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This paper presents a comprehensive decomposition scheme for solving the inventory routing
problem in which a central supplier must restock a subset of customers on an intermittent basis.
In this setting, the customer demand is not known with certainty and routing decisions taken
over the short run might conflict with the long-run goal of minimizing annual operating costs.
A unique aspect of the short-run subproblem is the presence of satellite facilities where vehicles
can be reloaded and customer deliveries continued until the closing time is reached. Three
heuristics have been developed to solve the vehicle routing problem with satellite facilities
(randomized Clarke-Wright, GRASP, modified sweep). After the daily tours are derived, a
parametric analysis is conducted to investigate the tradeoff between distance and annual costs.
This leads to the development of the efficient frontier from which the decision maker is free to
choose the most attractive alternative. The proposed procedures are tested on data sets gener-

ated from field experience with a national liquid propane distributor.

Inventory routing problems (IRP) arise when a
large number of customers rely on a central supplier
to provide them with a given commodity on a regular
basis (BELTRAMI and BODIN, 1974), (DROR, BALL,
and GOLDEN, 1985). These problems usually involve
the specification of a sequence of locations that must
be visited by a delivery vehicle to restock a storage
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tank or bin. The objective is to minimize the annual
delivery cost while attempting to ensure that no
customer stocks out at any time. To avoid the trivial
case, it is assumed that the annual demand of each
customer is greater than its tank size; that is, each
customer requires more than one replenishment per
year. Whenever a customer stocks out, a special
delivery must be made immediately, which incurs a
high cost.

A key feature of this problem is that a customer’s
consumption rate is a random variable that is often
customer-dependent (DROR and TRUDEAU, 1986). In
addition, inventories must be continually main-
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tained at adequate levels to minimize the chances of
stock outs. The problem, therefore, combines ele-
ments of routing with explicit inventory consider-
ations. The three interrelated tasks include: (1) cus-
tomer selection: identification of the customers to be
visited (serviced on a particular day or during a
particular week); (2) customer vehicle assignment:
assignment of customers selected for service on a
particular day to one of the available trucks; (3)
routing: the construction of efficient routes for each
truck over the set of its assigned customers. The
latter two tasks generally define the classical vehicle
routing problem (VRP). The first adds a degree of
complexity that makes the IRP considerably more
challenging than the VRP.

Whereas the objective of the IRP is to minimize
annual delivery costs, actual routing plans can only
be issued in the short term. To deal with these two
different time scales, we introduce a long-term cost
measure to serve as a criterion for customer selec-
tion. Short-term routing decisions are based on dis-
tance minimization. An acceptable balance is
achieved by trading off one measure against the
other.

In many IRP applications, particularly those in-
volving fuel deliveries, suppliers have found it ben-
eficial to set up several satellite facilities (usually
two or three in large districts). These depots are
geographically scattered throughout the service
area and permit drivers to refill their vehicles with
the commodity during a shift. This leads to an effec-
tive increase in vehicle capacity and perhaps an
increase in route length. The efficiency of the overall
routing may also be increased if the tours are well
scheduled. Typically, each vehicle must return to
the central depot at the end of the day rather than
remain overnight at a satellite facility.

There have been a number of studies on the IRP,
but none has specifically addressed the IRP with
satellite facilities (IRPSF). The purpose of this paper
is to integrate our work on annual costing (JAILLET
et al., 1997) with algorithms for finding good solu-
tions to the IRPSF. In so doing, we develop an ana-
lytic framework that accommodates the need for
real-time decision making. The proposed approach is
based on the idea of a rolling horizon. The first step
is to identify customers that are to be visited during
the planning horizon, say, two weeks. The identifi-
cation process centers on the fact that, for each
customer, there exists an optimal (expected) fre-
quency, and hence, day on which service should be
provided. If the next scheduled visit falls within the
planning horizon the customer is selected. After an
adjustment is made to balance daily demand, cus-
tomers scheduled for the first week are routed. The

planning horizon is then extended and the process is
repeated. Performance is measured by two separate
functions: distance traveled and total incremental
costs (costs incurred by not servicing a customer on
his or her optimal day). Rather than trying to com-
bine these two measures into a single value, we take
a bi-criteria approach and derive the efficient fron-
tier.

The paper is organized as follows. In Section 1, we
review the pertinent work on inventory routing and
related distribution systems. Assumptions are pre-
sented in Section 2. The proposed solution method-
ology is detailed in Section 3 along with three VRP-
based heuristics modified to account for satellite
facilities. The first is a randomized version of the
Clarke-Wright (CW) algorithm (CLARKE and
WRIGHT, 1964), the second is a GRASP (KONTORAV-
DIS and BARD, 1995), and the third is a revised
sweep algorithm (GILLETT and MILLER, 1974). Sec-
tion 4 contains our computational experience. An
extensive analysis was conducted to gain an under-
standing of the tradeoffs between cost and distance,
as well as the effectiveness of the routing heuristics.
For the larger data sets, the CW algorithm was seen
to outperform the others.

1. RELATED WORK

IRP APPLICATIONS FIRST APPEARED in the 1970s (Bel-
trami and Bodin, 1974) with a focus on modeling and
simple solution techniques. The seminal work of
GOLDEN, ASSAD, and DAHL, (1984) defined the basic
components of the problem in the context of a large
energy-products company involved in the distribu-
tion of liquid propane to residential and industrial
customers. The goal of the distribution system was
to maintain an adequate level of inventory for all
customers. In particular, each customer had a
known tank capacity, and its fuel level was expected
to remain above a prespecified critical value. The
system forecasted customer demand, selected a sub-
set of customers for service, and generated vehicle
routes on a daily basis. The main tool used by the
authors was a simulation model that contained rout-
ing algorithms for planning of delivery operations.
The inventory levels of customers were simulated
daily by running the model. The experimental de-
sign showed that the performance of the routing
algorithm was superior to the firm’s current system.

Dror et al. (1985) addressed the same problem and
compared several different computational schemes.
In their work, they start with a set of customers,
where each customer has a storage tank of known
capacity and a probability distribution defining
daily consumption. Daily consumption rates are as-
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sumed to be independent, identically distributed
(i.i.d.) normal random variables with known param-
eters. The problem is formulated as a two-stage in-
teger program that handles customer selection and
scheduling of replenishments by route, truck, and
day of the week. The primary solution approach
proposed is based on hierarchical decomposition.
Some computation results are presented.

A number of the specific issues raised by Dror et
al. (1985) are investigated in more detail in compan-
ion papers. DROR and BALL (1987) address the issue
of reducing the annual distribution problem to a
single period problem. Dror and Trudeau (1986) and
DROR, LAPORTE, and TRUDEAU (1989) discuss the
VRP with stochastic demand and DROR and LEVY
(1986) explore several new methods for improving a
given set of vehicle routes with node exchange and
reoptimization. In two of the procedures, a mini-
mum-weight matching problem is solved repeatedly.

