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Abstract
A fundamental issue in active learning of
Gaussian processes is that of the exploration-
exploitation trade-off. This paper presents a
novel nonmyopic ε-Bayes-optimal active learn-
ing (ε-BAL) approach that jointly and naturally
optimizes the trade-off. In contrast, existing
works have primarily developed myopic/greedy
algorithms or performed exploration and ex-
ploitation separately. To perform active learning
in real time, we then propose an anytime algo-
rithm based on ε-BAL with performance guaran-
tee and empirically demonstrate using synthetic
and real-world datasets that, with limited budget,
it outperforms the state-of-the-art algorithms.

1. Introduction
Active learning has become an increasingly important focal
theme in many environmental sensing and monitoring ap-
plications (e.g., precision agriculture, mineral prospecting
(Low et al., 2007), monitoring of ocean and freshwater phe-
nomena like harmful algal blooms (Dolan et al., 2009; Pod-
nar et al., 2010), forest ecosystems, or pollution) where a
high-resolution in situ sampling of the spatial phenomenon
of interest is impractical due to prohibitively costly sam-
pling budget requirements (e.g., number of deployed sen-
sors, energy consumption, mission time): For such appli-
cations, it is thus desirable to select and gather the most
informative observations/data for modeling and predicting
the spatially varying phenomenon subject to some budget
constraints, which is the goal of active learning and also
known as the active sensing problem.

To elaborate, solving the active sensing problem amounts
to deriving an optimal sequential policy that plans/decides
the most informative locations to be observed for minimiz-
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ing the predictive uncertainty of the unobserved areas of
a phenomenon given a sampling budget. To achieve this,
many existing active sensing algorithms (Cao et al., 2013;
Chen et al., 2012; 2013b; Krause et al., 2008; Low et al.,
2008; 2009; 2011; 2012; Singh et al., 2009) have modeled
the phenomenon as a Gaussian process (GP), which allows
its spatial correlation structure to be formally character-
ized and its predictive uncertainty to be formally quantified
(e.g., based on mean-squared error, entropy, or mutual in-
formation criterion). However, they have assumed the spa-
tial correlation structure (specifically, the parameters defin-
ing it) to be known, which is often violated in real-world
applications, or estimated crudely using sparse prior data.
So, though they aim to select sampling locations that are
optimal with respect to the assumed or estimated parame-
ters, these locations tend to be sub-optimal with respect to
the true parameters, thus degrading the predictive perfor-
mance of the learned GP model.

In practice, the spatial correlation structure of a phe-
nomenon is usually not known. Then, the predictive per-
formance of the GP modeling the phenomenon depends on
how informative the gathered observations/data are for both
parameter estimation as well as spatial prediction given
the true parameters. Interestingly, as revealed in previous
geostatistical studies (Martin, 2001; Müller, 2007), poli-
cies that are efficient for parameter estimation are not nec-
essarily efficient for spatial prediction with respect to the
true model. Thus, the active sensing problem involves a
potential trade-off between sampling the most informative
locations for spatial prediction given the current, possibly
incomplete knowledge of the model parameters (i.e., ex-
ploitation) vs. observing locations that gain more informa-
tion about the parameters (i.e., exploration):

How then does an active sensing algorithm trade off be-
tween these two possibly conflicting sampling objectives?

To tackle this question, one principled approach is to frame
active sensing as a sequential decision problem that jointly
and naturally optimizes the above exploration-exploitation
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trade-off while maintaining a Bayesian belief over the
model parameters. This intuitively means a policy that
biases towards observing informative locations for spatial
prediction given the current model prior may be penalized
if it entails a highly dispersed posterior over the model pa-
rameters. So, the resulting induced policy is guaranteed to
be optimal in the expected active sensing performance. Un-
fortunately, such a nonmyopic Bayes-optimal policy cannot
be derived exactly due to an uncountable set of candidate
observations and unknown model parameters (Solomon &
Zacks, 1970). As a result, most existing works (Diggle,
2006; Houlsby et al., 2012; Park & Pillow, 2012; Zimmer-
man, 2006; Ouyang et al., 2014) have circumvented the
trade-off by resorting to the use of myopic/greedy (hence,
sub-optimal) policies.

To the best of our knowledge, the only notable nonmy-
opic active sensing algorithm for GPs (Krause & Guestrin,
2007) advocates tackling exploration and exploitation sep-
arately, instead of jointly and naturally optimizing their
trade-off, to sidestep the difficulty of solving the Bayesian
sequential decision problem. Specifically, it performs a
probably approximately correct (PAC)-style exploration
until it can verify that the performance loss of greedy ex-
ploitation lies within a user-specified threshold. But, such
an algorithm is sub-optimal in the presence of budget con-
straints due to the following limitations: (a) It is unclear
how an optimal threshold for exploration can be determined
given a sampling budget, and (b) even if such a threshold
is available, the PAC-style exploration is typically designed
to satisfy a worst-case sample complexity rather than to be
optimal in the expected active sensing performance, thus
resulting in an overly-aggressive exploration (Section 4.1).

This paper presents an efficient decision-theoretic planning
approach to nonmyopic active sensing/learning that can
still preserve and exploit the principled Bayesian sequential
decision problem framework for jointly and naturally opti-
mizing the exploration-exploitation trade-off (Section 3.1)
and consequently does not incur the limitations of the al-
gorithm of Krause & Guestrin (2007). In particular, al-
though the exact Bayes-optimal policy to the active sens-
ing problem cannot be derived (Solomon & Zacks, 1970),
we show that it is in fact possible to solve for a nonmy-
opic ε-Bayes-optimal active learning (ε-BAL) policy (Sec-
tions 3.2 and 3.3) given a user-defined bound ε, which is
the main contribution of our work here. In other words, our
proposed ε-BAL policy can approximate the optimal ex-
pected active sensing performance arbitrarily closely (i.e.,
within an arbitrary loss bound ε). In contrast, the algorithm
of Krause & Guestrin (2007) can only yield a sub-optimal
performance bound1. To meet the real-time requirement

1Its induced policy is guaranteed not to achieve worse than the
optimal performance by more than a factor of 1/e.

in time-critical applications, we then propose an asymp-
totically ε-optimal, branch-and-bound anytime algorithm
based on ε-BAL with performance guarantee (Section 3.4).
We empirically demonstrate using both synthetic and real-
world datasets that, with limited budget, our proposed ap-
proach outperforms state-of-the-art algorithms (Section 4).

2. Modeling Spatial Phenomena with
Gaussian Processes (GPs)

The GP can be used to model a spatial phenomenon of in-
terest as follows: The phenomenon is defined to vary as
a realization of a GP. Let X denote a set of sampling lo-
cations representing the domain of the phenomenon such
that each location x ∈ X is associated with a realized (ran-
dom) measurement zx (Zx) if x is observed/sampled (un-
observed). Let ZX , {Zx}x∈X denote a GP, that is, every
finite subset of ZX has a multivariate Gaussian distribution
(Chen et al., 2013a; Rasmussen & Williams, 2006). The
GP is fully specified by its prior mean µx , E[Zx] and
covariance σxx′|λ , cov[Zx, Zx′ |λ] for all x, x′ ∈ X , the
latter of which characterizes the spatial correlation struc-
ture of the phenomenon and can be defined using a covari-
ance function parameterized by λ. A common choice is the
squared exponential covariance function:

σxx′|λ , (σλs )2 exp

(
−1

2

P∑
i=1

(
[sx]i − [sx′ ]i

`λi

)2
)

+(σλn)2δxx′

where [sx]i ([sx′ ]i) is the i-th component of the P -
dimensional feature vector sx (sx′), the set of realized pa-
rameters λ ,

{
σλn, σ

λ
s , `

λ
1 , . . . , `

λ
P

}
∈ Λ are, respectively,

the square root of noise variance, square root of signal vari-
ance, and length-scales, and δxx′ is a Kronecker delta that
is 1 if x = x′ and 0 otherwise.

Supposing λ is known and a set zD of realized measure-
ments is available for some set D ⊂ X of observed lo-
cations, the GP can exploit these observations to predict
the measurement for any unobserved location x ∈ X \ D
as well as provide its corresponding predictive uncertainty
using the Gaussian predictive distribution p(zx|zD, λ) ∼
N (µx|D,λ, σxx|D,λ) with the following posterior mean and
variance, respectively:

µx|D,λ , µx + ΣxD|λΣ−1
DD|λ(zD − µD) (1)

σxx|D,λ , σxx|λ − ΣxD|λΣ−1
DD|λΣDx|λ (2)

where, with a slight abuse of notation, zD is to be perceived
as a column vector in (1), µD is a column vector with mean
components µx′ for all x′ ∈ D, ΣxD|λ is a row vector with
covariance components σxx′|λ for all x′ ∈ D, ΣDx|λ is the
transpose of ΣxD|λ, and ΣDD|λ is a covariance matrix with
components σux′|λ for all u, x′ ∈ D. When the spatial
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correlation structure (i.e., λ) is not known, a probabilistic
belief bD(λ) , p(λ|zD) can be maintained/tracked over all
possible λ and updated using Bayes’ rule to the posterior
belief bD∪{x}(λ) given a newly available measurement zx:

bD∪{x}(λ) ∝ p(zx|zD, λ) bD(λ) . (3)

Using belief bD, the predictive distribution p(zx|zD) can be
obtained by marginalizing out λ:

p(zx|zD) =
∑
λ∈Λ

p(zx|zD, λ) bD(λ) . (4)

3. Nonmyopic ε-Bayes-Optimal Active
Learning (ε-BAL)

3.1. Problem Formulation

To cast active sensing as a Bayesian sequential deci-
sion problem, let us first define a sequential active sens-
ing/learning policy π given a budget of N sampling loca-
tions: Specifically, the policy π , {πn}Nn=1 is structured
to sequentially decide the next location πn(zD) ∈ X \ D
to be observed at each stage n based on the current ob-
servations zD over a finite planning horizon of N stages.
Recall from Section 1 that the active sensing problem in-
volves planning/deciding the most informative locations to
be observed for minimizing the predictive uncertainty of
the unobserved areas of a phenomenon. To achieve this, we
use the entropy criterion (Cover & Thomas, 1991) to mea-
sure the informativeness and predictive uncertainty. Then,
the value under a policy π is defined to be the joint entropy
of its selected observations when starting with some prior
observations zD0

and following π thereafter:

V π1 (zD0) , H[Zπ|zD0 ] , −
∫
p(zπ|zD0) log p(zπ|zD0) dzπ

(5)
where Zπ (zπ) is the set of random (realized) measure-
ments taken by policy π and p(zπ|zD0) is defined in a sim-
ilar manner to (4).

To solve the active sensing problem, the notion of Bayes-
optimality2 is exploited for selecting observations of largest
possible joint entropy with respect to all possible induced
sequences of future beliefs (starting from initial prior be-
lief bD0

) over candidate sets of model parameters λ, as
detailed next. Formally, this entails choosing a sequen-
tial policy π to maximize V π1 (zD0) (5), which we call the
Bayes-optimal active learning (BAL) policy π∗. That is,
V ∗1 (zD0

) , V π
∗

1 (zD0
) = maxπ V

π
1 (zD0

). When π∗ is
plugged into (5), the following N -stage Bellman equations
result from the chain rule for entropy:

2Bayes-optimality is previously studied in reinforcement
learning whose developed theories (Poupart et al., 2006; Hoang
& Low, 2013) cannot be applied here because their assumptions
of discrete-valued observations and Markov property do not hold.

V ∗n (zD) = H
[
Zπ∗n(zD)|zD

]
+E
[
V ∗n+1

(
zD ∪ {Zπ∗n(zD)}

)
|zD
]

= max
x∈X\D

Q∗n(zD, x)

Q∗n(zD, x), H[Zx|zD] + E
[
V ∗n+1(zD ∪ {Zx})|zD

]
H[Zx|zD] , −

∫
p(zx|zD) log p(zx|zD) dzx (6)

for stage n = 1, . . . , N where p(zx|zD) is defined in (4)
and the expectation terms are omitted from the right-hand
side (RHS) expressions of V ∗N and Q∗N at stage N . At each
stage, the belief bD(λ) is needed to compute Q∗n(zD, x)
in (6) and can be uniquely determined from initial prior
belief bD0 and observations zD\D0

using (3). To under-
stand how the BAL policy π∗ jointly and naturally opti-
mizes the exploration-exploitation trade-off, its selected lo-
cation π∗n(zD) = arg maxx∈X\D Q

∗
n(zD, x) at each stage

n affects both the immediate payoff H
[
Zπ∗n(zD)|zD

]
given

current belief bD (i.e., exploitation) as well as the posterior
belief bD∪{π∗n(zD)}, the latter of which influences expected
future payoff E[V ∗n+1(zD ∪ {Zπ∗n(zD)})|zD] and builds in
the information gathering option (i.e., exploration).

Interestingly, the work of Low et al. (2009) has revealed
that the above recursive formulation (6) can be perceived as
the sequential variant of the well-known maximum entropy
sampling problem (Shewry & Wynn, 1987) and established
an equivalence result that the maximum-entropy observa-
tions selected by π∗ achieve a dual objective of minimizing
the posterior joint entropy (i.e., predictive uncertainty) re-
maining in the unobserved locations of the phenomenon.
Unfortunately, the BAL policy π∗ cannot be derived ex-
actly because the stage-wise entropy and expectation terms
in (6) cannot be evaluated in closed form due to an uncount-
able set of candidate observations and unknown model pa-
rameters λ (Section 1). To overcome this difficulty, we
show in the next subsection how it is possible to solve for
an ε-BAL policy πε, that is, the joint entropy of its selected
observations closely approximates that of π∗ within an ar-
bitrary loss bound ε > 0.

