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A B S T R A C T

We study the robust and adaptive maximum network flow problem in an uncertain environment where the
network parameters (e.g., capacities) are known and deterministic, but the network structure (e.g., edges)
is vulnerable to adversarial attacks or failures. We propose a robust and sustainable network flow model to
effectively and proactively counter plausible attacking behaviors of an adversary operating under a budget
constraint. Specifically, we introduce a novel scenario generation approach based on an iterative two-player
game between a defender and an adversary. We assume that the adversary always takes a best myopic response
(out of some feasible attacks) against the current flow scenario prepared by the defender. On the other hand,
we assume that the defender considers all the attacking behaviors revealed by the adversary in previous
iterations of the game in order to generate a new conservative flow strategy that is robust (maximin) against
all those attacks. This iterative game continues until the objectives of the adversary and the administrator
both converge. We show that the robust network flow problem to be solved by the defender is NP-hard and
that the complexity of the adversary’s decision problem grows exponentially with the network size and the
adversary’s budget value. We propose two principled heuristic approaches for solving the adversary’s problem
at the scale of a large urban network. Extensive computational results on multiple synthetic and real-world
data sets demonstrate that the solution provided by the defender’s problem significantly increases the amount
of flow pushed through the network and reduces the expected amount of lost flow over four state-of-the-art
benchmark approaches.
1. Introduction

Network flow problems have been widely investigated from various
points of views by many researchers and remain a central theme in
operations research and computer science. Ahuja et al. (1993) provide a
comprehensive study of theory, algorithms, and applications of network
flow problems. Network flow problems have numerous applications in
critical infrastructure network design and operations including urban
transportation, water management, oil pipeline, energy distribution,
and telecommunication systems. Modern critical infrastructure net-
works have extensively installed a broad range of automated devices
(e.g., sensors are installed at the road intersections for real-time traffic
monitoring and intelligent traffic light management) to improve real-
time operations. While the proliferation of automated devices in critical
infrastructure networks provides many benefits (e.g., real-time mon-
itoring, better sensing, data-centric planning, etc.) to the authorities,
they are exposed to new security challenges, e.g., traffic light manip-
ulation, tampering of sensors, destruction of transformers, etc. Several
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illustrations of cyber or physical attacks such as tampering of traffic
monitoring sensors (Zetter, 2012; Reilly et al., 2014; Cerrudo, 2014),
manipulation of signal controllers (Ghena et al., 2014; Jacobs, 2014)
have been reported recently. By manipulating sensory components of
an edge or by physically attacking it, an adversary can either break the
edge completely or modify its capacity, to alter the network structure.

There can be two principal ways to counter these adversarial dis-
ruptions and to develop resilient critical infrastructure networks: (a)
Reactive approach—the network administrator immediately dispatches
available resources to recover the compromised edges for fast network
restoration; and (b) Proactive approach—the network administrator
strategically circulates the flow to maximize the amount of flow that
can be pushed to the terminal node under worst-case adversarial attack.
The adversarial attacks can also be countered using a combination of
both the reactive and the proactive approaches. This paper focuses
on proactive and robust operation for resilient control of a critical
infrastructure network where the network parameters (e.g., capacities)
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are known, but the network structure (e.g., edges) is vulnerable to
adversarial attacks or failures. We next present a few real-world ap-
plications to motivate the study of robust and adaptive network flow
problems with edge failures.

Let us consider a problem of a crude oil distribution network that
links the production units to consumption centers via a number of inter-
mediate pump stations. The traditional manual pipeline management
methods do not consider that the pipelines may collapse. For example,
if a pipeline segment is bombed or attacked during a war, it severely
affects the entire oil distribution system as well as other industries.
Therefore, it is crucial to manage a crude oil distribution network in
a way that is competent in dealing with such an adversarial situation
to reduce the shortage of crude oil at consumption centers, possibly
through rerouting flows but not rebuilding the network (Bertsimas
et al., 2013). The challenge is to design a network flow strategy which
utilizes the edge capacities efficiently under normal condition, but also
preserves residual capacity to maximize the flow through the network
by rerouting flows under worst-case adversarial attacks. Another real-
world motivating example is a supply-chain network that links source
to sinks via several hubs that are connected by railways or roads. One
can imagine a similar adverse scenario where a few segments may
collapse due to natural disaster or attacks. Other motivating domains
that anticipate robustness in a flow solution include modern cyber–
physical systems where the automated devices installed in nodes and
edges are vulnerable to failures.

In this paper, we model the network flow problem in the framework
of robust and adaptive optimization by considering an ominous form of
uncertainty, the possibility for failure of edges in the network topology.
Robust optimization (Ben-Tal and Nemirovski, 1998; Bertsimas and
Sim, 2003) is a broad research area that deals with problems where
input data can vary within an uncertainty set. A robust solution in gen-
eral either aims to optimize a particular worst-case objective value or
tries to minimize a regret function by considering the uncertainty in the
input data. On the other hand, adaptive optimization models (Ben-Tal
et al., 2004) are used to address multi-stage decision-making problems
under uncertainty. Existing adaptive optimization models (Atamtürk
and Zhang, 2007; Poss and Raack, 2013) solve network flow prob-
lems by considering different demand uncertainty sets. In contrast to
these existing works on demand robustness, we consider network flow
problems with edge failures that are motivated by network interdiction
problems.

In a classical network interdiction problem (Wood, 1993; Cormican
et al., 1998; Sullivan and Smith, 2014), a felonious entity carries illegal
goods through the network and an interdictor places resources (e.g., se-
curity personnel) to inspect a subset of edges to detect and prevent
the illegal activity. Network interdiction problems are typically mod-
eled using a two-stage optimization framework and therefore, many
two-player sequential and simultaneous game-theoretical models have
been proposed to solve these problems (Washburn and Wood, 1995;
Dahan and Amin, 2015; Guo et al., 2016). In contrast, we consider
a three-stage optimization problem which falls within the category of
defender–attacker–defender model, often called as network fortification
problem (Church and Scaparra, 2007; Scaparra and Church, 2008a;
Lozano and Smith, 2017), in which the operator fortifies the network
before the interdictor executes her action. However, in contrast to the
objectives in network interdiction or fortification problems, our goal is
to find a robust and adaptive flow strategy whereby an administrator
is able to maximize the operational efficiency of the network under
worst-case adversarial attacks, possibly through flow rerouting.

