CUR decomposition involves data 

from individual links and time instance, and hence, it allows 

us to directly infer the underlying spatial and temporal 

patterns in large road networks. 

To assess our approach, we consider a large urban network 

in Singapore comprising of more than 6000 road segments, 

including two expressways as well as parts of the downtown 

area. A road segment (link) is defined as the portion between 

two consecutive intersections (nodes). The Singapore Land 

Transportation Authority (LTA) provided speed data for 

several months in the year 2011, including the month of 

August 2011. For each segment, the average speed was 

reported at a 5-minute sampling interval. There is 3% of 

missing data in the data set at hand. 

First we will apply CUR decomposition for the purpose of 

compression: we extract a low-dimensional representation of 

the road network by applying CUR decomposition to data of 

the entire traffic network [4-6]. To this end, we sample data 

from a subset of road segments and time instances, resulting 

in the C and R matrix respectively. By learning a suitable 

mixing matrix U, we then extrapolate the state of the whole 

network by applying the CUR decomposition. The matrices 

C, U, and, R form a compact representation of the traffic 

CUR Decomposition for Compression and Compressed Sensing      

of Large-Scale Traffic Data 

Nikola Mitrovic, Muhammad Tayyab Asif, Umer Rasheed, Justin Dauwels, and Patrick Jaillet 



  

data, and can be used as a compression scheme. Our 

numerical results show that the resulting compression rates 

are slightly worse compared to PCA, while leading to more 

interpretable results.  

Next, we apply the CUR decomposition for compressed 

sensing of the network-wide traffic state. In this setting, the 

matrices U and R are learned from historical data. The 

matrix C is filled with new data from a “small” subset of 

links. We infer the state of the entire traffic network through 

the CUR decomposition.  In other words, the CUR method 

allows us to extrapolate the state of the whole network from 

measurements at a small number of links (arranged in matrix 

C). As demonstrated by our numerical results, the proposed 

compressed sensing scheme, derived from the CUR matrix 

decomposition, yields accurate estimates of the global traffic 

state, even from measurements at a limited number of links. 

Taken together, our results seem to suggest that the CUR 

matrix decomposition may find exciting applications in the 

realm of Intelligent Transportation Systems. 

The paper is structured as follows. In Section II, we briefly 

describe the traffic network considered here. In Section III, 

we briefly review the CUR matrix decomposition, and 

Section IV and V, we explain how we apply CUR 

decomposition for compression and compressed sensing 

respectively of traffic network data. In Section VI, we 

provide numerical results. In Section VII, we summarize our 

contributions and suggest topics for future work. 

II. EXPERIMENTAL SETUP 

We consider here traffic speed data from the southeastern 

part of Singapore (Outram to Changi area). In Fig. 1, we 

show the macro and micro location of the network.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: The traffic network studied in this paper, containing 

6024 links. (Top left) Location of Singapore (red dot); (Top right) 

Traffic network in Singapore; the subnetwork studied here is 

marked by the red dotted line.  (Bottom) Close-up of that same 

subnetwork. 

The network includes n = 6024 links, including two 

expressways (East Coast Park and Pan Island Expressway) at 

its peripheries. The rest of the network consists of arterials 

and local roads in downtown area and around Changi 

Airport. 

For this study, we selected traffic speed data for the month 

of August 2011, with a sampling interval of 5 minutes. The 

speed values represent the average speed of all vehicles 

which traverse a link during the given sampling interval. 

About 3% of the data is missing, due to issues with the 

sensors or other reasons. For the CUR analysis, we represent 

the data set as a matrix        , where each column 

represents the average speed data from a particular road 

segment (link) during the month of August 2011. Each row 

of matrix A corresponds to a 5-minute time interval. 

