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Abstract—In this study, we introduce a hidden Markov model
map matching method that is based on a cumulative proximity-
weight formulation. This new formula is based on the line integral
of point-wise segment weights rather than the almost standard
shortest distance based weights. The proposed method was tested
using vehicle and map data from Seattle area. Several simulations
were conducted so as to have a clear comparison of the new
weight to the traditional one; and particular emphasis were given
to matching of GPS data with long sampling periods and high
level noise. Overall, possible improvements to MM accuracies by
the new weight were identified. It was seen that the new weight
could be a better option than the shortest distance based weight
in the presence of low-frequency sampled and/or noisy GPS data.

I. INTRODUCTION

Usage of satellite-based navigation devices have been in-
creasing steadily since the beginning of 2000s. Therefore, the
analysis of vehicle position measurements collected by these
devices with an underlying road network to identify vehicles’
true locations has become a major research problem under the
generic name of Map Matching (MM). As a result of the in-
terdisciplinary nature of MM problem, in the last two decades,
numerous methods with very different approaches have been
proposed. Early MM methods have been developed with the
assumption that frequently sampled GPS points!, e.g. sampled
at 1 second intervals, would be available. In the presence of
such data, most methods from the last decade have been able to
yield almost perfect matching results. However, these methods
have not fared well in general when the sampling period
between data points were long, especially when it exceeded
30 seconds. For this reason, in the last few years there has
been an increasing interest for methods that can address
this non-traditional MM problem of low-frequency GPS data.
The major reason for the drop in accuracy comes from the
increasing uncertainty regarding the travel of a vehicle from
one point to the next one when measurement frequency is
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low [1]. To reduce the effect of increased uncertainty, various
heuristics have been proposed. While these heuristics have
improved MM accuracies to some degree, more research is still
needed to have highly accurate methods for low-sampled GPS
data. A second thing to note is that the accuracy of an MM
method can also vary depending on the chosen network’s road
sparsity, and the GPS device’s measurement quality. While it
is possible to get almost 100% accuracy with a very accurate
GPS receiver, while traveling on a sparse network free of
urban canyons, such high accuracy cannot be expected in every
problem. For this reason, there has been an additional recent
interest in developing methods that would be robust to noisy
GPS measurements. Any proposal that can address these two
problems, while being not particularly dependent on a specific
underlying MM algorithm, and not relying on extra data (using
only positioning data), can benefit MM methods in general.
For MM methods, some concepts always remain essential;
and the above goal could be achieved by improving the mea-
sures related to these. The proximity concept of spatial close-
ness between observed GPS points and road segments in the
network is one of these. In deterministic methods, it has been
quantified as Proximity-Weight e.g. [2], [3], and in probabilistic
methods, as Observation (Emission) Probability e.g. [4], [5].
While formulations for segment proximity have been unique in
each method, all formulations still have followed the fact that
for a given GPS point, segments closer to this point are more
likely to be the true segment compared to segments further
away [6]. Therefore, in deterministic methods, monotonically
decreasing functions of distance, and in probabilistic methods,
likelihood functions of distance defined through the Gaussian
distribution are most common. Meanwhile, it is interesting to
note that in all these functions, that quantify the proximity
of a segment with respect to a given GPS point, the shortest
distance from the point to the road segment have been used
as the sole argument [2], [3], [4], [S], [7], [8], [9], [10],
[11]. Although this is a valid approach for quantifying the
closeness of a segment and a point, notice that it only relies
on the proximity of the closest point of the road segment.
Drawbacks of this approach have been discussed in detail
recently in [12], where the authors have shown that it could
yield questionable weights (probabilities), e.g. road segments
of very different geometry and orientation getting the same



weights only as a result of having the same shortest distance
to the GPS point. As an alternative, point-wise proximity-
weights were defined for points defining a segment, and the
cumulative value of these weights, defined through a line
integral, yielded the proximity-weight of that segment. A
closed form of the proposed weight was also developed for
probabilistic methods under the assumption that road segments
were straight, and that the GPS noise was Gaussian. In
some of the recent studies, similar formulations that avoid
the shortest-distance based proximity-weights have also been
proposed e.g. [13], yet without a compact formulation. For
this reason, the proposed cumulative proximity-weight of [12]
could be an easily implementable, yet effective improvement
to probabilistic methods in general.