Our work is motivated by the three-stage robust and adaptive
maximum network flow problem introduced by Bertsimas et al. (2013).
For computing an adaptive maximum flow solution, they assume that
the flow can be adjusted in the third stage after edge failure occurred,
but the adjusted flow is always bounded by the initial flow assigned
to an edge. They further propose a linear optimization model to ap-
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proximately solve the adaptive maximum flow problem. However, we
experimentally show that the proposed approximate solution performs
poorly when the flow from an attacked edge is allowed to reroute
through adjacent edges with residual capacity, as required in many
practical flow applications. In addition, to make the problem more
realistic, we assume that the administrator faces a cost for routing flows
through an edge, which increases the complexity of the optimization
problem for computing an adaptive maximum flow solution.

Due to the aforementioned challenges, it is hard to formulate a
tractable optimization problem for computing a robust and adaptive
maximum flow solution using a two-stage robust model, as done
in Bertsimas et al. (2013). Therefore, we treat the problem of com-
puting a robust and adaptive maximum flow strategy as the result
of a two-player iterative game between a network administrator and
an adversary. We assume that the adversary is operating under a
budget constraint (i.e., the number of attacked edges is bounded by
a threshold value) and therefore, the adversary has a finite number of
possible attacking choices. The assumption of a budget constraint for
the adversary is valid in many real-world applications and therefore,
several existing works (Bertsimas et al., 2013; Altner et al., 2010;
Dahan et al., 2018) assume a budget constraint for the adversary to
control the conservatism of robust solutions. As an example of practical
consideration about such a constraint, an adversary would need to
be present physically within the geographical proximity in order to
manipulate vehicle monitoring sensors which indirectly impact the
traffic light timings (Cerrudo, 2014), implying a (human) resource
budget constraint for the adversary. While the adversary’s budget
value can be learned efficiently from previous attacking behaviors in
case of repeated attacks, we also experimentally show that the initial
estimation of the budget value can be done using sensitivity analysis
(i.e., by observing the outcomes with varying budget value).

For the administrator, a feasible flow strategy should satisfy the flow
conservation constraints at the nodes and the capacity constraints at the
edges. The objective of the administrator is to maximize the ultimate
flow that can be pushed to the terminal node while minimizing the total
routing cost. On the other hand, the objective of the adversary is to
identify an attack that minimizes the objective value of the administra-
tor. As the strategy space of the administrator is extremely large and
the adversary’s strategy space grows exponentially with the network
size and the budget value, it is impossible to compute an equilibrium
solution with ex-ante enumeration of all the pure strategies. In order
to tackle the large strategy space of both the players, we propose a
novel incremental strategy generation approach which is motivated by
the idea of double oracle algorithm (McMahan et al., 2003; Jain et al.,
2011). In each iteration of the game, the adversary, who is restricted
to a budget constraint, acts as a follower and optimally disrupts the
current network flow strategy prepared by the network administrator.
In turn, the administrator acts as a leader and generates a new network
flow strategy which is robust (maximin) against all the attacking be-
haviors revealed in previous iterations. This iterative game continues
until the objective values of the players converge to the same value
and they start repeating their previous actions. At that point, as the
adversary repeats her previous attacks, the administrator has already
considered these for generating the final flow strategy and therefore, it
is a robust (maximin) response to the adversary’s best response. In that
sense, the iterative game has reached convergence. Note that, unlike
the solutions generated by the double oracle algorithm (Jain et al.,
2011), that produce a randomized edge interdiction strategy for the
defender, our solution converges to a robust pure flow strategy for the
administrator.

As the administrator model introduces additional constraints related
to current attack on top of the decision model from the previous iter-
ation, the objective value of the administrator reduces monotonically
over the iterations. Due to more conservative flow, the adversary’s
ability to disrupt the flow strategy reduces over iterations and the
objective value of the adversary increases. These two objective values

are guaranteed to converge to the same value at some point. We show
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that the game converges to a maximin optimal flow solution for the
administrator and therefore, the objective value of the administrator
will at least be the value to which the game has converged for any
realization of the feasible attacks.

We show that the robust and adaptive network flow problem to
be solved by the administrator is NP-hard. Moreover, we empirically
observe that the complexity of the adversary’s decision problem grows
exponentially with the network size and adversary’s budget value.
Therefore, we propose two principled heuristic approaches for solving
the complex decision problem of the adversary at the scale of a large
urban network. The first heuristic is an accelerated greedy approach
where we identify one edge at a time in an incremental fashion so as to
minimize the objective value of the administrator for a given flow strat-
egy, until the budget constraint of the adversary is exhausted. For the
second heuristic, we partition the network into disjoint sub-networks
and identify a set of edges to attack within the adversary’s budget con-
straint by solving the corresponding sub-problems. We iteratively solve
this process with random partitioning of the network and learn a set of
best possible candidate edges to attack and finally, solve the adversary’s
decision problem to choose the best edges (within budget constraint)
from these candidate edges. In each iteration of the game, we execute
both heuristics and choose the one with better solution quality as the
adversary’s decision. By leveraging the computational effectiveness of
the proposed heuristics, our solution approach can scale gracefully to
large-scale problems while providing a consistent performance gain
over four following benchmark approaches: (i) The administrator sends
maximum flow through the network without considering any attacks;
(ii) The administrator computes a flow solution using a myopic one-
step reasoning against the adversary’s behavior; (iii) The administrator
proactively computes a robust maximum flow solution to improve the
worst-case performance (Bertsimas et al., 2013) ; and (iv) The adminis-
trator computes an approximate adaptive maximum flow solution using
a linear optimization model from Bertsimas et al. (2013).

Our contributions. The key contributions of this paper are as follows:

1. We formally define the problem of computing a robust and adap-
tive maximum flow strategy for critical infrastructure networks
by exploiting the fact that the flow of a compromised edge might
be rerouted through adjacent edges with residual capacity. To
solve the problem, we propose an iterative two-player game
between a network administrator and an adversary, which is
referred to as Network Flow Game (NFG).

2. We develop novel optimization models to solve the decision
problem of both players in each iteration of the game. The
administrator’s optimization model takes into account all the
attacking strategies generated by the adversary in previous iter-
ations, and computes a robust flow strategy that maximizes the
amount of flow pushed through the network in the worst-case
over all the previous attacks. The adversary’s decision problem
inspects the flow strategy generated by the administrator in the
current iteration and generates an attack (out of the feasible
attacks under a given budget constraint) that optimally disrupts
the current flow strategy.

3. We propose two novel heuristic approaches for solving the com-
plex decision problem of the adversary at the scale of a large
urban network. The first heuristic is an accelerated greedy ap-
proach that incrementally identifies the best edges to be at-
tacked. The second heuristic is a network partitioning based
approach that iteratively identifies a set of best candidate edges
to be attacked in the network and then solves the adversary’s
decision problem over these candidate edges.