3.2. ε-BAL Policy
The key idea underlying the design and construction of our
proposed nonmyopic ε-BAL policy πε is to approximate
the entropy and expectation terms in (6) at every stage us-
ing a form of truncated sampling to be described next:

Definition 1 (τ -Truncated Observation) Define random
measurement Ẑx by truncating Zx at −τ̂ and τ̂ as follows:

Ẑx ,

 −τ̂ if Zx ≤ −τ̂ ,
Zx if − τ̂ < Zx < τ̂,
τ̂ if Zx ≥ τ̂ .

Then, Ẑx has a distribution of mixed type with its contin-
uous component defined as f(Ẑx = zx|zD) , p(Zx =
zx|zD) for −τ̂ < zx < τ̂ and its discrete component de-
fined as f(Ẑx = τ̂ |zD) , P (Zx ≥ τ̂ |zD) =

∫∞
τ̂
p(Zx =
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zx|zD)dzx and f(Ẑx = −τ̂ |zD) , P (Zx ≤ −τ̂ |zD) =∫ −τ̂
−∞ p(Zx = zx|zD)dzx.

Let µ(D,Λ) , maxx∈X\D,λ∈Λ µx|D,λ, µ(D,Λ) ,
minx∈X\D,λ∈Λ µx|D,λ, and

τ̂ , max
(∣∣µ(D,Λ)− τ

∣∣ , |µ(D,Λ) + τ |
)

(7)

for some 0 ≤ τ ≤ τ̂ . Then, a realized measurement of Ẑx
is said to be a τ -truncated observation for location x.

Specifically, given that a set zD of realized measurements is
available, a finite set of S τ -truncated observations {zix}Si=1

can be generated for every candidate location x ∈ X \ D
at each stage n by identically and independently sampling
from p(zx|zD) (4) and then truncating each of them ac-
cording to zix ← zix min

(
|zix|, τ̂

)
/|zix|. These generated τ -

truncated observations can be exploited for approximating
V ∗n (6) through the following Bellman equations:

V εn(zD) , max
x∈X\D

Qεn(zD, x)

Qεn(zD, x) ,
1

S

S∑
i=1

− log p
(
zix|zD

)
+ V εn+1

(
zD ∪

{
zix
})(8)

for stage n = 1, . . . , N such that there is no V εN+1

term on the RHS expression of QεN at stage N . Like
the BAL policy π∗ (Section 3.1), the location πεn(zD) =
arg maxx∈X\D Q

ε
n(zD, x) selected by our ε-BAL policy

πε at each stage n also jointly and naturally optimizes the
trade-off between exploitation (i.e., by maximizing imme-
diate payoff S−1

∑S
i=1− log p(ziπεn(zD)|zD) given the cur-

rent belief bD) vs. exploration (i.e., by improving poste-
rior belief bD∪{πεn(zD)} to maximize average future payoff
S−1

∑S
i=1 V

ε
n+1(zD ∪{ziπεn(zD)})). Unlike the determinis-

tic BAL policy π∗, our ε-BAL policy πε is stochastic due
to its use of the above truncated sampling procedure.

3.3. Theoretical Analysis
The main difficulty in analyzing the active sensing per-
formance of our stochastic ε-BAL policy πε (i.e., relative
to that of BAL policy π∗) lies in determining how its ε-
Bayes optimality can be guaranteed by choosing appropri-
ate values of the truncated sampling parameters S and τ
(Section 3.2). To achieve this, we have to formally under-
stand how S and τ can be specified and varied in terms of
the user-defined loss bound ε, budget of N sampling lo-
cations, domain size |X | of the phenomenon, and proper-
ties/parameters characterizing the spatial correlation struc-
ture of the phenomenon (Section 2), as detailed below.

The first step is to show thatQεn (8) is in fact a good approx-
imation ofQ∗n (6) for some chosen values of S and τ . There
are two sources of error arising in such an approximation:
(a) In the truncated sampling procedure (Section 3.2), only
a finite set of τ -truncated observations is generated for ap-
proximating the stage-wise entropy and expectation terms

in (6), and (b) computing Qεn does not involve utilizing the
values of V ∗n+1 but that of its approximation V εn+1 instead.
To facilitate capturing the error due to finite truncated sam-
pling described in (a), the following intermediate function
is introduced:

W ∗n(zD, x) ,
1

S

S∑
i=1

− log p
(
zix|zD

)
+ V ∗n+1

(
zD ∪ {zix}

)
(9)

for stage n = 1, . . . , N such that there is no V ∗N+1 term on
the RHS expression ofW ∗N at stageN . The first lemma be-
low reveals that if the error |Q∗n(zD, x) −W ∗n(zD, x)| due
to finite truncated sampling can be bounded for all tuples
(n, zD, x) generated at stage n = n′, . . . , N by (8) to com-
pute V εn′ for 1 ≤ n′ ≤ N , then Qεn′ (8) can approximate
Q∗n′ (6) arbitrarily closely:

Lemma 1 Suppose that a set zD′ of observations, a budget
ofN−n′+1 sampling locations for 1 ≤ n′ ≤ N , S ∈ Z+,
and γ > 0 are given. If

|Q∗n(zD, x)−W ∗n(zD, x)| ≤ γ (10)

for all tuples (n, zD, x) generated at stage n = n′, . . . , N
by (8) to compute V εn′(zD′), then, for all x′ ∈ X \ D′,

|Q∗n′(zD′ , x′)−Qεn′(zD′ , x′)| ≤ (N − n′ + 1)γ . (11)

Its proof is given in Appendix A.1. The next two lemmas
show that, with high probability, the error |Q∗n(zD, x) −
W ∗n(zD, x)| due to finite truncated sampling can indeed be
bounded from above by γ (10) for all tuples (n, zD, x) gen-
erated at stage n = n′, . . . , N by (8) to compute V εn′ for
1 ≤ n′ ≤ N :

Lemma 2 Suppose that a set zD′ of observations, a budget
ofN−n′+1 sampling locations for 1 ≤ n′ ≤ N , S ∈ Z+,
and γ > 0 are given. For all tuples (n, zD, x) generated at
stage n = n′, . . . , N by (8) to compute V εn′(zD′),

P
(
|Q∗n(zD, x)−W ∗n(zD, x)| ≤ γ

)
≥ 1−2 exp

(
−2Sγ2

T 2

)
where T ,O

(
N2κ2Nτ2

σ2
n

+N log
σo
σn

+log |Λ|
)

by setting

τ =O

σo
√

log

(
σ2
o

γ

(
N2κ2N+σ2

o

σ2
n

+N log
σo
σn

+log |Λ|
))

with κ, σ2
n, and σ2

o defined as follows:

κ, 1 + 2 max
x′,u∈X\D:x′ 6=u,λ∈Λ,D

∣∣σx′u|D,λ∣∣ /σuu|D,λ, (12)

σ2
n , min

λ∈Λ
(σλn)2, and σ2

o , max
λ∈Λ

(σλs )2 + (σλn)2. (13)

Refer to Appendix A.2 for its proof.

Remark 1. Deriving such a probabilistic bound in Lemma 2
typically involves the use of concentration inequalities for
the sum of independent bounded random variables like the
Hoeffding’s, Bennett’s, or Bernstein’s inequalities. How-
ever, since the originally Gaussian distributed observations
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are unbounded, sampling from p(zx|zD) (4) without trun-
cation will generate unbounded versions of {zix}Si=1 and
consequently make each summation term− log p(zix|zD)+
V ∗n+1(zD ∪ {zix}) on the RHS expression of W ∗n (9) un-
bounded, hence invalidating the use of these concentration
inequalities. To resolve this complication, our trick is to
exploit the truncated sampling procedure (Section 3.2) to
generate bounded τ -truncated observations (Definition 1)
(i.e., |zix| ≤ τ̂ for i = 1, . . . , S), thus resulting in each
summation term − log p(zix|zD) +V ∗n+1(zD ∪{zix}) being
bounded (Appendix A.2). This enables our use of Hoeffd-
ing’s inequality to derive the probabilistic bound.

Remark 2. It can be observed from Lemma 2 that the
amount of truncation has to be reduced (i.e., higher cho-
sen value of τ ) when (a) a tighter bound γ on the error
|Q∗n(zD, x)−W ∗n(zD, x)| due to finite truncated sampling
is desired, (b) a greater budget of N sampling locations
is available, (c) a larger space Λ of candidate model pa-
rameters is preferred, (d) the spatial phenomenon varies
with more intensity and less noise (i.e., assuming all can-
didate signal and noise variance parameters, respectively,
(σλs )2 and (σλn)2 are specified close to the true large sig-
nal and small noise variances), and (e) its spatial corre-
lation structure yields a bigger κ. To elaborate on (e),
note that Lemma 2 still holds for any value of κ larger
than that set in (12): Since |σx′u|D,λ|2 ≤ σx′x′|D,λσuu|D,λ
for all x′ 6= u ∈ X \ D due to the symmetric positive-
definiteness of Σ(X\D)(X\D)|D,λ, κ can be set to 1 +

2 maxx′,u∈X\D,λ∈Λ,D
√
σx′x′|D,λ/σuu|D,λ. Then, sup-

posing all candidate length-scale parameters are specified
close to the true length-scales, a phenomenon with extreme
length-scales tending to 0 (i.e., with white-noise process
measurements) or ∞ (i.e., with constant measurements)
will produce highly similar σx′x′|D,λ for all x′ ∈ X \ D,
thus resulting in smaller κ and hence smaller τ .

Remark 3. Alternatively, it can be proven that Lemma 2
and the subsequent results hold by setting κ = 1 if a cer-
tain structural property of the spatial correlation structure
(i.e., for all zD (D ⊆ X ) and λ ∈ Λ, ΣDD|λ is diagonally
dominant) is satisfied, as shown in Lemma 9 (Appendix B).
Consequently, the κ term can be removed from T and τ .

Lemma 3 Suppose that a set zD′ of observations, a bud-
get of N − n′ + 1 sampling locations for 1 ≤ n′ ≤ N ,
S ∈ Z+, and γ > 0 are given. The probability that
|Q∗n(zD, x) − W ∗n(zD, x)| ≤ γ (10) holds for all tuples
(n, zD, x) generated at stage n = n′, . . . , N by (8) to com-
pute V εn′(zD′) is at least 1 − 2(S|X |)N exp(−2Sγ2/T 2)
where T is previously defined in Lemma 2.

Its proof is found in Appendix A.3. The first step is con-
cluded with our first main result, which follows from Lem-
mas 1 and 3. Specifically, it chooses the values of S and
τ such that the probability of Qεn (8) approximating Q∗n

(6) poorly (i.e., |Q∗n(zD, x) − Qεn(zD, x)| > Nγ) can be
bounded from above by a given 0 < δ < 1:

Theorem 1 Suppose that a set zD of observations, a bud-
get of N − n + 1 sampling locations for 1 ≤ n ≤ N ,
γ > 0, and 0 < δ < 1 are given. The probability that
|Q∗n(zD, x) − Qεn(zD, x)| ≤ Nγ holds for all x ∈ X \ D
is at least 1− δ by setting

S = O
(
T 2

γ2

(
N log

N |X |T 2

γ2
+log

1

δ

))
where T is previously defined in Lemma 2. By assumingN ,
|Λ|, σo, σn, κ, and |X | as constants, τ = O(

√
log(1/γ))

and hence S = O

(
(log (1/γ))

2

γ2
log

(
log (1/γ)

γδ

))
.

Its proof is provided in Appendix A.4.

Remark. It can be observed from Theorem 1 that the num-
ber of generated τ -truncated observations has to be in-
creased (i.e., higher chosen value of S) when (a) a lower
probability δ of Qεn (8) approximating Q∗n (6) poorly (i.e.,
|Q∗n(zD, x)−Qεn(zD, x)| > Nγ) is desired, and (b) a larger
domain X of the phenomenon is given. The influence of γ,
N , |Λ|, σo, σn, and κ on S is similar to that on τ , as previ-
ously reported in Remark 2 after Lemma 2.

Thus far, we have shown in the first step that, with high
probability, Qεn (8) approximates Q∗n (6) arbitrarily closely
for some chosen values of S and τ (Theorem 1). The next
step uses this result to probabilistically bound the perfor-
mance loss in terms of Q∗n by observing location πεn(zD)
selected by our ε-BAL policy πε at stage n and following
the BAL policy π∗ thereafter:

Lemma 4 Suppose that a set zD of observations, a bud-
get of N − n + 1 sampling locations for 1 ≤ n ≤ N ,
γ > 0, and 0 < δ < 1 are given. Q∗n(zD, π

∗
n(zD)) −

Q∗n(zD, π
ε
n(zD)) ≤ 2Nγ holds with probability at least

1− δ by setting S and τ according to that in Theorem 1.

See Appendix A.5 for its proof. The final step extends
Lemma 4 to obtain our second main result. In particular,
it bounds the expected active sensing performance loss of
our stochastic ε-BAL policy πε relative to that of BAL pol-
icy π∗, that is, policy πε is ε-Bayes-optimal:

Theorem 2 Given a set zD0
of prior observations, a bud-

get of N sampling locations, and ε > 0, V ∗1 (zD0
) −

Eπε [V π
ε

1 (zD0
)] ≤ ε by setting and substituting γ =

ε/(4N2) and δ = ε/(2N(N log(σo/σn) + log |Λ|)) into
S and τ in Theorem 1 to give τ = O(

√
log(1/ε)) and

S = O

(
(log (1/ε))

2

ε2
log

(
log (1/ε)

ε2

))
.

Its proof is given in Appendix A.6.