The strategic inventory/routing problem (SIRP) is
discussed by LARSON (1988) and WEBB and LARSON
(1995). The major differences between the IRP and
the SIRP are twofold. First, SIRPs have long lead
times, i.e., months or even years between delivery
operations. Second, SIRPs focus on estimating the
minimum vehicle fleet size that is required to supply
inventory. Related to the SIRP is what might be
called the route-sales distribution problem. As ex-
emplified in the work of ANILY and FEDERGRUEN
(1990, 1993), the corresponding system consists of a
single depot and numerous geographically dispersed
retailers with deterministic demands. The objective
is to determine long-term integrated replenishments
strategies enabling all retailers to meet their de-
mands while minimizing long-run average system-
wide transportation and inventory costs.

The integrated inventory allocation and vehicle
routing problem is another application that is simi-
lar to the IRP. FISHER et al. (1983) investigated a
bulk delivery version of this problem that, in many
ways, parallels the VRP; however, because of the
bulk nature of the product, there is a major differ-
ence in the way customer demand is specified. For
each customer, lower and upper limits exist on the
amount of product that must be delivered during
each period of the planning horizon. Given a value
per unit of product, the objective is to maximize the
value of product delivered to all customers less fleet
operation costs incurred in making the deliveries.
The solution specifies a routing plan, the number of
deliveries per customer, and how much product to
provide on each visit.

FEDERGRUEN and ZIPKIN (1984) examined the
combined problem of allocating a scarce resource
available at a central depot among several locations
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(customers). They considered stochastic demand and
nonlinear inventory costs comprised of holding and
shortage costs. The problem is to decide which de-
liveries are to be made by each set of vehicles and in
which order.

CHIEN, BALAHRISHMAN, and WONG, (1989) simi-
larly dealt with the problem of allocating and deliv-
ering a limited amount of a commodity to customers
using a fleet of vehicles based at a single depot.
First, customers were selected and then the fleet
was routed with the objective of maximizing profit.
The problem was formulated as a mixed-integer pro-
gram and Lagrangian relaxation was used to solve
several small instances.

Period routing addresses the problem of designing
a set of routes for each day of a given p-day period
(CHRISTOFIDES and BEASLEY, 1984), a feature com-
mon to the IRP. In the former, each customer may
require a number of visits by a vehicle during the
period. In contrast, only one visit per period is per-
mitted in our approach to the IRP. This, and the fact
that it is assumed that customer visits follow a p-day
cycle, are the main differences between the two
problems, at least from a routing point of view. Cost
issues further complicate the IRP,

2. MODEL DEVELOPMENT

IN REDUCING THE PROBLEM from an annual time
base to a weekly time base, Dror et al. (1985) defined
two subsets of customers. The first set, denoted by
M, are those customers who must be replenished
during the given planning period. The second set,
denoted by M’, are only replenished if there exists a
cost-savings opportunity to do so.

In our approach to the IRPSF, we build on the
decomposition ideas proposed by Dror and Ball
{1987) and Dror et al. (1985), but, rather than divide
the customers into two sets and solve a series of
single period problems, we examine two periods
(weeks) at a time and identify all customers whose
optimal delivery day falls within this timeframe.
Only the solution for the first week is implemented
and the process is repeated for the next two weeks.
Customer assignments to days of the week are based
on a combination of a desire to balance demand and
to minimize incremental costs; i.e., the cost of serv-
ing a customer on a day other than his optimal day.
Our method of computing incremental costs is dif-
ferent from, and more accurate than, what has been
proposed in the literature so far (see Jaillet et al.,
1997).

Objective and assumptions The IRP is defined
by a set of n customers with a non-negative demand
for a given commodity that varies daily in accor-
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dance with a known probability distribution. Each
customer scheduled for service on a given day must
be visited by exactly one of m homogeneous vehicles
located at a central depot. The depot and the s sat-
ellite facilities hold an unlimited supply of the given
commodity. The vehicles can be reloaded at each of
these locations. The only distinction between the
depot and a satellite facility is that the depot serves
as the origin and final destination of each vehicle.

A feasible vehicle-delivery sequence starts at the
depot, visits a subset of customers dropping off the
required amount of commodity to each, reloads per-
haps at one of the satellite facilities, continues to
another subset of customers, reloads again at a sat-
ellite facility, and at the end of the route returns to
the depot. An additional requirement for feasibility
is that the deliveries on a given day be completed
within T hours.

In deciding on the appropriate objective function
for the IRP, we are faced with two distinct criteria
that measure different aspects of the problem. The
first is associated with assigning customers to days
of the week. One way to do this is to make the
assignments based on the incremental costs alone.
Such an approach, however, ignores vehicle capaci-
ties and travel-time restrictions. The second crite-
rion is associated with routing customers on a given
day. Typically, the objective is to minimize travel
time or distance, which are surrogates for minimiz-
ing short-term costs. Although it may be possible to
translate distance into cost, the results may not be
directly additive with the incremental costs because
the former are strictly associated with operations
and maintenance while the latter may have a non-
tangible aspect corresponding to quality of service
and customer retention.

As such, on a given day, we wish to construct a set
of non-overlapping (disjoint in terms of the custom-
ers) feasible tours that delivers all the required com-
modity without violating the vehicle capacity and
route closing-time constraints. We wish to do this by
simultaneously minimizing total distance and incre-
mental assignment costs. This leads to a bi-criteria
mixed-integer linear programming formulation. The
details are presented in (HUANG, 1997).

3. SOLUTION APPROACH TO IRP WITH SATELLITE
FACILITIES
THE LIMITATIONS OF AVAILABLE computational tech-
niques make it impractical to try to solve the mixed-
integer linear programming formulation of the
IRPSF directly for all but the smallest of instances.
The structure of the problem, though, argues for
some type of decomposition. As mentioned, there are

two subproblems embedded in the IRP. The first
involves clustering of customers and the second in-
volves routing.

Our decomposition scheme for the IRPSF is out-
lined in the following steps. The details are dis-
cussed in subsequent sections,

Step 0. Identify those customers in the service area
whose optimal replenishment day falls within the
current planning horizon.

Step 1. Assign each customer identified in Step 0 to
a given day by solving a balanced assignment
problem with the objective of minimizing incre-
mental costs.

Step 2. For each day in the planning horizon, try to
find a good feasible solution by solving a VRP with
satellite facilities (VRPSF). The objective at this
step is to minimize total distance.

Step 3. Attempt to improve the solution by swap-
ping customers between routes.

Step 4. Exam the tradeoff between incremental
costs and route lengths by swapping customers
between different days of the planning horizon.

In the initialization step, customers are selected
for the current period. At Step 1, a generalized as-
signment problem with constraints that set a range
for expected demand on any day is solved. The ob-
jective is to minimize the incremental cost of serving
all customers. The details are given in Section 3.1.

At Step 2, we use several heuristics to solve a
VRPSF for each day in the planning horizon with
the objective of minimizing total distance. The
mathematical programming formulation for this
problem is similar to the one for the IRPSF and is
contained in Huang (1997).

3.1 Customer Selection and Assignment

In a complementary paper (Jaillet et al., 1997), we
derived the expected total cost of restocking a cus-
tomer over a given time period, say a year, as a
function of the frequency d between refills. The un-
derlying assumptions were that the demand U, on
day % is a random variable with finite expected value
g independent of &, and that, over the given time
period, the U, values are i.i.d. Let the minimum
point on the expected total-cost curve be obtained at
d = d*. The optimal strategy, then, is to replenish
the customer every d* days. Suppose that, on the
first visit, it is necessary to replenish the customer
on day d (# d*), and, after that, the optimal strategy
is resumed. The difference between the expected
total cost per year incurred by following this strat-
egy and the minimum expected total cost per year is
the incremental cost for customer i, denoted by c,,.