4. We provide extensive computational results on multiple syn-
thetic and real-world benchmark data sets to demonstrate that
our proposed solution approach scales gracefully to large-scale
problems and significantly increases the amount of flow pushed
through the network over four state-of-the-art benchmark ap-
3

proaches.
Structure of the paper. In Section 2, we elaborate on the relevant
research. In Section 3, we formally describe our problem by allowing
the flow of an attacked edge to be rerouted through adjacent edges
with residual capacity. In Section 4, we demonstrate our proposed
iterative two-player game between a network administrator and an
adversary. We present the decision problem and optimization models
for the adversary and the administrator in Section 4.1 and Section 4.2,
respectively. In Section 4.3, we provide the key iterative steps of our
overall two-player game. In Section 5, we describe two heuristic ap-
proaches to accelerate the solution process of the adversary’s decision
problem. In Section 5.1, we present the accelerated greedy heuristic and
in Section 5.2, we describe the network partitioning based heuristic.
We then provide the experimental setup and performance analysis of
our proposed approach in Section 6. In Section 6.1, we present the
empirical results to verify the utility of our proposed solution approach
on small-scale problem instances. In Section 6.2, we demonstrate the
experimental results on large-scale problem instances by leveraging the
computational effectiveness of the proposed heuristics. In Section 7, we
discuss an extension of our proposed solution methodology by relaxing
the assumption of forward flow rerouting, and by considering a setting
where the administrator is allowed to reroute flows through all the
active edges in the network. Finally, we provide concluding remarks
in Section 8.

2. Related work

Given the practical importance of ensuring robustness in design and
operation of critical infrastructure systems and evaluating the resilience
of such systems, several game-theoretic models have been proposed
to model the attacker–defender interactions (Manshaei et al., 2013).
We summarize these contributions along four threads of research.
Section 2.1 summarizes existing research on applying security game
models in critical infrastructure systems. Section 2.2 recaps literatures
on using Stackelberg security games for ensuring physical security.
Section 2.3 summarizes literature in solving a relevant example of
Stackelberg games called network interdiction problem, which is the
motivation behind our robust and adaptive maximum network flow
problem. Finally, in Section 2.4, we summarize relevant literatures in
robust and adaptive optimization, and their applications on network
flow problems.

2.1. Security games in critical infrastructure systems

Our work closely resembles the broader research theme of network
security games in critical infrastructure systems. Security games, that
are used to model attacker–defender interactions in a network, have
been employed for strategic network design (Laporte et al., 2010; Dziu-
biński and Goyal, 2013) of critical infrastructure systems (e.g., railways
and defense), where the goal is to optimize a certain utility function
by considering the possibility of edge failure. Furthermore, security
games are widely used to examine the vulnerability of nodes and edges
of critical infrastructure networks including transportation (Baykal-
Guersoy et al., 2014), shipment of hazardous material (Szeto, 2013)
and communication networks (Gueye et al., 2012). Gueye and Marbukh
(2012) propose a security game model between an operator and an
attacker to quantify the trade-off between vulnerability and security
cost for supply–demand networks.

In the context of network flow problems, several recent research
works (Dahan et al., 2018; He et al., 2012; Ma et al., 2011; Wu and
Amin, 2018; Wu et al., 2018) have designed simultaneous attacker–
defender games in which the adversary is allowed to disrupt multiple
edges within a fixed budget constraint so as to identify critical and
vulnerable edges in critical infrastructure networks. Similar to our
setting, network flow models that are built upon the max-flow and
min-cut theorem, have been proposed for vulnerability assessment of

infrastructure networks (Assadi et al., 2014; Dwivedi and Yu, 2013).
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Dahan and Amin (2015) and Dahan et al. (2018) combine network flow
models within a simultaneous game framework to learn the attacker–
defender interaction. However, none of these approaches consider the
option to reroute flows through other paths with residual capacity.

We employ network flow models to represent the decision problems
of both the administrator and the adversary, but our approach differs
from the simultaneous game methods mentioned in this section as we
propose an iterative game to identify a robust flow strategy for the
administrator by considering the fact that the flow of an attacked edge
can be rerouted through other paths with residual capacity.

2.2. Stackelberg security games

In this section, we summarize existing research on a relevant class of
iterative security games that focuses on identifying optimal Stackelberg
strategies (Tsai et al., 2010; Kar et al., 2017). These leader–follower
based Stackelberg security games (SSGs) have been applied successfully
in many real-world mobile patrolling applications ranging from security
patrolling (Pita et al., 2008; Brown et al., 2014) to wild-life protec-
tion (Fang et al., 2016) to opportunistic crime (Zhang et al., 2016). The
fundamental concept behind these problems is to identify a randomized
patrolling strategy that efficiently allocates security personnel on a
network to defend against adversarial events. Similar to the challenges
faced by our proposed iterative two-player game, solving these large
normal-form SSGs is practically infeasible, and therefore, sophisticated
methods are needed to speed up the solution process by exploiting
specific domain structure.

To solve the iterative SSGs for large-scale infrastructure protec-
tion, Jain et al. (2010) propose a combination of column generation and
branch-and-bound algorithm that exploits the network flow represen-
tation of the problem. In a similar direction, Guo et al. (2016) propose
a column and constraint generation algorithm to approximately solve
the network security game. Jain et al. (2011) employ a double oracle
algorithm to solve the SSGs, which motivates our incremental strategy
generation approach. In contrast to enumerating the entire exponential
sized strategy space for the players, the proposed double oracle algo-
rithm updates the oracle for the attacker and the defender by adding
their pure strategy best response and then, solves an optimization
model in each iteration of the game to compute a randomized edge
interdiction strategy for the restricted game consisting of pure strategy
oracles of both the players. The final solution at the convergence is a
randomized patrolling strategy that can be used as a security personnel
schedule, as the randomization increases the uncertainty faced by the
attacker.

However, these approaches cannot be readily employed to solve our
problem as we have exponentially sized strategy space, and for each
pair of attacker and defender strategy, we need to solve an optimization
model (due to the fact that the flow can be rerouted through other
paths in case of adversarial attacks) to compute the payoff value.
Furthermore, we assume that the adversary is more powerful and has
a perfect knowledge of the flow strategy chosen by the administrator
(which in practice does not change over time) and therefore, we need
to identify a robust pure strategy for the administrator.

