
Dynamic Redeployment to Counter Congestion or Starvation in
Vehicle Sharing Systems

Supriyo Ghosh, Pradeep Varakantham, Yossiri Adulyasak†, Patrick Jaillet‡
School of Information Systems, Singapore Management University, Singapore 178902

†Singapore-MIT Alliance for Research and Technology (SMART), Massachusetts Institute of Technology
‡Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology

supriyog.2013@phdis.smu.edu.sg, pradeepv@smu.edu.sg, yossiri@smart.mit.edu, jaillet@mit.edu

Abstract

Extensive usage of private vehicles has led to increased
traffic congestion, carbon emissions, and usage of non-
renewable resources. These concerns have led to the
wide adoption of vehicle sharing (ex: bike sharing, car
sharing) systems in many cities of the world. In vehicle-
sharing systems, base stations (ex: docking stations for
bikes) are strategically placed throughout a city and
each of the base stations contain a pre-determined num-
ber of vehicles at the beginning of each day. Due to the
stochastic and individualistic movement of customers,
there is typically either congestion (more than required)
or starvation (fewer than required) of vehicles at cer-
tain base stations. As demonstrated in our experimental
results, this happens often and can cause a significant
loss in demand. We propose to dynamically redeploy
idle vehicles using carriers so as to minimize lost de-
mand or alternatively maximize revenue for the vehicle
sharing company. To that end, we contribute an opti-
mization formulation to jointly address the redeploy-
ment (of vehicles) and routing (of carriers) problems
and provide two approaches that rely on decomposabil-
ity and abstraction of problem domains to reduce the
computation time significantly. Finally, we demonstrate
the utility of our approaches on two real world data sets
of bike-sharing companies.

1 Introduction
Shared Transportation Systems (STS) offer attractive alter-
natives to deal with serious concerns of private transporta-
tion such as increased carbon emissions, traffic congestion
and usage of non-renewable resources. Popular examples
of STS are bike sharing (ex: Capital Bikeshare in Wash-
ington DC, Hubway in Boston, Bixi in Montreal, Velib in
Paris, Wuhan and Hangzhou Public Bicycle in Hangzhou)
and car sharing (ex: Car2go in Seattle, Zipcar in USA) sys-
tems, which are installed in many major cities around the
world. Bike sharing systems are widely adopted with 747
active systems, a fleet of over 772,000 bicycles and 235 sys-
tems in planning or under construction (Meddin and DeMaio
2015). A bike-sharing system (BSS) typically has a few hun-
dred base stations scattered throughout a city. At the begin-
ning of the day, each station is stocked with a pre-determined

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

number of bikes. Users with a membership card can pickup
and return bikes from any designated station, each of which
has a finite number of docks. At the end of the work day,
carrier vehicles (ex: trucks) are used to move bikes around
so as to return to some pre-determined configuration at the
beginning of the day.

Due to the individual movement of customers according
to their needs, there is often congestion (more than required)
or starvation (fewer than required) of bikes on aggregate at
certain base stations. Figure 1 provides the number of in-
stances when stations become empty or full during the day
(summed over each month) for a leading bike-sharing com-
pany which performs redeployment of bikes to stations only
once at the end of the day. A full station can be considered as
being indicative of congestion and an empty station can be
considered as being indicative of starvation. At a minimum,
there are around 100 cases of empty stations and 100 cases
of full stations per day and at a maximum there are about
750 cases of empty stations and 330 cases of full stations
per day. This serves as the motivation for this paper, where
we employ dynamic redeployment during the day to better
match demand with supply.

As demonstrated in (Fricker and Gast 2012) and our ex-
perimental results, this (particularly starvation) can result in
a significant loss of customer demand . Such loss in de-
mand can have two undesirable outcomes: (a) loss in rev-
enue; (b) increase in carbon emissions, as people can resort
to fuel burning modes of transport. So, there is a practical
need to minimize the lost demand and our approach is to
dynamically redeploy bikes with the help of carriers (typ-
ically medium to large sized trucks) during the day. How-
ever, because carriers incur a cost in performing redeploy-
ment, we have to consider the trade-off between minimizing
lost demand (alternatively maximizing revenue) and cost of
using carriers for redeployment. Henceforth, we refer to this
problem as the Dynamic Redeployment and Routing Prob-
lem (DRRP).

Minor variations of DRRP are applicable to more general
shared transportation systems, empty vehicle redistribution
in Personal Rapid Transit (PRT) (Lees-Miller, Hammersley,
and Wilson 2010) and dynamic redeployment of emergency
vehicles (Yue, Marla, and Krishnan 2012; Saisubramanian,
Varakantham, and Chuin 2015).

Given the practical benefits of bike sharing systems and

the challenging nature of setting up such systems to operate
efficiently, there have been a wide variety of research pa-
pers addressing the problem of lost demand and other issues
pertinent to it. The key distinction from existing research on
bike sharing is that we consider the dynamic redeployment
of bikes in conjunction with the routing problem for carriers.

DRRP is an NP-Hard problem and therefore, we focus
on principled approximations. Specifically, our key contri-
butions are as follows :
(1) A mixed integer and linear optimization formulation to
maximize profit for the bike sharing company by trading off
between:
• computing the optimal re-deployment strategy (i.e., how

many vehicles have to be picked or dropped from each
base station and when) for bikes; and

• computing the optimal routing policy (i.e., what is the or-
der of base stations according to which redeployment hap-
pens) for each of the carriers.