III. CUR MATRIX DECOMPOSITION 

In this section, we briefly describe different CUR matrix 

decomposition strategies for low-rank approximation of a 

given matrix A. To carry out the CUR decomposition, we 

extract a subset of columns and rows of matrix A through 

random sampling. We store the subset of columns (road 

segments) and rows (time instances) in the matrices C and R 

respectively. Next we learn a suitable mixing matrix U, and 

create a low-dimensional representation of network matrix A 

as the product    

        CURAA  ˆ .            (1) 

 

More specifically, we can divide CUR decomposition in 

following three steps: 

(1) Calculate the importance of each column/row in the 

network matrix        . Each row/column in the matrix 

A is assigned a probability of being selected. 

(2) Construct the matrices         and         by 

randomized sampling, using the probabilities computed in 

the first step. We sample c columns from matrix A, without 

replacement, and arrange them in matrix C. We create the 

matrix R in similar manner from r randomly sampled distinct 

rows of A. We refer to corresponding index set of columns 

and rows as C  and R  respectively. 

(3) Compute the regularization matrix U: 

 + +
U  C AR ,                         (2) 

where C
+
 and R

+
 are the pseudo-inverses of C and R 

respectively [13]. Usually, the rows and columns of 

 ̂ associated with the index sets C  and R  are not identical 

to the corresponding columns and rows in A (stored in the 

matrices C and R respectively). Therefore, after computing 

 ̂, we replace those columns and rows of  ̂ by the 

corresponding ones in A (contained in C and R respectively). 

We propose two different strategies for the first step. The 

other two steps are the same for both strategies. In the first 

strategy, we assign sampling probabilities based on the 

energy (L2 norm) of the columns and rows. This strategy is 

referred to as Energy-CUR (E-CUR). In the second strategy, 

we apply SVD to assign probabilities to each column and 

row; we refer to this approach as SVD-CUR.  

A. E-CUR 

We assign a selection probability to each column (link) 

and row (time instance) of A derived from their energy (L2 

 



  

norm). The underlying idea is that if the traffic speed is high 

at a link, that link will have high probability to be selected 

for matrix C. We define sampling probabilities pi and pj for 

each row i and column j respectively of the matrix A as: 
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where  i = 1, 2, …, n, and  

  

 

2

2

1

1 1

( , )

        ,
( , )

m

i
m n

i j

p j

i j

i j



 





 

A

Α

 (4) 

where  j = 1, 2, …, m. 

 

B. SVD-CUR 

In this approach, we first perform Singular Value 

Decomposition (SVD) of the network matrix A [14]:   

 ,T
A = XSY    (5) 

where         and         are unitary matrices whose 

columns are left and right singular eigenvectors respectively 

of A. The matrix          contains the singular values of 

A. We obtain rank k SVD approximation of A by truncating 

original matrices (X, S and Y) by: 

 .mxn mxk kxk kxn T
A X S Y  (6) 

 

We now calculate selection probability of column j of 

matrix A as: 
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where ijy  is j-th coordinate of  -th right singular vector. 

Since the matrix Y is unitary, the quantities pj sum to one, 

and hence the pj can indeed be considered as probabilities. 

Similarly, we define the selection probability pi of row i of 

matrix A as: 
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IV. COMPRESSION BY CUR DECOMPOSITION 

As a first application, we use the CUR decomposition to 

compress large-scale traffic data. The traffic data is arranged 

in a matrix        . By sampling rows and columns from 

 , we obtain matrices C and R matrix respectively. By 

learning a suitable mixing matrix U, we then approximate the 

matrix   by its CUR decomposition. The matrices C, U, and, 

R form a compact representation of the traffic data in the 

matrix  , and can be used for compression. Instead of storing 

the large matrix  , the smaller matrices C, U, and, R are 

stored, leading to compression. To assess the resulting 

compression scheme, we compute the Percent-Root-mean 

square Distortion (PRD): 
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The Percent-root-mean square distortion (PRD) is a 

common performance measure to compare the reconstruction 

performance of low-dimensional models [15]. Interestingly, 

after decompression, we obtain the exact measurements 

without errors for some links (corresponding to C); therefore, 

it is crucial to select the links associated with C in a careful 

manner. As a rule of thumb, the main highways should be 

included in C. In other subspace methods such as PCA on 

the other hand, the reconstruction error generally affects all 

links.  