Remark 1. The number of generated τ -truncated observa-
tions and the amount of truncation have to be, respectively,
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increased and reduced (i.e., higher chosen values of S and
τ ) when a tighter user-defined loss bound ε is desired.

Remark 2. The deterministic BAL policy π∗ is Bayes-
optimal among all candidate stochastic policies π since
Eπ[V π1 (zD0)] ≤ V ∗1 (zD0), as proven in Appendix A.7.

3.4. Anytime ε-BAL (〈α, ε〉-BAL) Algorithm

Unlike the BAL policy π∗, our ε-BAL policy πε can be de-
rived exactly because its time complexity is independent of
the size of the set of all possible originally Gaussian dis-
tributed observations, which is uncountable. But, the cost
of deriving πε is exponential in the length N of planning
horizon since it has to compute the values V εn(zD) (8) for
all (S|X |)N possible states (n, zD). To ease this computa-
tional burden, we propose an anytime algorithm based on
ε-BAL that can produce a good policy fast and improve its
approximation quality over time, as discussed next.

The key intuition behind our anytime ε-BAL algorithm
(〈α, ε〉-BAL of Algo. 1) is to focus the simulation of greedy
exploration paths through the most uncertain regions of the
state space (i.e., in terms of the values V εn(zD)) instead of
evaluating the entire state space like πε. To achieve this,
our 〈α, ε〉-BAL algorithm maintains both lower and upper
heuristic bounds (respectively, V εn(zD) and V

ε

n(zD)) for
each encountered state (n, zD), which are exploited for rep-
resenting the uncertainty of its corresponding value V εn(zD)
to be used in turn for guiding the greedy exploration (or,
put differently, pruning unnecessary, bad exploration of the
state space while still guaranteeing policy optimality).

To elaborate, each simulated exploration path (EXPLORE
of Algo. 1) repeatedly selects a sampling location x and
its corresponding τ -truncated observation zix at every stage
until the last stage N is reached. Specifically, at each stage
n of the simulated path, the next states (n+ 1, zD ∪ {zix})
with uncertainty |V εn+1(zD∪{zix})−V

ε
n+1(zD∪{zix})| ex-

ceeding α (line 6) are identified (lines 7-8), among which
the one with largest lower bound V εn+1(zD ∪ {zix}) (line
10) is prioritized/selected for exploration (if more than one
exists, ties are broken by choosing the one with most uncer-
tainty, that is, largest upper bound V

ε

n+1(zD ∪ {zix}) (line
11)) while the remaining unexplored ones are placed in the
set U (line 12) to be considered for future exploration (lines
3-6 in 〈α, ε〉-BAL). So, the simulated path terminates if the
uncertainty of every next state is at most α; the uncertainty
of a state at the last stage N is guaranteed to be zero (14).

Then, the algorithm backtracks up the path to up-
date/tighten the bounds of previously visited states (line 7
in 〈α, ε〉-BAL and line 14 in EXPLORE) as follows:

V
ε

n(zD)← min

(
V
ε

n(zD), max
x∈X\D

Q
ε

n(zD, x)

)
V εn(zD)← max

(
V εn(zD), max

x∈X\D
Qε
n
(zD, x)

) (14)

Algorithm 1 〈α, ε〉-BAL(zD0
)

〈α, ε〉-BAL
(
zD0

)
1: U ←

{
(1, zD0

)
}

2: while |V ε1
(
zD0

)
− V ε1

(
zD0

)
| > α do

3: V ← arg max(n,zD)∈U V
ε
n(zD)

4:
(
n
′
, zD′

)
← arg max(n,zD)∈V V

ε
n(zD)

5: U ← U \
{(
n′, zD′

)}
6: EXPLORE(n′, zD′ ,U) /∗ U is passed by reference ∗/
7: UPDATE(n′, zD′ )

8: return π〈α,ε〉1

(
zD0

)
← arg maxx∈X\D0

Qε
1
(zD0

, x)

EXPLORE(n, zD,U)

1: T ← ∅
2: for all x ∈ X \ D do
3: {zix}

S
i=1 ← sample from p(zx|zD) (4)

4: for i = 1, . . . , S do
5: zix ← zix min

(
|zix|, τ̂

)
/|zix|

6: if |V εn+1

(
zD ∪

{
zix
})
− V εn+1

(
zD ∪

{
zix
})
| > α then

7: T ← T ∪
{(
n+ 1, zD ∪

{
zix
})}

8: parent
(
n+ 1, zD ∪

{
zix
})
← (n, zD)

9: if |T | > 0 then
10: V ← arg max(n+1,zD∪{zix})∈T

V εn+1

(
zD ∪

{
zix
})

11: (n+ 1, zD′ )← arg max(n+1,zD∪{zix})∈V
V
ε
n+1

(
zD ∪

{
zix
})

12: U ← U ∪ (T \ {(n+ 1, zD′ )})
13: EXPLORE(n+ 1, zD′ ,U)

14:Update V εn(zD) and V εn(zD) using (14)

UPDATE(n, zD)

1: Update V εn(zD) and V εn(zD) using (14)
2: if n > 1 then
3: (n− 1, zD′ )← parent(n, zD)
4: UPDATE(n− 1, zD′ )

Q
ε

n(zD, x) ,
1

S

S∑
i=1

− log p
(
zix|zD

)
+ V

ε

n+1

(
zD ∪

{
zix
})

Qε
n
(zD, x) ,

1

S

S∑
i=1

− log p
(
zix|zD

)
+ V εn+1

(
zD ∪

{
zix
})

for stage n = 1, . . . , N such that there is no V
ε

N+1

(V εN+1) term on the RHS expression of Q
ε

N (Qε
N

) at stage
N . When the planning time runs out, we provide the
greedy policy induced by the lower bound: π〈α,ε〉1 (zD0

) ,
arg maxx∈X\D0

Qε
1
(zD0

, x) (line 8 in 〈α, ε〉-BAL).

Central to the anytime performance of our 〈α, ε〉-BAL
algorithm is the computational efficiency of deriving in-
formed initial heuristic bounds V εn(zD) and V

ε

n(zD) where
V εn(zD) ≤ V εn(zD) ≤ V

ε

n(zD). Due to lack of space,
we have shown in Appendix A.8 how they can be derived
efficiently. We have also derived a theoretical guarantee
similar to that of Theorem 2 on the expected active sens-
ing performance of our 〈α, ε〉-BAL policy π〈α,ε〉, as shown
in Appendix A.9. We have analyzed the time complexity
of simulating k exploration paths in our 〈α, ε〉-BAL algo-
rithm to be O(kNS|X |(|Λ|(N3 + |X |N2 + S|X |) + ∆ +
log(kNS|X |))) (Appendix A.10) whereO(∆) denotes the
cost of initializing the heuristic bounds at each state. In
practice, 〈α, ε〉-BAL’s planning horizon can be shortened to
reduce its computational cost further by limiting the depth
of each simulated path to strictly less than N . In that case,
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although the resulting π〈α,ε〉’s performance has not been
theoretically analyzed, Section 4.1 demonstrates empiri-
cally that it outperforms the state-of-the-art algorithms.

4. Experiments and Discussion
This section evaluates the active sensing performance and
time efficiency of our 〈α, ε〉-BAL policy π〈α,ε〉 (Sec-
tion 3) empirically under limited sampling budget using
two datasets featuring a simple, simulated spatial phe-
nomenon (Section 4.1) and a large-scale, real-world traffic
phenomenon (i.e., speeds of road segments) over an urban
road network (Section 4.2). All experiments are run on a
Mac OS X machine with Intel Core i7 at 2.66 GHz.

4.1. Simulated Spatial Phenomenon

The domain of the phenomenon is discretized into a finite
set of sampling locations X = {0, 1, . . . , 99}. The phe-
nomenon is a realization of a GP (Section 2) parameterized
by λ∗ = {σλ∗n = 0.25, σλ

∗

s = 10.0, `λ
∗

= 1.0}. For sim-
plicity, we assume that σλ

∗

n and σλ
∗

s are known, but the
true length-scale `λ

∗
= 1 is not. So, a uniform prior belief

bD0=∅ is maintained over a set L = {1, 6, 9, 12, 15, 18, 21}
of 7 candidate length-scales `λ. Using root mean squared
prediction error (RMSPE) as the performance metric, the
performance of our 〈α, ε〉-BAL policies π〈α,ε〉 with plan-
ning horizon length N ′ = 2, 3 and α = 1.0 are com-
pared to that of the state-of-the-art GP-based active learn-
ing algorithms: (a) The a priori greedy design (APGD)
policy (Shewry & Wynn, 1987) iteratively selects and
adds arg maxx∈X\Sn

∑
λ∈Λ bD0(λ)H[ZSn∪{x}|zD0 , λ] to

the current set Sn of sampling locations (where S0 = ∅)
until SN is obtained, (b) the implicit exploration (IE) pol-
icy greedily selects and observes sampling location xIE =
arg maxx∈X\D

∑
λ∈Λ bD(λ)H[Zx|zD, λ] and updates the

belief from bD to bD∪{xIE} over L; if the upper bound on
the performance advantage of using π∗ over APGD pol-
icy is less than a pre-defined threshold, it will use APGD
with the remaining sampling budget, and (c) the explicit
exploration via independent tests (ITE) policy performs a
PAC-based binary search, which is guaranteed to find `λ

∗

with high probability, and then uses APGD to select the
remaining locations to be observed.

Both nonmyopic IE and ITE policies are proposed by
Krause & Guestrin (2007): IE is reported to incur the low-
est prediction error empirically while ITE is guaranteed not
to achieve worse than the optimal performance by more
than a factor of 1/e. Fig. 1a shows results of the active
sensing performance of the tested policies averaged over 20
realizations of the phenomenon drawn independently from
the underlying GP model described earlier. It can be ob-
served that the RMSPE of every tested policy decreases
with a larger budget of N sampling locations. Notably,
our 〈α, ε〉-BAL policies perform better than the APGD, IE,
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Figure 1. Graphs of (a) RMSPE of APGD, IE, ITE, and 〈α, ε〉-
BAL policies with planning horizon length N ′ = 2, 3 vs. budget
of N sampling locations, (b) stage-wise online processing cost of
〈α, ε〉-BAL policy with N ′ = 3 and (c) gap between V

ε
1(zD0)

and V ε1(zD0) vs. number of simulated paths.

and ITE policies, especially when N is small. The perfor-
mance gap between our 〈α, ε〉-BAL policies and the other
policies decreases as N increases, which intuitively means
that, with a tighter sampling budget (i.e., smaller N ), it is
more critical to strike a right balance between exploration
and exploitation.

Fig. 2 shows the stage-wise sampling designs produced by
the tested policies with a budget of N = 15 sampling
locations. It can be observed that our 〈α, ε〉-BAL policy
achieves a better balance between exploration and exploita-
tion and can therefore discern `λ

∗
much faster than the IE

and ITE policies while maintaining a fine spatial coverage
of the phenomenon. This is expected due to the following
issues faced by IE and ITE policies: (a) The myopic explo-
ration of IE tends not to observe closely-spaced locations
(Fig. 2a), which are in fact informative towards estimat-
ing the true length-scale, and (b) despite ITE’s theoretical
guarantee in finding `λ

∗
, its PAC-style exploration is too

aggressive, hence completely ignoring how informative the
posterior belief bD over L is during exploration. This leads
to a sub-optimal exploration behavior that reserves too lit-
tle budget for exploitation and consequently entails a poor
spatial coverage, as shown in Fig. 2b.

Our 〈α, ε〉-BAL policy can resolve these issues by jointly
and naturally optimizing the trade-off between observing
the most informative locations for minimizing the predic-
tive uncertainty of the phenomenon (i.e., exploitation) vs.
the uncertainty surrounding its length-scale (i.e., explo-
ration), hence enjoying the best of both worlds (Fig. 2c). In
fact, we notice that, after observing 5 locations, our 〈α, ε〉-
BAL policy can focus 88.10% of its posterior belief on
`λ
∗

while IE only assigns, on average, about 18.65% of its
posterior belief on `λ

∗
, which is hardly more informative

than the prior belief bD0(`λ
∗
) = 1/7 ≈ 14.28%. Finally,

Fig. 1b shows that the online processing cost of 〈α, ε〉-BAL
per sampling stage grows linearly in the number of sim-
ulated paths while Fig. 1c reveals that its approximation
quality improves (i.e., gap between V

ε

1(zD0
) and V ε1(zD0

)
decreases) with increasing number of simulated paths. In-
terestingly, it can be observed from Fig. 1c that although
〈α, ε〉-BAL needs about 800 simulated paths (i.e., 400 s)
to close the gap between V

ε

1(zD0) and V ε1(zD0), V ε1(zD0)
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Figure 2. Stage-wise sampling designs produced by (a) IE, (b) ITE, and (c) 〈α, ε〉-BAL policy with a planning horizon length N ′ = 3
using a budget of N = 15 sampling locations. The final sampling designs are depicted in the bottommost rows of the figures.

only takes about 100 simulated paths (i.e., 50 s). This im-
plies the actual computation time needed for 〈α, ε〉-BAL to
reach V ε1 (zD0

) (via its lower bound V ε1(zD0
)) is much less

than that required to verify the convergence of V ε1(zD0) to
V ε1 (zD0) (i.e., by checking the gap). This is expected since
〈α, ε〉-BAL explores states with largest lower bound first
(Section 3.4).