However, [12] has stayed short of using the proposed weight
as part of an actual MM algorithm. For this reason, at this
point, a complete MM analysis is still needed to see whether
the proposed weight would be expected to improve the overall
accuracy of probabilistic methods or not. If so, one also needs
to identify under what conditions that could be the case. In
this study, we tried to answer these questions by developing a
Hidden Markov Model (HMM) based MM algorithm with the
proposed cumulative proximity-weight. To compare the MM
results with the the proposed weight against results with a
traditional shortest distance based weight, a parallel algorithm
using the latter weight were also developed. HMM was chosen
as the underlying methodology because of its simplicity in
formulating the MM problem, and the reliable estimates it
yields by finding the most likely sequence of road segments
through the Viterbi algorithm. First used by Hummel [14], and
later by Newson and Krumm [4], HMM has recently become
essential in probabilistic MM studies.

Since proximity-weights are defined only through position
data, in order to get a clear comparison of the two approaches,
in this study we will assume the availability of only this type of
data. This problem of identifying the true location of a vehicle
by only using its position data, and the underlying road net-
work is considered as the most basic MM problem. Other MM
variants could be defined on this problem with the availability
of extra data, such as velocity or heading direction data; and
without a doubt their availability can improve matching results.
Since we will be performing simulations on the most basic
problem, improvements reflected in our simulations could be
also expected to be seen with the availability of extra data.

For our simulations, we have used the same GPS and road
network data set that was originally used by Newson and
Krumm in [4]. The primary reason to use this data set was the
availability of the ground truth data, which helped us identify
the number of mismatching segments under our algorithms
correctly. In addition, the usage of this data set also gave
us an opportunity to safe check our shortest distance based
algorithm by comparing our results with theirs. While we
will start our simulations with comparing the performance of
the two algorithms for the standard MM problem (GPS data
sampled at each second), our primary focus will be about their
performances under low-sampled and also noisy-data.

The rest of the paper is organized as follows. First, in II,
we will briefly reintroduce the proximity-weights, both from
the shortest distance and the cumulative weight perspectives.
Later in III, we will go over the details of our HMM-based
MM method, that will be used for both weight formulations.
Finally, in IV, we will describe our simulations, and present
our results. A comparison of the results and discussion will
follow to evaluate the new proximity-weight in general.

II. DEFINING PROXIMITY-WEIGHTS (PROBABILITIES)

A. Segment Proximity-Weight based on Shortest Distance vs.
Segment Proximity-Weight based on Line Integral

Let d(p, s) define the distance between two points p and
s; dm(p, S) the shortest distance between point p and a road
segment S € S. Also, let f : RT™ — R™, be the generic weight
function that defines the proximity-weight of segments in an
MM method, and W,,,(p, S) the proximity-weight of segment
S with respect to p defined through the shortest distance
measure. Then, in its general form, the shortest distance based
proximity-weight can be formulated as,

Wan(p, 5) = f(dm(p, 5)), where  din(p, §) = min(d(p, s)).

1
For defining a more precise proximity-weight of S, the
proximity-weight of each point on S could be defined, and
summed along S. Let f(d(p, s)) be the proximity-weight of a
point s on S with respect to p. Then, the cumulative proximity-
weight of road segment .S with respect to p can be formulated
with the line integral along S,

Wip,S) = /S F(d(p. s)) dl. @

Once the weights of all segments are calculated, normalization
could be done to obtain relative weights,

w(p, ) = W(p,S)/ > W(p,S). (3)
Ses

B. Proximity-Weights for Probabilistic MM Methods:

Considering the uncertain nature of the MM problem, in
[12] (2) was progressed under a probabilistic approach, where
a likelihood function of distance was used as the weight func-
tion, f. Let pr(p|d(p,s)) denote the likelihood of vehicle’s
true location being a distance of d(p,s) away from point p.
Then, following (2), the overall likelihood of vehicle traveling
on segment S while being observed at p, Pr(p|S), could
be defined with an integral over .S, which also yields the
cumulative proximity-weight for probabilistic methods.