The procedure used to select customers for possi-

Copyright ©2000. All Rights Reserved.



ble service over the planning horizon of, say two
weeks, is based on the frequency d*. If the best day
to visit a customer is within the two weeks, then the
customer is selected. Note that a weekend assign-
ment must be shifted to a week day. We define the
set S, as the group of customers that needs to be
restocked in the current week and the set S, as the
group of customers that needs to be serviced in the
following week. Assuming five working days per
week and a fixed number of vehicles, it is desirable
to balance the demand from one day to the next.
This is achieved by solving a generalized assignment
problem.

In the model, ¢;; is the incremental cost for cus-
tomer ¢ on day d, r;; is the expected demand of
customer i on day d, L is a lower bound on expected
total customer demand per day (say, 10% below the
expected daily demand), and U is the upper bound
on expected total customer demand per day (say,
10% above the expected daily demand). The param-
eters L and U are designed to take into account the
fact that demand is really a random variable, and so,
may differ from the forecast. Now let z;; be a binary
variable equal to 1 if customer i is selected for day d,
0 otherwise. The generalized assignment problem is
stated as follows

min Y, D¢,z (1)
i d
subject to
Yzu=1 i=1,...,n (2)
d
L<Yrzu<U deD (3)
24 €{0,1} Vi, d. (4)

The model assigns customers to 1 of |D| days accord-
ing to their incremental cost. Equation (2) assures
that each customer is assigned to exactly one day.
Constraint (3) assures that expected demand of all
customers on a particular day is within the lower
bound L and upper bound U. Although problem (1)—
(4) is an integer linear program (ILP), it has the
property that at least n — 2|D| of the variables in the
solution of the associated LP relaxation assume in-
teger values (see LASDON, 1970). Recall that the LP
relaxation is obtained by replacing (4) with 0 < z;; <
1, Vi, d. In our case, |D| = 10 corresponding to the 10
working days during the two-week period and n =
400. GAMS with OSL solves this ILP in about one
minute.
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3.2 Heuristics Development for VRPSF

3.2.1 Current VRP Algorithms

The objective of a VRP is to design optimal deliv-
ery or collection routes originating from one or more
depots to a number of geographically scattered cus-
tomers, subject to side constraints (LAPORTE, 1992).
The most common constraints include (1) capacity
restrictions, where a non-negative weight is as-
signed to each customer, and the resultant sum as-
sociated with each vehicle route may not exceed its
capacity, (2) the number of customers on any route is
bounded, (3) total time restrictions, where the
length of any route may not exceed a prescribed
value, (4) time windows, where customers must be
visited within a time interval, and (5) precedence
relations between customers, where customer i may
have to be visited before customer j.

According to LAPORTE and NOBERT (1987), exact
algorithms for the VRP can be placed into three
broad categories: (1) direct tree search methods,
which have been used by CHRISTOFIDES, MINGOZZI,
and TOTH, (1981) to solve problems ranging in size
from 10 to 25 nodes and by LAPORTE, MENURE, and
NOBERT, (1986) to solve to optimality asymmetric
capacity-constrained VRPs with up to 260 nodes; (2)
dynamic programming, where optimal solutions
have been obtained for problems with up to 25
nodes; and (3) integer linear programming, where
DESROCHERS, DESROSIERS, and SOLOMON (1992)
solved VRPs with time windows containing up to
100 nodes using column generation.

Heuristics for the VRP can often be derived from
procedures used for the TSP. Several heuristics,
though, have been specifically developed for the
VRP. The first of three that we mention is the CW
algorithm, which starts with n routes, each contain-
ing the depot and one other node. At each step, two
routes are merged according to the largest saving
that can be generated. The second is the sweep al-
gorithm (Gillett and Miller, 1974), (WREN, 1971),
also called sectorial region partitioning. Using polar
coordinates (6, p;), where 6, is the angle and p; is the
distance to customer i, the algorithm begins by as-
signing a value 6. = 0 to an arbitrary node i* and
then computes the angles of the remaining (n — 1)
nodes. The nodes are then ranked in increasing or-
der of their §; values. Next, an unused vehicle is
chosen and starting from an unrouted node having
the smallest angle, customers are assigned to the
vehicle as long as its capacity is not exceeded. The
procedure is repeated until all customers are routed.

Tabu search has also been used to solve the VRP.
From a computational point of view, the implemen-
tation by GENDREAU, HERTZ, and LAPORTE, (1994)
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provides the best solutions among existing heuris-
tics; however, its running time can be excessive.
From a practical point of view, the CW algorithm
strikes a good balance between solution quality and
running time.

3.2.2 Heuristics for VRPSF

At Step 2 of our decomposition scheme, a VRPSF
must be solved for each day in the planning horizon.
In this subsection, we describe three heuristics de-
veloped for this purpose. The first is a modification
of the CW algorithm, the second is an extension of
the GRASP developed by Kontoravdis and Bard
(1995) for the VRP with time windows, and the third
is a revised version of the sweep algorithm. Depend-
ing on the heuristic, a subset of the feasible solutions
found are post-processed in an attempt to improve
the results. The algorithm for doing this is the same
in each case and is presented in the next section.
Throughout the discussion, the words “route” and
“tour” will continue to be used interchangeably.

The ability to refill a vehicle during the day im-
plies that the length rather than the cumulative
demand is the real limitation of a route. The proce-
dures used to insert satellite facilities into partial
routes during tour construction is specific to the
individual heuristic. In each case, we investigated a
number of different schemes but report only the
alternative that yielded the best results for the heu-
ristic under study. Similarly, the parameter settings
used in the final calculations were arrived at after
extensive experimentation.

Note that the heuristics are presented under the
assumption that feasible solutions to the VRPSF
requiring m or fewer vehicles can always be found. If
this is not the case for a particular instance of the
IRPSF, the procedure discussed in Section 3.4 is
invoked using the best feasible solution obtained
regardless of the number of vehicles required. If
feasibility is still not achieved, customers are re-
moved from the planning horizon one at a time until
a solution is found that uses, at most, m vehicles per
day. The removal procedure is a function of individ-
ual demand, the day in question, and the number of
customers assigned to each vehicle on that day.

Revised CW Algorithm. In adapting the CW algo-
rithm, we introduced a degree of randomness into
the construction phase. We start with one route for
each customer and calculate the savings associated
with merging each pair of customers into a single
route. Instead of merging two routes with the larg-
est savings as is usually done, we rank the customer
pairs according to their savings and then construct a
list L of size r. The list is in nonincreasing order of

savings and only has to be constructed once because
only customers linked directly to the depot can be
merged at any stage of the CW methodology. We
then randomly select one pair of customers from L
and record the savings. When this merger results in
a violation of the vehicle-capacity constraint, a sat-
ellite facility is inserted between the two customers
as long as the maximum tour time is not exceeded.
Which satellite facility to select is determined by
calculating insertion costs for each candidate. The
one with the smallest insertion cost that does not
violate the maximum tour time is then inserted in
the appropriate position.