4.2. Real-World Traffic Phenomenon
Fig. 3a shows the traffic phenomenon (i.e., speeds (km/h)
of road segments) over an urban road network X compris-
ing 775 road segments (e.g., highways, arterials, slip roads,
etc.) in Tampines area, Singapore during lunch hours on
June 20, 2011. The mean speed is 52.8 km/h and the stan-
dard deviation is 21.0 km/h. Each road segment x ∈ X
is specified by a 4-dimensional vector of features: length,
number of lanes, speed limit, and direction. The phe-
nomenon is modeled as a relational GP (Chen et al., 2012)
whose correlation structure can exploit both the road seg-
ment features and road network topology information. The
true parameters λ∗ = {σλ∗n , σλ

∗

s , `λ
∗} are set as the maxi-

mum likelihood estimates learned using the entire dataset.
We assume that σλ

∗

n and σλ
∗

s are known, but `λ
∗

is not.
So, a uniform prior belief bD0=∅ is maintained over a set
L = {`λi}6i=0 of 7 candidate length-scales `λ0 = `λ

∗
and

`λi = 2(i+ 1)`λ
∗

for i = 1, . . . , 6.

The performance of our 〈α, ε〉-BAL policies with planning
horizon length N ′ = 3, 4, 5 are compared to that of APGD
and IE policies (Section 4.1) by running each of them on
a mobile probe to direct its active sensing along a path
of adjacent road segments according to the road network
topology; ITE cannot be used here as it requires observ-
ing road segments separated by a pre-computed distance
during exploration (Krause & Guestrin, 2007), which vio-
lates the topological constraints of the road network since
the mobile probe cannot “teleport”. Fig. 3 shows results
of the tested policies averaged over 5 independent runs: It
can be observed from Fig. 3b that our 〈α, ε〉-BAL policies
outperform APGD and IE policies due to their nonmyopic
exploration behavior. In terms of the total online process-
ing cost, Fig. 3c shows that 〈α, ε〉-BAL incurs < 4.5 hours
given a budget of N = 240 road segments, which can be
afforded by modern computing power. To illustrate the be-
havior of each policy, Figs. 3d-f show, respectively, the
road segments observed (shaded in black) by the mobile
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Figure 3. (a) Traffic phenomenon (i.e., speeds (km/h) of road seg-
ments) over an urban road network in Tampines area, Singapore,
graphs of (b) RMSPE of APGD, IE, and 〈α, ε〉-BAL policies with
horizon lengthN ′ = 3, 4, 5 and (c) total online processing cost of
〈α, ε〉-BAL policies with N ′ = 3, 4, 5 vs. budget of N segments,
and (d-f) road segments observed (shaded in black) by respective
APGD, IE, and 〈α, ε〉-BAL policies (N ′ = 5) with N = 60.

probe running APGD, IE, and 〈α, ε〉-BAL policies with
N ′ = 5 given a budget of N = 60. It can be observed
from Figs. 3d-e that both APGD and IE cause the probe to
move away from the slip roads and highways to low-speed
segments whose measurements vary much more smoothly;
this is expected due to their myopic exploration behavior.
In contrast, 〈α, ε〉-BAL nonmyopically plans the probe’s
path and can thus direct it to observe the more informative
slip roads and highways with highly varying measurements
(Fig. 3f) to achieve better performance.

5. Conclusion
This paper describes and theoretically analyzes an ε-BAL
approach to nonmyopic active learning of GPs that can
jointly and naturally optimize the exploration-exploitation
trade-off. We then provide an anytime 〈α, ε〉-BAL algo-
rithm based on ε-BAL with real-time performance guaran-
tee and empirically demonstrate using synthetic and real-
world datasets that, with limited budget, it outperforms the
state-of-the-art GP-based active learning algorithms.
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A. Proofs of Main Results
A.1. Proof of Lemma 1

We will give a proof by induction on n that

|Q∗n(zD, x)−Qεn(zD, x)| ≤ (N − n+ 1)γ (15)

for all tuples (n, zD, x) generated at stage n = n′, . . . , N
by (8) to compute V εn′(zD′). When n = N , W ∗N (zD, x) =
QεN (zD, x) in (10), by definition. So, |Q∗N (zD, x) −
QεN (zD, x)| ≤ γ (15) trivially holds for the base case. Sup-
posing (15) holds for n+ 1 (i.e., induction hypothesis), we
will prove that it holds for n′ ≤ n < N :

|Q∗n(zD, x)−Qεn(zD, x)|
≤ |Q∗n(zD, x)−W ∗n(zD, x)|+ |W ∗n(zD, x)−Qεn(zD, x)|
≤ γ + |W ∗n(zD, x)−Qεn(zD, x)|
≤ γ + (N − n)γ
= (N − n+ 1)γ .

The first and second inequalities follow from the triangle
inequality and (10), respectively. The last inequality is due
to

|W ∗n(zD, x)−Qεn(zD, x)|

≤ 1

S

S∑
i=1

∣∣V ∗n+1(zD ∪ {zix})− V εn+1(zD ∪ {zix})
∣∣

≤ 1

S

S∑
i=1

max
x′

∣∣Q∗n+1(zD ∪ {zix}, x′)−Qεn+1(zD ∪ {zix}, x′)
∣∣

≤ (N − n)γ

such that the last inequality follows from the induction hy-
pothesis.

From (15), when n = n′, |Q∗n′(zD′ , x)−Qεn′(zD′ , x)| ≤
(N − n′ + 1)γ for all x ∈ X \ D′ since D = D′ and
zD = zD′ . �

A.2. Proof of Lemma 2

Let

W i
n(zD, x) , − log p(zix|zD) + V ∗n+1(zD ∪ {zix}) .

Then, W ∗n(zD, x) = S−1
∑S
i=1W

i
n(zD, x) can be viewed

as an empirical mean computed based on the random sam-
ples W i

n(zD, x) drawn from a distribution whose mean co-
incides with

Q̂n(zD, x) , Ĥ[Ẑx|zD] + E[V ∗n+1(zD ∪ {Ẑx})|zD]

Ĥ[Ẑx|zD] , −
∫ τ̂

−τ̂
f(Ẑx = zx|zD) log p(Zx = zx|zD)dzx

−f(Ẑx = −τ̂ |zD) log p(Zx = −τ̂ |zD)

−f(Ẑx = τ̂ |zD) log p(Zx = τ̂ |zD)
(16)

such that the expectation term is omitted from the RHS ex-
pression of Q̂N at stage N , and recall from Definition 1
that f and p are distributions of Ẑx and Zx, respectively.
Using Hoeffding’s inequality,∣∣∣∣∣Q̂n(zD, x)− 1

S

S∑
i=1

W i
n(zD, x)

∣∣∣∣∣ ≤ γ

2

with probability at least 1− 2 exp(−Sγ2/
(
2(W −W )2

)
)

where W and W are upper and lower bounds of
W i
n(zD, x), respectively. To determine these bounds, note

that |zix| ≤ τ̂ , by Definition 1, and |µx|D,λ| ≤ τ̂ − τ , by
(7). Consequently, 0 ≤ (zix − µx|D,λ)2 ≤ (2τ̂ − τ)2 ≤
(2NκN−1τ − τ)2 = (2NκN−1 − 1)2τ2 such that the last
inequality follows from Lemma 7. Together with using
Lemma 6, the following result ensues:

1√
2πσ2

n

≥ p(zix|zD, λ)≥ 1√
2πσ2

o

exp

(
−(2NκN−1 − 1)2τ2

2σ2
n

)
where σ2

n and σ2
o are previously defined in (13). It follows

that

p(zix|zD) =
∑
λ∈Λ

p(zix|zD, λ) bD(λ)

≥
∑
λ∈Λ

[
1√

2πσ2
o

exp

(
−(2NκN−1 − 1)2τ2

2σ2
n

)]
bD(λ)

=
1√

2πσ2
o

exp

(
−(2NκN−1 − 1)2τ2

2σ2
n

)
.

Similarly, p(zix|zD) ≤ 1/
√

2πσ2
n. Then,

− log p(zix|zD)≤ 1

2
log
(
2πσ2

o

)
+

(2NκN−1 − 1)2τ2

2σ2
n

,

− log p(zix|zD)≥ 1

2
log
(
2πσ2

n

)
.

By Lemma 10,
N − n

2
log
(
2πeσ2

n

)
≤ V ∗n+1(zD ∪{zix}) ≤

N − n
2

log
(
2πeσ2

o

)
+ log |Λ|. Consequently,

∣∣W −W ∣∣≤ N log

(
σo
σn

)
+

(2NκN−1 − 1)2τ2

2σ2
n

+ log |Λ|

= O
(
N2κ2Nτ2

σ2
n

+N log
σo
σn

+ log |Λ|
)
.

Finally, using Lemma 16, |Q∗n(zD, x)− Q̂n(zD, x)| ≤ γ/2
by setting

τ = O

(
σo

√
log

(
σ2
o

γ

(
N2κ2N+σ2

o

σ2
n

+N log
σo
σn

+log |Λ|
)))

,

thereby guaranteeing that

|Q∗n(zD, x)−W ∗n(zD, x)|
≤ |Q∗n(zD, x)− Q̂n(zD, x)|+ |Q̂n(zD, x)−W ∗n(zD, x)|
≤ γ

2
+
γ

2
= γ
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with probability at least 1− 2 exp
(
−2Sγ2/T 2

)
where

T = 2
∣∣W−W ∣∣ = O

(
N2κ2Nτ2

σ2
n

+N log
σo
σn

+log |Λ|
)
. �

A.3. Proof of Lemma 3

From Lemma 2,

P (|Q∗n(zD, x)−W ∗n(zD, x)| > γ) ≤ 2 exp

(
−2Sγ2

T 2

)
for each tuple (n, zD, x) generated at stage n = n′, . . . , N
by (8) to compute V εn′(zD′). Since there will be no more
than (S|X |)N tuples (n, zD, x) generated at stage n =
n′, . . . , N by (8) to compute V εn′(zD′), the probability that
|Q∗n(zD, x) − W ∗n(zD, x)| > γ for some generated tuple
(n, zD, x) is at most 2(S|X |)N exp(−2Sγ2/T 2) by apply-
ing the union bound. Lemma 3 then directly follows. �

A.4. Proof of Theorem 1

Suppose that a set zD of observations, a budget ofN−n+1
sampling locations, S ∈ Z+, and γ > 0 are given. It fol-
lows immediately from Lemmas 1 and 3 that the probabil-
ity of |Q∗n(zD, x)−Qεn(zD, x)| ≤ Nγ (11) holding for all
x ∈ X \ D is at least

1− 2 (S |X |)N exp

(
−2Sγ2

T 2

)
where T is previously defined in Lemma 2.

To guarantee that |Q∗n(zD, x) − Qεn(zD, x)| ≤ Nγ (11)
holds for all x ∈ X \ D0 with probability at least 1 − δ,
the value of S to be determined must therefore satisfy the
following inequality:

1− 2 (S |X |)N exp

(
−2Sγ2

T 2

)
≥ 1− δ ,

which is equivalent to

S ≥ T 2

2γ2

(
N logS +N log |X |+ log

2

δ

)
. (17)

Using the identity logS ≤ αS − logα − 1 with an appro-
priate choice of α = γ2/(NT 2), the RHS expression of
(17) can be bounded from above by

S

2
+
T 2

2γ2

(
N log

N |X |T 2

eγ2
+ log

2

δ

)
.

Therefore, to satisfy (17), it suffices to determine the value
of S such that the following inequality holds:

S ≥ S

2
+
T 2

2γ2

(
N log

N |X |T 2

eγ2
+ log

2

δ

)

by setting

S =
T 2

γ2

(
N log

N |X |T 2

eγ2
+ log

2

δ

)
(18)

where T , O
(
N2κ2Nτ2

σ2
n

+N log
σo
σn

+log |Λ|
)

by setting

τ =O

(
σo

√
log

(
σ2
o

γ

(
N2κ2N+σ2

o

σ2
n

+N log
σo
σn

+log |Λ|
)))

,

as defined in Lemma 2 previously. By assuming σo, σn,
|Λ|, N , κ, and |X | as constants, τ = O(

√
log(1/γ)), thus

resulting in T = O(log(1/γ)). Consequently, (18) can be
reduced to

S = O


(

log
(

1
γ

))2

γ2
log

 log
(

1
γ

)
γδ


 . �

A.5. Proof of Lemma 4

Theorem 1 implies that (a) Q∗n(zD, π
∗
n(zD)) −

Q∗n(zD, π
ε
n(zD)) ≤ Q∗n(zD, π

∗
n(zD))−Qεn(zD, π

ε
n(zD))+

Nγ and (b) Q∗n(zD, π
∗
n(zD)) − Qεn(zD, π

ε
n(zD)) ≤

maxx∈X\D |Q∗n(zD, x) − Qεn(zD, x)| ≤ Nγ. By combin-
ing (a) and (b), Q∗n(zD, π

∗
n(zD)) − Q∗n(zD, π

ε
n(zD)) ≤

Nγ +Nγ = 2Nγ holds with probability at least 1− δ by
setting S and τ according to that in Theorem 1. �

A.6. Proof of Theorem 2

By Lemma 4, Q∗n(zD, π
∗
n(zD)) − Q∗n(zD, π

ε
n(zD)) ≤

2Nγ holds with probability at least 1 − δ. Otherwise,
Q∗n(zD, π

∗
n(zD)) − Q∗n(zD, π

ε
n(zD)) > 2Nγ with prob-

ability at most δ. In the latter case,

Q∗n(zD, π
∗
n(zD))−Q∗n(zD, π

ε
n(zD))

≤ (N − n+ 1) log

(
σo
σn

)
+ log |Λ|

≤ N log

(
σo
σn

)
+ log |Λ|

(19)

where the first inequality in (19) follows from (a)
Q∗n(zD, π

∗
n(zD)) = V ∗n (zD) ≤ 0.5(N − n +

1) log(2πeσ2
o) + log |Λ|, by Lemma 10, and (b)

Q∗n(zD, π
ε
n(zD))