W(p,S) = Pr(p|S) Z/Spr(p\d(pﬁ))dl 4)

Since the year 2000, after the removal of Selective Availability,
GPS data has shown more clear pattern of a Gaussian distribu-
tion [6]. Consequently, a Gaussian distribution centered around
the GPS point with zero mean was chosen for pr(p|d(p, s)),
similar to works [4], [5], [7], [15], [16], [10], [11].

e—(d(w))2/202 (5)

pripld(p,s)) = 0=



where o is the assumed standard deviation of the GPS mea-
surements. By substituting (5) into (4), and parametrizing the
road segment .S, a closed form was obtained as,

_ _(b*/4a—c)/20 2a+bY b
e
(6)
where ® is the standard cumulative distribution function for
the Gaussian distribution, and the constants are,

a=(xp—x4)*+ (yp —ya)?,
b=2[(xa—z1)(xB —xa)+ (ya —y1)(yB — ya)l,
c=(za—21)°+ (ya—y1)% (N

where (2 4,y4) and (2, yp) are the Cartesian coordinates of
nodes defining the straight road segment S. On the other hand,
if one had used the shortest distance based proximity-weight
function of (1), along with the same Gaussian likelihood func-
tion of (5), the following weight would have been obtained.

e—(dm(P-,S))Q/%Q_ (8)

Wan(p, 5) = 2mo?

As said earlier, in probabilistic MM literature these proximity-
weights are commonly known as the observation probability,
and we will interchangeably use both terms.

III. HMM- BASED MAP MATCHING ALGORITHM

The MM problem can be approached as a discrete-time state
estimation problem, where the state of the system at some time
k, Xk, is the road segment that the vehicle traverses at k, and
the measurement at k, Yy, is the position of the vehicle. When
the dynamics of the vehicle (speed, acceleration, heading
etc.) is not known, approaching this estimation problem from
a probabilistic viewpoint would be reasonable. Considering
the fact that the states are not observable, and also the
fact that GPS measurements are independent, this problem
could be solved under an HMM framework. An HMM is a
bivariate discrete time process { Xy, Yi } x>0, where { X} is a
Markov chain, and conditional on {X}}, {Y%} is a sequence
of independent random variables such that the conditional
distribution of Y} only depends on X}, [17]. It is characterized
by its 5-tuple, state space, observation space, state transition
probability, observation probability, and the initial probability.

For the MM problem, HMM state space would consist of
the road segments of the road network, and the observation
space would be the continuous space defined by latitude
and longitude coordinates on the globe. Since we do not
have any additional information about the state of the sys-
tem initially, the initial probabilities can be considered as
uniformly distributed. In reality, the observation probability
conditioned on the state, Pr(Y}|Xy), would depend on several
factors, such as road segment’s latitude/longitude/elevation,
and satellite health. Like in other probabilistic MM methods,
in this method, we also consider a simplified model where
observation probability will be defined only by the proximity
of the GPS point to the segment. In fact, following this
simplifying assumption, the probabilistic proximity-weights

of (6) and (8) had become to be known under the term
observation probability. Markovian transition probabilities can
be defined by considering both network topology and the GPS
measurements. Details of observation and transition probabil-
ity formulations are discussed in the next part.