We calculate the Compression Ratio (CR) as the ratio of 

the total number of elements in the original (uncompressed) 

matrix A and the total number of elements in the low-rank 

approximation. In the CUR decomposition, we approximate 

the network matrix         by matrices        , 
        and        . The compression ratio in this case 

equals: 

 
rncrmc

mn
CR


  (11) 

 

where c and r represent the number of road segments 

(columns) and time instances (rows) stored in the low-rank 

approximation. Interestingly, the CR (11) for CUR 

decomposition can be improved as follows. In CUR 

decomposition, we store a subset of the original columns and 

rows of the data matrix A. It is noteworthy that the matrices 

C and R have    elements in common. We can improve the 

compression efficiency by storing the r+c positions of these 

columns and rows, instead of the rc redundant elements. As a 

result, the compression ratio CR for the CUR decomposition 

becomes: 

 
)()( rccrrncrmc
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  (12) 

 

We will use the definition (12) of CR for CUR in the rest of 

the paper. 

 

V. COMPRESSED SENSING BY CUR DECOMPOSITION 

As a second application, we use the CUR decomposition 

for compressed sensing of a traffic network. The objective is 

to infer the traffic speed in the whole traffic network from 

measurements of the traffic speed at a few links. Also for this 

problem, the CUR matrix decomposition is directly 

applicable. Assume that measurements are available from a 

small set of links. The matrix C is filled with those 

measurements, where each column of C corresponds to a 



  

link. The matrices U and R are determined from historical 

data; those matrices are not learned from the new 

measurements. We infer the state of the entire traffic network 

through the CUR decomposition (1).  In other words, the 

CUR method allows us to extrapolate the state of the whole 

network from measurements at a small number of links 

(arranged in matrix C). 

There are two main differences with the problem of 

compression (cf. Section IV): 

1. We now do not have access to traffic speed data at all 

links. Both matrices are learned from data set at hand.  

2. The matrices U and R are not learned each time from 

the new measurements. They are fixed for the purpose 

of compressed sensing. The product UR can be viewed 

as an extrapolation matrix, that maps matrix C to  . 

Obviously, this same method can also be used for 

compression, where the matric C, obtained by compressed 

sensing, is stored instead of     It is noteworthy that other 

subspace methods such as PCA cannot be applied for 

compressive sensing in this manner, since the basis vectors 

usually involve a large number of links. 

The proposed CUR-based procedure for compressed sensing 

may substantially reduce the resources required for data 

acquisition, as it only requires data to be collected at a small 

subset of links. The proposed compressed sensing procedure 

is especially relevant for real-time acquisition and processing 

of large-scale traffic data. Specifically, compressed sensing 

may allow us to infer, monitor, and predict the state of a 

large traffic network in real-time, while avoiding potential 

bottlenecks due to limited bandwidth and computational 

resources. 

VI. RESULTS 

In this section, we analyze the performance of the 

proposed CUR method for compression and compressive 

sensing of large-scale traffic data. We consider here the 

traffic network depicted in Fig. 1; the traffic data consists of 

the average traffic speed at each link in that network during 

the month of August 2011, acquired at 5-minute intervals. 

First we investigate the underlying spatial and temporal 

patterns associated with the low-dimensional CUR models. 

Next we assess the performance of the proposed CUR-based 

compression scheme, and compare it to PCA. At last, we 

evaluate the proposed CUR-based compressed sensing 

scheme, and again use PCA as benchmark. 

A. Temporal patterns in CUR decomposition 

In Fig. 2, we show the importance (selection probability) 

of each time instance as determined by the E-CUR and SVD-

CUR strategies. The colors represent the selection 

probabilities, such that black corresponds to a value of one.  