Note that, at this point, it is not necessary to
satisfy the capacity constraint because other cus-
tomers may still be added to the tour. In the post-
processing phase, we adjust the tour to assure that
no vehicle’s capacity is exceeded.

Step 1. Construct n distinct tours (0, i, 0), each con-
taining the depot and one customer only, where
i=1,...,n,and 0 is the depot.

Step 2. Let 7; be the distance from customer i to
customer j. Compute the savings of merging each
pair of customers i and j: s; = 7,9 + T — 7 for i,
J=1,...,nandi #j.

Step 3. Place the savings s;; > 0 on a nonincreasing
list L.

Step 4. Construct a list L of size r from the first r
entries of L. Put £ «<— I\L

Step 5. Randomly select one element s;; from list L.
Suppose it is from the pth position of L. Merge
routes with arcs (i, 0) and (0, j), respectively,
when the resulting route is feasible and then go to
Step 7. Otherwise go to Step 6 and try to insert a
satellite facility in the route.

Step 6. Calculate the cost of inserting each satellite
facility between arcs (i, 0) and (0, j). For the can-
didate with the smallest insertion cost that does
not violate the maximum tour time, merge the
routes with arcs (i, 0) and (0, j) and insert the
satellite facility between arcs (i, 0) and (0, ).

Step 7. If L. # @&, take the first element in L and put
it in position p in L. Go to Step 5. Otherwise,
eliminate the pth position from L. If L # &, go to
Step 5; otherwise go to Step 8.

Step 8. Starting with the n distinct tours con-
structed in Step 1, repeat Steps 3 to 7 a predeter-
mined number times (say, M) and save the best
route after each iteration.

Step 9. Call post-processor after the M iterations to
try to improve the solution.

Figure 1 illustrates the logic of inserting a satel-
lite facility between arcs (i, 0) and (0, j), and hence,
merging the corresponding routes. The cost of this
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Depot

Fig. 1. Insertion of satellite facilities.

merger when satellite facility F, is inserted is 7,7, +
Tir, — Tio — Ty Because routes are directional, the
initial order in which the customers in the partial
route containing i was to be visited is now reversed.
In our implementation, r = 3 at Step 4 and M = 50
at. Step 8.

GRASP. Kontoravdis and Bard (1995) addressed
the problem of finding the minimum number of ve-
hicles needed to service n customers subject to time
window and capacity constraints. We have modified
their greedy randomized adaptive search procedure
to solve the VRPSF.

Step 1. Find a lower bound v on the number of
routes needed.

Step 2. Select v seed customers to form a set of
initial routes.

Step 3. Calculate the cost of inserting each cus-
tomer into these routes.

Step 4. Calculate penalties for each insertion.

Step 5. Construct a list L that contains the r largest
penalties. From L, randomly choose one customer.

Step 6. Try to insert the customer in the corre-
sponding route. If successful, go to Step 8. If in-
sertion leads to a time violation, start a new route
between the depot and the customer and go to
Step 4. If insertion leads to a capacity violation, go
to Step 7.

Step 7. Find the closest satellite facility to the cus-
tomer, and then find the closest route to that
satellite facility. Now, identify the best position in
this route to insert the satellite facility. If the
maximum tour time is not violated, insert the
satellite facility in this position, revise the inser-
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tion costs for all unrouted customers with respect
to this route, and go to Step 4; otherwise, add a
new route between the depot and the customer,
compute the insertion costs for all unrouted cus-
tomers with respect to this route, and go to Step 4.

Step 8. If every customer is routed, then stop; oth-
erwise, update the costs and go to Step 5.

Step 9. Repeat Steps 1 to 8 a predetermined num-
ber (say, M) times and save the best results. Dur-
ing these M iterations, run the post-processor ev-
ery N (= M) iterations on the best of the N
solutions.

In Step 1, the minimum number of routes needed
is determined. When the fleet is homogeneous, a
simple way to compute this value is to divide the
customers’ total demand by the truck capacity and
round the result up to the nearest integer. A better
way is to solve a bin packing problem in which each
truck is viewed as a bin and customer demand is
equivalent to the size of items to be packed. Al-
though the bin packing problem is NP-hard it can be
solved quickly for instances with several hundred
demand points.

Seed customers are selected at Step 2 by trying to
identify customers who are least likely to appear in
the same route in an optimal solution. One way to do
this is to find customers who are geographically far
apart. A second way is to take into consideration
customer demands. Because vehicles have capacity
limits, it is not possible to serve two customers
whose total demand is more than the vehicle capac-
ity without a visit to a satellite facility.

After obtaining v initial routes, some customers
can be inserted into the routes. In Step 3, the cost of
inserting each customer into each position of each
current route is calculated. Suppose y{; is the cost of
inserting customer i into route p between customers
Jand k. Then vy§;, = 7, + 73 — 7. Let v,; = min;,
Y%, where v, is the minimal insertion cost for node
i on route p. Let y,»; = min, v, the overall minimal
insertion cost for customer i. In Step 4, a penalty
associated with not assigning customer i at this
iteration is calculated. Let I, = X, (y,; — v,+) be the
penalty for customer i. The customers with larger
penalties are assigned first.

In Step 5, penalties are sorted in nonincreasing
order, and one is chosen from the first » on the list
(again, r = 3 in the implementation). In Step 6, the
selected customer is inserted into the route if doing
so does not violate the capacity and tour-time re-
strictions. A violation of the latter requires that a
new route be started. In this case, the algorithm
returns to Step 4 to update the penalties of all un-
routed customers. Alternatively, a violation of the
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capacity restriction places us at Step 7, where an
attempt is made to find a route and accompanying
position in which to insert a satellite facility. If the
candidate identified does not violate the time re-
striction, it is inserted and the insertion costs for all
unrouted customers are revised with respect to this
augmented route. Otherwise, a new route is created,
insertion costs of unrouted customers with respect
to this route are computed, and the algorithm re-
turns to Step 4.

Note that when a satellite facility is inserted, we
do not insert the current customer but return to Step
4 and begin anew. Inserting the customer as well as
the satellite facility was found to be an inferior strat-
egy. The entire procedure is repeated M times and
the best result saved. After every N iterations, the
post-processor is run in an effort to improve the most
promising tour in that subset. In the implementa-
tion, M is set to 50 and N to 5.

Revised Sweep Algorithm. To use the sweep al-
gorithm, all customers are represented in polar co-
ordinates (6;, p;) as measured from the depot, where
0; is the angle and p; is the ray length. A value 6, =
0 is assigned to an arbitrary node and the remaining
n — 1 angles are computed moving in a clockwise
direction. The nodes are ranked in increasing order
of their 6;. The algorithm is then applied beginning
with node i* with appropriate logic added so that
satellite facilities can be inserted when needed. Be-
cause the starting node is arbitrary, the procedure is
repeated 2n times, once for each node, both in the
clockwise and counterclockwise direction. The best
result is saved.

Step 1. Let the depot be the origin and calculate
polar coordinates of each customer node. Sort all
nodes in non-decreasing order of their polar an-
gles. Seti = 1.