2.3. Network interdiction and fortification games

Robust and adaptive network flow problems are motivated by net-
work interdiction problems, which are examples of Stackelberg games.
In classical network interdiction problems, a malicious entity carries
illegal goods through the network and a security agency deploys a
set of interdictors to prevent the illegal activity. Due to its practical
importance in defense and drug enforcement, a wide variety of re-
search papers have addressed both deterministic (Wood, 1993) and
stochastic (Cormican et al., 1998) network interdiction problems. The
earlier works in addressing network interdiction problems (Wollmer,
1964; Ratliff et al., 1975; Ball et al., 1989) propose methodologies for
4

identifying 𝑛 ‘‘most vital" edges in the network. Similar to our problem
formulation, several research papers employed sequential and simul-
taneous two-player game-theoretical models to interdict a maximum
flow in a network (Washburn and Wood, 1995; Sullivan and Smith,
2014). Bertsimas et al. (2016) introduce an arc-based and a path-
based formulation to solve a two-stage sequential network interdiction
game where the defender iteratively chooses an interdiction strategy to
disrupt the current flow executed by an adversary. In contrast to these
two-stage minimax games, we consider a three-stage robust maximum
flow problem in which the administrator can modify the flow in the
third stage, possibly through rerouting.

Our three-stage robust maximum flow problem can be considered
as a defender–attacker–defender (DAD) based network fortification
problem, which is a three-stage network interdiction problem. DAD
models have been used to generate robust decisions for facility protec-
tion (Church and Scaparra, 2007), resource allocation in a shortest path
network (Cappanera and Scaparra, 2011) and critical infrastructure
resilience (Alderson et al., 2011). These three-stage DAD models are
difficult to solve, and therefore, several approaches are proposed to
convert them into single or two-stage problems. Church and Scaparra
(2007) and Scaparra and Church (2008a,b) reformulate the DAD model
as a single-level problem by enumerating all possible attack plans,
and solve it with efficient implicit enumeration algorithm. Several
approaches combine the second and third stage problems of a network
fortification game using duality mechanism (Alderson et al., 2013,
2015), and solve the reformulated problem using Benders decompo-
sition (Brown et al., 2006) or cutting-plane approach (Smith et al.,
2007). Lozano and Smith (2017) recently propose to iteratively refine
the samples from third stage solution space so as to solve the bilin-
ear interdiction problems, which are then added as cuts in the first
stage defender model. In contrast to these DAD models, where the
first stage (the defender fortifies the network) decision variables are
binary valued, our first stage decision variables (identifying a feasible
flow strategy) are continuous. We combine the second and third stage
problems using duality mechanism and iteratively generate samples
from the second stage solution space (i.e., attack plans) to improve the
first stage defender solution.

In network interdiction problems, the goal is to determine the worst-
case scenario, assuming the decision maker is in a position to act after
the realization of uncertainty. The operator can either fortify the net-
work components partially against the worst-case scenario or rebuild
some components after the failure is realized. Our work differs from
this thread of research as we are interested in proactively identifying
those flow decisions that are robust against any plausible attacks.

2.4. Robust and adaptive optimization

The last thread of research which is complementary to our work
presented in this paper is on robust and adaptive optimization. Robust
optimization is a broad research area and the solution methodology
varies for different problem settings (Ben-Tal and Nemirovski, 1998;
Bertsimas et al., 2011, 2018). In a robust optimization framework, the
input data of a problem can vary within an uncertainty set. A robust
optimization model in general either aims to optimize a particular
worst-case or regret-based objective value, or generates a solution that
remains feasible for every realization of data within the uncertainty
set. Several studies have considered network flow problems within the
framework of robust optimization (Bertsimas and Sim, 2003; El Ghaoui
et al., 1998; Ben-Tal and Nemirovski, 1998). The design of a robust
optimization model varies with different objective functions such as
worst-case (Vorobyov et al., 2003; Ghosh et al., 2016), regret (Ahmed
et al., 2013) and risk sensitive (Adulyasak and Jaillet, 2015) objec-
tives. The design of a robust optimization solution and the level of
conservatism also vary with different types of uncertainty sets such as
ellipsoidal (El Ghaoui et al., 1998; Ben-Tal and Nemirovski, 2000; Bert-

simas and Sim, 2004b), polyhedral (Bertsimas and Sim, 2003, 2004a)
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𝑀

and interval (Li and Azarm, 2008; Ghosh et al., 2019) uncertainty
sets. Our proposed iterative game is designed for robust network flow
problems with worst-case objective and interval uncertainty set.

Adaptive optimization models are used to address multi-stage
decision-making problems under uncertainty. Ben-Tal et al. (2004)
introduce a two-stage adaptive optimization model where a decision
is made before uncertainty is realized, which is followed by another
set of decisions. They show that the adaptive counterpart of this
optimization problem is NP-hard in general and therefore, several
approximation methods have been proposed subsequently to tackle
this problem (Ben-Tal et al., 2004; Bertsimas et al., 2011; Bertsimas
and Goyal, 2010). In the context of network flow problems, adaptive
optimization models have been proposed to tackle different demand un-
certainty sets such as polyhedral (Mattia, 2013; Poss and Raack, 2013)
and interval (Atamtürk and Zhang, 2007) uncertainty sets, and these
problems are shown to be NP-hard. On the contrary to these existing
works on demand robustness, we consider network flow problems with
edge failures.

Our work is motivated by the robust and adaptive network flow
problem introduced by Bertsimas et al. (2013). They assume that the
flow at an edge can be adjusted after edge failure occurred, but the
adjusted flow should be upper bounded by the initially assigned flow
value. They propose a linear optimization model to solve the complex
three-stage adaptive network flow problem quickly and approximately.
However, we experimentally show that the proposed approximate so-
lution performs poorly when the flow from an attacked edge is allowed
to reroute through other paths with residual capacity. In addition, we
assume that the administrator faces a cost for routing flows through an
edge, which increases the complexity of the optimization problem for
computing a robust and adaptive maximum flow solution.

3. Problem formulation

We begin with a formal definition of the Network Flow Game (NFG).
Let 𝐺 = ⟨ , ⟩ denote a network, where  symbolizes the set of
nodes, and 𝑠, 𝑡 ∈  represent the source node and the terminal node,
respectively. Let  denote the set of edges, where 𝑒𝑖𝑗 ∈  represents a
directed edge from node 𝑖 to node 𝑗. We also denote an edge simply
as 𝑒 ∈  and assume that it has a finite capacity 𝑈𝑒, corresponding
to the maximum amount of flow that can be sent through the edge.
We introduce an artificial edge 𝑒𝑡𝑠 with infinite capacity between the
terminal node and the source node, which is excluded in the edge set
 . In addition, we introduce the following notations:

• 𝛿+𝑣 : The set of incoming edges to node 𝑣. For the source node 𝑠,
𝛿+𝑠 includes the artificial edge 𝑒𝑡𝑠.