(2) A Lagrangian dual decomposition method to exploit the
weak dependency between the component which computes
re-deployment strategy for bikes and the component which
computes routing policy for carriers.
(3) An abstraction mechanism that groups nearby base sta-
tions to reduce the size of the decision problem and conse-
quently, improve scalability.
Extensive computational results on real-world datasets of
two bike-sharing companies, namely Capital Bikeshare
(Washington, DC) and Hubway (Boston, MA) demonstrate
that our techniques improve revenue and operational effi-
ciency of bike-sharing systems.

Figure 1: Number of instances of empty/full stations in Capi-
talBikeShare Company

2 Related Work
Given the practical benefits of bike sharing systems, they
have been studied extensively in the literature. We focus on
three threads of research that are of relevance to this paper.
First thread of papers focus on the problem of finding routes
at the end of the day for a fixed set of carriers to achieve
the desired configuration of bikes across the base stations.
(Schuijbroek, Hampshire, and van Hoeve 2013; Raviv and
Kolka 2013; Raviv, Tzur, and Forma 2013; Rainer-Harbach
et al. 2013) have provided scalable exact and approximate
approaches to this routing problem by either abstracting base
stations into mega stations or by employing insights from

inventory management or by using variable neighborhood
search based heuristics. All the papers in this thread assume
there is only one fixed redeployment of bikes that happens
at the end of the day. In contrast, our approaches focus on
dynamic redeployment(s) during the day.

The second thread of research focuses on the placement
of base stations and on performing dynamic redeployment
of bikes during the day. (Shu et al. 2013; 2010) predict the
stochastic demand from user trip data of Singapore metro
system using poisson distribution and provide an optimiza-
tion model that suggests the best location of the stations and
a dynamic redeployment model to minimize the number of
unsatisfied customers. However, they assume that redeploy-
ment of bikes from one station to another is always possi-
ble without considering the routing of carriers, which is a
major cost driver for the bike-sharing company. A dynamic
redeployment model was proposed in (Contardo, Morency,
and Rousseau 2012) to deal with unmet demand in rush
hours. They provide a myopic redeployment policy by con-
sidering the current demand. They employed Dantzig-Wolfe
and Benders decomposition techniques to make the decision
problem faster. (Pfrommer et al. 2014) also provides a my-
opic online decisions based on assessment of demand for
the next 30 minutes. As can be observed from the data, cus-
tomer demand of bikes varies over time stochastically and
hence a myopic redeployment policy can significantly fal-
ter and may lead to circular movements for the carriers as it
does not consider the future demand. Our approaches differ
from this thread of research as we consider dynamic rede-
ployment and routing of carriers together and consider the
multi-step expected demand in determining the dynamic re-
deployment policy.

The third thread of research which is complementary to
the work presented in this paper is on demand prediction
and analysis. (Nair and Miller-Hooks 2011) provides a ser-
vice level analysis of the Bike Sharing System using a dual-
bounded joint-chance constraints where they predict the near
future demands for a short period of time. While, this may
not be applicable for a large system with a small set of car-
riers, the insights generated are practical and useful in de-
mand prediction. (Leurent 2012) represent the bike shar-
ing system as a dual markovian waiting system to predict
the actual demand. As we already highlighted, given its
generality and applicability over an entire horizon, we also
employ the demand prediction model by (Shu et al. 2013;
2010) and assume that demand follows a poisson distribu-
tion. However, we learn the parameter, λ that governs the
poisson distribution from real data.

3 Motivation: Bike Sharing
In this section, we formally describe a bike sharing system.
It is compactly described using the following tuple:〈

S,V,C#,C∗,d#,0,d∗,0, {σ0
v},F,R,P

〉
S represents the set of base stations. V represents the set of
carrier vehicles that can be employed to redeploy bikes. C#

is a vector representing docking capacity of all stations, with

C#
s representing docking capacity of a station s ∈ S . Simi-

larly, C∗ is a vector representing storage capacity of different
carriers. Note that we assumed a fixed set of carriers in our
model. However, in deciding the optimal number of carriers,
our optimization approach can be run multiple times with
different numbers of carriers to perform sensitivity analysis.

Distribution of bikes at a base station s at any time t is
given by d#,t

s . Hence, initial distribution at any station s
(provided as input) is denoted by d#,0

s . Similarly, total num-
ber of bikes present in a carrier v at any time t is given by
d∗,tv while the initial allotment of bikes d∗,0v is provided as
input. σ0

v(s) captures the initial distribution of a carrier and
is set to 1 if carrier v is stationed at station s initially1. For
ease of notation in the optimization formulation, we use the
generic σt

v(s) and set it to 0, if t > 0.
F t,k
s,s′ represents the expected demand at time step t go-

ing out from station s and reaching station s′ after k time
steps. For instance, to compute a redeployment and routing
strategy for Mondays, this would be computed by averaging
demand over all the Mondays. Rt,k

s,s′ represents the revenue
obtained by the company if a bike is hired at time t from
station s and returned at station s′ after k time steps. Ps,s′

represents the penalty for any carrier vehicle to travel from
s to s′.

Given the customer demand of bikes between different
stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. �

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
carriers, our model can easily be extended such that carriers are
enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the right trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.