On the x-axis, we display different days for the month of 

August 2011. We limit ourselves here to the first four weeks 

(28 days). The y-axis shows different time instances for each 

day, starting from midnight (00:00 AM). Each time instance 

represents an interval of 5 minutes.  

Fig. 2a shows the selection probability computed by E-

CUR. The E-CUR strategy gives significant importance to 

time instances at which the average traffic speed is high. 

Fig.2a shows that large values of traffic speed occur during 

the early morning and late night hours. These are usually the 

time periods with lowest traffic. We also observe that the 

traffic tends to be smooth during the weekends (6
th

, 7
th

, 13
th
 

day, etc.). Interestingly, we observe a slightly unique pattern 

on the 9
th

 of August, which is a public holiday is Singapore. 

For the sake of simplicity, we represented the missing entries 

as zero in the data set. (In a more extended study in the 

future, we will impute the missing data.) These instances are 

represented by blue color (see Fig. 2a). E-CUR correctly 

assigned least importance to such time instances. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Selection probability of time instances (normalized to 

one). The colors represent the selection probability for each time 

instance assigned by E-CUR (top) and SVD-CUR (bottom).      

We show the temporal patterns for SVD-CUR in Fig. 2b. 

The SVD-CUR strategy tries to find correlations between 

different time instances. For instance, if large a number of 

time instances follow similar traffic patterns then we can 

easily represent them by a few components. However, if a 

certain time instance does not conform to normal traffic 

behavior, then we assign a higher weight to that time 

instance. From Fig. 2b, we can see that the traffic is mostly 

irregular during the morning transition period, when traffic 

conditions change from free flow traffic to high-density 

traffic during the morning peak period. During the rest of the 

 



  

day, the traffic patterns are more stable, and therefore, the 

corresponding time instances receive smaller weights. We 

also observe that time instances during evening peak hours 

are given higher importance. Fig. 2b shows that the SVD-

CUR method can also reveal uncommon traffic patterns such 

as the one during the public holiday on the 9
th

 of August. At 

the top of Fig. 2b, green regions appear only on Sundays and 

the public holiday, suggesting that traffic conditions during 

these days follow unusual patterns. Similarly, anomalies such 

as missing data can also be easily spotted: SVD-CUR also 

assigns least importance to time periods with missing data. 

B. Spatial patterns in CUR decomposition 

In Fig. 3, we display the importance (selection probability) 

of each link in the network, as determined by the E-CUR and 

SVD-CUR strategies. The colors represent the normalized 

weights assigned by each algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Selection probability of links (normalized to one). The 

colors represent the selection probability for each link assigned by 

E-CUR (top) and SVD-CUR (bottom). 

In Fig. 3a we show the importance of the different links in 

the network as determined by E-CUR. The links with high 

values of traffic speed are given higher importance. Most of 

these links belong to expressways. Arterials and roads in the 

vicinity of the central business district are considered less 

important by E-CUR. We can use such reduced network 

representation to make applications such as route guidance 

more scalable. On the other hand, if arterials and roads in the 

vicinity of the central business district are strongly relevant 

for the application at hand, the SVD-CUR method is 

recommended. In Fig. 3b we show the results for the SVD-

CUR method. Links with unusual temporal patterns are given 

higher scores, which tend to be the roads of lower 

hierarchical level.  On the other hand, most expressways and 

arterial streets often have regular temporal patterns, and are 

therefore given less weight. However, there are some 

expressway segments with larger temporal variations (and 

hence weights) than others. These segments are typically 

located in the vicinity of the central business district (CBD). 

C. Compression by CUR decomposition 

We now compare the compression efficiency of the 

proposed CUR-based low-dimensional models. To this end, 

we compute the Percent-Root-mean square Distortion (PRD) 

for different compression ratios (CR). We use PCA as a 

benchmark, as it is considered as the optimal subspace 

transformation.  