• 𝛿−𝑣 : The set of outgoing edges from node 𝑣. For the terminal node
𝑡, 𝛿−𝑡 includes the artificial edge 𝑒𝑡𝑠.

• 𝛬𝑣: The set of all possible edges that lie in one of the directed
walks from node 𝑣 to the terminal node 𝑡.

• 𝛬𝜎 =
⋃

𝑣∈𝜎 𝛬𝑣: The set of all possible edges that lie in one of the
directed walks from any of the nodes of set 𝜎 to the terminal node
𝑡.

• 𝛤 : Budget for the adversary. That is to say, a maximum of 𝛤 edges
can be attacked.

A flow scenario 𝑥 is a function 𝑥 ∶  → R≥0 that assigns a non-
negative flow value 𝑥𝑒 to each edge 𝑒 ∈  such that the following
capacity and flow conservation constraints (1) are ensured:
∑

𝑒∈𝛿+𝑣

𝑥𝑒 −
∑

𝑒∈𝛿−𝑣

𝑥𝑒 = 0 ∀𝑣 ∈  ⧵ {𝑠}

0 ≤ 𝑥𝑒 ≤ 𝑈𝑒 ∀𝑒 ∈ 
(1)

Let  denote the set of all possible flow scenarios that satisfy the flow
conservation constraints (1). An attack 𝜇 is a function that maps the
5

edges to a binary value, where 𝜇𝑒 is set to 1 if the edge 𝑒 ∈  is attacked
by the adversary and 0 otherwise. The set of possible attacks that satisfy
the budget constraint of the adversary is denoted by 𝛹 .

𝛹 ∶=
{

𝜇 = (𝜇𝑒)𝑒∈ ∈ {0, 1}||||
|

∑

𝑒∈
𝜇𝑒 ≤ 𝛤

}

(2)

We now describe the NFG problem in the context of critical in-
frastructure networks, where the flow of an attacked edge might be
rerouted through adjacent edges with residual capacity. In the crude
oil distribution pipeline application, for a given network with fixed
edge capacities, the initial flow might partially or fully utilize the edge
capacities. However, once this network structure is modified due to
edge failures, it is feasible to reroute the flows of an attacked edge
to optimally utilize the remaining pipes. We primarily assume that
the adjusted flow in an edge can utilize the residual capacity only
for rerouting flows from an attacked edge in a forward walk (i.e., a
walk from the source node of an attacked edge to the terminal node).
This assumption is motivated by the simple properties of liquid flow in
which due to the pressure in pipes, additional flows from an attacked
edge should naturally be rerouted in a forward direction through
adjacent edges with residual capacity. It should also be noted that our
proposed solution methodology performs equally well even if we relax
the assumption of forward flow rerouting, and allow the flow of an
attacked edge to be rerouted through any active edges in the network,
as demonstrated in Section 7.

We first provide the additional setup needed to describe the prob-
lem. If the adversary attacks an edge 𝑒 ∈  (i.e., 𝜇𝑒 = 1), then the
capacity of the edge is modified from 𝑈𝑒 to 𝑚𝑒. We set the value of 𝑚𝑒 to
0, if the edge is completely blocked. We assume that the administrator
faces a routing cost for transporting the flow through edges. Let 𝑝𝑒
denote the cost for routing one unit of initial flow through edge 𝑒 ∈ 
and the reward for successfully getting one unit of flow to the terminal
node is assumed to be 1. Moreover, we assume that the administrator
faces an additional 𝑝𝑒 cost for rerouting one unit of flow through
edge 𝑒. For example, in the oil distribution pipeline application, the
operational cost for routing initially allocated flow remains unchanged
after disruption. That is to say, the administrator incurs same amount of
routing cost for the uninterrupted flow that reaches the terminal node,
and the routing cost for interrupted initial flow due to edge failures,
that determines the rate of network disruption from the equilibrium at
the normal condition, is considered as penalty to the administrator for
the amount of adjustments required in the daily operations. Therefore,
the flow rerouting (e.g., utilizing residual capacity) incurs additional
operational cost for management of extra load than it is originally
planned for regular daily operations. If the sum of initial routing cost
and rerouting cost (due to attacks) for pushing one unit of flow to the
terminal node exceeds 1, then an optimal strategy is to send zero flow
through the network. To avoid such trivial situation, we assume that
the value of 𝑝𝑒 is always upper bounded by 1

2𝐿 , where 𝐿 represents the
maximum number of edges in a source to destination path. The cost for
routing one unit of flow through the artificial edge 𝑝𝑒𝑡𝑠 is set to 0.

In this setting, given an initial flow 𝑥 and a resulting attack 𝜇, we
can compute the maximum adaptive value of 𝑥 for the administrator
after rerouting flows, 𝑀(𝑥, 𝜇), by solving the following linear optimiza-
tion (LO) model (3a)–(3f). Let 𝑦𝑒 denote the resulting amount of flow
going through edge 𝑒 ∈  and 𝑧𝑒 denote the amount of additional flow
that is being rerouted through edge 𝑒 due to the disruption from the
attack 𝜇. The objective function (3a) of the LO model computes the
trade-off between maximizing the ultimate flow that can be pushed to
the terminal node (which is equivalent to the flow, 𝑦(𝑡,𝑠) of the artificial
edge 𝑒𝑡𝑠) and minimizing the total rerouting cost of the additional flow
rom the attacked edges2.