Category Variable Definition

Decision
y+,t
s,v

Number of bikes picked from s by
carrier v at time t

y−,t
s,v

Number of bikes dropped at s by
carrier v at time t

zts,s′,v
Set to 1 if carrier v has to move
from s to s′ at time t)

Intermedi-
ate xt,ks,s′

Number of bikes moving from s at
time t to s′ at t+ k

d#,t
s

Number of bikes present in station
s at time-step t

d∗,tv
Number of bikes present in carrier
v at time t

Table 1: Decision and Intermediate Variables

min
y+,y−,z

−
∑

t,k,s,s′

Rt,k
s,s′ · x

t,k
s,s′ +

∑
t,v,s,s′

Ps,s′ · zts,s′,v (1)

s.t. d#,t
s +

∑
k,ŝ

xt−k,k
ŝ,s −

∑
k,s′

xt,ks,s′+∑
v

(y−,t
s,v − y+,t

s,v) = d#,t+1
s , ∀t, s (2)

xt,ks,s′ ≤ d
#,t
s ·

F t,k
s,s′∑

k,ŝ F
t,k
s,ŝ

, ∀t, k, s, s′ (3)

d∗,tv +
∑
s∈S

[(y+,t
s,v − y−,t

s,v)] = d∗,t+1
v , ∀t, v (4)

∑
k∈S

zts,k,v −
∑
k∈S

zt−1
k,s,v = σt

v(s), ∀t, s, v (5)

∑
j∈S,v∈V

zts,j,v ≤ 1, ∀t, s (6)

y+,t
s,v + y−,t

s,v ≤ C∗v ·
∑
i∈S

zts,i,v, ∀t, s, v (7)

0 ≤ xt,ks,s′ ≤ F
t,k
s,s′ , 0 ≤ d

#,t
s ≤ C#

s , 0 ≤ y+,t
s,v ≤ C∗v ,

0 ≤ y−,t
s,v ≤ C∗v , 0 ≤ d∗,tv ≤ C∗v (8)

zti,j,v ∈ {0, 1} (9)

Table 2: SOLVEDRRP()
using a Poisson distribution with mean computed from his-
torical data. One of our goals is to compute a redeployment
of bikes and it should be noted that because of redeploy-
ment, the number of bikes at a station will be different to
what was observed in the training dataset. Hence, flow of
bikes between station s and s′ at time step t for k time steps
suggested by our MILP will be different from the observed
flow of bikes in the data, i.e., F t,k

s,s′ . To represent this, we in-
troduce a proxy variable, xt,ks,s for F t,k

s,s′ that is set based on F
and the number of bikes available in the source station after
redeployment. x is included in the objective to ensure most
of the expected demand is satisfied. For this reason, x is only
an intermediate variable that is proxy to expected demand,
F. The lost demand is calculated as the difference between
demand sample (F) and the served demand (x).

To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-

ties and combine them into overall profit3. This objective is
represented in Equation (1) of the MILP in SOLVEDRRP().

The key to this formulation for solving DRRP are the flow
preservation, movement and capacity constraints for bikes,
stations and carriers. Here, we provide a brief description of
these constraints:
1. Flow of bikes in and out of stations is preserved:
Constraints (2) enforces this flow preservation by ensuring
equivalence of the number of bikes at station, s at time, t+1
(i.e., d#,t+1

s) to the sum of bikes at station, s at time, t (i.e.,
d#,t
s) and net number of bikes arriving at station s after time

step t (i.e.,
∑

k,ŝ x
t−k,k
ŝ,s −

∑
k,s′ x

t,k
s,s′), minus the net num-

ber of bikes picked up from station s by all carriers v (i.e.,∑
v

[
y+,t
s,v − y−,ts,v

]
).

2. Flow of bikes between any two stations follows the
transition dynamics observed in the data: As a subset of
arrival customers can be served if number of bikes present
in the station is less than arrival demand, constraints (3) en-
sures that flow of bikes between any two station s and s′
should be less than the product of number of bikes present
in the source station s (i.e. d#,t

s) and the transition probabil-
ity that a bike will move from s to s′ (according to customer
demand (i.e. F t,k

s,s′/
∑

k,ŝ F
t,k
s,ŝ)).

3. Flow of bikes in and out of carriers is preserved: Con-
straints (4) enforces this flow is preserved by ensuring equiv-
alence of the number of bikes in a carrier, v at time step t+1
(i.e., d∗,t+1

v) to the sum of bikes in carrier, v at time step t
(i.e., d∗,tv) and the net number bikes added at time step t to
carrier v (i.e.,

∑
s∈S

[
y+,t
s,v − y−,ts,v]).

4. Flow of carriers in and out of stations is preserved4:
Since σt

v = 0 for all t > 0, constraints (5) ensures that flow
out of a station s for a carrier v at time t (i.e.,

∑
k∈S z

t
s,k,v)

is equivalent to flow of v into the station s at time t− 1 (i.e.,∑
k∈S z

t−1
k,s,v). For t = 0, depending on σ0

v is given as input,
this constraint will ensure carrier flow moves appropriately
out of the initial locations.
5. Only one carrier can be in one station at a time step:
Constraints (6) ensures this by restricting the maximum car-
rier flow in a station as one.
6. Carrier can pick up or drop off bikes from a station by
being at the station: Constraints (7) enforces that the num-
ber of bikes picked up or dropped off at a time is bounded
by whether the station is visited at that time step.
7. Station capacity is not exceeded when redeploying
bikes: Constraints (8) ensures that the number of bikes at
a station, s is lower than the number of docks available at
that station (i.e., C#

s).
8. Carrier capacity is not exceeded when redeploying
bikes: Constraints (9) ensures that the number of bikes
dropped off or picked up from any station at every time step
and in aggregation is always less than the carrier capacity.

3We do not consider the labor/capital cost in the optimization
model as they are constant (decided by strategic planning) and
would not alter the results. However, we have a buffer on fuel cost
to account for any other costs pertaining to day-to-day operations.

4Note that this constraint does not preclude a carrier from stay-
ing in the same station.