= H[Zπεn(zD)|zD] + E
[
V ∗n+1(zD ∪ {Zπεn(zD)})|zD

]
≥ 1

2
log
(
2πeσ2

n

)
+

1

2
(N − n) log

(
2πeσ2

n

)
=

1

2
(N − n+ 1) log

(
2πeσ2

n

)
(20)

such that the inequality in (20) is due to Lemmas 10 and
11, and the last inequality in (19) holds because σo ≥ σn,
by definition in (13) (hence, log (σo/σn) ≥ 0). Recall that
πε is a stochastic policy (instead of a deterministic policy
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like π∗) due to its use of the truncated sampling procedure
(Section 3.2), which implies πεn(zD) is a random variable.
As a result,

Eπεn(zD)[Q
∗
n(zD, π

∗
n(zD))−Q∗n(zD, π

ε
n(zD))]

≤ (1− δ) (2Nγ) + δ

(
N log

(
σo
σn

)
+ log |Λ|

)
≤ 2Nγ + δ

(
N log

(
σo
σn

)
+ log |Λ|

) (21)

where the expectation is with respect to random variable
πε(zD) and the first inequality follows from Lemma 4 and
(19). Using

Eπεn(zD)[Q
∗
n(zD, π

∗
n(zD))−Q∗n(zD, π

ε
n(zD))]

= V ∗n (zD)− Eπεn(zD)[Q
∗
n(zD, π

ε(zD))]

and

Eπεn(zD)[Q
∗
n (zD, π

ε
n(zD))]

= Eπεn(zD)

[
H[Zπεn(zD)|zD]+E

[
V ∗n+1

(
zD ∪ {Zπεn(zD)}

)
|zD
]]
,

(21) therefore becomes

V ∗n (zD)− Eπεn(zD)

[
H[Zπεn(zD)|zD]

]
≤ Eπεn(zD)

[
E
[
V ∗n+1

(
zD ∪ {Zπεn(zD)}

)
|zD
]]

+

2Nγ + δ

(
N log

(
σo
σn

)
+ log |Λ|

) (22)

such that there is no expectation term on the RHS expres-
sion of (22) when n = N .

From (5), V π1 (zD0
) can be expanded into the following re-

cursive formulation using chain rule for entropy:

V πn (zD) = H
[
Zπn(zD)|zD

]
+E
[
V πn+1

(
zD ∪ {Zπn(zD)}

)
|zD
]

(23)
for stage n = 1, . . . , N where the expectation term is omit-
ted from the RHS expression of V πN at stage N .

Using (22) and (23) above, we will now give a proof by
induction on n that

V ∗n (zD)− E{πεi}Ni=n
[
V π

ε

n (zD)
]

≤ (N − n+ 1)

(
2Nγ + δ

(
N log

(
σo
σn

)
+ log |Λ|

))
.

(24)
When n = N ,

V ∗N (zD)− E{πεN}
[
V π

ε

N (zD)
]

= V ∗N (zD)− EπεN (zD)

[
H[ZπεN (zD)|zD]

]
≤ 2Nγ + δ

(
N log

(
σo
σn

)
+ log |Λ|

)
such that the equality is due to (23) and the inequality fol-
lows from (22). So, (24) holds for the base case. Suppos-
ing (24) holds for n+1 (i.e., induction hypothesis), we will

prove that it holds for n < N :

V ∗n (zD)− E{πεi}Ni=n
[
V π

ε

n (zD)
]

= V ∗n (zD)− Eπεn(zD)

[
H
[
Zπεn(zD)|zD

]]
−

Eπεn(zD)

[
E
[
E{πεi}Ni=n+1

[
V π

ε

n+1

(
zD ∪ {Zπεn(zD)}

)] ∣∣∣zD]]
≤ Eπεn(zD)

[
E
[
V ∗n+1

(
zD ∪ {Zπεn(zD)}

)
|zD
]]

+

2Nγ + δ

(
N log

(
σo
σn

)
+ log |Λ|

)
−

Eπεn(zD)

[
E
[
E{πεi}Ni=n+1

[
V π

ε

n+1

(
zD ∪ {Zπεn(zD)}

)] ∣∣∣zD]]
= Eπεn(zD)

[
E
[
V ∗n+1

(
zD ∪ {Zπεn(zD)}

)
−

E{πεi}Ni=n+1

[
V π

ε

n+1

(
zD ∪ {Zπεn(zD)}

)] ∣∣∣zD]]
+ 2Nγ + δ

(
N log

(
σo
σn

)
+ log |Λ|

)
≤ (N − n)

(
2Nγ + δ

(
N log

(
σo
σn

)
+ log |Λ|

))
+ 2Nγ + δ

(
N log

(
σo
σn

)
+ log |Λ|

)
= (N − n+ 1)

(
2Nγ + δ

(
N log

(
σo
σn

)
+ log |Λ|

))
.

such that the first equality is due to (23), and the first and
second inequalities follow from (22) and induction hypoth-
esis, respectively.

From (24), when n = 1,

V ∗1 (zD)− Eπε
[
V π

ε

1 (zD)
]

= V ∗1 (zD)− E{πεi}Ni=1

[
V π

ε

1 (zD)
]

≤ N
(

2Nγ + δ

(
N log

(
σo
σn

)
+ log |Λ|

))
.

Let ε = N(2Nγ + δ(N log(σo/σn) + log |Λ|)) by setting
γ = ε/(4N2) and δ = ε/(2N(N log(σo/σn) + log |Λ|)).
As a result, from Lemma 4, τ = O(

√
log(1/ε)) and

S = O

((
log
(

1
ε

))2
ε2

log

(
log
(

1
ε

)
ε2

))
.

Theorem 2 then follows. �

A.7. Proof of Theorem 3

Theorem 3 Let π be any stochastic policy. Then,
Eπ[V π1 (zD0

)] ≤ V ∗1 (zD0
).

Proof. We will give a proof by induction on n that

E{πi}Ni=n [V πn (zD)] ≤ V ∗n (zD) . (25)

When n = N ,

E{πN}[V
π
N (zD)] = EπN (zD)[H[ZπN (zD)|zD]]

≤ EπN (zD)[ max
x∈X\D

H[Zx|zD]]

= EπN (zD)[V
∗
N (zD)]

= V ∗N (zD)
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such that the first and second last equalities are due to (23)
and (6), respectively. So, (25) holds for the base case. Sup-
posing (25) holds for n+ 1 (i.e., induction hypothesis), we
will prove that it holds for n < N :

E{πi}Ni=n [V πn (zD)]

= Eπn(zD)

[
H
[
Zπn(zD)|zD

]]
+

Eπn(zD)

[
E
[
E{πi}Ni=n+1

[
V πn+1

(
zD ∪ {Zπn(zD)}

)] ∣∣∣zD]]
≤ Eπn(zD)

[
H
[
Zπn(zD)|zD

]]
+

Eπn(zD)

[
E
[
V ∗n+1

(
zD ∪ {Zπn(zD)}

) ∣∣∣zD]]
≤ Eπn(zD)

[
max
x∈X\D

H[Zx|zD] + E
[
V ∗n+1(zD ∪ {Zx})|zD

]]
= Eπn(zD)[V

∗
n (zD)]

= V ∗n (zD)

such that the first and second last equalities are, respec-
tively, due to (23) and (6), and the first inequality follows
from the induction hypothesis. �

A.8. Initializing Informed Heuristic Bounds

Due to the use of the truncated sampling procedure (Sec-
tion 3.2), computing informed initial heuristic bounds for
V εn(zD) is infeasible without expanding from its corre-
sponding state to all possible states in the subsequent stages
n+1, . . . , N , which we want to avoid. To resolve this issue,
we instead derive informed bounds V εn(zD) and V

ε

n(zD)
that satisfy

V εn(zD) ≤ V εn(zD) ≤ V εn(zD) . (26)

with high probability: Using Theorem 1, |V ∗n (zD) −
V εn(zD)| ≤ maxx∈X\D |Q∗n(zD, x) − Qεn(zD, x)| ≤
Nγ, which implies V ∗n (zD) − Nγ ≤ V εn(zD) ≤
V ∗n (zD) + Nγ with probability at least 1 − δ. V ∗n (zD)
can at least be naively bounded using the uninformed,
domain-independent lower and upper bounds given in
Lemma 10. In practice, domain-dependent bounds V ∗n(zD)

and V
∗
n(zD) (i.e., V ∗n(zD) ≤ V ∗n (zD) ≤ V

∗
n(zD))

tend to be more informed and we will show in Theo-
rem 4 below how they can be derived efficiently. So,
by setting V εn(zD) = V ∗n(zD) − Nγ and V

ε

n(zD) =

V
∗
n(zD) + Nγ for n < N and V εN (zD) = V

ε

N (zD) =

maxx∈X\D S
−1
∑S
i=1− log p(zix|zD), (26) holds with

probability at least 1− δ.

Theorem 4 Given a set zD of observations and a space
Λ of parameters λ, define the a priori greedy design with
unknown parameters as the set Sn of n ≥ 1 sampling loca-

tions where

S0 , ∅

Sn , Sn−1 ∪

{
arg max
x∈X

∑
λ∈Λ

bD(λ) H[ZSn−1∪{x}|zD, λ]

−
∑
λ∈Λ

bD(λ) H[ZSn−1 |zD, λ]

}
.

(27)
Similarly, define the a priori greedy design with known pa-
rameters λ as the set Sλn of n ≥ 1 sampling locations where

Sλ0 , ∅
Sλn , Sλn−1 ∪

{
arg max
x∈X

H[ZSλn−1∪{x}|zD, λ]

− H[ZSλn−1
|zD, λ]

}
.

(28)

Then,

H[Z{π∗i }Ni=N−n+1
|zD]≥

∑
λ∈Λ

bD(λ) H[ZSn |zD, λ]

H[Z{π∗i }Ni=N−n+1
|zD]≤

∑
λ∈Λ

bD(λ)

[
e

e− 1
H[ZSλn |zD, λ]+

nr

e− 1

]
+ H[Λ]

(29)
where

{π∗i }Ni=N−n+1 = arg max
{πi}Ni=N−n+1

H[Z{πi}Ni=N−n+1
|zD] ,

Λ denotes the set of random parameters cor-
responding to the realized parameters λ, and
r = −min(0, 0.5 log(2πeσ2

n)) ≥ 0.

Remark. V ∗N−n+1(zD) = H[Z{π∗i }Ni=N−n+1
|zD], by

definition. Hence, the lower and upper bounds of
H[Z{π∗i }Ni=N−n+1

|zD] (29) constitute informed domain-
dependent bounds for V ∗N−n+1(zD) that can be derived ef-
ficiently since both Sn (27) and {Sλn}λ∈Λ (28) can be com-
puted in polynomial time with respect to the interested vari-
ables.

Proof. To prove the lower bound,

H[Z{π∗i }Ni=N−n+1
|zD]

= max
{πi}Ni=N−n+1

H[Z{πi}Ni=N−n+1
|zD]

≥ max
{πi}Ni=N−n+1

∑
λ∈Λ

bD(λ) H[Z{πi}Ni=N−n+1
|zD, λ]

≥ max
S⊆X :|S|=n

∑
λ∈Λ

bD(λ) H[ZS |zD, λ]

≥
∑
λ∈Λ

bD(λ) H[ZSn |zD, λ] .

The first inequality follows from the monotonicity
of conditional entropy (i.e., “information never hurts”
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bound) (Cover & Thomas, 1991). The second
inequality holds because the optimal set S∗ ,
arg maxS⊆X :|S|=n

∑
λ∈Λ bD(λ) H[ZS |zD, λ] is an opti-

mal a priori design (i.e., non-sequential) that does not per-
form better than the optimal sequential policy π∗ (Krause
& Guestrin, 2007). The third inequality is due to definition
of Sn.

To prove the upper bound,

H[Z{π∗i }Ni=N−n+1
|zD]

≤
∑
λ∈Λ

bD(λ) max
S⊆X :|S|=n

H[ZS |zD, λ] + H[Λ]

≤
∑
λ∈Λ

bD(λ)

[
e

e− 1
H[ZSλn |zD, λ] +

nr

e− 1

]
+ H[Λ]

such that the first inequality is due to Theorem 1 of Krause
& Guestrin (2007), and the second inequality follows from
Lemma 18. �

A.9. Performance Guarantee of 〈α,ε〉-BAL Policy π〈α,ε〉

Lemma 5 Suppose that a set zD of observations, a budget
of N − n + 1 sampling locations for 1 ≤ n ≤ N , γ > 0,
0 < δ < 1, and α > 0 are given. Q∗n(zD, π

∗
n(zD)) −

Q∗n(zD, π
〈α,ε〉
n (zD)) ≤ 2(Nγ + α) holds with probability

at least 1− δ by setting S and τ according to that in Theo-
rem 1.

Proof. When our 〈α, ε〉-BAL algorithm terminates,
|V ε1(zD0

) − V ε1(zD0
)| ≤ α, which implies |V ε1 (zD0

) −
V ε1(zD0

)| ≤ α. By Theorem 1, since |V ∗1 (zD0
) −

V ε1 (zD0)| ≤ maxx∈X\D0
|Q∗n(zD0 , x) − Qεn(zD0 , x)| ≤

Nγ, |V ∗1 (zD0) − V ε1(zD0)| ≤ |V ∗1 (zD0) − V ε1 (zD0)| +
|V ε1 (zD0

) − V ε1(zD0
)| ≤ Nγ + α with probability at least

1 − δ. In general, given that the length of planning hori-
zon is reduced to N − n + 1 for 1 ≤ n ≤ N , the above
inequalities are equivalent to

|V εn(zD)− V εn(zD)| ≤ α
|V ∗n (zD)− V εn(zD)|
=
∣∣∣Q∗n(zD0

, π∗n(zD))−Qε
n
(zD, π

〈α,ε〉
n (zD))

∣∣∣ ≤ Nγ + α

(30)
by increasing/shifting the indices of V ε1 , V ε1, and V ∗1 above
from 1 to n so that these value functions start at stage n
instead.