(𝑥, 𝜇) =max
{

𝑦(𝑡,𝑠) −
∑

𝑒∈
𝑝𝑒𝑧𝑒

}

−
∑

𝑒∈
𝑝𝑒𝑥𝑒 (3a)

2 As the input flow 𝑥 is fixed, the initial flow routing cost (i.e., ∑𝑒∈ 𝑝𝑒𝑥𝑒)
is constant in the objective function (3a).
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

P
1

s.t.
∑

𝑒∈𝛿+𝑣

𝑦𝑒 −
∑

𝑒∈𝛿−𝑣

𝑦𝑒 ≥ 0 ∀𝑣 ∈  ⧵ {𝑠} (3b)

𝑦𝑒 ≤ 𝑥𝑒 ∀𝑒 ∉ 𝛬𝜎𝜇 (3c)

𝑦𝑒 ≤ (1 − 𝜇𝑒)𝑈𝑒 + 𝜇𝑒𝑚𝑒 ∀𝑒 ∈ 𝛬𝜎𝜇 (3d)

𝑧𝑒 ≥ 𝑦𝑒 − 𝑥𝑒 ∀𝑒 ∈ 𝛬𝜎𝜇 (3e)

𝑦𝑒 ≥ 0; 𝑧𝑒 ≥ 0 ∀𝑒 ∈  (3f)

As a portion of the flow might be lost due to the attack, we employ a
weaker notion of flow conservation at the nodes using constraints (3b)
to avoid infeasibility issues. Let 𝜎𝜇 denote the set of source nodes of
the attacked edges for an attack 𝜇. As indicated earlier, 𝛬𝜎𝜇 represents
the set of all possible edges that lie in one of the walks from any of
the nodes of set 𝜎𝜇 to the terminal node. As the flow from an attacked
edge can only be rerouted through a forward walk, 𝛬𝜎𝜇 represents the
set candidate edges that can be utilized for flow rerouting. Therefore,
if an edge 𝑒 does not belong to the set 𝛬𝜎𝜇 , then constraints (3c) ensure
that the value of 𝑦𝑒 is bounded by the initial flow value 𝑥𝑒. For all the
other edges which belong to the set 𝛬𝜎𝜇 , there can be two possibilities:
(a) If the edge 𝑒 is attacked, then we can send maximum 𝑚𝑒 amount of
flow through the edge; and (b) If the edge 𝑒 is not attacked, then we can
send maximum 𝑈𝑒 amount of flow through the edge. We combine these
two possibilities and represent them using constraints (3d). Finally,
constraints (3e)–(3f) ensure the amount of rerouted flow for edge 𝑒,
𝑧𝑒 = max(0, 𝑦𝑒 − 𝑥𝑒).

Example 3.1. We provide an illustrative example in Fig. 1 to better
explain the constraints in the LO model. We consider a network with
six nodes and nine edges. We show an initial flow solution 𝑥 in the
first network, where each pair of numbers represents the flow and the
capacity value for that particular edge. Assume that the adversary can
attack a maximum of one edge in the network. Assume the adversary
attacks edge 𝑒1𝑡 and the resulting flow in that edge is set 0. As the flow
of edge 𝑒1𝑡 can only be rerouted through a forward path that contains
edge 𝑒13 and 𝑒3𝑡, the resulting flows for all the other edges remain the
same. The resulting flow is shown in the second network, where the
blue dotted line shows the augmented path through which the flow of
the attacked edge is being rerouted.

Given an initial flow strategy 𝑥 chosen by the administrator, the
adversary observes the flow and executes an attack that optimally
disrupts the flow 𝑥. Therefore, for a given flow 𝑥, an optimal attack 𝜇(𝑥)
and the adversary’s objective value (also considered as the adaptive
value of 𝑥) 𝐴𝑉 (𝑥) are defined as follows:

𝜇(𝑥) ∈ argmin
𝜇∈𝛹

𝑀(𝑥, 𝜇)

𝐴𝑉 (𝑥) = min
𝜇∈𝛹

𝑀(𝑥, 𝜇)
(4)

Finally, the goal of the network administrator is to identify a robust
flow strategy which has the maximum adaptive value. Therefore, the
objective of the administrator is defined as follows:

max
𝑥∈

𝐴𝑉 (𝑥) = max
𝑥∈

𝑀(𝑥, 𝜇(𝑥)) (5)

Proposition 1. The problem of computing a robust and adaptive maximum
flow strategy to be solved by the administrator from expression (5) is
strongly NP-hard.

Proof. The adaptive maximum flow problem introduced by Bertsimas
et al. (2013) is a related problem where the routing cost is assumed
to be 0 and one can adjust the flow solution after every realization of
edge failure by assuming that the adjusted flow is bounded by the initial
flow assigned to an edge. Bertsimas et al. (2013) show that the adaptive
maximum flow problem is strongly NP-hard by reducing it to a classical
network interdiction problem (Wood, 1993). Our robust and adaptive
6

maximum flow problem can be reduced to the adaptive maximum flow p
problem if we set the routing cost to 0 and restrict the adjusted flow
for an edge to be upper bounded by the initial flow assigned to it. Due
to this trivial reduction to the adaptive maximum flow problem which
is strongly NP-Hard, our problem is also strongly NP-Hard. ■

4. Solution approach

In this section, we describe an iterative sequence of best-response
plays between the administrator and an adversary to solve the problem
defined in Section 3. In the first iteration of the game, the administrator
assumes that no attack is planned in the system and computes a
flow solution that maximizes her objective value. Next, the adversary
finds an optimal attack to disrupt the flow solution computed by the
administrator. In the subsequent iterations, the administrator considers
all the attacks revealed by the adversary in previous iterations and finds
a robust (maximin) flow strategy against those attacks. The adversary
always computes a best myopic disruption against the flow solution
revealed by the administrator in the current iteration. This iterative
process continues until the objectives of both the players converge to
the same value, or the players start repeating their previous strategies.
We now describe the details of optimization problems to be solved by
the adversary and by the administrator during each iteration of the
game.

4.1. Optimization problem for the adversary

Once the administrator reveals a flow scenario 𝑥̄, the adversary
solves the problem (4) to generate an attack that optimally disrupts
the flow 𝑥̄ by considering the fact that the administrator can reroute
flow from an attacked edge through other forward paths with residual
capacity. We now provide an alternative formulation of the problem (4)
to mathematically represent the notion of forward rerouting paths. The
set of expressions (6a)–(6h) illustrates the alternative decision problem
for the adversary, ADV. The objective function (6a) corresponds to
finding an attack 𝜇 that minimizes the resulting objective value of
the administrator, represented by the inner maximization problem.
Constraints (6b)–(6c) ensure flow conservation and capacity constraints
on the flow variables 𝑦. Let 𝜌𝑒 denote the set of edges, which if attacked,
can have a portion of their flows rerouted through edge 𝑒, i.e., 𝜌𝑒 =
(𝑢, 𝑣) = 𝑒′ ∈ |𝑒 ∈ 𝛬𝑢}. Let 𝜋𝑒 denote a variable which is set to
if none of the edges in the set 𝜌𝑒 are attacked, and otherwise the

alue of 𝜋𝑒 is set to 1. Constraints (6e) and (6g) determine the value
f 𝜋. Constraints (6d) enforce that the flow passing through an edge
is bounded by the given flow 𝑥̄𝑒 if none of the edges in 𝜌𝑒 are

ttacked (i.e., 𝜋𝑒 = 0). Finally, as the inner objective function minimizes
he rerouting cost, constraints (6f) are sufficient alone to accurately
ompute the value of 𝑧𝑒.