5 Decomposition Approach for Solving
DRRP

We now provide a decomposition approach to exploit the
minimal dependency that exists in the MILP of SOLVE-
DRRP() between the routing problem (how to move carrier
vehicles between base stations to pick up or drop off bikes)
and the redeployment problem (how many bikes and from
where to pick up and drop off bikes). The following obser-
vation highlights this minimal dependency:

Observation 1 In the MILP of Table 2:
• y+ and y− variables capture the solution for the redeploy-

ment problem.
• z variables capture the solution for the routing problem.
These sets of variables only interact due to constraints (7).
In all other constraints of the optimization problem, the rout-
ing and redeployment problems are completely independent.
In order to exploit Observation 1, we use the well known
Lagrangian Dual Decomposition (Fisher 1985; Gordon et al.
2012) technique. While this is a general purpose approach,
its scalability, usability and utility depend significantly on
whether the right constraints are dualized5 and if primal
solution can be extracted from an infeasible dual solu-
tion6. If the right constraints are not dualized or primal solu-
tion is not extracted, then the underlying Lagrangian based
optimization may not provide desired scalability and solu-
tion quality. In order to provide a sense of the overall flow,
the pseudo code for LDD is provided in Algorithm 1. We
first identify the decomposition of the optimization problem
into a master problem and slaves (SOLVEREDEPLOY() and
SOLVEROUTING()). As highlighted in observation 1, only
constraints (7) contains a dependency between routing and
redeployment problems. Thus, we dualize constraints (7) us-
ing the price variables, αs,t,v and obtain the Lagrangian as
follows:

L(α) = min
z,y+,y−

[
−
∑

t,k,s,s′

Rt,k
s,s′ · x

t,k
s,s′ +

∑
t,v,s,s′

Ps,s′ · zts,s′,v

+
∑
s,t,v

αt
s,v · (y+,t

s,v + y−,t
s,v − C∗v ·

∑
i

zts,i,v)
]

(10)

= min
y+,y−

[
−
∑

t,k,s,s′

Rt,k
s,s′ · x

t,k
s,s′ +

∑
s,t,v

αt
s,v ·

(
y+,t
s,v + y−,t

s,v

)]
+min

z

[∑
t,v,s,s′

Ps,s′ · zts,s′,v −
∑
s,t,v

αt
s,v · C∗v ·

∑
i

zts,i,v

]
(11)

In Equation (11), the first two terms correspond to the re-
deployment problem and the second two terms correspond
to the routing problem. Thus, we have a decomposition of
the dual problem into two slaves. Specifically, the slave op-
timization formulations corresponding to the redeployment
and routing problems after decomposition are given in Ta-
ble 3 and Table 4 respectively.

To obtain the final solution for the original optimization
problem of Table 2, at the master, we optimize maxα L(α).

5So that resulting subproblems are easy to solve and the upper
bound derived from the LDD approach is tight.

6So that we can derive a valid lower bound (heuristic solution)
during LDD process.

min
y+,y−

−
∑

t,k,s,s′

Rt,k
s,s′ · x

t,k
s,s′ +

∑
s,t,v

αt
s,v · (y+,t

s,v + y−,t
s,v)

s.t. Constraints 2, 3, 4 & 8 hold

Table 3: SOLVEREDEPLOY()

min
z

∑
t,v,s,s′

Ps,s′ · zts,s′,v −
∑
s,t,v

αs,t,v · C∗v ·
∑
i

zts,i,v

s.t. Constraints 5, 6 & 9 hold

Table 4: SOLVEROUTING()

From Equation (11), given an α, the dual value correspond-
ing to the original problem is obtained by adding up the so-
lution values from the two slaves. This master optimization
problem is solved iteratively using sub-gradient descent on
price variables, α:

αk+1
s,t,v =

[
αk
s,t,v + γ · (y+,t

s,v + y−,t
s,v − C∗v ·

∑
i

zts,i,v)
]
+

(12)

where [·]+ notation indicates that if the value within square
brackets is less than 0, then we consider it as zero and if it
is positive, we take that value as it is. This is so, because
we have dualized a less than equal to constraint and a value
of less than zero indicates there is no violation of the con-
straint. γ corresponds to step parameter that is derived using
standard strategies highlighted in (Bertsekas 1999, Section
6.3.1). The value within parenthesis () in Equation (12) is
computed from the solutions of the two slaves.

Convergence in the process is detected when the differ-
ence between the primal objective (defined as p in Algorithm
1) and the dual objective (the sum of the slave’s objectives
o1, o2) is less than a pre-determined threshold value δ. In
order to determine convergence of the algorithm and also
understand the progress towards computing the optimal so-
lution, we need the best primal solution in conjunction with
the dual solution. Therefore, extracting the best primal solu-
tion after each iteration of solutions from slaves is critical.
This is also challenging because the solution obtained from
slaves may not always be feasible for the original problem
in Table 2.

Algorithm 1: SolveLDD(drrp)

Initialize: α0, it← 0 ;
repeat

o1, x, y−, y+ ← SOLVEREDEPLOY(αit, drrp)
o2, z← SOLVEROUTING(αit, drrp)
αit+1,t
s,v ←

[
αit,t
s,v +γ ·(y+,t

s,v +y
−,t
s,v −C∗v ·

∑
i z

t
s,i,v)

]
+

p, xp, y
−
p , y

+
p ← EXTRACTPRIMAL (Z, drrp);

it← it+ 1;
until

[
p− (o1 + o2)

]
≤ δ;

return p, xp, y+p , y−p , z

Observation 2 The infeasibility in the dual solution arises
because routes of the carriers (computed by routing slave)
may not be consistent with redeployment of bikes (computed
by redeployment slave). However, solution of the routing
slave is always feasible and can be fixed in the optimization
problem of Table 2 to obtain a feasible primal solution.