Step 2. Let & be the index for vehicles and set 2 = 1.
Begin assigning customers to vehicles, starting
from the ith position on the ordered list.

Step 3. Construct route k in the clockwise direction.
That is, consider the list as a circle and go through
the list in the clockwise direction.

Step 4. Include customers one by one as long as both
capacity and maximum tour time are not ex-
ceeded. If the remaining capacity cannot serve the
next customer on the list, go to Step 5. If the total
tour time is exceeded and there are some unrouted
customers, put 2 <— & + 1 and go to Step 3; other-
wise, update the incumbent and go to Step 6.

Step 5. Find the satellite facility with the smallest
insertion cost. Insert it in the current route if the
maximum tour time is not violated and go to Step
4. Otherwise, put £ < k& + 1 and go to Step 3.

Step6. If i < n,put i < i + 1 and go to Step 2;
otherwise put i < 1, go to Step 2 and repeat the
process in the counterclockwise direction. Run
post-processor after every N iterations. Stop when
finished.

In the description of the algorithm, it is conve-
nient to consider the list of polar angles as a circle
that is constructed by first ordering the customers in
a line from smallest to largest 6; and then bending
the line to form a circle. The tour construction is
primarily done in Steps 4 and 5. In Step 4, we start
with an empty vehicle and assign customers on the
list to the current route as long as the capacity and
maximum tour-time constraints are not violated and
there is still one satellite facility that can be visited.
If the maximum tour time is exceeded, a new route
is initiated and the algorithm returns to Step 3. If
only the capacity constraint is violated and condi-
tions permit, we go to Step 5 to find a satellite
facility with the minimal insertion cost. This facility
is appended to the route and we continue to add
customers by returning to Step 4.

The danger in this procedure is that it can lead to
poor results when two customers with the same
angle are not close to one another (see HAIMOVICH
and RINNOOY KAN, 1985). In such instances, we rely
on the post-processor to improve the initial solution
by swapping customers within or between tours.

When all the customers have been routed, we up-
date the incumbent and go to Step 6. The entire
process is repeated starting with the second cus-
tomer on the list and so on until n sets of routes have
been constructed. We then repeat the process an-
other n times, again starting with customer i*, but
scanning the list in the reverse (counterclockwise)
direction. The post-processor is run after every N (=
6) iterations (i.e., after completing 3 iterations in one
direction and 3 in the other).

3.3 Post-Processing Procedure

As is true with virtually all heuristics designed to
solve difficult combinatorial optimization problems,
there is no guarantee that the solutions obtained in
the construction phase of our heuristics will be lo-
cally optimal with respect to common neighborhood
definitions. In an effort to improve the results, we
have implemented a post-processor that executes
arc interchanges within a particular tour and node
interchanges between any two tours. In all cases, we
work with the directed graph. Before giving the
steps, each procedure is outlined.

Arc Interchange. The arc interchange heuristie
was originally developed by LIN (1965) to improve
TSP tours. In his work, he introduced the concept of
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(a) Before (b) After

Fig. 2. Two-arc exchange in a route.

r-optimality. A given tour is r-optimal if it is impos-
sible to obtain a tour with smaller cost by replacing
a set of r of its arcs by any other set of arcs. By doing
arc interchanges, only subsequences of nodes in a
tour will change. Lin found that for the TSP the
4-arc exchange heuristic did not find noticeably bet-
ter solutions than the 3-opt procedure.

Two-are interchange. In this approach, exchanges
between two arcs within the same route are per-
formed and the savings calculated. The idea is illus-
trated in Figure 2. Before the interchange, the route
isi — k —j — 1 — i (Fig. 2a). The interchange takes
place between arcs ik and jl, and arcs %kl and ij. As
shown in Fig. 2b, the new routeisi —j -k — 1 — i.
The dash lines represent the old arcs. Notice that
there is a direction change on arc &j.

The savings for the 2-arc interchange is calculated
as follows,

OS("’J’ k, l) - Tik+ Ty~ Ty — Th

If OS (i, j, &, D) > 0, the interchange reduces the
routing cost.

Three-arc interchange. In this case, exchanges
among three arcs within the same route are per-
formed and the savings calculated. An example is
shown in Figure 3. The original route, i — I — m —
J — kB — n — i, is displayed at the left (Fig. 3a).

(a) Before (b) After

Fig. 3. Three-arc exchange in a route.
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(a) Before (B) After

Fig. 4. One-node exchange between two routes.

Interchanging i — [ withi — j,m — jwithm — n and
kB —nwithk —Igivesanewtouri —j—-k—-1l—-m—
n — i (see Fig. 3b).

The savings associated with the 3-arc interchange
is

OS(",J’ ka l, m, n) = Ty T Tt T T T T Thn T Tim-

Again if OS (i, j, £, [, m, n) > 0, the interchange will
lead to an improvement in the routing.

Node Interchange. A second set of procedures in-
volves moving one or more nodes to another position
in a tour or to another tour. Similarly, it is also
possible to remove a subset of nodes from one tour
and place it in another or to exchange subsets of
nodes between tours. In our implementation, we
allow nodes to be eliminated from one tour and
inserted into another as long as feasibility is main-
tained. Only one- and two-node interchanges are
congidered. We do not consider interchanges within
a tour because of the similarity of such a procedure
with arc interchanges.

One-node interchange. The idea is to delete one
node from a particular route and insert it into an-
other route if the result is feasible. The operation is
shown in Figure 4. On the left side of the figure (Fig.
4a) there are two subtoursi — jand & — s — /. After
deleting node s from the latter and inserting it into
the former, two new subtours are created, i — s — j
and ! — k (see Fig. 4b).

The savings for the one-node interchange is deter-
mined from

OS(l,J; k, s, l) = TU+ Tks+ Tst ™ Tis — Tsj — Tije

From this calculation, it is clear that a one-node
interchange is equivalent to a three-arc exchange.
Under certain circumstances, however, the former
can lead to the elimination of a route.

Two-node interchange. In this procedure, we swap
the positions of two nodes in two different routes.
The graph in Figure 5 illustrates the interchange.
The original two tours,i — r — jand 2 — s — [, are
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(a) Before ) After

Fig. 8. Two-node interchange between two routes.

shown on the left side of the figure (Fig. 5a). After

swapping the positions of node r and s, two new

tours formed, i — s — jand £ — r — [ (see Fig. 5b).
The corresponding savings is

OS(Z, sa.j; k9 r, l) = Tjr+ Tri+ Tks+ Tsl

T Tis T Tsi T T Th.

Similarly, this result is equivalent to the four-arc
exchange.

When routes do not contain satellite facilities, arc
interchanges do not affect feasibility with respect to
capacity, and hence, are accepted if they lead to a
reduction in overall distance. When satellite facili-
ties are included in a tour, the situation is more
complicated. In this case, arc interchanges may alter
the composition of those route segments that start
and end at either a satellite facility or the depot.
These new route segments must be checked for fea-
sibility with respect to both capacity and time. Node
interchanges between tours always require such
checks. Infeasible arc and node interchanges are
discarded.

We are now in a position to outline our post-
Pprocessor.

Post-Processor Interchange Algorithm.