A. Candidate Segments/Links and Observation Probabilities:

We start our analysis by identifying the candidate segments
of given GPS points, that is identifying the road segments
that are possibly the original segment on which the vehicle
was traveling. For practicality, we have used a circular error
region rather than an ellipse. For deciding the size of the
error region, there is no consensus among MM methods.
Most methods use a large enough circular radius, e.g 100m.
in [10], and 200 m. in [4], to make sure that none of the
true segments are omitted. However, this might also turn the
candidate identification into a computational burden. Since the
road segments remaining out of this region are excluded as
unlikely segments, from a probabilistic perspective, one only
needs to make sure that the probability of an excluded segment
being a true segment should almost be equal to zero. For this
reason, the size of the error region can be decided by a function
of the standard deviation of GPS measurement noise, o,
rather than using a preset value. When a bivariate, uncorrelated
Gaussian distribution is assumed for the GPS data, by having a
circular error region of radius, Ry = 5*o,, one would expect
having only 1 out of 100,000 GPS measurements to be outside
this region. Since this number is just the expectation, we’ve
doubled this factor, and fixed the radius of our error circle as,
Ry = 10 * 0, in our algorithms. Overall for all simulations
including noise added GPS data, it was sufficient to catch all
true candidate segments.

Identifying the candidate road segments of a given set of
GPS points is a range query problem. Thus, data structures
suitable for this query, e.g. cell structure, KD-tree, or quad-
tree have commonly been used in MM algorithms. Notice
that in (7) (za,ya) and (zp,yp) are defined in Cartesian
coordinates. For this reason, in this study we have transformed
the given data in latitude/longitude coordinates to rectangular
coordinates in UTM coordinate system. Consequently, we have
chosen to do range querry with the cell structure which is also
based on a rectangular grid. For the cell size, our initial choice
was 2 * Ry. However, when identifying candidate segments,
this common approach of identifying them only through
identifying the shape points falling inside the error region
would be insufficient. This approach would miss a candidate
segment whose nodes remain outside the error region, but
which still passes through the region. In order not to miss
these, we needed to increase the cell size to a larger value,
so that all necessary shape points could be identified. At the
same time, given some GPS points, we can not know the length
of candidate segments before finding them; yet to detect these
segments completely we would need to know their length. For
this reason, the maximum segment length on the network, L,
was used for defining the size of the cell. Yet, this results in a
huge number of candidate segments, most of which might not
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Fig. 1.  Circular error region defined around GPS point, p1, to identify
its candidate road segments Si,S2,S3, and S4. S4 is a polyline road
consisting of two straight links L4 1 and Ly4 2. Black dots, {n; }, represent the
nodes/shape points of a network, red points, {mn; }, represent the intersection
points of the candidate segments with the error region.

ever pass through the error circle. Consequently, a secondary,
finer, cell structure was also used, with a size of 100 meters.
The range query was implemented as a combination of these
two cell structures, and considering the lengths of segments
in the network.

In [12], (6) was developed under the assumption that the
road segments were straight lines. In spatial vector maps this
assumption may not hold. Yet again, in these maps road
segments are represented by polylines which are a union of
straight links defined by their shape points, e.g. segment Sy is a
union of L4 1 and L4 > in Fig. 1. Consequently, when working
with any vector map, (6) would be still valid for these straight
links, and could be used to find the weights of links making up
a segment. Since these links are disjoint (except intersection
points), the proximity-weight of a segment could be found by
the sum of the weights of these links. As an alternative, each
link could be analyzed separately, and the whole MM analysis
could be based on links rather than segments.

Notice that the need for analyzing the links of a segment
is also needed in a shortest distance based weight formulation
as well. In order to find the shortest distance from a particular
segment to a point, the distance from all the links of that
segment to the point would need to be found, e.g distances d;
and Jo need to be found for S; in Fig. 1. For this reason
the computational complexity of calculating both weights
remain similar. The only difference is that, when finding
the cumulative-proximity-weights, only the portion of links
remaining inside the error region should be taken into account.
For instance, in Fig. 1, coordinates of n; and ny will be used
to find weights of S5, and coordinates of mg and n, will be
used for L, ;. Finding the intersection points of road links with
error regions will be the only extra calculation that would be
required by the new weight, but this effort is minimized by
using simple algebraic line-circle intersection formulas.