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 
 

Figure 4: Performance of CUR for compression and compressed 

sensing.  Results are shown for traffic speed data of August 2011, 

for the following methods: E-CUR and SVD-CUR compression 

scheme, PCA, and SVD-CUR compressed sensing. 

Fig. 4 shows that the two CUR-based compression schemes 

perform slightly worse than PCA. SVD-CUR provides lower 

construction error than E-CUR, which may be explained by 

the fact that the former takes various kinds of links into 

account, whereas the latter mostly retains expressways.  We 

observe from Fig. 4 that the CUR methods provide accurate 

low-dimensional representation of large networks. The main 

advantage of such methods compared to PCA lies in the fact 

that they offer us insight into the underlying spatial and 

temporal patterns in large networks. Another advantage is 

their potential for compressed sensing, which is discuss in 

the next section. 

D. Compressive Sensing by CUR decomposition 

Following the procedure outlined in Section V, we use the 

SVD-CUR method to reconstruct the traffic data of the 

month of August 2011 from measurements at a small set of 

links. Measurements at a small number of links are arranged 

in a matric C. The matrices U and R are computed from an 

 

 

 



  

earlier month, with the same choice of column and row 

indices C  and R  respectively.  

Fig. 5 shows the reconstruction error of the SVD-CUR 

method in the setting of compressed sensing. The results are 

only slightly worse compared to the setting of compression, 

where data for the entire network is available and the 

matrices U and R are learned from the same month (August 

2011). As pointed out earlier, compressed sensing can greatly 

reduce the amount of sensors required to infer the state of 

large traffic networks, and consequently, it may prove to be 

worthwhile to tolerate the incurred minor loss in 

reconstruction accuracy.  

In the formulation of compressive sensing, the compression 

ratio (CR) for CUR-SVD is inversely proportional to the 

number of sampled road segments.  Table 1 shows the 

relationship between the fraction of measured links and the 

achieved compression efficiency for CUR-SVD. Similarly, 

Table II provides the corresponding results for PCA. For the 

latter approach, all links need to be probed, and hence it 

cannot be used as such for compressed sensing. 

 
TABLE I:  Results for compressed sensing through the CUR-

SVD method.  

Number of the 

road segments  
300 600 1000 1500 3000 

Portion of the 

network 
5% 10% 16% 25% 50% 

CR 20 10 6 4 2 

PRD (%) 13.71 12.91 12.32 11.63 8.60 

 

TABLE II:  Compression efficiency of PCA 

Number of 

the road 

segments  

6024 6024 6024 6024 6024 

Portion of the 

network 
100% 100% 100% 100% 100% 

CR 20 10 6 4 2 

PRD (%) 11.51 10.05 8.50 7.00 4.00 

 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper, we applied the CUR matrix decomposition 

for generating low-dimensional representations of large-scale 

traffic networks. In those subspace representations, the basis 

vectors correspond to individual links and time instances. 

Consequently, those low-dimensional models can easily be 

interpreted, in contrast to PCA and related extensions. We 

experimented with two strategies to select individual links 

and time instances, leading to intuitive outcomes: These 

strategies provide details about traffic patterns on weekdays, 

weekends and on public holidays. Moreover, they provided 

useful spatial information.  

We derived a compression scheme from the CUR matrix 

decomposition, and applied it to speed data from a large 

traffic network in Singapore. Our numerical results suggest 

that the scheme has favorable compression. Furthermore, we 

designed an algorithm for compressed sensing from the CUR 

matrix decomposition. Also for that approach, we have 

obtained encouraging numerical results.  

Taken together, the results presented in this paper pave the 

way for further applications of the CUR matrix 

decomposition for Intelligent Transportation Systems (ITS).  

In future work, we will explore applications to traffic 

prediction and routing. Moreover, interesting alternatives and 

extensions of CUR matrix decomposition have been 

proposed, which could be investigated in the context of ITS. 
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