Step 1. For each route in turn, do 2-arc interchange
within the route, checking each new route seg-
ment for feasibility with respect to time and ca-
pacity, if necessary. Ignore infeasible inter-
changes. Continue until 2-optimality has been
achieved.

Step 2. Do 3-arc interchange within each route,
making appropriate feasibility checks with re-
spect to time and capacity, if necessary. Check if
new routes are still 2-optimal. If not go back to
Step 1; else, go to Step 3.

Step 3. Calculate the savings for all feasible 1- and
2-node interchanges between routes. Store those
interchanges associated with positive savings, If
none are positive, stop.

Step 4. Sort the savings in nonincreasing order.

Step 5. Take the first element on the list and exe-
cute the interchange. If the list is empty go to Step
1 and continue until no improvement is possible;
otherwise, go to Step 6.

Step 6. Update the savings and go to Step 4.

The above procedure is dominated by the 3-arc
interchange at Step 2, which has complexity O(n®).
As a consequence, the exploration of each neighbor-
hood (in search of a better solution) requires up to
O(n?) iterations. Because the algorithm may return
to Step 2 many times, its overall complexity is expo-
nential in n, which is typical of most local search
procedures. Given this result, it only makes sense to
run the algorithm on a subset of the feasible solu-
tions found by the heuristics.

To gauge the effectiveness of the three heuristics
and post-processor, we solved the 14 asymmetric
VRP instances included in Christofides et al. (1981)
and compared the results with the tabu search al-
gorithm of Gendreau et al. (1994). On average, our
solutions were 3.9% above theirs. Our run times on
a SUN Sparcstation 10, though, where only a few
seconds, whereas TABUROUTE required several
minutes on a Silicon Graphics workstation.

3.4 Improvement of the Two-Week Schedule

After the VRPSF is solved for each day of the
planning horizon, all customers are routed. Assum-
ing the corresponding tours are optimal for the given
assignments of customers to days of the week, it still
might be possible to reduce total distance by reas-
signing customers to different days in the planning
horizon. The penalty for doing this will be measured
by an increase in the annual operating costs. As
discussed in Section 3.1, the incremental cost asso-
ciated with a customer is a function of the day on
which he is serviced, so swapping customers be-
tween days is likely to result in an increase in this
value. (For the case where there are multiple opti-
mal solutions to the original assignment problem
(1)—(4), there is a chance that reassigning a cus-
tomer to a different day and then reoptimizing
might lead to a decrease in total distance and incre-
mental cost.)

Now, taking the view that incremental costs are a
long-term measure, it is problematic to compare
them with the actual routing distances. We there-
fore keep track of distance and incremental cost and
perform a parametric analysis allowing customers to
be swapped up to d days in either direction. The
objective is to minimize total distance subject to the
daily balance constraints and the number of permis-
sible days forward or backward a customer can be
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moved. Steps 3 to 6 of the post-processor inter-
change algorithm have been adapted for the purpose
of swapping customers between days.

With regard to the IRPSF, we embed this ap-
proach in a rolling horizon framework covering two
weeks at a time. The base case involves assigning
customers to one of 10 weekdays and then solving
the VRPSF for each day. Total distance and incre-
mental costs are computed. We then permit custom-
ers to be swapped one day forward or backward; e.g.,
customers routed on Tuesday can now be reassigned
or exchanged with customers on Monday or Wednes-
day. This is termed a I-day swap. The results are
recorded and the procedure is repeated for 2- to
5-day swaps. The corresponding points are plotted to
reveal the tradeoff between total distance and incre-
mental costs. The plots represent an approximation
to the efficient frontier. A necessary condition for
assuring that the true efficient frontier has been
constructed requires an exact solution to the d-day
swap VRPSF.

4. NUMERICAL RESULTS

GOLDEN ET AL. (1984) were the first to model the IRP
and present a real-world application. The company
they dealt with is one of the nation’s largest distrib-
utors of liquid propane, with over 110,000 customers
located in 66 districts. At the time, their annual
operating expenses associated with direct distribu-
tion activities exceeded $6 million. In the industry,
each district operates as an independent unit, typi-
cally serving 1500-7000 customers annually within
a 25 miles radius of a central depot. In any 2-week
period, 300 to 500 customers may require restock-
ing.

In accordance with our recent experience with a
similar company, we developed a dataset generator
to reflect the characteristics of this operating envi-
ronment. For purposes of testing, we generate a
total of 3000 customers and select a subset of fixed
size for the 2-week planning horizon. The decompo-
sition scheme is then applied to route the customers
and to develop the approximate efficient frontier.

4.1 Dataset Generation Procedure

We start by assuming that all customers in a
district are uniformly located on a 100 X 100 grid.
The depot is randomly placed in a 40 X 40 center
square of the grid and the satellite facilities are
located outside this square in four possible positions.
Depending on the number, each is randomly placed
in a 10 X 10 square at the various corners of the
grid. A problem instance may have up to four satel-
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lite facilities, but the typical number is one or two
for a propane distribution company.

The fleet is assumed to be homogeneous with each
vehicle having a capacity of 2000 gallons. We define
five different customer tank sizes: ¥ truck capacity
(5% of customers), V4 truck capacity (5% of custom-
ers), ¥ truck capacity (40% of customers), Y10 truck
capacity (40% of customers), and Yo truck capacity
(10% of customers).

The daily consumption rate of each customer is a
normally distributed variable whose mean ranges
from 1 and 10. The mean is specified as a function
the tank size. The larger the tank size, the greater
the consumption rate. For example, when the tank
gize is Y5 of the truck capacity the mean rate is
uniformly distributed in the interval [6, 10]. In all
cases, the coefficient of variation (¢/u) is uniformly
distributed between 0 and 1. Each customer is ran-
domly assigned an initial inventory from a uniform
distribution between zero and their tank size. Their
optimal service frequency d* is determined by the
procedures described in (Jaillet et al., 1997). Of the
3000 customers in the data set, n are selected by
checking each day in the 2-week planning period for
the likelihood of stockout. If the probability that a
customer will run out of commodity by the end of the
day is greater than 90%, he is included in the pool. If
we want a problem instance that contains, say 400
customers, we randomly select 400 entries from the
pool.

The unloading time at a customer is assumed to be
10 minutes, which includes restocking the tank and
minor paperwork. Although the actual time depends
on the amount pumped, field experience indicates
that the variation from one customer to another is
minimal. The loading time at a satellite facility is
taken as 30 minutes, which is the time to refill the
vehicle. Similarly, this value depends on the resid-
ual amount of propane on the truck but is nearly
constant in practice. The average speed of a vehicle
is 30 miles/hour and each route is limited to 8 hours/
day. To avoid an imbalance of customer demand on
any day of the week, recall that we solve a general-
ized assignment problem (1)-(4) that minimizes to-
tal incremental cost. On each day of the planning
horizon then, we end up with approximately equal
amounts of commodity to deliver.