Let Zt
s,v =

∑
s′ z

t
s,s′,v . We extract the primal solution by

solving the following optimization problem provided in Ta-
ble 5 and subtract the routing cost from the objective to get
the primal solution.

max
y+,y−

∑
t,k,s,s′

Rt,k
s,s′ · x

t,k
s,s′

s.t. Constraints 2, 3, 4, 8 hold and

y+,t
s,v + y−,t

s,v ≤ C∗v · Zt
s,v ,∀t, s, v (13)

Table 5: EXTRACTPRIMAL()

Proposition 2 (Fisher 1985) Error in solution quality ob-
tained by Lagrangian dual decomposition method in Algo-
rithm 1 is bounded by p− (o1 + o2).

It should be noted that MILP in Table 2 provides the optimal
solution.

6 Abstraction Approach for Solving DRRP
Even after applying LDD, we can only scale to problems
with at most 60 stations, 38 time-step and 6 carriers. How-
ever, in bigger cities, the number of base stations is in the
order of hundreds. To ensure scalability to bigger cities,
we propose a heuristic approach that employs abstraction.
Specifically, we have the following key steps:
• Create an abstract DRRP with abstract stations, each of

which is a grouping of original base stations.
• Solve the abstract DRRP using LDD and obtain routing

and redeployment strategy over abstract stations.
• Derive the routing and redeployment strategies for the

original DRRP from the routing and redeployment strate-
gies for abstract DRRP.

Create abstract DRRP: Concretely, the first step
in this approach is to generate the abstract DRRP,〈
S̃,V, C̃#

,C∗, d̃
#,0

,d∗,0, {σ̃0
v}, F̃, R̃, P̃

〉
from the original

DRRP. Everything related to carriers in the abstract DRRP
remains the same as in the original DRRP. In practice,
revenue, Rt,k

s,s′ is only dependent on the time of the day,
t and number of time steps, k for which the the bike is
hired and not on s and s′. Hence, we can assume that the
revenue model also remains the same in the abstract DRRP.
We outline below how the other elements of the abstracted
DRRP tuple are computed from the original DRRP:
• Stations in abstracted DRRP, S̃: Grouping of stations, S

into abstract stations can either be provided by an expert or
done manually or computed through clustering approaches
(ex: k-means clustering). Thus, each abstracted station, s̃
is a set of original base stations.

• Capacity of an abstract station, C#
s̃ =

∑
s∈s̃ C

#
s . The ca-

pacity of a abstract station s̃ is the sum of capacities of all
the stations s ∈ s̃.
• Initial distribution of the abstracted station: d#,0

s̃ =∑
s∈s̃ d

#,0
s . Initial distribution of a abstract station s̃ is the

sum of initial distribution of all the stations s ∈ s̃.
• Initial distribution of carrier : σ0

v,s̃ = 1, if ∃s ∈ s̃ and
σ0
v,s = 1. That is to say, the carrier v is initially located in

abstract station s̃ if its original location (station s) belongs
to the abstract station s̃
• Flow in abstracted DRRP: F t,k

s̃,s̃′ =
∑
{s∈s̃,s′∈s̃′} F

t,k
s,s′ .

Flow from abstracted station s̃ to s̃′ is calculated as the
sum of flows between any station s ∈ s̃ to s′ ∈ s̃′ in the
original DRRP.
• Cost model for the carriers in abstract DRRP: Ps̃,s̃′ =
max{s∈s̃,s′∈s̃′} Ps,s′ . While there are multiple models
possible, we consider the conservative option of taking
the worst case penalty. Specifically, we take the maximum
penalty for traveling between any pair of stations s ∈ s̃
and s′ ∈ s̃′.

Solve abstract DRRP: We use LDD from previous section
to solve the abstract DRRP. There are two key outputs: (a)
Redeployment strategy, ỹ for moving bikes between abstract
stations; and (b) Routing strategy, z̃ for moving carriers be-
tween abstract stations, s̃ at different time steps.

max
y+,y−,z

∑
t,k,s,s′

Rt,k
s,s′ · x

t,k
s,s′ −

∑
t,v,s,s′

Ps,s′ · zts,s′,v

s.t. Constraints 2- 9 hold and∑
s∈s̃,s′∈s̃′

zts,s′,v = z̃ts̃,s̃′,v ∀s̃, s̃′, t, v (14)

Table 6: RETRIEVEDRRP()

Derive strategies for original DRRP: We retrieve the so-
lution of DRRP from solutions obtained for abstract DRRP.
z̃ is the routing strategy obtained by solving the abstract
DRRP, where z̃ts̃,v =

∑
s̃′ z̃

t
s̃,s̃′,v = 1 entails carrier v is

present in abstract station s̃ at time step t. Table 6 provides
the optimization model to retrieve the solution for DRRP
with the assumption of carrier travels one station in each
time step. We solve the global MIP SolveDRRP() provided
in Table 2 with an additional set of constraints (14) that en-
sure a carrier can only be present in a base station at any
time step if the station belongs to the abstract station where
the carrier is located in the abstract DRRP solution. It also
enforces that the decision variable zts,s′,v can only be 1 if
s ∈ s̃, s′ ∈ s̃′ and z̃ts̃,s̃′,v = 1. In the MILP of Retrieve-
DRRP(), we explicitly set the decision variables zts,s′,v to
0 if s ∈ s̃, s′ ∈ s̃′ and z̃ts̃,s̃′,v = 0. Thus RetrieveDRRP()
becomes an easier optimization problem than SolveDRRP().