ADV = min
𝜇∈𝛹

{

max 𝑦(𝑡,𝑠) −
∑

𝑒∈
𝑝𝑒 ⋅ 𝑧𝑒

}

(6a)

s.t.
∑

𝑒∈𝛿+𝑣

𝑦𝑒 −
∑

𝑒∈𝛿−𝑣

𝑦𝑒 ≥ 0 ∀𝑣 ∈  ⧵ {𝑠} (6b)

𝑦𝑒 ≤ (1 − 𝜇𝑒)𝑈𝑒 + 𝜇𝑒𝑚𝑒 ∀𝑒 ∈  (6c)

𝑦𝑒 ≤ (1 − 𝜋𝑒)𝑥̄𝑒 + 𝜋𝑒 ⋅ 𝑈𝑒 ∀𝑒 ∈  (6d)

𝜋𝑒 ≤
∑

𝑒′∈𝜌𝑒

𝜇𝑒′ ∀𝑒 ∈  (6e)

𝑧𝑒 ≥ 𝑦𝑒 − 𝑥̄𝑒 ∀𝑒 ∈  (6f)

𝜋𝑒 ∈ {0, 1} ∀𝑒 ∈  (6g)

𝑦𝑒 ≥ 0; 𝑧𝑒 ≥ 0 ∀𝑒 ∈  (6h)

roposition 2. The integrality constraints (6g) can be relaxed to 0 ≤ 𝜋𝑒 ≤
, without compromising the feasibility or optimality of the optimization

roblem (6a)–(6h).
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Fig. 1. Illustration of resulting flow after an attack in a network.
𝑥

Proof. As 𝜇-variables are binary, constraints (6e) enforce that the value
of 𝜋𝑒 is set to 0 if none of the edges in set 𝜌𝑒 are attacked. On the other
hand, if some edges in set 𝜌𝑒 are attacked, then the excessive flow of
those edges might be rerouted through edge 𝑒 and therefore, the actual
flow through edge 𝑒 can take any value between 𝑥̄𝑒 and 𝑈𝑒. As 𝜋𝑒 is
used by constraints (6d) to only enforce an upper bound on the flow
variable 𝑦𝑒, even with continuous relaxation, 𝜋𝑒 will take a value of 1
to maximize the inner objective of expression (6a). ■

Unfortunately, the adversary’s optimization model cannot be solved
directly as a linear program due to the minimax function in objective
(6a). However, as the inner maximization problem is a linear program,
we can convert the entire problem into a minimization problem by
taking the dual of the inner problem. The dual problem ADV, which is
quadratic nature, is compactly shown using the set of expressions (7a)–
(7g), where 𝛼, 𝛽, 𝛾, 𝜁 , 𝜔 and 𝜂 represent nonnegative dual price variables
for constraints (6b)–(6g), respectively. We set 𝜇 as variable in the dual
problem and incorporate the domain constraints (7e) of 𝜇 to represent
the optimization problem of the adversary.

ADV = min
𝛼,𝛽,𝛾,𝜁 ,𝜂,𝜔,𝜇

∑

𝑒∈
𝛽𝑒𝑈𝑒 −

∑

𝑒∈
𝛽𝑒𝜇𝑒(𝑈𝑒 − 𝑚𝑒)

+
∑

𝑒∈
𝛾𝑒𝑥̄𝑒 +

∑

𝑒∈
𝜁𝑒

∑

𝑒′∈𝜌𝑒

𝜇𝑒′ +
∑

𝑒∈
𝜂𝑒 +

∑

𝑒∈
𝜔𝑒𝑥̄𝑒 (7a)

s.t. 𝛽𝑒 + 𝛾𝑒 + 𝜔𝑒 + 𝛼𝑣 − 𝛼𝑤 ≥ 0 ∀𝑒 ∶= (𝑣,𝑤) ∈  (7b)

𝜁𝑒 + 𝜂𝑒 − 𝛾𝑒(𝑈𝑒 − 𝑥̄𝑒) ≥ 0 ∀𝑒 ∈  (7c)

𝜔𝑒 ≤ 𝑝𝑒 ∀𝑒 ∈  (7d)
∑

𝑒∈
𝜇𝑒 ≤ 𝛤 (7e)

𝛼𝑡 = 1; 𝛼𝑠 = 0 (7f)

𝛼𝑣, 𝛽𝑒, 𝛾𝑒, 𝜁𝑒, 𝜂𝑒, 𝜔𝑒 ≥ 0;𝜇𝑒 ∈ {0, 1} (7g)

The objective function (7a) – redefined by maximizing the problem
(6a)–(6h) over all the variables except for 𝜇 – would be concave in
𝜇. As a concave function over a compact domain achieves the optimal
solution at an extreme point of the feasible region, we can relax the
binary variables 𝜇 to continuous ones (see e.g., the proof of Lemma
6 of Bertsimas et al. 2013). However, if 𝜇-variables are binary, then
the bilinear terms in the objective function (7a) can be represented as
special ordered set (SOS) constraints, and these constraints are efficiently
implemented by existing mixed-integer optimization solvers like CPLEX
or Gurobi.

4.2. Optimization problem for the administrator

In a fully secured network, the optimal strategy for the network
administrator is to adopt one of the max-flow min-cost solutions (Ahuja
et al., 1993; Orlin, 1997). However, in case of an adversarial attack,
a max-flow min-cost solution is not necessarily an optimal strategy.
The administrator’s goal is then to identify a robust flow strategy that
maximizes the objective value under worst-case attack, as indicated in
7

problem (5). However, as the strategy space of the adversary increases
with network size and budget value, we use an incremental approach
and consider the attacks revealed by the adversary in previous itera-
tions only. In the last iteration of the game, as the adversary repeats
her previous attacks as the best response, the administrator at this
point has already generated a robust flow strategy against these worst-
case attacks without considering the entire large strategy space of the
adversary.