B. Transition Probabilities and The Solution of HMM

As mentioned earlier, for the MM problem, the state space
of HMM consists of the segments in the road network.
When formulating the transition probabilities between two
states Hummel [14] had only considered the connectivity of
segments. Later, Newson and Krumm [4] had considered the
shortest distance (SD) between the segments and compared it
to the great circle distance (GCD) between the two GPS points,
corresponding to those segments. The difference between
these two distances is used in an exponential distribution that
resulted in the transition probability. In our work, we also favor
using a formulation similar to [4]. However, we will not keep
the exponential scale parameter, 3, a constant, but will make
it a variable depending on the period between GPS points, A.

1
Pr(Xp|Xk-1) = Bje—dw,kq)/ﬁA )

where,

dikk—1) = [|IYk = Yacilleep — | Xe — Xk—1llsp|  (10)

This change is introduced particularly to improve MM results
of low sampled GPS data. When the period between GPS
points is low, the difference between ||Yy — Yi—1|lcop and
| X — Xk—1|lsp would be much smaller, as compared to the
difference when that period is large. Thus, using the same /3
value for larger A values could lead to having some transition
probabilities become almost zero, and in our simulations we
have noticed subsequent Markov chain breakup as a result of
this. This chain breakup with constant 5 was also observed by
Song et. al. in [18], and the authors had calculated 3 estimates
for each different sampling period to avoid that. In this study,
we have defined S with an affine formulation,

Ba = Bo +A/10 (11)

where () is the base (8 value. Under this formulation when
periods are large, a big difference between GCD and SD values
will not be assigned a very small probability, as compared to
when delta is small. For solving the HMM problem, we will
use the well known Viterbi algorithm, which finds the most
likely sequence of states.

IV. SIMULATIONS AND RESULTS:
A. Preprocessing

The original GPS and network node data were given in
latitude and longitude coordinates. The formulation of (6), on
the other hand, was developed under Cartesian coordinates.
To have coordinate compatibility, in the preprocessing step
we have converted all GPS and node data to the UTM
system, a metric-based Cartesian grid coordinate system. This
conversion also let us avoid the Great Circle, or the Vincenty
formulas needed for calculating the distance between two
points on globe. Instead we will be able to use practical
Euclidean distance formulations. Another advantage will be
for the range query of nodes around GPS points with the cell
data structure, which will be very easily implemented under
the UTM system.



Since we also planned to make a comparison of our results
with [4], we followed their preprocessing of GPS points, that is
we removed points that were within 2o, distance away from
their predecessors, to make sure that the vehicle has moved.
We have also identified only 2 GPS outliers that were observed
more than 50 meters away from their original segments, and
removed them. They were right next to a tunnel, where the
GPS signals must be weak. The value of o, was found to be
4.07 meters using the median absolute deviation estimator.
Following this, we were also left with 4605 points out of
the original 7531. During our early simulations we also have
noticed several break points in the road network where two
nodes defined at the same point were not connected to each
other, and manually connected those points. After patching the
right connections to the network, and also using (3 as a variable
of sampling period (11), in our simulations we did not observe
any HMM breaks, as opposed to 100 of them being reported
in [4].

B. Standard Map Matching Comparison

After preprocessing, we ran both of our algorithms, with
the cumulative, and the shortest distance based observation
probabilities. In our simulations we have set the base value, Sy,
to 1. For the standard problem, that is with 1 second sampling
period, both methods only mismatched 4 GPS points out of
4605. In [4], the authors have reported no mismatch. However,
their result does not include 100 excluded points related to
chain break up. Considering this omitted points, we believe
our results were as competitive as theirs.