4.2 Comparison of Results for Different
Heuristics

To evaluate the proposed procedures, we have
solved problems containing up to 5 satellite facilities
and 500 customers. Using the dataset generation
scheme described above, we obtained a pool of 838
customers for the current 2-week period. We then
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TABLE 1
Comparison of IRPSF Heuristics
Dimension CwW GRASP SWEEP

No. n s df A Distance Cost Distance Cost Distance Cost
1 300 3 0 6573 87 6783 87 6879 87
1 5587 342 5587 339 5459 177

2 5271 347 5256 320 5113 277

3 4942 722 5189 512 4960 871

4 4847 1588 4992 750 4841 1089

5 4818 1654 4852 1959 4828 1177

2 350 3 (1} 7245 191 7447 191 7756 191
1 6597 266 6578 351 6504 470

2 6016 898 6179 702 5974 950

3 5635 1010 5997 925 5784 944

4 5635 1010 5997 925 5705 1422

5 5463 1829 5878 1459 5495 1718

3 400 3 0 7986 82 8353 82 8467 82
1 7317 186 7448 319 7093 391

2 6819 671 6966 509 6722 673

3 6505 938 6678 991 6474 1127

4 6405 1576 6453 1930 6307 1657

5 6327 1612 6350 1577 6146 2177

4 450 3 0 8665 182 9274 182 9449 182
1 7616 366 8261 379 8177 480

2 7335 360 7707 914 7791 510

3 7192 897 7572 1233 7503 1241

4 7044 1298 7540 1525 7503 1241

5 6691 2320 7221 3131 72760 2866

5 500 3 0 9424 133 10054 133 10228 133
1 8406 292 8894 265 8539 406

2 7702 446 8584 537 8271 870

3 7512 1067 8194 790 7892 1402

4 7512 1067 8141 1429 7703 2270

5 7276 2136 77563 2159 7681 2821

randomly selected 300, 350, 400, 450, and 500 cus-
tomers from the 838 to form five data sets (available
from the authors).

All codes were written in C and run on a SUN
Sparcstation 10. Table I presents the results for the
three heuristics—revised CW algorithm, GRASP,
and modified SWEEP—for the case of 1 central de-
pot and 3 satellite facilities. Column 1 gives the
problem set number and column 2 states the dimen-
sions of the problem; n is the number of customers
and s is the number of satellite facilities. In the third
column, df stands for the degrees of freedom of
swapping customers among days. When A = 0, cus-
tomers can only be moved within the current day;
when A = 1, customers can be moved up to one day
in either direction, and so on. Note that it is not
permissible to assign a customer to either Saturday
or Sunday.

Columns 4 to 6 display the computational results.
Dist denotes the total routing distance over the
2-week (10-day) planning horizon for all » customers
and cost denotes the accompanying incremental
cost. The first row in the table is typical of the

overall results. Here it is seen that CW outperforms
the other two heuristics by a slight margin. Also,
GRASP does better than SWEEP, but, on balance,
the score between these two evens out. Because A =
0, no swapping among days is allowed, so the incre-
mental costs are all identical; i.e., cost = $87.

As we go down the rows from A = 0 to A = 5, the
tradeoff between routing distance and incremental
cost becomes more apparent. For CW, total distance
drops from 6573 miles to 4818 miles (27%), while
costs go up from $87 to $1654, almost a factor of 20.
Ideally, we would like both distance and cost to be as
low as possible. Figure 6 plots the approximate effi-
cient frontier for these two parameters for each of
the three heuristics. This view visually demon-
strates the superiority of CW. The break points on
the curves represent the data in Table I for Problem
No. 5. Note that the third and fourth data points are
the same for CW. The largest incremental reduction
in distance is achieved by allowing 1-day swaps. As
the degrees of freedom increase, incremental costs
rise as expected and distance continues to shrink
but at a decreasing rate. Diminishing returns set in
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Fig. 6. Approximate efficient frontier for 500 customers, 3 satellite facilities.

quickly. This can be explained qualitatively as fol-
lows. The constraint region expands in proportion to
the degrees of freedom with respect to feasible tran-
sitions but remains fixed with respect to daily bal-
ance, route time, and vehicle capacity. Permitting 1-
and 2-day swaps leads to relatively large reductions
in distance due to the greater number of feasible
transitions. As the degrees of freedom increase,
though, it is increasingly more difficult to achieve
reductions without coming up against the limits of
the other constraints. This results in part from the
uniform distribution of customers over the feasible
region. Allowing more swap days does not propor-
tionately increase the number of attractive ex-
changes available for all routes on all days within
the balance, time, and capacity bounds. Whereas it
may be possible to improve one or more routes on
any one day in the planning horizon, it is not possi-
ble to improve all routes on all days in proportion to
the degrees of freedom.

The next issue examined relates to the computa-
tional burden posed by each heuristic. Table II pre-
sents the CPU time in seconds required for each
phase of the analysis. For Problem No. 1, for in-
stance, CW took a total of 89.41 seconds to construct
solutions for all 10 days and 0.30 seconds for post-
processing. Thus, an average of 8.97 seconds was
needed to solve each VRPSF.

Comparing the three heuristics for the particular

parameter settings used, we see that CW takes
about 3 times longer than GRASP and anywhere
from 1.25 to 3 times longer than SWEEP to con-
struct and improve the 1-day solutions. As expected,
the d-day swap computations are about the same in
each case because they are independent of the VRP
heuristics. The real computational burden is in the
tradeoff analysis, where we generate the approxi-
mate efficient frontier by performing these swaps.
For the 500-customer problems, CPU times may
approach 2 hours.

The final issue investigated concerned the value of
the satellite facilities. Figure 7 plots total distance
versus number of satellite facilities for the 500-cus-
tomer case. The revised CW algorithm was used to
obtain the solutions. Not surprisingly, the results
show that the routing distance is a nonincreasing
function of the number of satellite facilities. Here, as
in almost all other instances, there was a propor-
tional advantage in having more satellite facilities.

5. CONCLUSIONS

THE INVENTORY ROUTING problem with its many as-
pects represents a challenge to researchers and
practitioners alike. In this paper, we have presented
a methodology that allows us to decompose the prob-
lem over the planning horizon and then solve daily
rather than multi-day VRPs. In so doing, we devel-
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TABLE II
Comparison of CPU Time (sec) for IRPSF Heuristics

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5
Heuristic Phase n = 300 n = 350 n = 400 n = 450 n = 500
CW Construction 89.41 112.16 163.99 199.86 277.11
Post-processing 0.30 1.07 1.39 1.82 2.12
1-day swap 96.29 85.75 123.36 308.73 306.32
2-day swap 201.40 283.98 406.87 589.31 760.49
3-day swap 313.29 610.91 672.67 974.38 124771
4-day swap 446.58 523.08 920.46 1224.31 1279.28
5-day swap 562.88 911.48 933.50 1847.16 1893.44
total CPU (sec) 1710.16 2628.43 3222.20 5145.57 5766.49
GRASP Construction 29.62 40.20 51.70 69.45 75.95
Post-processing 0.26 0.34 1.39 0.90 1.25
1-day swap 89.48 111.14 146.22 203.05 281.68
2-day swap 224.62 253.08 436.88 583.07 538.84
3-day swap 290.58 413.55 705.81 918.81 1092.13
4-day swap 395.38 386.85 1001.58 1120.96 1368.11
5-day swap 495.50 550.65 1104.25 1725.25 2051.88
total CPU (sec) 1525.46 1755.84 3447.86 4621.52 5409.87
SWEEP Construction 42.17 44.26 85.97 162.50 156.99
Post-processing 0.29 1.02 1.72 2.12 3.10
1-day swap 117.29 135.88 212.86 281.63 380.72
2-day swap 219.38 408.19 504.39 557.74 805.88
3-day swap 358.89 526.69 754.62 927.09 1464.28
4-day swap 512.56 705.19 1045.16 1225.36 1761.25
5-day swap 470.62 990.50 1279.92 1886.95 2336.49

total CPU (sec) 1721.17 2811.60 3884.66 5043.42

6908.72

oped and tested three heuristics for the VRP with
satellite facilities. In general, the computations
showed that the randomized CW algorithm outper-

formed the GRASP and Modified Sweep algorithm,
but that all three procedures are computationally
sufficient for real-time decision making. In reality,