Q∗n(zD, π
∗
n(zD))−Q∗n(zD, π

〈α,ε〉
n (zD))

= Q∗n(zD, π
∗
n(zD))−Qε

n
(zD, π

〈α,ε〉
n (zD)) +

Qε
n
(zD, π

〈α,ε〉
n (zD))−Qεn(zD, π

〈α,ε〉
n (zD)) +

Qεn(zD, π
〈α,ε〉
n (zD))−Q∗n(zD, π

〈α,ε〉
n (zD))

≤ Nγ + α+
1

S

S∑
i=1

(
V εn+1(zD ∪ {ziπ〈α,ε〉n (zD)

}) −

V εn+1(zD ∪ {ziπ〈α,ε〉n (zD)
})
)

+Nγ

≤ 2(Nγ + α)

where the inequalities follow from (8), (14), (30), and The-
orem 1. �

Theorem 5 Given a set zD0
of prior observations, a

budget of N sampling locations, α > 0, and ε >

4Nα, V ∗1 (zD0
) − Eπ〈α,ε〉 [V π

〈α,ε〉

1 (zD0
)] ≤ ε by setting

and substituting γ = ε/(4N2) and δ = (ε/(2N) −
2α)/(N log(σo/σn) + log |Λ|) into S and τ in The-
orem 1 to give τ = O(

√
log(1/ε)) and S =

O

(
(log (1/ε))

2

ε2
log

(
log (1/ε)

ε(ε− α)

))
.

Proof Sketch. The proof follows from Lemma 5 and is sim-
ilar to that of Theorem 2. �

A.10. Time Complexity of 〈α, ε〉-BAL Algorithm

Suppose that our 〈α, ε〉-BAL algorithm runs k simulated
exploration paths during its lifetime where k actually de-
pends on the available time for planning. Then, since each
exploration path has at mostN stages and each stage gener-
ates at most S|X | states, there will be at mostO(kNS|X |)
states generated during the whole lifetime of our 〈α, ε〉-
BAL algorithm. So, to analyze the overall time complexity
of our 〈α, ε〉-BAL algorithm, the processing cost at each
state is first quantified, which, according to EXPLORE of
Algorithm 1, includes the cost of sampling (lines 2-5), ini-
tializing (line 6) and updating the corresponding heuristic
bounds (line 14). In particular, the cost of sampling at
each state involves training the GPs (i.e.,O(N3)) and com-
puting the predictive distributions using (1) and (2) (i.e.,
O(|X |N2)) for each set of realized parameters λ ∈ Λ and
the cost of generating S|X | samples from a mixture of |Λ|
Gaussian distributions (i.e., O(|Λ|S|X |)) by assuming that
drawing a sample from a Gaussian distribution consumes a
unit processing cost. This results in a total sampling com-
plexity of O(|Λ|(N3 + |X |N2 + S|X |)).

Now, letO(∆) denote the processing cost of initializing the
heuristic bounds at each state, which depends on the actual
bounding scheme being used. The total processing cost at
each state is thereforeO(|Λ|(N3 + |X |N2 +S|X |) + ∆ +
S|X |) where the last term corresponds to the cost of up-
dating bounds by (14). In addition, to search for the most
potential state to explore in O(1) at each stage (lines 10-
11), the set of unexplored states is maintained in a priority
queue (line 12) using the corresponding exploration crite-
rion, thus incurring an extra management cost (i.e., updat-
ing the queue) of O(log(kNS|X |)). That is, the total time
complexity of simulating k exploration paths in our 〈α, ε〉-
BAL algorithm isO(kNS|X |(|Λ|(N3 + |X |N2 +S|X |)+
∆ + log(kNS|X |))).
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B. Proofs of Auxiliary Results
Lemma 6 For all zD, x ∈ X \ D, and λ =
{σλn, σλs , `λ1 , . . . , `λP } ∈ Λ (Section 2), σ2

n ≤ σxx|D,λ ≤ σ2
o

where σ2
n and σ2

o are defined in (13).

Proof. Lemma 6 of Cao et al. (2013) implies (σλn)2 ≤
σxx|D,λ ≤ (σλs )2 + (σλn)2, from which Lemma 6 directly
follows. �

Lemma 7 Let [−τ̂ , τ̂ ] ([−τ̂ ′, τ̂ ′]) denote the support of the
distribution of Ẑx (Ẑx′) for all x ∈ X \ D (x′ ∈ X \ (D ∪
{x})) at stage n (n+ 1) for n = 1, . . . , N − 1. Then,

τ̂ ′ ≤ κτ̂ − κ− 3

2
τ (31)

where κ is previously defined in (12). Without loss of gener-
ality, assuming µx|D0,λ = 0 for all x ∈ X \D0 and λ ∈ Λ,
τ̂ ≤ nκn−1τ at stage n = 1, . . . , N .

Proof. By Definition 1, since |µx′|D,λ| ≤ τ̂ − τ , |zix| ≤ τ̂ ,
and |µx|D,λ| ≤ τ̂−τ , it follows from (12) and the following
property of Gaussian posterior mean

µx′|D∪{x},λ = µx′|D,λ + σx′x|D,λσ
−1
xx|D,λ(zix − µx|D,λ)

that |µx′|D∪{x},λ| ≤ κτ̂ − 0.5(κ − 1)τ . Consequently,
|minx′∈X\(D∪{x}),λ∈Λ µx′|D∪{x},λ − τ | ≤ κτ̂ − 0.5(κ −
3)τ and |maxx′∈X\(D∪{x}),λ∈Λ µx′|D∪{x},λ + τ | ≤ κτ̂ −
0.5(κ− 3)τ . Then, τ̂ ′ ≤ κτ̂ − 0.5(κ− 3)τ , by (7).

Since µx|D0,λ = 0 for all x ∈ X \ D0 and λ ∈ Λ, τ̂ = τ at
stage n = 1, by (7). If κ ≥ 3, then it follows from (31) that
τ̂ ′ ≤ κτ̂−0.5(κ−3)τ ≤ κτ̂ since 0 ≤ 0.5(κ−3) ≤ κ and
0 ≤ τ ≤ τ̂ . As a result, τ̂ ≤ κn−1τ at stage n = 1, . . . , N .
Otherwise (i.e., 1 ≤ κ < 3), τ̂ ′ ≤ κτ̂ + 0.5(3 − κ)τ ≤
κτ̂ + τ since 0 < 0.5(3 − κ) ≤ 1. Consequently, τ̂ ≤∑n−1
i=0 κ

iτ ≤ nκn−1τ at stage n = 1, . . . , N . �

Definition 2 (Diagonally Dominant ΣDD|λ) Given zD
(D ⊆ X ) and λ ∈ Λ, ΣDD|λ is said to be diagonally
dominant if

σxx|λ ≥
(√
|D| − 1 + 1

) ∑
x′∈D\{x}

σxx′|λ

for any x ∈ D. Furthermore, since σxx|λ =
(
σλs
)2

+
(
σλn
)2

for all x ∈ X ,

σxx|λ ≥
(√
|D| − 1 + 1

)
max
u∈D

∑
x′∈D\{u}

σux′|λ .

Lemma 8 Without loss of generality, assume that µx = 0
for all x ∈ X . For all zD (D ⊆ X ), λ ∈ Λ, and η > 0, if
ΣDD|λ is diagonally dominant (Definition 2) and |zu| ≤ η
for all u ∈ D, then |µx|D,λ| ≤ η for all x ∈ X \ D.

Proof. Since µx = 0 for all x ∈ X ,

µx|D,λ = ΣxD|λΣ−1
DD|λzD . (32)

Since Σ−1
DD|λ is a symmetric, positive-definite matrix, there

exists an orthonormal basis comprising the eigenvectors
E , [e1 e2 . . . e|D|] (e>i ei = 1 and e>i ej = 0 for
i 6= j) and their associated positive eigenvalues Ψ−1 ,
Diag[ψ−1

1 , ψ−1
2 , . . . , ψ−1

|D|] such that Σ−1
DD|λ = EΨ−1E>

(i.e., spectral theorem). Denote {αi}|D|i=1 and {βi}|D|i=1 as
the sets of coefficients when ΣDx|λ and zD are projected
on E, respectively. (32) can therefore be rewritten as

µx|D,λ =

 |D|∑
i=1

αie
>
i

Σ−1
DD|λ

 |D|∑
i=1

βiei


=

 |D|∑
i=1

αie
>
i

 |D|∑
i=1

βi

(
Σ−1
DD|λei

)
=

 |D|∑
i=1

αie
>
i

 |D|∑
i=1

βiψ
−1
i ei


=

|D|∑
i=1

αiβiψ
−1
i . (33)

From (33), µ2
x|D,λ =

(∑|D|
i=1 αiβiψ

−1
i

)2

≤

ψ−2
min

(∑|D|
i=1 α

2
i

)(∑|D|
i=1 β

2
i

)
= ψ−2

min

∥∥ΣxD|λ
∥∥2

2
‖zD‖22

with ψmin , min
|D|
i=1 ψi, which can be bounded from

below by applying Gershgorin circle theorem for ΣDD|λ:

ψmin ≥ min
u∈D

(
σuu|λ −RλD(u)

)
= σxx|λ −max

u∈D
RλD(u)

≥
(√
|D|+ 1

)
max

u∈D∪{x}
RλD∪{x}(u)−max

u∈D
RλD(u)

where RλD(u) ,
∑
x′∈D\{u} σux′|λ, the first equal-

ity follows from the fact that σuu|λ =
(
σλs
)2

+(
σλn
)2

= σxx|λ for all u, x ∈ X , and the sec-
ond inequality holds because Σ(D∪{x})(D∪{x})|λ is as-
sumed to be diagonally dominant (Definition 2). On the
other hand, since x /∈ D, RλD∪{x}(u) = RλD(u) +

σux|λ ≥ RλD(u) for all u ∈ D, which immediately im-
plies maxu∈D∪{x}R

λ
D∪{x}(u) ≥ maxu∈D R

λ
D∪{x}(u) ≥

maxu∈D R
λ
D(u). Plugging this into the above inequal-

ity, ψmin ≥
(√
|D|+ 1

)
maxu∈D∪{x}R

λ
D∪{x}(u) −

maxu∈D R
λ
D(u) ≥

√
|D|maxu∈D∪{x}R

λ
D∪{x}(u) ≥√

|D|RλD∪{x}(x). Since ‖ΣxD|λ‖2 =
√∑

u∈D σ
2
xu|λ ≤∑

u∈D σxu|λ = RλD∪{x}(x), it follows that ψmin ≥
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|D|‖ΣxD|λ‖2 or, equivalently, ψ2

min ≥ |D|‖ΣxD|λ‖22,
which implies µ2

x|D,λ ≤ ψ−2
min‖ΣxD|λ‖22‖zD‖22 ≤

|D|−1‖zD‖22 ≤ |D|−1|D|η2 = η2 where the last inequality
holds due to the fact that |zu| ≤ η for all u ∈ D. Hence,
|µx|D,λ| ≤ η. �

Lemma 9 Let [−τ̂max, τ̂max] and [−τ̂ , τ̂ ] denote the largest
support of the distributions of Ẑx for all x ∈ X \ D at
stages 1, 2, . . . , n and the support of the distribution of Ẑx
for all x ∈ X \ D at stage n + 1 for n = 1, 2, . . . , N − 1,
respectively. Suppose that D0 = ∅ and, without loss of
generality, µx = 0 for all x ∈ X . For all zD (D ⊆ X )
and λ ∈ Λ, if ΣDD|λ is diagonally dominant (Definition 2),
then τ̂ ≤ τ̂max + τ . Consequently, τ̂ ≤ nτ at stage n =
1, . . . , N .

Remark. If ΣDD|λ is diagonally dominant (Definition 2),
then Lemma 9 provides a tighter bound on τ̂ (i.e., τ̂ ≤ nτ )
than Lemma 7 that does not involve κ. In fact, it coincides
exactly with the bound derived in Lemma 7 by setting κ =
1. By using this bound (instead of Lemma 7’s bound) in the
proof of Lemma 2 (Appendix A.2), it is easy to see that the
probabilistic bound in Lemma 2 and its subsequent results
hold by setting κ = 1.

Proof. Since [−τ̂max, τ̂max] is the largest support of the dis-
tributions of Ẑx for all x ∈ X \ D at stages 1, 2, . . . , n,
|zix| ≤ τ̂max for all x ∈ X \ D at stages 1, 2, . . . , n,
by Definition 1. Therefore, at stage n + 1, |zu| ≤ τ̂max
for all u ∈ D. By Lemma 8, |µx|D,λ| ≤ τ̂max for all
x ∈ X \ D and λ ∈ Λ at stage n + 1, which conse-
quently implies |minx∈X\D,λ∈Λ µx|D,λ − τ | ≤ τ̂max + τ
and |maxx∈X\D,λ∈Λ µx|D,λ + τ | ≤ τ̂max + τ . Then, it
follows from (7) that τ̂ ≤ τ̂max + τ at stage n + 1 for
n = 1, . . . , N − 1.

Since D0 = ∅, µx|D0,λ = µx = 0. Then, τ̂ = τ at
stage 1, by (7). Consequently, τ̂ ≤ nτ at stage n =
1, 2, . . . , N . �

Lemma 10 For all zD and n = 1, . . . , N ,

V ∗n (zD)≤ 1

2
(N − n+ 1) log

(
2πeσ2

o

)
+ log |Λ| ,

V ∗n (zD)≥ 1

2
(N − n+ 1) log

(
2πeσ2

n

)
where σ2

n and σ2
o are previously defined in (13).