We have repeated our simulations for a total of 13 different
sampling periods, ranging from 1 second to 300 seconds. Fig.
2 lists our findings where the number of mismatched GPS
points are listed in the first two columns for cumulative and
shortest distance based probabilities, respectively From these
simulations it was observed that the cumulative probability
had a slight edge to the traditional one for sampling periods of
5,10,20 and 120 seconds; and for the other sampling periods
the results were same.

Original Data (St.Dev=4.07m)
ShortestDist

period |Cumulative

secs.  |#mismatch |#mismatch | change % Change
4 | 4 0 4605 0.00,
2661 0.00
1783 0.00
1136 0.09
604 0.33
317 0.63
170 0.00
118 0.00
82 0.00
62 3.23
4 0.00|
32 0.00
26 0.00

# points
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Fig. 2. Comparison of MM results, with original data, for different periods

C. Sparse and Noisy Map Matching Comparison:

Recall that the original GPS data had a standard deviation
of 4.07 meters. This value is below the expected standard

deviation values defined in the GPS guideline [19]. For this
reason, there is a possibility that the previous simulations were
done in the availability of highly accurate GPS measurements,
and thus we were interested in seeing our algorithms’ expected
performances when GPS data might not be so accurate. For
this purpose, we intentionally corrupted the original GPS data.
In order to make sure that the corrupted data will also be
Gaussian, we will be adding again Gaussian random variables
with zero mean and a chosen ¢, standard deviation value to
the original data. Since the original GPS data, and the added
noise are independent, the final corrupted GPS data will be
Gaussian with zero mean and standard deviation, oy, where
0% = 02 +03. We wanted to analyze, the MM performance of
both algorithms when the noise levels exceeded their original
value about 50%, 100%, 150%, 200%, 300%, which would
result about oy = 6, oy = 8, oy = 10, 0y = 12, oy = 16
meters, respectively. The corrupted data was formed according
to these oy values. One thing to note is that the corrupted
data is itself a random variable, and the GPS values will be
different at each sampling of the added noise. For this reason,
for each oy, we formed 7 different corrupted GPS data, and
ran the simulations for all of them. Each of these simulations
were also run for 13 different sampling periods, same as the
simulation in the previous part.

Fig. 3 summarizes our findings, where each subfigure shows
the total MM results of 7 simulations for each set of corrupted
data. In these simulations, the actual standard deviation of each
corrupted GPS data set was found again by median absolute
deviation estimator. The average standard deviation of each
data group is given on the top right corner. Orange color is
used to highlight results where MM accuracy has dropped with
cumulative probability, green color is used to highlight results
where MM accuracy has improved, and white color results are
the ones that MM accuracy stayed the same.

From these simulations we can see that the proposed prob-
ability has not always yielded better results. Especially when
noise levels are low, such as the case where oy is around
6 meters, and sampling frequency is also high, its results
remain slightly inferior to the shortest distance based weight.
As sampling period increases, it starts yielding better results
but the gain is not much when GPS data noise is not high.
On the other hand, we notice that cumulative probability starts
performing better with increasing noise levels. Improvements
also become more substantial with 2% — 3% accuracy gains
possible.

D. Discussion

Following our simulations to gain more insight, we analyzed
individual mismatches. We have noticed that the loss of
accuracy for the less noisy GPS data stems from the fact
that the proposed probability, being defined through the line
integral, favors long and nearby segments to a GPS point more
than the shortest distance based probability. For instance, when
noise levels, oy, was very low, like in the original data, both
weights did well, since the true segments were most of the time
the nearest segments to the GPS points. Around mid-noise