Routing Distance
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Number of satellite facilities

Fig. 7. Value of satellite facilities.
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the routing component of the IRP has to be re-solved
dynamically from day to day to account for revised
forecasts, actual stockouts or other disturbances to
the system. Obtaining high-quality solutions
quickly is what drives practical applications.

REFERENCES

S. ANILY AND A. FEDERGRUEN, “One Warehouse Multiple
Retailer Systems with Vehicle Routing Costs,” Man-
agement Sci. 36(1), 92-114 (1990).

S. ANILY AND A. FEDERGRUEN, “T'wo-Echelon Distribution
Systems with Vehicle Routing Costs and Central In-
ventories,” Opns. Res. 41, 37—47 (1993).

E. BELTRAMI AND L. BODIN, “Networks and Vehicle Rout-
ing for Municipal Waste Collection,” Networks 4, 65—
94, (1974).

T. W. CHIEN, A. BALAKRISHNAN, and R. T. WONG, “An In-
tegrated Inventory Allocation and Vehicle Routing
Problem,” Transp. Sci. 28, 67-76 (1989).

N. CHRISTOFIDES AND J. E. BEASLEY, “The Period Routing
Problem,” Networks 14, 237-256 (1984).

N. CHRISTOFIDES, A. MiNG0zzI, AND P. TOTH, “Exact Algo-
rithms for the Vehicle Routing Problem, Based on
Spanning Tree and Shortest Path Relaxations,” Math.
Program. 20, 255-282 (1981).

G. CLARKE AND J. W. WRIGHT, “Scheduling of Vehicles
from a Central Depot to a Number of Delivery Points,”
Opns. Res. 12, 568581 (1964).

M. DESROCHERS, J. DESROSIERS, AND M. M. SOLOMON, “A
New Optimization Algorithm for the Vehicle Routing
Problem with Time Windows,” Opns. Res. 40, 342-355
(1992).

M. DrOR AND M. BaLL, “Inventory/Routing: Reduction
from an Annual to a Short-Period Problem,” Naval Res.
Logist. 34, 891-905 {1987).

M. DrOR, M. BaLL, aND B. GOLDEN, “A Computational
Comparison of Algorithms for the Inventory Routing
Problem,” Ann. Opns. Res. 4, 3-23 (1985).

M. DROR, G. LAPORTE, AND P. TRUDEAU, “Vehicle Routing
with Stochastic Demands: Properties and Solution
Frameworks,” Transp. Sci. 23(3), 166—-176 (1989).

M. DROR, AND L. LEVY, “A Vehicle Routing Improvement
Algorithm Comparison of a ‘Greedy’ and a Matching
Implementation for Inventory Routing” Comput. Opns.
Res. 13(1), 33—45 (1986).

M. DroR, AND P. TRUDEAU, “Stochastic Vehicle Routing
with Modified Savings Algorithm,” Eur. J. Oper. Res.
23, 228-235 (1986). ’

A. FEDERGRUEN, AND P. ZIPKIN, “A Combined Vehicle
Routing and Inventory Allocation Problem,” Opns. Res.
32(5), 1019-1037 (1984).

M. L. FiSHER, A.J. GREENFIELD, R. JAIKUMAR, AND P.
KEDIaA, “Real Time Scheduling of a Bulk Delivery Fleet:

THE INVENTORY ROUTING PROBLEM / 203

Practical Application of Lagrangian Relaxation,”
Working paper 82-10-11, Department of Decision Sci-
ence, The Wharton School, University of Pennsylvania,
Philadelphia, 1983.

M. GENDREAU, A. HERTZ, AND G. LAPORTE, “The Tabu
Search Heuristic for the Vehicle Routing Problem,”
Management Sci. 40(10), 1276-1290 (1994).

B. GILLETT AND L. MILLER, “A Heuristic Algorithm for the
Vehicle Dispatch Problem,” Opns. Res. 22, 340-349
(1974).

B. GOLDEN, A. AssaD, AND R. DAHL, “Analysis of a Large
Scale Vehicle Routing Problem with an Inventory
Component,” Large Scale Syst. 7, 181-190 (1984).

M. HamMovicH AND A. H. G. RINNOOY KAN, “Bounds and
Heuristics for Capacitated Routing Problems,” Math.
Opns. Res. 10(4), 527-542 (1985).

L. HUANG, “The Inventory Routing with Satellite Facili-
ties Problem,” PhD. dissertation, College of Business
Administration, University of Texas, Austin, 1997.

P. JauLET, L. HUANG, J. F. BARD, AND M, DROR, “A Rolling
Horizon Framework for the Inventory Routing Prob-
lem,” Working paper, Department of Management Sci-
ence and Information systems, University of Texas,
Austin, 1997.

G. KONTORAVDIS AND J.F. BARD, “A Greedy Random
Adaptive Search Procedure for the Vehicle Routing
Problem with Time Windows,” ORSA J. Comput. 7(1),
10-23 (1995).

G. LAPORTE, “The Vehicle Routing Problem: An Overview
of Exact and Approximate Algorithms,” Eur. . Oper.
Res. 59, 345-358 (1992).

G. LAPORTE, H. MERCURE, AND Y. NOBERT, “Exact Algo-
rithms for the Asymmetrical Capacitated Vehicle
Routing Problem,” Networks 16, 33—46 (1986).

G. LAPORTE, AND Y. NOBERT, “Exact Algorithms for the
Vehicle Routing Problem,” Ann. Discrete Math. 31,
147-184 (1987).

R. C. LARSON, “Transporting Sludge to the 106-Mile Site:
An Inventory/Routing Model for Fleet Sizing and Lo-
gistics System Design,” Transp. Sci. 22(3), 186-198
(1988).

L. LASDON, Optimization Theory for Large System, McMil-
lan, New York, 1970.

S. LiN, “Computer Solutions of the TSP,” Bell Syst. Tech.
J. 44, 2245-2269 (1965).

I. R. WEBB AND R. C. LARSON, “Period and Phase of Cus-
tomer Replenishment: A New Approach to the Strate-
gic Inventory/Routing Problem,” Eur. J. Oper. Res. 85,
132-148 (1995).

A. WREN, Computers in Transport Planning and Opera-
tion, Ian Allan, London, 1971.

(Received: November 1996; revisions received: September 1997;
accepted: November 1997)

Copyright ©2000. All Rights Reserved.