6.1 Discussion
As we are abstracting the base stations based on their relative
distance, all the base stations within an abstract station are
located nearby. So, in reality it is possible for a carrier to

visit all the base stations of an abstract station within one
time-step. In this case, the mechanism to retrieve the DRRP
solution from abstract station level solution changes and is
outlined here.

max
y+,y−

∑
t,s,s,s′

Rt,k
s,s′ · x

t,k
s,s′ (15)

s.t. d#,t
s +

∑
k,ŝ

xt−k,k
ŝ,s −

∑
k,s′

xt,ks,s′+

y−,t
s − y+,t

s = d#,t+1
s , ∀t, s (16)

xt,ks,s′ ≤ d
#,t
s ·

F t,k
s,s′∑

k,ŝ F
t,k
s,ŝ

, ∀t, k, s, s′ (17)

y+,t
s + y−,t

s ≤ C∗v · Zt
s ,∀t, s (18)∑

s∈s̃|zts̃,v=1

[y+,t
s − y−,t

s] = d∗,t+1
v − d∗,tv , ∀t, s̃ (19)

0 ≤ xt,ks,s′ ≤ F
t,k
s,s′ , 0 ≤ y

+,t
s , y−,t

s ≤ C∗v , 0 ≤ d#,t
s ≤ C#

s

(20)

Table 7: GETSTATIONREDEPLOY(v,Z, d∗v)
We first compute redeployment strategy, z at the level of

base stations for each carrier over the entire horizon and then
compute the routing strategy within each abstract station.
The optimization problem of Table 7 employs the constants,
Z to obtain a base station level redeployment strategy, y. If
s is an original station and s̃ is an abstract station, then let
Zt
s = 1, if s ∈ s̃ and

∑
v z̃

t
s̃,v = 1. Our objective func-

tion specified in (15) is to maximize the overall revenue of
the agency that implies maximum number of customers are
served. One of the key differentiating constraints that has not
been used earlier is constraints (19). This ensures that total
number of bikes picked up or dropped off from all base sta-
tions in an abstract station is equal to the number of bikes
picked up or dropped off in the abstract station level rede-
ployment strategy.

min
z

∑
t,s,s′

Ps,s′ · zts,s′ (21)

s.t. d̂∗,t +
∑
s

(Y +
s − Y −s) ·

∑
s′

zts,s′ = d̂∗,t+1,∀t ∈ T̂

(22)∑
t,s′

zts,s′ = 1 , ∀s ∈ s̃|(Y +
s + Y −s) > 0 (23)

∑
s′

zts,s′ −
∑
ŝ

zt−1
ŝ,s = σt(s) , ∀t ∈ T̂ , s ∈ s̃ (24)

Table 8: GETINTRAROUTING(s̃,Y)
Given the base station level redeployment strategy, Y, we

now compute the best route within the stations of an abstract
station, s̃.This problem can be solved locally for each ab-
stract station, s̃, where carrier v is redeploying at time step
t. If we have |T | time-steps and |V| carriers, we can solve
|T | · |V| subproblems separately. To figure out the initial lo-
cation, we find a station within the abstract station which

is nearest to the station from where the carrier has exited
in the previous time-step. Since the position of carriers is
known at the first time step, we know the starting location.
Such an approach automatically minimizes the inter-cluster
routing. Table: 8 provides the optimization formulation to
solve each subproblem. The objective specified in (21) is to
minimize the routing cost. Constraints (22) ensure the re-
deployment number from each station (Y) is satisfied and
Constraints (23) ensure that each base station where a rede-
ployment is required is visited only once.

7 Experimental Settings
We evaluate our approaches with respect to run-time, rev-
enue for company and lost demand on real world7 and syn-
thetic data sets. These data sets contain the following data:
(1) Customer trip records that are indicative of successful
bookings. We predict demand from these trip records. (2)
Number of active docks in each station (i.e. station capacity)
and initial distribution of bikes in the station at the beginning
of a day. (3) Geographical locations of base stations. From
the longitude and latitude information of stations, we calcu-
late the relative distance between two stations. (4) Revenue
model of the agency8. (5) Cost of fuel for carriers9.

We generated our synthetic data set as follows: (a) We
take a subset of the stations from the real world data set (b)
Customer demands, station capacity, geographical location
of stations and initial distribution are drawn from the real
world data for those specific stations. (c) We take the same
revenue and cost model discussed earlier from real datasets.
Because of limited scalability of MILP and LDD without ab-
straction, we are only able to evaluate run-time performance
on small scale synthetic problems.

To the best of our knowledge, there is no other approach
that addresses this problem nor does there exist an approach
that can easily be adapted to solve our problem. Hence
we compare our approaches against current practice of
redeploying at the end of the day (in which user activities
during the rebalancing period are negligible) with respect
to: (a) overall revenue generated for the agency; and (b) lost
demand. We compute the outcome of current practice by
simulating flow of bikes between stations to be proportional
to the flow observed in the data. With the flow, we compute
distribution of bikes and based on that, we can compute the
revenue and loss in demand.

Synthetic Dataset: We have three sets of results10 on the
7Data is from two leading US bike sharing companies: Capital-

BikeShare [http://capitalbikeshare.com/system-data] and Hubway
[http://hubwaydatachallenge.org/trip-history-data]

8Typically, first 30 minutes for subscription rides is free. Af-
ter that money is charged. In our model, to ensure consistency, we
can represent revenue for first 30 minutes as the subscription fees
divided by the average number or rides.