Proof. By definition (6), V ∗n (zD) = H[Z{π∗i }Ni=n |zD]. Us-
ing Theorem 1 of Krause & Guestrin (2007),

H[Z{π∗i }Ni=n |zD]≤
∑
λ∈Λ

bD(λ) max
|A|=N−n+1

H[ZA|zD, λ]+H[Λ]

=
∑
λ∈Λ

bD(λ) H[ZAλ |zD, λ] + H[Λ]

(34)

where Λ denotes the set of random parameters correspond-
ing to the realized parameters λ, A,Aλ ⊆ X \ D, Aλ ,
arg max|A|=N−n+1 H[ZA|zD, λ], and

H[ZA|zD, λ] , −
∫
p(zA|zD, λ) log p(zA|zD, λ) dzA

=
1

2
log
(

(2πe)
|A| ∣∣ΣAA|D,λ∣∣)

(35)
such that ΣAA|D,λ is a posterior covariance matrix with
components σxx′|D,λ for all x, x′ ∈ A. Furthermore,

H[ZAλ |zD, λ]≤
∑
x∈Aλ

H[Zx|zD, λ]

=
1

2

∑
x∈Aλ

log
(
2πeσxx|D,λ

)
≤ |A

λ|
2

log
(
2πeσ2

o

)
=
N − n+ 1

2
log
(
2πeσ2

o

)
(36)

where H[Zx|zD, λ] is defined in a similar manner as (35).
Substituting (36) back into (34),

V ∗n (zD) = H[Z{π∗i }Ni=n |zD]

≤ N − n+ 1

2
log
(
2πeσ2

o

)
+ H[Λ]

≤ N − n+ 1

2
log
(
2πeσ2

o

)
+ log |Λ|

where the last inequality follows from the fact that the en-
tropy of a discrete distribution is maximized when the dis-
tribution is uniform.

On the other hand, from (6),

V ∗n (zD) = H
[
Zπ∗n(zD)|zD

]
+E
[
V ∗n+1

(
zD ∪ {Zπ∗n(zD)}

)∣∣∣zD]
≥ 1

2
log
(
2πeσ2

n

)
+E
[
V ∗n+1

(
zD ∪ {Zπ∗n(zD)}

)∣∣∣zD]
(37)

where the inequality is due to Lemma 11. Then, the lower
bound of V ∗n (zD) can be proven by induction using (37),
as detailed next. When n = N (i.e., base case), V ∗N (zD) =
H[Zπ∗N (zD)|zD] ≥ 0.5 log

(
2πeσ2

n

)
, by Lemma 11. Sup-

posing V ∗n+1(zD) ≥ 0.5(N − n) log
(
2πeσ2

n

)
for n < N

(i.e., induction hypothesis), V ∗n (zD) ≥ 0.5(N − n +
1) log

(
2πeσ2

n

)
, by (37). �

Lemma 11 For all zD and x ∈ X \ D,

H[Zx|zD] ≥ 1

2
log
(
2πeσ2

n

)
.

where σ2
n is previously defined in (13).

Proof. Using the monotonicity of conditional entropy
(i.e., “information never hurts” bound) (Cover & Thomas,
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1991),

H[Zx|zD]≥
∑
λ∈Λ

bD(λ) H[Zx|zD, λ]

=
1

2

∑
λ∈Λ

bD(λ) log
(
2πeσxx|D,λ

)
≥ 1

2

∑
λ∈Λ

bD(λ) log
(
2πeσ2

n

)
=

1

2
log
(
2πeσ2

n

)
where H[Zx|zD, λ] is defined in a similar manner as (35)
and the last inequality holds due to Lemma 6. �

Lemma 12 For all zD and x ∈ X \ D,∫
|zx|≥τ̂

p(zx|zD) dzx ≤ 2Φ

(
− τ

σo

)
where Φ denotes the cumulative distribution function of
N (0, 1) and σo is previously defined in (13).

Proof. From (4),∫
|zx|≥τ̂

p(zx|zD) dzx

=
∑
λ∈Λ

bD(λ)

∫
|zx|≥τ̂

p(zx|zD, λ) dzx

=
∑
λ∈Λ

bD(λ)

∫
|yx+µx|D,λ|≥τ̂

p(yx|zD, λ) dyx

≤
∑
λ∈Λ

bD(λ)

∫
|yx|≥τ

p(yx|zD, λ) dyx

= 2
∑
λ∈Λ

bD(λ) Φ

(
− τ
√
σxx|D,λ

)
≤ 2Φ

(
− τ

σo

)
where, in the second equality, yx , zx − µx|D,λ and
hence p(yx|zD, λ) ∼ N (0, σxx|D,λ), the first inequality
follows from {yx| |yx + µx|D,λ| ≥ τ̂} ⊆ {yx| |yx| ≥ τ}
since |µx|D,λ| ≤ τ̂ − τ due to (7), the last equality is
due to the identity

∫
|y|≥τ p(y) dy = 2Φ(−τ/σ) such that

p(y) ∼ N (0, σ2), and the last inequality follows from the
fact that Φ is an increasing function and σxx|D,λ ≤ σ2

o due
to Lemma 6. �

Lemma 13∫
|y−µ|≥τ

y2 p(y) dy

= 2
(
σ2 + µ2

)
Φ
(
− τ
σ

)
+ στ

√
2

π
exp

(
− τ2

2σ2

)
where p(y) ∼ N (µ, σ2) and Φ denotes the cumulative dis-
tribution function of N (0, 1).

Proof. Consider p(x) ∼ N (0, σ2). Then,∫
|x|≥τ

x2 p(x) dx= σ2 −
∫ τ

−τ
x2 p(x) dx

= σ2 − 2σ2

√
π

∫ τ√
2σ

− τ√
2σ

z2e−z
2

dz
(38)

where the last equality follows by setting z , x/(
√

2σ).
Then, using the following well-known identity:∫ b

a

z2e−z
2

dz =
1

4

(√
π erf(z)− 2ze−z

2
) ∣∣∣b

a

for the second term on the RHS expression of (38),∫ τ

−τ
x2 p(x) dx

=
σ2

2

(
erf

(
τ√
2σ

)
− erf

(
−τ√
2σ

))
− στ

√
2

π
exp

(
− τ2

2σ2

)
= σ2

(
Φ
( τ
σ

)
− Φ

(
− τ
σ

))
− στ

√
2

π
exp

(
− τ2

2σ2

)
(39)

where the last equality follows from the identity Φ(z) =
0.5(1 + erf(z/

√
2)). Then, plugging (39) into (38) and

using the identity 1− Φ(z) = Φ(−z),∫
|x|≥τ

x2 p(x) dx = 2σ2Φ
(
− τ
σ

)
+ στ

√
2

π
exp

(
− τ2

2σ2

)
Let x , y − µ. Then,∫

|y−µ|≥τ
y2 p(y) dy =

∫
|x|≥τ

x2 p(x) dx +

2µ

∫
|x|≥τ

x p(x) dx+ µ2

∫
|x|≥τ

p(x) dx

Finally, using the identities∫
|x|≥τ

x p(x) dx = 0 and
∫
|x|≥τ

p(x) dx = 2Φ
(
− τ
σ

)
,

Lemma 13 directly follows. �

Lemma 14 Let

G(zD, x, λ, λ
′) ,

∫
|zx|≥τ̂

(zx − µx|D,λ)2

2σxx|D,λ
p(zx|zD, λ′) dzx .

(40)
For all zD, x ∈ X \ D, τ ≥ 1, and λ, λ′ ∈ Λ,

G(zD, x, λ, λ
′) ≤ O

(
σo
σ2
n

(
N2κ2Nτ + σ2

o

)
exp

(
− τ2

2σ2
o

))
where σn and σo are defined in (13).
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Proof. Let yx , zx − µx|D,λ and µx|λ,λ′ , µx|D,λ′ −
µx|D,λ. Then,

G(zD, x, λ, λ
′)

=
1

2σxx|D,λ

∫
|yx+µx|D,λ|≥τ̂

y2
x p(yx|zD, λ′) dyx

≤ 1

2σxx|D,λ

∫
|yx−µx|λ,λ′ |≥τ

y2
x p(yx|zD, λ′) dyx

(41)

where p(yx|zD, λ′) ∼ N (µx|λ,λ′ , σxx|D,λ′), and the in-
equality follows from {yx| |yx+µx|D,λ| ≥ τ̂} ⊆ {yx| |yx−
µx|λ,λ′ | ≥ τ} since |µx|D,λ′ | ≤ τ̂ − τ due to (7).

Applying Lemma 13 to (41),

G(zD, x, λ, λ
′) ≤

(
σxx|D,λ′ + µ2

x|λ,λ′

σxx|D,λ

)
Φ

(
− τ
√
σxx|D,λ′

)
+
τ
√
σxx|D,λ′

σxx|D,λ
√

2π
exp

(
− τ2

2σxx|D,λ′

)
≤
(
σ2
o + 4N2κ2Nτ2

σ2
n

)
Φ

(
− τ

σo

)
+

τσo

σ2
n

√
2π

exp

(
− τ2

2σ2
o

)
where the last inequality holds due to σxx|D,λ′ ≤ σ2

o and
σxx|D,λ ≥ σ2

n, as proven in Lemma 6, and µx|λ,λ′ =
µx|D,λ′ − µx|D,λ ≤ 2τ̂ − 2τ ≤ 2NκN−1τ by |µx|D,λ| ≤
τ̂ − τ and |µx|D,λ′ | ≤ τ̂ − τ ) derived from (7) and by
Lemma 7.

Finally, by applying the following Gaussian tail inequality:

Φ

(
− τ

σo

)
= 1− Φ

(
τ

σo

)
≤ σo

τ
exp

(
− τ2

2σ2
o

)
, (42)

G(zD, x, λ, λ
′) ≤ O

(
σo
σ2
n

(
N2κ2Nτ + σ2

o

)
exp

(
− τ2

2σ2
o

))
since τ ≥ 1. �

Lemma 15 For all zD, x ∈ X \ D, and τ ≥ 1,

0 ≤ H[Zx|zD]− Ĥ[Ẑx|zD] ≤

O
(
σo
σ2
n

(
N2κ2Nτ + σ2

o

)
exp

(
− τ2

2σ2
o

))
where σn and σo are defined in (13). So,∣∣∣H[Zx|zD]− Ĥ[Ẑx|zD]

∣∣∣ ≤
O
(
σo
σ2
n

(
N2κ2Nτ + σ2

o

)
exp

(
− τ2

2σ2
o

))
.

Proof. From (6) and (16),

H[Zx|zD]−Ĥ[Ẑx|zD]=

∫ −τ̂
−∞

p(zx|zD) log

(
p(−τ̂ |zD)

p(zx|zD)

)
dzx

+

∫ ∞
τ̂

p(zx|zD) log

(
p(τ̂ |zD)

p(zx|zD)

)
dzx .

(43)

Since p(zx|zD) is the predictive distribution representing
a mixture of Gaussian predictive distributions (4) whose
posterior means (1) fall within the interval [−τ̂ , τ̂ ] due to
(7), it is clear that p(−τ̂ |zD) ≥ p(zx|zD) for all zx ≤ −τ̂
and p(τ̂ |zD) ≥ p(zx|zD) for all zx ≥ τ̂ . As a result, the
RHS expression of (43) is non-negative, that is, H[Zx|zD]−
Ĥ[Ẑx|zD] ≥ 0.

On the other hand, from (4),

p(zx|zD) =
∑
λ∈Λ

1√
2πσxx|D,λ

exp

(−(zx − µx|D,λ)2

2σxx|D,λ

)
bD(λ)

≤
∑
λ∈Λ

1√
2πσxx|D,λ

bD(λ)

≤
∑
λ∈Λ

1

σn
√

2π
bD(λ) =

1

σn
√

2π

such that the last inequality follows from Lemma 6. By
taking log of both sides of the above inequality and set-
ting zx = −τ̂ (zx = τ̂), log p(−τ̂ |zD) ≤ −0.5 log(2πσ2

n)
(log p(τ̂ |zD) ≤ −0.5 log(2πσ2

n)). Then, from (43),

H[Zx|zD]−Ĥ[Ẑx|zD]≤−1

2
log
(
2πσ2

n

)∫
|zx|≥τ̂

p(zx|zD)dzx

+

∫
|zx|≥τ̂

p(zx|zD) (− log p(zx|zD)) dzx .

(44)
Using (4) and Jensen’s inequality, since − log is a convex
function,∫
|zx|≥τ̂

p(zx|zD) (− log p(zx|zD)) dzx

≤
∑
λ∈Λ

bD(λ)

∫
|zx|≥τ̂

p(zx|zD) (− log p(zx|zD, λ)) dzx

≤ 1

2
log
(
2πσ2

o

) ∫
|zx|≥τ̂

p(zx|zD)dzx +∑
λ,λ′∈Λ

bD(λ)bD(λ′)G(zD, x, λ, λ
′)

≤ 1

2
log
(
2πσ2

o

) ∫
|zx|≥τ̂

p(zx|zD)dzx + max
λ,λ′

G(zD, x, λ, λ
′)

≤ 1

2
log
(
2πσ2

o

) ∫
|zx|≥τ̂

p(zx|zD)dzx +

O
(
σo
σ2
n

(
N2κ2Nτ + σ2

o

)
exp

(
− τ2

2σ2
o

))
(45)

whereG(zD, x, λ, λ
′) is previously defined in (40), the sec-

ond inequality is due to

− log p(zx|zD, λ) =
1

2
log
(
2πσxx|D,λ

)
+

(
zx − µx|D,λ

)2
2σxx|D,λ

≤ 1

2
log
(
2πσ2

o

)
+

(
zx − µx|D,λ

)2
2σxx|D,λ

with the inequality following from Lemma 6, and the last
inequality in (45) holds due to Lemma 14.
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Substituting (45) back into (44),

H[Zx|zD]− Ĥ[Ẑx|zD] ≤ log

(
σo
σn

)∫
|zx|≥τ̂

p(zx|zD) dzx

+ O
(
σo
σ2
n

(
N2κ2Nτ + σ2

o

)
exp

(
− τ2

2σ2
o

))
.