Total (7 Instances) Average St.Dev= 6.262 Total (7 Instances) Average St.Dev= 8.536 Total (7 Samples) Average St.Dev= 10.587
period |Cumulative |ShortestDist period |Cumulative |ShortestDist period |Cumulative  |ShortestDist

secs.  |#mismatch |# mismatch change | #points | % Change secs.  |#mismatch |# mismatch change | #points | % Change secs.  |#mismatch |# mismatch change | #points | % Change
1) 781 759 =%7) 28194 -0.08 1 1580 4557, -23 25599 -0.09 il 2524 2528 4 24212 0.02
2 529 512 17 17541 0.10 2 944 936 -8 16989 -0.05 2 1580 1580 0 16578 0.00
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10 184 175 9 2485 020 10 284 296 12 4578 0.26 10 471 486 15 4594 0.33
20 100 1) 11 2393 0.46 20 195 202 7 2433 0.29 20 258 277 19 2449 0.78
40 70 63 = 1256 -0.56 40 106 110 4 1271 0.31 40 169 176 7 1277 0.55
60 20 45 5 851 0.59 60 73 78 5 861 0.58 60 104 114 10 864 1.16
%0 51 52 1 580 017 90 67 69 2 582 0.34 %0 74 83 9 584 1.54
120 28 30 5l 437 0.46 120 41 49 8 440 1.82 120 61 68 7 438 1.60
180 53 53 0 294 0.00 180 35 37 2 295 0.68 180 35| 37 2 205 0.68
240| 27 25 2 224 0.89 240 a5 44 il 224 -0.45 240 a4 a8 4 224 1.79
300 31 22 1 182 0.55 300 31 33 2 182 1.10 300 31 33 2 182 1.10

Total (7 Samples) Average St.Dev= 12.857 Total (7 Samples) Average St.Dev= 17.249

period |Cumulative |ShortestDist period |Cumulative |ShortestDist

secs. # mismatch  |# mismatch change | # points % Change secs. # mismatch  |# mismatch change | # points % Change

1 3249 3252 2 22778 0.01 1 4995 5174 ikl 20950 0.85

2 2036 2049 13 16036 0.08’ 2 3101 3117 16 15151 0.11

3 1504 1527 23 12086 0.19' 3 2215 2233 18 11677 0.15

5 978 973 2 8150 -0.06 5| 1466 1491 25 7977 0.31

10 560 57 17 4540 0.37 10 835 851 16 4496 0.36

20 324 329 5 2451 0.20 20 495 526 =il 2434 1.27

40 167 175 8 1277 0.63/ 40 235 265 30 1273 2.36

60 114 128 14 864 1.62 60 165 181 16 861 1.86

90 96 106 10 584 171 90 125 137 12 583 2.06

120 7 76 B 440 1.14 120 95 105 10 440 2.27

180 35 41 6 294 2.04 180 75 82 ) 295 3.05

240 49 51 2 224 0.89 240 64 65 i 224 0.45

300 49 Zil 2 182 1.10 300 o1 59 8 182 4.40

Fig. 3. Comparison of results, for different set of noisy data, for different periods
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levels, when o is around 6 or 8 meters, the true segments
were not necessarily the nearest segments to the GPS points.
However the new formulation still favored nearest segments,
particularly if they were long. This was the reason for the slight
loss in accuracy. This situation diminished when noise levels,
oy, further increased, and (6) distributed more weights to
farther away segments, something the shortest distance weight
couldn’t do.

V. CONCLUSION

In this study we have developed a hidden markov model
based map matching method, which used the cumulative
proximity weights of [12]. These weights were proposed to
improve some shortfalls of the classical shortest distance based
weights, but have never been used in a real MM method; and
thus their possible improvements to MM methods were yet
to be seen. In order to asses possible accuracy improvements,
simulations were done using the GPS data set of [4] from
Seattle area. Particular emphasis was given to improving the
MM accuracy of low-frequency sampled, and noisy GPS data.
The simulations resulted in interesting results that showed
the proposed weights may not be always be superior to the
traditional weight. However, the proposed weights were indeed
able to improve MM accuracy when GPS sampling periods
were long and/or the noise level in GPS data was also large.
From our simulations, we can conclude that, the cumulative
proximity-weight could be a better choice than the shortest
distance based weight when MM will be done with GPS data
that is highly noisy or when the sampling periods are long.
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