9Mileage results are shown in Table 2 of
(Fishman, Washington, and Haworth 2014) and
http://www.globalpetrolprices.com/diesel prices/#USA, shows
that diesel price is 1.01 USD per liter, but we assumed it as 1.5
USD to consider worst case.

10All the linear optimization models were solved using IBM

synthetic data set. Firstly, we compare the runtime per-
formance of LDD (SOLVELDD()) with the global MILP
(SOLVEDRRP()) in Figure 2(b). X-axis denotes the scale
of the problem where we varied the number of stations from
5 to 50. Y-axis denotes the total time taken in seconds on
a logarithmic scale. LDD significantly outperforms global
MILP once the number of stations is above 10. Specifically,
global MILP was unable to finish within a cut-off time of
6 hours for any problem with more than 20 stations, while
LDD was able to solve problems with 50 stations in an hour.

Figure 2: (a) Duality gap (b) Runtime: LDD vs Global MILP

In the second set of results we demonstrate the conver-
gence of LDD. LDD can achieve the optimal solution if the
duality gap i.e. the gap between primal and dual solution be-
comes zero. Figure 2(a) shows that the duality gap for a 20
station problem is only 1%. While, we do not show the re-
sults here, on larger problems we are able to get a solution
with duality gap of less than 0.5 %.

Finally, we demonstrate the performance of abstraction in
comparison with optimal on a problem with 30 base stations.
We grouped those 30 base stations into 8 abstract stations.
Then we run the LDD based optimization on both the base
station and abstraction station problems. Table: 9 shows the
effect of abstraction on the generated revenue and execution
time based on five random instances of customer demand.
While there is a very small drop in revenue (0.2%) due to
abstraction, we get a very significant (at least an order of
magnitude gain) in runtime.

With
Abstraction

Without
Abstraction

Instance Revenue Runtime
(sec) Revenue Runtime

(sec)
1 23580 51 23640 3840
2 23627 106 23678 3540
3 23610 57 23727 3120
4 23613 49 23645 3150
5 23519 45 23590 3119

Table 9: Effect of Abstraction
Real-world Datasets: Majority of our results are provided
on the CapitalBikeShare dataset. This data set has 305 ac-
tive stations and we consider 50 abstract stations (obtained
through k-means clustering). The planning horizon is 38 (

ILOG CPLEX Optimization Studio V12.5 incorporated within
python code on a 3.2 GHz Intel Core i5 machine with 4GB DDR3
RAM

30 minute intervals during the working hours from 5AM-
12AM).

We now provide the performance comparison between
our approaches and current practice (i.e., no redeployment
during the day) with respect to lost demand and revenue gen-
erated for the bike-sharing company. We generate the overall
mean demand as well as the demand for individual week-
days from historical data of trips. We compute the results
for the entire time horizon 5 AM to 12 AM and also for one
of the peak durations from 5 AM to 12 PM. Table:10 shows
the percentage gain in revenue and the percentage reduction
in lost demand in comparison with current practice. With re-
spect to both revenue gain and lost demand, our approach
(abstraction + LDD + MILP) was able to outperform current
practice during the peak time as well as over the entire day.
We reduce the lost demand in all the cases by at least 20%,
a significant improvement over current practice.

Whole day
(5am-12am)

Peak period
(5am-12pm)

Revenue
gain

Lost
demand

reduction

Revenue
gain

Lost
demand

reduction
Mean 3.47 % 22.72 % 7.74 % 30.58 %
Mon 2.33 % 22.46 % 4.48 % 25.55 %
Tue 3.07 % 28.56 % 7.86 % 37.10 %
Wed 3.30 % 31.16 % 8.95 % 44.88 %
Thu 2.86 % 33.76 % 6.04 % 35.97 %
Fri 2.51 % 27.37 % 4.50 % 28.15 %
Sat 3.87 % 23.61 % 4.33 % 24.30 %
Sun 3.01 % 26.00 % 4.04 % 36.51 %

Table 10: Revenue and lost demand comparison
The next set of results demonstrate the sensitivity of our

approach with respect to small variations in demand. We cre-
ated a set of 10 demands for each of the weekdays from the
underlying poisson distribution with mean calculated from
the real world data set. For individual demand instances, we
calculate the revenue and lost demand by applying our rede-
ployment policy and compare it with the traditional policy.
Figure 3 shows the mean and deviation of the revenue and
lost call for each of the weekdays. Even considering the vari-
ance, Figure 3(a) shows that the revenue generated by fol-
lowing our redeployment strategy is still better (albeit by a
small amount) than current practice. More importantly, Fig-
ure 3(b) demonstrates that we are able to significantly reduce
the lost demand on all the cases.

Figure 3: Sensitivity analysis: (a) Revenue comparison (b) Lost
demand comparison

Next, we present the experimental results on the real

world dataset of Hubway. Hubway BSS comprises with 95
active stations and we group them into 25 abstract stations.
In the experiment we have used 4 carriers to redeploy the
bikes. To predict the demands we have used 3-months of
trip history records (3rd quarter of 2012). We took a plan-
ning horizon of 38 time-step (5 AM to 12 AM) in the exper-
iment. Then we generate 7 instances of demand for each of
the weekdays from the historical data.

We produce two sets of results with this data set. Table:
11 provides the comparison results (on revenue and lost de-
mand) between the traditional approach and our dynamic re-
deployment approach. Our approach is able to gain an excess
5% in revenue on average while the lost demand is reduced
by a minimum of 40 %.