(46)
By Lemma 6, since σo ≥ σn, log(σo/σn) ≥ 0. Using
Lemma 12,

log

(
σo
σn

)∫
|zx|≥τ̂

p(zx|zD) dzx

≤ 2 log

(
σo
σn

)
Φ

(
− τ

σo

)
≤ 2 log

(
σo
σn

)
σo
τ

exp

(
− τ2

2σ2
o

)
≤ 2σo log

(
σo
σn

)
exp

(
− τ2

2σ2
o

)
(47)

where the second inequality follows from the Gaussian tail
inequality (42), and the last inequality holds due to τ ≥
1. Finally, by substituting (47) back into (46), Lemma 15
follows. �

Lemma 16 For all zD, x ∈ X \ D, n = 1, . . . , N , γ > 0,
and τ ≥ 1,

|Q∗n(zD, x)− Q̂n(zD, x)| ≤

O
(
σoτ

(
N2κ2N+σ2

o

σ2
n

+N log
σo
σn

+log |Λ|
)

exp

(
− τ2

2σ2
o

))
where Q̂n(zD, x) is previously defined in (16). By setting

τ = O

(
σo

√
log

(
σ2
o

γ

(
N2κ2N+σ2

o

σ2
n

+N log
σo
σn

+log |Λ|
)))

,

|Q∗n(zD, x)− Q̂n(zD, x)| ≤ γ/2.

Proof. From (6) and (16),∣∣∣Q∗n(zD, x)− Q̂n(zD, x)
∣∣∣ ≤ ∣∣∣H[Zx|zD]− Ĥ[Ẑx|zD]

∣∣∣+∫ −τ̂
−∞

p(zx|zD)∆n+1(zx,−τ̂)dzx +∫ ∞
τ̂

p(zx|zD)∆n+1(zx, τ̂)dzx

where

∆n+1(zx,−τ̂) ,
∣∣V ∗n+1(zD ∪ {zx})− V ∗n+1(zD ∪ {−τ̂})

∣∣ ,
∆n+1(zx, τ̂) ,

∣∣V ∗n+1(zD ∪ {zx})− V ∗n+1(zD ∪ {τ̂})
∣∣ .

Using Lemma 10, ∆n+1(zx,−τ̂) ≤ (N−n) log(σo/σn)+
log |Λ| ≤ N log(σo/σn) + log |Λ|. By a similar argument,

∆n+1(zx, τ̂) ≤ N log(σo/σn) + log |Λ|. Consequently,∣∣∣Q∗n(zD, x)− Q̂n(zD, x)
∣∣∣ ≤ ∣∣∣H[Zx|zD]− Ĥ[Ẑx|zD]

∣∣∣+(
N log

(
σo
σn

)
+ log |Λ|

)∫
|zx|≥τ̂

p(zx|zD)dzx ≤

O
(
σoτ

(
N2κ2N+σ2

o

σ2
n

+N log
σo
σn

+log |Λ|
)

exp

(
− τ2

2σ2
o

))
.

The last inequality follows from Lemmas 15 and 12 and
the Gaussian tail inequality (42), which are applicable since
τ ≥ 1.

To guarantee that |Q∗n(zD, x) − Q̂n(zD, x)| ≤ γ/2, the
value of τ to be determined must therefore satisfy the fol-
lowing inequality:

aσoτ

(
N2κ2N+σ2

o

σ2
n

+N log
σo
σn

+log |Λ|
)

exp

(
− τ2

2σ2
o

)
≤ γ

2
(48)

where a is an existential constant3 such that

|Q∗n(zD, x)− Q̂n(zD, x)| ≤

aσoτ

(
N2κ2N+σ2

o

σ2
n

+N log
σo
σn

+log |Λ|
)

exp

(
− τ2

2σ2
o

)
.

By taking log of both sides of (48),

τ2

2σ2
o

≥ 1

2
log
(
τ2
)

+

log

(
2aσo
γ

(
N2κ2N+σ2

o

σ2
n

+N log
σo
σn

+log |Λ|
))
.

(49)

Using the identity log(τ2) ≤ ατ2 − log(α) − 1 with α =
1/(2σ2

o), the RHS expression of (49) can be bounded from
above by

τ2

4σ2
o

+log

(
2
√

2aσ2
o√

eγ

(
N2κ2N+σ2

o

σ2
n

+N log
σo
σn

+log |Λ|
))
.

Hence, to satisfy (49), it suffices to determine the value of
τ such that the following inequality holds:

τ2

2σ2
o

≥ τ2

4σ2
o

+

log

(
2
√

2aσ2
o√

eγ

(
N2κ2N+σ2

o

σ2
n

+N log
σo
σn

+log |Λ|
))
,

which implies

τ ≥ 2σo

√√√√log

(
2
√

2aσ2
o√

eγ

(
N2κ2N+σ2

o

σ2
n

+N log
σo
σn

+log |Λ|
))

= O

(
σo

√
log

(
σ2
o

γ

(
N2κ2N+σ2

o

σ2
n

+N log
σo
σn

+log |Λ|
)))

3Deriving an exact value for a should be straight-forward, al-
beit mathematically tedious, by taking into account the omitted
constants in Lemmas 15 and 16.



Nonmyopic ε-Bayes-Optimal Active Learning of Gaussian Processes

Therefore, by setting

τ = O

(
σo

√
log

(
σ2
o

γ

(
N2κ2N+σ2

o

σ2
n

+N log
σo
σn

+log |Λ|
)))

,

|Q∗n(zD, x)− Q̂n(zD, x)| ≤ γ/2 can be guaranteed. �

Lemma 17 For all zD and λ ∈ Λ, let A and B denote
subsets of sampling locations such thatA ⊆ B ⊆ X . Then,
for all x ∈ (X \ B) ∪ A,

H[ZA∪{x}|zD, λ]−H[ZA|zD, λ]
≥ H[ZB∪{x}|zD, λ]−H[ZB|zD, λ] .

Proof. If x ∈ A ⊆ B, H[ZA∪{x}|zD, λ]−H[ZA|zD, λ] =
H[ZB∪{x}|zD, λ] − H[ZB|zD, λ] = 0. Hence, this lemma
holds trivially in this case. Otherwise, if x ∈ X \ B,

H[ZA∪{x}|zD, λ]−H[ZA|zD, λ] = E[H[Zx|zD∪ZA, λ]|zD, λ]

and

H[ZB∪{x}|zD, λ]−H[ZB|zD, λ] = E[H[Zx|zD∪ZB, λ]|zD, λ]

from the chain rule for entropy.

Let A′ , B \ A ⊇ ∅. Therefore, B can be re-written as
B = A ∪A′ where A ∩A′ = ∅ (since A ⊆ B). Then,

H[ZB∪{x}|zD, λ]−H[ZB|zD, λ]
= E[H[Zx|zD ∪ ZB, λ]|zD, λ]
= E[H[Zx|zD ∪ ZA ∪ ZA′ , λ]|zD, λ]
≤ E[H[Zx|zD ∪ ZA, λ]|zD, λ]
= H[ZA∪{x}|zD, λ]−H[ZA|zD, λ]

where the inequality follows from the monotonicity of con-
ditional entropy (i.e., “information never hurts” bound)
(Cover & Thomas, 1991). �

Lemma 18 For all zD and λ ∈ Λ, let S∗ ,
arg maxS⊆X :|S|=k H[ZS |zD, λ]. Then,

H[ZS∗ |zD, λ] ≤ e

e− 1

(
H[ZSλk |zD, λ] +

kr

e

)
where r = −min(0, 0.5 log(2πeσ2

n)) ≥ 0 and Sλk is the a
priori greedy design previously defined in (28).

Proof. Let S∗ , {s∗1, . . . , s∗k} and Sλi , {sλ1 , . . . , sλi } for
i = 1, . . . , k. Then,

H[ZS∗∪Sλi |zD, λ] = H[ZS∗ |zD, λ] +
i∑

j=1

H[ZS∗∪{sλ1 ,...,sλj }|zD, λ]−H[ZS∗∪{sλ1 ,...,sλj−1}|zD, λ] .

(50)

Clearly, if sλj ∈ S∗, H[ZS∗∪{sλ1 ,...,sλj }|zD, λ] −
H[ZS∗∪{sλ1 ,...,sλj−1}|zD, λ] = 0. Otherwise, let S̃ , S∗ ∪{
sλ1 , . . . , s

λ
j−1

}
. Using the chain rule for entropy,

H[ZS̃∪{sλj }
|zD, λ]−H[ZS̃ |zD, λ]

= E
[
H
[
Zsλj

∣∣∣zD ∪ ZS̃ , λ] ∣∣∣zD, λ]
≥ E

[
1

2
log
(
2πeσ2

n

) ∣∣∣zD, λ]
=

1

2
log
(
2πeσ2

n

)
where the last inequality follows from Lemma 11. Com-
bining these two cases and using the fact that r =
−min(0, 0.5 log(2πeσ2

n)),

H[ZS̃∪{sλj }
|zD, λ]−H[ZS̃ |zD, λ] ≥ −r ,

which, by substituting back into (50), implies

H[ZS∗∪Sλi |zD, λ] ≥ H[ZS∗ |zD, λ]− ir . (51)

Equivalently, (51) can be re-written as

H[ZS∗ |zD, λ] ≤ H[ZS∗∪Sλi |zD, λ] + ir . (52)

On the other hand,

H[ZS∗∪Sλi |zD, λ] = H[ZSλi |zD, λ] +
k∑
j=1

H[ZSλi ∪{s∗1 ,...,s∗j }|zD, λ]−H[ZSλi ∪{s∗1 ,...,s∗j−1}|zD, λ]

≤ H[ZSλi |zD, λ] +

k∑
j=1

(
H[ZSλi ∪{s∗j }|zD, λ]−H[ZSλi |zD, λ]

)
= H[ZSλi |zD, λ] +

∑
s∈S∗

(
H[ZSλi ∪{s}|zD, λ]−H[ZSλi |zD, λ]

)
≤ H[ZSλi |zD, λ] + k

(
H[ZSλi+1

|zD, λ]−H[ZSλi |zD, λ]
)

where the first inequality is due to Lemma 17, and the
last inequality follows from the construction of Sλi+1(27).
Combining this with (52),

H[ZS∗ |zD, λ]−H[ZSλi |zD, λ]

≤ k
(
H[ZSλi+1

|zD, λ]−H[ZSλi |zD, λ]
)

−imin

(
0,

1

2
log(2πeσ2

n)

)
.

Let δi , H[ZS∗ |zD, λ] − H[ZSλi |zD, λ]. Then, the above
inequality can be written concisely as

δi ≤ k(δi − δi+1) + ir ,

which can consequently be cast as

δi+1 ≤
(

1− 1

k

)
δi +

ir

k
. (53)
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Let i , l − 1 and expand (53) recursively to obtain

δl ≤ αlδ0 +
r

k

l−1∑
i=0

αi(l − i− 1) (54)

where α = 1 − 1/k. To simplify the second term on the
RHS expression of (54),

l−1∑
i=0

αi(l − i− 1)

= (l − 1)

l−1∑
i=0

αi −
l−1∑
i=0

iαi

= (l − 1)
1− αl

1− α
−

l−1∑
i=0

iαi

= k(l − 1)(1− αl)−
l−1∑
i=0

iαi .

(55)

Then, let γt ,
∑t−1
i=0 iα

i and φt ,
∑t
i=1 α

i,

γt+1 =

t∑
i=0

iαi = α

t−1∑
i=0

αi(i+ 1) = α

(
γt +

t−1∑
i=0

αi

)

= αγt +

t−1∑
i=0

αi+1 = αγt +

t∑
i=1

αi = αγt + φt .

(56)
Expand (56) recursively to obtain

γt+1 = αtγ1 +

t−1∑
i=0

αiφt−i

=

t−1∑
i=0

αi
(
k(1− αt−i+1)− 1

)
=

t−1∑
i=0

αi
(
k − kαt−i+1 − 1

)
= (k − 1)

t−1∑
i=0

αi − k
t−1∑
i=0

αt+1

= k(k − 1)(1− αt)− ktαt+1 .

(57)

Let t , l − 1. Substituting (57) back into (55),

l−1∑
i=0

αi(l − i− 1) = k(l − 1)− k(k − 1)(1− αl−1) .

Finally, let l , k. Substituting the above inequality back
into (54),

δk ≤ αkδ0 + r(k − 1)αk−1 . (58)

Using the identity 1− x ≤ e−x,

αk =

(
1− 1

k

)k
≤
(

exp

(
−1

k

))k
=

1

e
.

This directly implies

αk−1 =
αk

α
≤ 1

e
(
1− 1

k

) .
Substituting these facts into (58),

δk ≤
δ0
e

+
kr

e
,

which subsequently implies

H[ZS∗ |zD, λ]−H[ZSλk |zD, λ] ≤ 1

e
H[ZS∗ |zD, λ] +

kr

e

or, equivalently,

H[ZS∗ |zD, λ] ≤ e

e− 1

(
H[ZSλk |zD, λ] +

kr

e

)
. �


