
Bayesian Optimization Meets Bayesian Optimal Stopping

A. Approximate Backward Induction for Bayesian Optimal Stopping
In this section, we will present a commonly-used approximate backward induction algorithm for solving the BOS problem.
The algorithm uses summary statistics to compactly represent the posterior belief Pr(✓t|yt,n) which is computed from the
prior belief Pr(✓t) and the noisy outputs yt,n observed up till epoch n in iteration t.

In the approximate backward induction algorithm of Müller et al. (2007), the entire space of summary statistics is firstly
partitioned into a number of discrete intervals in each epoch, which results in a two-dimensional domain with one axis
being the number of epochs and the other axis representing the discretized intervals of the summary statistic (i.e., assuming
the summary statistic is one-dimensional). In the beginning, a number of sample paths are generated through forward

simulation: Firstly, a large number of samples are drawn from the prior belief Pr(✓t). Then, for each sample drawn from
Pr(✓t), an entire sample path is generated from epochs 1 to N through repeated sampling. In this manner, each sample path
leads to a curve in the 2-D domain and fully defines N posterior beliefs with one in each epoch. Starting from the last epoch
N , for each interval, the expected loss of a terminal decision d1 or d2 is evaluated for every sample path ending in this
interval (since each such sample path ends with a particular posterior belief in epoch N), and their empirical average is
used to approximate the expected loss of the particular terminal decision for this interval. The minimum of the expected
losses among the two terminal decisions is the expected loss for this particular interval, which is equivalent to (2) except that
decision d0 is not available in the last epoch N .

Next, the algorithm proceeds backwards from epoch n = N � 1 all the way to epoch n = 1. In each epoch n, the expected
loss of each terminal decision is evaluated in the same way as that in the last epoch N , as described above. To evaluate the
expected loss of the continuation decision for an interval, for each sample path passing through this interval, the expected loss
for the interval that it passes through in the next epoch n+ 1 is recorded and an average of all the recorded expected losses
in the next epoch n+ 1 is summed with the cost cd0 of observing the noisy output yt,n+1 to yield the expected loss of the
continuation decision d0 for this particular interval; this is equivalent to approximating the Eyt,n+1|yt,n

[⇢t,n+1(yt,n+1)]+cd0

term in (2) via Monte Carlo sampling of the posterior belief Pr(yt,n+1|yt,n). Following (2), the minimum of the expected
losses among all terminal and continuation decisions is the expected loss for this particular interval and the corresponding
decision is recorded as the optimal decision when the summary statistic falls into this interval. Then, the algorithm continues
backwards until epoch n = 1 is reached. After the algorithm has finished running, the optimal decision computed in every
pair of epoch and interval will form the optimal decision rules which serve as the output of the approximate backward
induction algorithm.

B. Approximate Backward Induction Algorithm for Solving BOS Problem in BO-BOS
In this section, we will describe the approximate backward induction algorithm for solving the BOS problem (line 5) in each
iteration of BO-BOS (Algorithm 1), which is adapted from the algorithm introduced in Appendix A.

To account for Assumption 1b in the approximate backward induction algorithm, we adopt the kernel k introduced
in (Swersky et al., 2014) to incorporate the inductive bias that the learning curve (in the form of validation error) of the ML
model is approximately exponentially decreasing in the number of training epochs, which can be expressed as

k(n, n0) ,
Z 1

0
exp(��n) exp(��n

0) �(�) d� =
�
↵

(n+ n0 + �)↵
(5)

for all epochs n, n0 = 1, . . . , N where � is a probability measure over � that is chosen to be a Gamma prior with parameters
↵ and �. The above kernel (5) is used to fit a GP model to the validation errors 1� yt,N0 of the ML model trained using xt

for a fixed number N0 of initial epochs (e.g., N0 = 8 in all our experiments when N = 50), specifically, by computing
the values of parameters ↵ and � in (5) via Bayesian update (i.e., assuming that the validation errors follow the Gamma
conjugate prior with respect to an exponential likelihood). Samples are then drawn from the resulting GP posterior belief for
forward simulation of sample paths from epochs N0+1 to N , which are used to estimate the Pr(✓t|yt,n) and Pr(yt,n+1|yt,n)
terms necessary for approximate backward induction. Fig. 5 plots some of such sample paths and demonstrates that the GP
kernel in (5) can characterize a monotonic learning curve (Assumption 1b) well.

Following the practices in related applications of BOS (Brockwell & Kadane, 2003; Jiang et al., 2013; Müller et al., 2007),
the average validation error (or, equivalently, average validation accuracy) over epochs 1 to n is used as the summary
statistics. Firstly, the entire space of summary statistics is partitioned into a number of discrete intervals in each epoch,
which results in a two-dimensional domain with one axis being the number of epochs and the other axis representing the

Bayesian Optimization Meets Bayesian Optimal Stopping

Figure 5. Forward simulation of some sample paths drawn from a GP posterior belief based on the kernel in (5).

discretized intervals of the summary statistic (i.e., average validation error). Next, a forward simulation of a large number
(i.e., 100, 000 in all our experiments) of sample paths is performed using the GP kernel in (5), as described above. Each
sample path corresponds to a curve in the 2-D domain. Starting from the last epoch N , for each interval, we consider all
sample paths ending in this interval and use the proportion of such sample paths with a validation accuracy (from model
training for N epochs) larger than the currently found maximum (offset by a noise correction term) to estimate the posterior
probability Pr(✓t = ✓t,2|yt,N) = Pr(f([xt, N]) > y

⇤
t�1 � ⇠t|yt,N), which is in turn used to evaluate the expected losses of

the terminal decisions d1 and d2 for this interval.4 The minimum of the expected losses among the two terminal decisions is
the expected loss for this particular interval.

Next, the algorithm proceeds backwards from epoch n = N � 1 all the way to epoch n = N0 + 1. In each epoch n, the
expected loss of each terminal decision is evaluated in the same way as that in the last epoch N , as described above. The
expected loss of the continuation decision d0 is evaluated in the same way as that in Appendix A: For each sample path
passing through an interval in epoch n, the expected loss for the interval that it passes through in the next epoch n + 1
is recorded and an average of all the recorded expected losses in the next epoch n + 1 is summed with the cost cd0 of
observing the validation accuracy yt,n+1 to yield the expected loss of the continuation decision d0 for this particular interval.
Note that this step is equivalent to approximating the Eyt,n+1|yt,n

[⇢t,n+1(yt,n)] term in (2) via Monte Carlo sampling of
the posterior belief Pr(yt,n+1|yt,n). Following (2), the minimum of expected losses among all terminal and continuation
decisions is the expected loss for this particular interval and the corresponding decision is recorded as the optimal decision
to be recommended when the summary statistic falls into this particular interval. Then, the algorithm continues backwards
until epoch n = N0 + 1 is reached. We present in Algorithm 2 the pseudocode for the above-mentioned approximate
backward induction algorithm for ease of understanding.

After solving our BOS problem for early stopping in BO using the approximate backward induction algorithm described
above, Bayes-optimal decision rules are obtained in every pair of epoch and interval. Fig. 6 shows an example of optimal
decision rules obtained from solving an instance of our BOS problem where the white, yellow, and red regions correspond
to recommending optimal continuation decision d0 and terminal decisions d1 and d2, respectively. In particular, after model
training under xt to yield the validation error 1� yt,n in epoch n, the summary statistic is updated to the average validation
error over epochs 1 to n. The updated summary statistic falls into an interval with a corresponding optimal decision to be
recommended. For example, Fig. 6 shows that if the summary statistic falls into the yellow region in any epoch n, then the
optimal terminal decision d1 is recommended to early-stop model training under xt (assuming that C2 is satisfied). If the
summary statistic falls into any other region, then model training continues under xt for one more epoch and the above
procedure is repeated in epoch n+ 1 until the last epoch n = N is reached. This procedure, together with C2, constitutes
lines 6 to 9 in Algorithm 1.

4In contrast to the approximate backward induction algorithm of Müller et al. (2007) (Appendix A), we employ a computationally
cheaper way to approximate the expected losses of the terminal decisions for an interval.

Bayesian Optimization Meets Bayesian Optimal Stopping

Algorithm 2 Approximate Backward Induction Algorithm for Solving BOS Problem in BO-BOS
1: Partition the domain of summary statistics into M discrete intervals
2: Train the ML model using xt for N0 epochs
3: Generate a large number of forward simulation samples using kernel (5)
4: Let n = N

5: for m = 1, 2, . . . ,M do
6: Find all sample paths ending in interval m at epoch n, denoted as S
7: Estimate Pr(✓t = ✓t,2|yt,n) = Pr(f([xt, N]) > y

⇤
t�1 � ⇠t|yt,n) by the proportion of S that end up (after N epochs)

having larger validation accuracy than y
⇤
t�1 � ⇠t

8: Calculate the expected losses of the terminal decisions d1 and d2 using (4)
9: Use the minimum of these two expected losses as the expected loss of epoch n and interval m

10: for n = N � 1, N � 2, . . . , N0 + 1 do
11: for m = 1, 2, . . . ,M do
12: Find all sample paths passing through interval m at epoch n, denoted as S
13: Estimate Pr(✓t = ✓t,2|yt,n) = Pr(f([xt, N]) > y

⇤
t�1 � ⇠t|yt,n) by the proportion of S that end up (after N

epochs) having larger validation accuracy than y
⇤
t�1 � ⇠t

14: Calculate the expected losses of the terminal decisions d1 and d2 using (4)
15: ld0,n+1,m = 0
16: for each sample path s in S do
17: ld0,n+1,m = ld0,n+1,m+ the expected loss of the interval reached by s at epoch n+ 1
18: ld0,n+1,m = ld0,n+1,m/|S|
19: Calculate the expected loss of the continuation decision d0 as: Eyt,n+1|yt,n

[⇢t,n+1(yt,n)] + cd0 = ld0,n+1,m + cd0

20: Use the minimum expected losses among d1, d2 and d0 as the expected loss of epoch n and interval m (follow-
ing (2)), and record the corresponding decision as the optimal decision

Figure 6. An example of optimal decision rules obtained from solving an instance of our BOS problem: White, yellow, and red regions
correspond to recommending optimal continuation decision d0 and terminal decisions d1 and d2, respectively. The sample paths cannot
reach the black regions due to the use of the GP kernel in (5) for characterizing a monotonic learning curve (Assumption 1b).

Bayesian Optimization Meets Bayesian Optimal Stopping

C. Proof of Theorems 1 and 2
In this section, we prove the theoretical results in this paper.

C.1. Regret Decomposition

In this work, it is natural and convenient to define the instantaneous regret at step t as rt = f(z⇤) � f
⇤
t , in which z⇤ is

the location of the global maximum: z⇤ = argmaxzf(z), and f
⇤
t is the maximum observed function value from iterations

1 to t: f⇤
t = maxt0=1,...,t f(zt0). Subsequently, the cumulative regret and simple regret after T iterations are defined as

RT =
PT

t=1 rt and ST = mint=1,...,T rt respectively. As a result, as long as we can show that RT grows sub-linearly in
T , then we can conclude that the average regret RT

T asymptotically goes to 0; therefore, ST vanishes asymptotically since
it is upper-bounded by the average regret: ST  RT

T . In contrast to the more commonly used definition of instantaneous
regret: rt = f(z⇤) � f(zt), the slightly modified definition introduced here is justified in the sense that the induced
definition of simple regrets, which is the ultimate goal of the theoretical analysis, obtained in both cases are equivalent, i.e.,
mint=1,...,T f(z⇤)� f

⇤
t = mint=1,...,T f(z⇤)� f(zt).

The instantaneous regret defined above can be further decomposed as

rt =f(z⇤)� f
⇤
t = f(z⇤)� max

t0=1,...,t
f(zt0)

=f(z⇤)�max{f⇤
t�1, f(zt)}

(6)

Note that in our algorithm, the BO iterations can be divided into two types: 1) t+ such that nt+ = N : those iterations that
are not early-stopped; and 2) t� such that nt� < N : those that are early-stopped. For all t+, it follows from Equation 6 that
rt = f(z⇤) �max{f⇤

t�1, f(zt)}  f(z⇤) � f(zt) = f(z⇤) � f([xt, nt]) = f(z⇤) � f([zt, N]) , rt+ ; for all t�, from
Equation 6, we have that rt = f(z⇤)�max{f⇤

t�1, f(zt)}  f(z⇤)� f
⇤
t�1 , rt� . In the following, we will focus on the

analysis of the sum of all rt+ and all rt� : R0
T =

P
t+ rt+ +

P
t� rt� . As a result of the definition, R0

T is an upper bound
of RT , therefore, sub-linear growth of R0

T implies that RT also grows sub-linearly.

Next, note that for all t� such that nt� < N (when xt is early-stopped),

rt� = f(z⇤)� f
⇤
t�1 = f(z⇤)� f([xt, N]) + f([xt, N])� f

⇤
t�1

(1)
 f(z⇤)� f([xt, nt]) + f([xt, N])� f

⇤
t�1

(7)

in which (1) results from Assumption 1. As a result, R0
T can be re-written as

R
0
T

(1)
=

X

{t|nt=N}

[f(z⇤)� f([xt, N])] +
X

{t|nt<N}

[f(z⇤)� f
⇤
t�1]

=
X

{t|nt=N}

[f(z⇤)� f([xt, N])] +
X

{t|nt<N}

[f(z⇤)� f([xt, N])] +
X

{t|nt<N}

[f([xt, N])� f
⇤
t�1]

(2)


X

{t|nt=N}

[f(z⇤)� f([xt, N])] +
X

{t|nt<N}

[f(z⇤)� f([xt, nt])] +
X

{t|nt<N}

[f([xt, N])� f
⇤
t�1]

(3)
=

TX

t=1

[f(z⇤)� f([xt, nt])] +
X

{t|nt<N}

[f([xt, N])� f
⇤
t�1]

,
TX

t=1

rt,1 +
X

{t|nt<N}

rt,2

, RT,1 +RT,2

(8)

in which (1) makes use of the definition of R0
T , (2) results from Equation 7 and (3) follows by combining the first two terms

on the previous line. The first term following (3) of Equation 8 is summed over all time steps, whereas the second term is
only summed over those time steps that are early-stopped (nt < N). As mentioned earlier, in the sequel, we will attempt to

Bayesian Optimization Meets Bayesian Optimal Stopping

prove an upper bound on the expected value of R0
T ,

E[R0
T]  E[RT,1] + E[RT,2] (9)

in which the expectation is taken with respect to the posterior probabilities used in the BOS problems, corresponding to
those iterations that are early-stopped: ⇧t2{t0|t0=1,...,T,nt0<N}Pr(f([xt, N]) > y

⇤
t�1 � ⇠t|yt,nt). Note that the probability

distributions are independent across all the early-stopped iterations, therefore, for each early-stopped iteration t, the
expectations of both rt,1 and rt,2 are only taken over the specific distribution: Pr(f([xt, N]) > y

⇤
t�1 � ⇠t|yt,nt); whereas

for each not-early-stopped iteration t, E[rt,1] = rt,1 (whereas rt,2 is absent). In the next two sections, we will prove upper
bounds on E[RT,1] and E[RT,2] respectively.

C.2. Upper Bound on E[RT,1]

In this section, we will upper-bound the term E[RT,1]. As mentioned in the main text, for simplicity, we will focus on the
case in which the underlying domain D is discrete, i.e., |D| < 1. To begin with, we will need a supporting lemma showing
a uniform upper bound over the entire domain.

Lemma 1. Suppose that � 2 (0, 1) and �t , 2 log(|D|t2⇡2
/6�). Then, with probability � 1� �

|f(z)� µt�1(z)|  �
1/2
t �t�1(z) 8z 2 D, t � 1 .

The proof of lemma 1 makes use of standard Gaussian tail bounds and a number of union bounds, and the proof is identical
to the proof of lemma 5.1 in (Srinivas et al., 2010). The next supporting lemma makes use of the Lipschitz continuity of f to
bound the differences between function values whose inputs only differ by the dimension corresponding to the number of
training epochs.

Lemma 2. Suppose that Assumption 2 holds and let �
0 2 (0, 1). Then, with probability � 1� �

0
,

|f([x, N])� f([x, n])|  Nb

r
log

da

�0
8x, n = 1, . . . , N .

Proof. Let z = [x, n] denote the input to the objective function f . Assumption 2, together with a union bound over
j = 1, . . . , d, implies that with probability � 1� dae

�(L
b)2 ,

|f(z)� f(z0)|  L||z� z0||1 8z 2 D

Since [x, N] and [x, n] differ only by the dimension corresponding to the number of training epochs, we have that

|f([x, N])� f([x, n])|  LN

Then, the lemma follows by letting �
0 = dae

�(L
b)2 .

The next lemma bounds E[rt,1] by the Gaussian process posterior standard deviation with some scaling constants.

Lemma 3. Let �, �
0 2 (0, 1) and  � 1 be the constant used in C2 in the BO-BOS algorithm. Then, at iteration t of the

BO-BOS algorithm, we have that, with probability � 1� � � �
0
,

E[rt,1]  2�1/2
t �t�1([xt, nt]) +Nb

r
log

da

�0
nt<N .

Proof. Firstly, with probability � 1� �,

f(z⇤)
(1)
= f([x⇤

, N])
(2)
 µt�1([x

⇤
, N]) + �

1/2
t �t�1([x

⇤
, N])

(3)
 µt�1([xt, N]) + �

1/2
t �t�1([xt, N]) (10)

in which (1) follows from Assumption 1 which states that, for each x, the function value is monotonically non-decreasing in
the number of training epochs, which implies that at the (unknown) global maximum z⇤, the dimension corresponding to the

Bayesian Optimization Meets Bayesian Optimal Stopping

number of epochs is equal to N . (2) makes use of Lemma 1, whereas (3) is due to the way xt is selected in the algorithm,
i.e., xt = argmaxxµt�1([x, N]) +

p
�t�t�1([x, N]). As a result, we have that with probability � 1� � � �

0

E[rt,1] = E[f(z⇤)� f([xt, nt])]
(1)
 E[�1/2

t �t�1([xt, N]) + µt�1([xt, N])� f([xt, nt])]

= E[�1/2
t �t�1([xt, N]) + µt�1([xt, N])� f([xt, N]) + f([xt, N])� f([xt, nt])]

(2)
 E[2�1/2

t �t�1([xt, N])] + E[f([xt, N])� f([xt, nt])]

(3)
 E[2�1/2

t �t�1([xt, N])] +Nb

r
log

da

�0
nt<N

(4)
 2�1/2

t �t�1([xt, N]) +Nb

r
log

da

�0
nt<N

(5)
 2�1/2

t �t�1([xt, nt]) +Nb

r
log

da

�0
nt<N

(11)

in which (1) follows from Equation 10, and (2) results from Lemma 1 and the linearity of the expectation operator. nt<N

in (3) is the indicator function, which takes the value of 1 if the event nt < N is true and 0 otherwise. (3) is obtained
by analyzing two different cases separately: if nt = N (xt is not early-stopped), then E[f([xt, N]) � f([xt, nt])] = 0;

if nt < N (xt is early-stopped), then E[f([xt, N]) � f([xt, nt])]  E[Nb

q
log da

�0] = Nb

q
log da

�0 with probability
� 1 � �

0 following Lemma 2. (4) is due to the fact that �t�1([xt, N]) only depends on the observations up to step
t � 1 and is not dependent on the probability Pr(f([xt, N]) > y

⇤
t�1 � ⇠t|yt,nt). (5) follows from the design of the

algorithm; in particular, if nt < N , then �t�1([xt, nt]) � �t�1([xt, N]) is guaranteed by C2; otherwise, if nt = N , then
�t�1([xt, nt]) � �t�1([xt, nt]) = �t�1([xt, N]) since  � 1.

Subsequently, we can upper bound E[RT,1] =
PT

t=1 E[rt,1] by extensions of Lemma 5.3 and 5.4 from (Srinivas et al., 2010),
which are presented here for completeness. The following lemma connects the information gain about the objective function
with the posterior predictive variance, whose proof results from straightforward extension of Lemma 5.3 of (Srinivas et al.,
2010).

Lemma 4. Let yT be a set of observations of size T , and let fT be the corresponding function values. The information gain

about fT from observing yT is

I(yT ; fT) =
1

2

TX

t=1

log[1 + �
�2

�
2
t�1([xt, nt])] .

Next, we use the following lemma to bound the sum of the first term of the expected instantaneous regret as given in Lemma
3.

Lemma 5. Let � 2 (0, 1), C1 , 8
log(1+��2) , �t , 2 log(|D|t2⇡2

/6�), and �T , maxA2D,|A|=T I(yA; fA) is the maximum

information gain about f from any subset of size T . Then,

TX

t=1

2�1/2
t �t�1([xt, nt]) 

p
TC1�T I(yT ; fT) 

p
TC1�T �T .

Proof. Firstly, we have that

(2�1/2
t �t�1([xt, nt]))

2 = 4�t�
2
t�1([xt, nt])

(1)
 4�T�

2[��2
�
2
t�1([xt, nt])]

(2)
 4�T�

2 �
�2

log(1 + ��2)
log[1 + �

�2
�
2
t�1([xt, nt])]

 �T
8

log(1 + ��2)

1

2
log[1 + �

�2
�
2
t�1([xt, nt])]

(12)

Bayesian Optimization Meets Bayesian Optimal Stopping

in which (1) holds since �t is monotonically increasing in t; (2) results from the fact that ��2
x  ��2

log(1+��2) log[1 + �
�2

x]

for x 2 (0, 1], whereas 0 < �
2
t�1([xt, nt])  1. Next, summing over t = 1, . . . , T , we get

TX

t=1

(2�1/2
t �t�1([xt, nt]))

2  �T
8

log(1 + ��2)

1

2

TX

t=1

log[1 + �
�2

�
2
t�1([xt, nt])]

(1)
= �T

8

log(1 + ��2)
I(yT ; fT)

(2)
 C1�T �T

(13)

in which (1) results from Lemma 4, and (2) follows from the definitions of C1 and �T . Next, making use of the Cauchy-
Schwarz inequality, we get

TX

t=1

2�1/2
t �t�1([xt, nt]) 

p
T

vuut
TX

t=1

(2�1/2
t �t�1([xt, nt]))2


p

C1T�T �T

(14)

which completes the proof.

Next, putting everything together, we get the follow lemma on the upper bound on E[RT,1].
Lemma 6. Suppose that Assumptions 1 and 2 hold. Let �, �

0 2 (0, 1), C1 = 8/ log(1 + �
�2), �t = 2 log(|D|t2⇡2

/6�),

 � 1 be the constant used in C2 in the BO-BOS algorithm, and �T = maxA2D,|A|=T I(yA; fA). Let ⌧T =
PT

t=1 nt<N

be the number of BO iterations in which early stopping happens from iterations 1 to T . Assume that f is a sample from a

GP, and y(z) = f(z) + ✏ 8z 2 D in which ✏ ⇠ N(0,�2). Then, with probability � 1� � � �
0
,

E[RT,1] =
TX

t=1

E[rt,1]  

p
TC1�T �T +Nb

r
log

da

�0
⌧T 8T � 1 .

Proof.

E[RT,1]
(1)
=

TX

t=1

E[rt,1]
(2)


TX

t=1

[2�1/2
t �t�1([xt, nt]) +Nb

r
log

da

�0
nt<N]

(3)
 

p
TC1�T �T +

TX

t=1

Nb

r
log

da

�0
nt<N

= 

p
TC1�T �T +Nb

r
log

da

�0

TX

t=1

nt<N

= 

p
TC1�T �T +Nb

r
log

da

�0
⌧T

(15)

in which (1) follows from the linearity of the expectation operator, (2) results from Lemma 3, and (3) follows from Lemma
5.

C.3. Upper Bound on E[RT,2]

In this section, we prove an upper bound on E[RT,2]. A few supporting lemmas will be presented and proved first. To begin
with, the next lemma derives the appropriate choice of the incumbent values used in the BOS problems in different iterations
of the BO-BOS algorithm.
Lemma 7. Let the objective function f be a sample from a GP and y(z) = f(z) + ✏ 8z 2 D in which ✏ ⇠ N(0,�2). Let

�
00 2 (0, 1). At iteration t > 1, define f

⇤
t�1 , maxt0=1,...,t�1 f(zt0) and y

⇤
t�1 , maxt0=1,...,t�1 yt0; for iteration t = 1,

define f
⇤
0 , 0 and y

⇤
0 , 0. Then with probability � 1� �

00
,

f
⇤
t�1 � y

⇤
t�1 � ⇠t 8t � 1

Bayesian Optimization Meets Bayesian Optimal Stopping

in which

⇠t =

r
2�2 log

⇡2t2(t� 1)

6�00
8t > 1

and ⇠1 = 0.

Proof. The lemma trivially holds for t = 1. Assume we are at iteration t > 1 of the BO-BOS algorithm, and let
t
0 2 {1, 2, . . . , t� 1}. Since yt0 = f(zt0) + ✏, in which ✏ ⇠ N(0,�2), we have that yt0 ⇠ N(f(zt0),�2). Making use of

the upper deviation inequality for Gaussian distribution and the definition of ⇠t, we get

Pr[yt0 � f(zt0) + ⇠t]  e
� ⇠t

2

2�2 =
6�00

⇡2t2(t� 1)
(16)

Denote the event that {9 t0 2 {1, 2, . . . , t � 1} s.t. yt0 � f(zt0) + ⇠t} as At. Next, taking a union bound over the entire
observation history t

0 2 {1, 2, . . . , t� 1}, we get

Pr[At] 
t�1X

t0=1

Pr[yt0 � f(zt0) + ⇠t]

(t� 1)
6�00

⇡2t2(t� 1)
=

6�00

⇡2t2

(17)

which implies that at iteration t, with probability � 1 � 6�00

⇡2t2 , yt0 � f(zt0) < ⇠t 8t0 2 {1, 2, . . . , t � 1}, which further
suggests that y⇤t�1 � f

⇤
t�1  ⇠t at iteration t. Next, taking a union bound over t � 1, we get

Pr[9t � 1 s.t.At holds] 
X

t�1

Pr[At] 
X

t�1

6�00

⇡2t2
= �

00
(18)

which suggests that, with probability � 1� �
00, y⇤t�1 � f

⇤
t�1  ⇠t 8t � 1, and thus completes the proof.

The next lemma shows that, with appropriate choices of the incumbent value, the posterior probability used in Bayesian
optimal stopping is upper-bounded.
Lemma 8. If in iteration t of the BO-BOS algorithm, the BOS algorithm is run with the incumbent value y

⇤
t�1 � �t and the

corresponding cost parameters K1, K2 and cd0 , and the algorithm early-stops after nt < N epochs, then with probability

� 1� �
00

,

Pr(f([xt, N]) > f
⇤
t�1|yt,nt) 

K2 + cd0

K1
8t � 1 . (19)

Proof. Recall that when running the Bayesian optimal stopping algorithm in iteration t of BO-BOS, we only early-stop the
experiment (nt < N) when we can safely conclude that the performance of the currently evaluated hyperparameter xt will
end up having smaller (or equal) validation accuracy than the currently observed optimum offset by a noise correction term:
y
⇤
t�1 � ⇠t; i.e., when the expected loss of decision d1 is the smallest among all decisions. Therefore, when the evaluation of

xt is early-stopped after nt < N epochs, we can conclude that

K1Pr(f([xt, N]) > y
⇤
t�1 � ⇠t|yt,nt)

Eyt,nt+1|yt,nt

h
min{K1Pr(f([xt, N]) > y

⇤
t�1 � ⇠t|yt,nt+1),K2Pr(f([xt, N])  y

⇤
t�1 � ⇠t|yt,nt+1),

Eyt,nt+2|yt,nt+1
[⇢t,nt+2(yt,nt+2)] + cd0}

i
+ cd0

Eyt,nt+1|yt,nt
[K2Pr(f([xt, N])  y

⇤
t�1 � ⇠t|yt,nt+1)] + cd0

K2Eyt,nt+1|yt,nt
[Pr(f([xt, N])  y

⇤
t�1 � ⇠t|yt,nt+1)] + cd0

K2 + cd0

(20)

Equation 20, together with Lemma 7, implies that

Pr(f([xt, N]) > f
⇤
t�1|yt,nt) Pr(f([xt, N]) > y

⇤
t�1 � ⇠t|yt,nt)

K2 + cd0

K1

(21)

Bayesian Optimization Meets Bayesian Optimal Stopping

which holds uniformly for all t � 1 with probability � 1� �
00.

Subsequently, we use the next Lemma to upper-bound E[R2
T] by the BOS cost parameters. We set K2 and cd0 as constants,

and use different values of K1 in different iterations t of the BO-BOS algorithm, which is represented by K1,t.

Lemma 9. In iteration t of the BO-BOS algorithm, define
K2+cd0
K1,t

, ⌘t. Then, with probability � 1� �
00

,

E[RT,2] 
TX

t=1

⌘t 8T � 1 .

Proof. Recall that according to Assumption 1, the value of the objective function f is bounded in the range [0, 1]. In iteration
t, assume we early-stop the evaluation of xt after nt < N epochs, then

E[f([xt, N])� f
⇤
t�1|yt,nt]

(1)
 E[f([xt,N])�f⇤

t�1>0|yt,nt] = Pr(f([xt, N]) > f
⇤
t�1|yt,nt) (22)

Step (1) in Equation 22 is because x  x>0 8x 2 [�1, 1] and substituting x = f([xt, N]) � f
⇤
t�1. As a result, with

probability � 1� �
00

E[RT,2]
(1)
=

X

{t|nt<N}

E[rt,2]
(2)
=

X

{t|nt<N}

E[f([xt, N])� f
⇤
t�1|yt,nt]

(3)


X

{t|nt<N}

Pr(f([xt, N]) > f
⇤
t�1|yt,nt)

(4)


X

{t|nt<N}

⌘t 
TX

t=1

⌘t

(23)

in which (1) follows from the linearity of expectation, (2) holds because the Expectation of rt,2 is taken over Pr(f([xt, N]) >
y
⇤
t�1 � ⇠t|yt,nt), (3) results from Equation 22, and (4) follows from Lemma 8. This completes the proof.

C.4. Putting Things Together

In this section, we put everything from the previous two sections together to prove the main theorems.

C.4.1. PROOF OF THEOREM 1

Theorem 1 can be proven by combining Lemmas 6 and 9, and making use of the fact that ST  RT
T .

C.4.2. PROOF OF THEOREM 2

Below we analyze the asymptotic behavior of each of the three terms in the upper bound of E[ST] in Theorem 1, which is
re-presented here for ease of reference.

E[ST] 

p
TC1�T �T

T
+

PT
t=1 ⌘t

T
+

1

T
Nb

r
log

da

�0
⌧T . (24)

The first term in the upper bound of E[ST] Firstly, the first term in the upper bound matches the upper bound on the
simple regret of the GP-UCB algorithm (Srinivas et al., 2010) (up to the constant ). The maximum information gain,
�T , has been analyzed for a few of the commonly used kernels in GP (Srinivas et al., 2010). For example, for the Square
Exponential kernel, �T = O((log T)d+1), whereas for the Matérn kernel with ⌫ > 1, �T = O(T d(d+1)/(2⌫+d(d+1)) log T).
Plugging both expressions of �T into Theorem 1, together with the expression of �T as given in Theorem 1, shows that both
kernels lead to sub-linear growth of the term

p
TC1�T �T , which implies that the first term in the upper bound of E[ST]

asymptotically goes to 0.

The second term in the upper bound of E[ST] Given that K1,t is an increasing sequence with K1,1 � K2 + cd0 , the
series

PT
t=1 ⌘t =

PT
t=1

K2+cd0
K1,t

grows sub-linearly, thus making the second term in the upper bound of E[ST] given in

Theorem 1,
PT

t=1 ⌘t

T , asymptotically go to 0.

Bayesian Optimization Meets Bayesian Optimal Stopping

The third term in the upper bound of E[ST] Next, suppose that K1,t becomes +1 for the first time at iteration T0.
Since K1,t is a non-decreasing sequence, K1,t = +1 for all t � T0. Therefore, for t � T0, decision d1 will never be taken
and the algorithm will never early-stop. In other words, nt = N for all t � T0.

Therefore, we can conclude that ⌧T  T0 for all T � 1. As a result, the last term in the upper bound on E[ST] in Theorem 1
can be upper-bounded by

⌧T

T
Nb

r
log

da

�0


T0Nb

q
log da

�0

T
= O

✓
1

T

◆
(25)

which asymptotically goes to 0 as T goes to +1, because the numerator term is a constant. Therefore, this term also
asymptotically vanishes in the upper bound.

To summarize, if the BOS parameters are selected according to Theorem 2, we have that

E[ST] = O

 p
T�T �T

T
+

PT
t=1 ⌘t

T
+

1

T

!
(26)

and E[ST] goes to zero asymptotically.

D. Additional Experimental Details
In each experiment, the same initializations (6 initial points if not further specified) are used for all BO-based methods:
GP-UCB, BOCA, LC Prediction, and BO-BOS. The Square Exponential kernel is used for BOCA since the algorithm
is only given for this kernel (Kandasamy et al., 2017), the other BO-based algorithms use the Matérn kernel; the kernel
hyperparameters are updated by maximizing the Gaussian process marginal likelihood after every 10 BO iterations. In the
BO-BOS algorithm, since the number of training epochs is an input to the GP surrogate function, some of the intermediate
observations (n < N) can be used as additional input to GP to improve the modeling of the objective function. However,
using the observation after every epoch as input leads to poor scalability. Therefore, for all experiments with N = 50 (which
include most of the experiments), we use the observations after first, 10-th, 20-th, 30-th and 40-th epochs as additional
inputs to the GP surrogate function; whereas for the RL experiment with N = 100 in section 5.3.1, we use the 1-th, 20-th,
40-th, 60-th and 80-th intermediate observations as additional inputs. 100,000 forward simulation samples are used for
each BOS algorithm; the grid size of the discretized summary statistics is set to 100; for simplicity, the incumbent value
at iteration t is chosen as y⇤t�1 = maxt0=1,...,t�1 yt0 , thus ignoring the observation noise. In the LC Prediction algorithm
(Domhan et al., 2015), learning curve prediction is performed after every 2 epochs. In Hyperband (Li et al., 2017), the
successive halving parameter ⌘ is set to 3 as recommended by the original authors, and the maximum number of epochs
is set to N = 80 (we observed that setting N = 80 led to better performance than N = 50 since it allows the Hyperband
algorithm to run for more epochs overall).

D.1. Hyperparameter Tuning for Logistic Regression

In the first set of experiments, we perform hyperparameter tuning for a simple ML model, logistic regression (LR). The
LR model is trained using the MNIST image dataset, which consists of 70,000 images of the 10 digits, corresponding to a
10-class classification problem. Three hyperparameters are tuned: the batch size (20 to 500), L2 regularization parameter
(10�6 to 1.0), and learning rate (10�3 to 0.1). We use 80% of the images as the training set and the remaining 20% as the
validation set.

Some of the learning curves during a particular run of the BO-BOS algorithm is shown in Fig. 7. It can be observed
that the learning curves that show minimal potential in achieving small validation errors are early-stopped, whereas the
promising hyperparameter settings are run for larger number of epochs. The reliability of the early stopping achieved by the
BO-BOS algorithm is demonstrated in Fig. 8. In this figure, the green triangles correspond to the learning curves that are not
early-stopped (nt = N), and the red circles represent the final validation errors (after training for the maximum number of
epochs N) that could have been reached by the early-stopped learning curves (nt < N). Note that the red circles are shown
only for the purpose of illustration and are not observed in practice. As displayed in the figure, the early stopping decisions
made during the BO-BOS algorithm are reliable, since those early-stopped learning curves all end up having large validation
errors.

Bayesian Optimization Meets Bayesian Optimal Stopping

Figure 7. Some learning curves during the BO-BOS algorithm.

Figure 8. Illustration of the effectiveness of the early stopping decisions made during the BO-BOS algorithm.

D.2. Hyperparameter Tuning for Convolutional Neural Networks

Next, we tune the hyperparameters of convolutional neural networks (CNN) using the CIFAR-10 (Krizhevsky, 2009) and
Street View House Numbers (SVHN) dataset (Netzer et al., 2011). Both tasks correspond to 10-class classification problems.
For CIFAR-10, 50, 000 images are used as the training set and 10,000 images are used as the validation set; for SVHN,
73,257 and 26032 images are used as the training and validation sets respectively following the original dataset partition. The
CNN model consists of three convolutional layers (each followed by a max-pooling layer) followed by one fully-connected
layer. We tune six hyperparameters in both experiments: the batch size (32 to 512), learning rate (10�7 to 0.1), learning
rate decay (10�7 to 10�3), L2 regularization parameter (10�7 to 10�3), the number of convolutional filters in each layer
(128 to 256), and the number of units in the fully-connected layer (256 to 512). In addition to the results in Figure 2, the
corresponding figures with standard error is presented below in Figures 9 and 10, which demonstrate the robustness of the
performance advantages of BO-BOS.

Bayesian Optimization Meets Bayesian Optimal Stopping

Figure 9. Best-found validation error of CNN v.s. run-time using the CIFAR-10 dataset, with standard error (averaged over 30 random
initializations).

Figure 10. Best-found validation error of CNN v.s. run-time using the SVHN dataset, with standard error (averaged over 30 random
initializations).

D.3. Policy Search for Reinforcement Learning

We apply our algorithm to a continuous control task: the Swimmer-v2 environment from OpenAI Gym, MuJoCo (Brockman
et al., 2016; Todorov et al., 2012). The task involves controlling two joints of a swimming robot to make it swim forward
as fast as possible. The state of the robot is represented by an 8-dimensional feature vector, and the action space is
2-dimensional corresponding to the two joints. We use a linear policy, in which the policy is represented by an 8⇥ 2 matrix
that maps each state vector to the corresponding action vector. In this setting, the input parameters, x, to the GP-UCB and
BO-BOS algorithms are the 16 parameters of the policy matrix, and the objective function is the discounted cumulative
rewards in an episode. Each episode of the task consists of 1,000 steps. We set N (the maximum number of epochs) to
be smaller than 1, 000 by treating a fixed number of consecutive steps as one single epoch. E.g., we can set N = 50 or
N = 100 by treating every 20 or 10 consecutive steps as one epoch respectively. The rewards are clipped, scaled, and
normalized such that the discounted cumulative rewards of each episode is bounded in the range [0, 1]; for each evaluated
policy, we also record the un-discounted and un-scaled cumulative rewards, which are the ultimate objective to be maximized
and reported in Fig. 3 in the main text. Each policy evaluation consists of running 5 independent episodes with the given
policy, and returning the average discounted cumulative rewards, i.e., average return, as the observed function value.

Bayesian Optimization Meets Bayesian Optimal Stopping

As mentioned in the main text, the rewards are discounted in order to make the objective function, the discounted cumulative
rewards, resemble the learning curves of ML models, such that the BO-BOS algorithm can be naturally applied. This
rationale is illustrated in Fig. 11, which plots some example un-discounted (� = 1.0) and discounted (� = 0.9) cumulative
rewards respectively. The figures indicate that, compared with un-discounted cumulative rewards, discounted cumulative
rewards bear significantly closer resemblance to the learning curves of ML models, thus supporting the claim made in the
main text motivating the use of discounted rewards, as well as the experimental results shown in Fig. 3 (specifically, the
poor performance of the curve corresponding to N = 50 and � = 1.0). In addition to the results presented in the main text
in section 5.3.1, we further present the results with standard errors in Fig. 12, to emphasize the significant performance
advantage offered by BO-BOS compared with GP-UCB. To avoid clutter, we only present the results with error bar for
GP-UCB with � = 1.0 and BO-BOS with N = 50 and � = 0.9, which are best-performing settings for GP-UCB and
BO-BOS respectively.

(a) Un-discounted (� = 1.0).

(b) Discounted (� = 0.9).

Figure 11. Example curves of un-discounted and discounted cumulative rewards

D.4. Joint Hyperparameter Tuning and Feature Selection

In this set of experiments, we use the gradient boosting model (XGBoost (Chen & Guestrin, 2016)), tuning four hyperparam-
eters: the learning rate (10�3 to 0.5), maximum depth of each decision tree (2 to 15), feature sub-sampling ratio for each tree
(0.3 to 1.0), and L1 regularization parameter (0.0 to 5.0). We use the email spam dataset from the UCI Machine Learning

Bayesian Optimization Meets Bayesian Optimal Stopping

Figure 12. Best-found return (averaged over 5 episodes) v.s. the total number of steps of the robot in the environment (averaged over 30
random initializations) using the Swimmer-v2 task, with standard error.

Figure 13. Best-found validation error of XGBoost v.s. run-time with standard error (averaged over 30 random initializations), obtained
using joint hyperparameter tuning and feature selection.

Repository (Dheeru & Karra Taniskidou, 2017), which represents a binary classification problem: whether the email is a
spam or not. We use 3065 emails as the training set and the remaining 1536 emails as the validation set; each email consists
of 57 features. The maximum number of features for each hyperparameter setting is set as N = 50. In addition to Figure 4
in the main text, the same plot with error bar (standard error) is shown in Figure 13.