Mon Tue Wed Thu Fri Sat Sun
Revenue Gain
(%) 3.94 5.93 4.45 5.90 6.27 2.20 3.15

Lost Demand
Reduction(%) 42.6 60.7 58.5 54.7 77.2 69.8 74.0

Table 11: Revenue and lost demand comparison (Hubway)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3 3.5 4

S
e

rv
e

d
 D

e
m

a
n

d

Actual Demand

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3 3.5 4

S
e

rv
e

d
 D

e
m

a
n

d

Actual Demand

Figure 4: Correlation of demand and supply: (a) Without re-
deployment (b) With dynamic redeployment

Lastly, to visualize the effect of redeployment we draw
the correlation between actual demand and served demand
over the entire planning horizon. Since we aim to reduce the
lost customer demand, it is better if most of the points are
near line of equality or identity line. Figure 4(b) illustrates
the correlation between actual demand and demand served
by following our redeployment model. Comparatively, with
redeployment there are many more points closer to the iden-
tity line than with current practice (shown in Figure 4(a)).

8 Conclusion
In this paper we addressed the dynamic redeploy problem
in shared transportation systems. Our approach based on the
Lagrangian Dual Decomposition and an abstraction based
mechanism, addresses two key challenges (a) Provide an
near-optimal policy for the dynamic redeployment of idle
vehicles in conjunction with the routing solution for carri-
ers (b) Provide a scalable solution for the real-world large
scale problems. The empirical results on multiple real and
synthetic data sets shown that our dynamic redeployment
approach is not only able to achieve the original goal of re-
ducing lost demand, but is also able to improve revenue for
the bike sharing company, by using their existing resources.
In future this work can be extended with a robust optimiza-
tion technique which can account for all the realization of
different demand scenarios.

Acknowledgments
The research described in this paper was funded in part by
the Singapore National Research Foundation (NRF) through
the Singapore-MIT Alliance for Research and Technology
(SMART) Center for Future Mobility (FM).

References
Bertsekas, D. P. 1999. Nonlinear programming. Athena
Scientific, 2nd edition.
Contardo, C.; Morency, C.; and Rousseau, L.-M. 2012.
Balancing a dynamic public bike-sharing system, volume 4.
CIRRELT.
Fisher, M. L. 1985. An applications oriented guide to la-
grangian relaxation. Interfaces 15(2):10–21.
Fishman, E.; Washington, S.; and Haworth, N. L. 2014. Bike
share’s impact on car use: evidence from the united states,
great britain, and australia. In Proceedings of the 93rd An-
nual Meeting of the Transportation Research Board.
Fricker, C., and Gast, N. 2012. Incentives and redistribution
in homogeneous bike-sharing systems with stations of finite
capacity. EURO Journal on Transportation and Logistics
1–31.
Gordon, G. J.; Varakantham, P.; Yeoh, W.; Lau, H. C.; Ar-
avamudhan, A. S.; and Cheng, S.-F. 2012. Lagrangian re-
laxation for large-scale multi-agent planning. In Web In-
telligence and Intelligent Agent Technology (WI-IAT), 2012
IEEE/WIC/ACM International Conferences on, volume 2,
494–501. IEEE.
Lees-Miller, J. D.; Hammersley, J. C.; and Wilson, R. E.
2010. Theoretical maximum capacity as benchmark for
empty vehicle redistribution in personal rapid transit. Trans-
portation Research Record: Journal of the Transportation
Research Board 2146(1):76–83.
Leurent, F. 2012. Modelling a vehicle-sharing station
as a dual waiting system: stochastic framework and sta-
tionary analysis. Under review, URL https://hal.archives-
ouvertes.fr/hal-00757228.

Meddin, R., and DeMaio, P. 2015. The bike-sharing world
map. URL http://www.bikesharingworld.com/.
Nair, R., and Miller-Hooks, E. 2011. Fleet manage-
ment for vehicle sharing operations. Transportation Science
45(4):524–540.
Pfrommer, J.; Warrington, J.; Schildbach, G.; and Morari,
M. 2014. Dynamic vehicle redistribution and online price
incentives in shared mobility systems. Intelligent Trans-
portation Systems, IEEE Transactions on 15(4):1567–1578.
Rainer-Harbach, M.; Papazek, P.; Hu, B.; and Raidl, G. R.
2013. Balancing bicycle sharing systems: A variable neigh-
borhood search approach. Springer Berlin Heidelberg.
Raviv, T., and Kolka, O. 2013. Optimal inventory
management of a bike-sharing station. IIE Transactions
45(10):1077–1093.
Raviv, T.; Tzur, M.; and Forma, I. A. 2013. Static repo-
sitioning in a bike-sharing system: models and solution ap-
proaches. EURO Journal on Transportation and Logistics
2(3):187–229.
Saisubramanian, S.; Varakantham, P.; and Chuin, L. H.
2015. Risk based optimization for improving emergency
medical systems. In AAAI.
Schuijbroek, J.; Hampshire, R.; and van Hoeve, W.-J. 2013.
Inventory rebalancing and vehicle routing in bike sharing
systems. Working Paper, Carnegie Mellon University, Pitts-
burgh.
Shu, J.; Chou, M.; Liu, Q.; Teo, C.-P.; and Wang, I.-L.
2010. Bicycle-sharing system: deployment, utilization and
the value of re-distribution. Technical report, National Uni-
versity of Singapore-NUS Business School, Singapore.
Shu, J.; Chou, M. C.; Liu, Q.; Teo, C.-P.; and Wang, I.-L.
2013. Models for effective deployment and redistribution of
bicycles within public bicycle-sharing systems. Operations
Research 61(6):1346–1359.
Yue, Y.; Marla, L.; and Krishnan, R. 2012. An efficient
simulation-based approach to ambulance fleet allocation and
dynamic redeployment. In AAAI.