Given a set of 𝐾 attacks (the set of indices for these attacks is
denoted by ) revealed by the adversary in previous 𝐾 iterations, the
administrator generates a flow strategy that maximizes the minimum
objective value over these 𝐾 attacks. Let 𝜇̂𝑘 denote the attack 𝑘 and
̂ denote the robust flow strategy against these attacks. Even though
the initial flow decision 𝑥̂ is chosen, it may lead to different outcomes
under different attacks, and the actual amount of flow that reaches the
terminal node will vary depending on the attack. So, we introduce 𝑦̂𝑘

variables to represent the actual flow and 𝑧̂𝑘 variables to represent the
additional rerouted flow under the attack 𝑘. 𝜋̂𝑘

𝑒 is a given input to the
administrator’s decision model, which is set to 0 if none of the edges in
edge set 𝜌𝑒 (from which the flow can be rerouted to edge 𝑒) are attacked
under attack 𝑘 and otherwise, it is fixed to 1:

𝜋̂𝑘
𝑒 = min(1,

∑

𝑒′∈𝜌𝑒

𝜇̂𝑘
𝑒′ ) ∀𝑘 ∈ , 𝑒 ∈  (8)

We show the entire linear optimization problem for the administra-
tor, ADM compactly using the set of expressions (10a)–(10i). The goal
of the administrator is to maximize the worst-case objective value over
𝐾 previously executed attacks.

maxmin
𝑘∈

𝑦̂𝑘(𝑡,𝑠) −
∑

𝑒∈
𝑝𝑒
[

𝑥̂𝑒 + 𝑧̂𝑘𝑒
]

(9)

The objective function (9) can easily be linearized using expressions
(10a)–(10b), where we maximize a proxy variable 𝜆 that represents the
worst-case objective value over 𝐾 attacks. Constraints (10c) compute
the value of 𝑧̂𝑘𝑒 . Constraints (10d)–(10g) enforce the flow preservation
and capacity constraints on the flow variables 𝑥̂ and 𝑦̂𝑘. Finally, con-
straints (10h) enforce that the actual flow going through edge 𝑒 under
attack 𝑘, 𝑦̂𝑘𝑒 is bounded by the initial robust flow 𝑥̂𝑒 if none of the
edges in set 𝜌𝑒 are attacked and otherwise, the upper bound is set to
the capacity of the edge, 𝑈𝑒.

ADM = 𝑚𝑎𝑥 𝜆 (10a)

𝑠.𝑡. 𝜆 ≤ 𝑦̂𝑘(𝑡,𝑠) −
∑

𝑒∈
𝑝𝑒
[

𝑥̂𝑒 + 𝑧̂𝑘𝑒
]

∀𝑘 ∈  (10b)

𝑧̂𝑘𝑒 ≥ 𝑦̂𝑘𝑒 − 𝑥̂𝑒 ∀𝑘 ∈ , 𝑒 ∈  (10c)
∑

𝑒∈𝛿+𝑣

𝑥̂𝑒 −
∑

𝑒∈𝛿−𝑣

𝑥̂𝑒 = 0 ∀𝑣 ∈  ⧵ {𝑠} (10d)

𝑥̂𝑒 ≤ 𝑈𝑒 ∀𝑒 ∈  (10e)
∑

𝑒∈𝛿+𝑣

𝑦̂𝑘𝑒 −
∑

𝑒∈𝛿−𝑣

𝑦̂𝑘𝑒 ≥ 0 ∀𝑘 ∈ , 𝑣 ∈  ⧵ {𝑠} (10f)

𝑦̂𝑘 ≤ (1 − 𝜇̂𝑘)𝑈 + 𝜇̂𝑘 ⋅ 𝑚 ∀𝑘 ∈ , 𝑒 ∈  (10g)
𝑒 𝑒 𝑒 𝑒 𝑒
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𝑦̂𝑘𝑒 ≤ (1 − 𝜋̂𝑘
𝑒 )𝑥̂𝑒 + 𝜋̂𝑘

𝑒 ⋅ 𝑈𝑒 ∀𝑘 ∈ , 𝑒 ∈  (10h)

𝜆 ≥ 0; 𝑥̂𝑒 ≥ 0; 𝑦̂𝑘𝑒 ≥ 0; 𝑧̂𝑘𝑒 ≥ 0 ∀𝑘 ∈ , 𝑒 ∈  (10i)

.3. Overall solution approach

In this section, we put together the optimization problems described
n Section 4.1 and Section 4.2. To better understand the overall frame-
ork of our proposed solution approach for solving the NFG problem,
e explain the key iterative steps in Algorithm 1. We essentially

ormulate it as a leader–follower game, where the administrator is
he leader and the adversary acts as the follower. In that sense, the
dversary is more powerful and takes decisions after observing the
ecision of the administrator. As a result, the administrator needs to
ake robust decisions by considering all possible attacking behaviors of
he adversary.
Algorithm 1: SolveNFG(𝐺,𝑈, 𝑝, 𝛤 )
1 Initialize: 𝑿 ← {},𝝁 ← {}, 𝜇𝑜𝑙𝑑 ← 𝟎, 𝑉 𝐿 ← 0, 𝑉 𝑈 ← ∞ ;
2 while (𝑉 𝑈 ≠ 𝑉 𝐿) do
3 𝒙̃, 𝑉 𝑈 ← ADM(𝐺,𝑈, 𝑝,𝝁) ; ⊳ Solve administrator’s problem

(10a)-(10i) for attack set 𝝁

4 𝒙𝑝 ← 𝒙̃ ∩𝑿 ; ⊳ 𝒙𝑝 contains previously executed flows
5 𝒙𝑐 ← 𝒙̃ ⧵ 𝒙𝑝 ; ⊳ 𝒙𝑐 contains flows which are not executed yet
6 if |𝒙𝑐 | = 0 then
7 return 𝒙̃,𝝁 ; ⊳ Process converges

8 else
9 𝑥∗ ← 𝑅𝑎𝑛𝑑𝑜𝑚(𝒙𝑐 ) ; ⊳ Randomly execute one flow from 𝒙𝑐
10 𝑿 ← 𝑿 ∪ 𝑥∗ ; ⊳ Add flow 𝑥∗ into flow strategy pool 𝑿

11 𝜇̃, 𝑉 𝐿 ← ADV(𝐺,𝑈, 𝑝, 𝑥∗, 𝛤 ) ; ⊳ Solve adversary’s problem
(7a)-(7g) for disrupting flow 𝑥∗

12 if 𝜇̃ ≠ 𝜇𝑜𝑙𝑑 then
13 𝝁 ← 𝝁 ∪ 𝜇̃ ; ⊳ Add 𝜇̃ to attack pool 𝝁

14 𝜇𝑜𝑙𝑑 ← 𝜇̃ ; ⊳ Update the old attack

15 else
16 return 𝑥∗,𝝁 ; ⊳ Process converges

17 return 𝑥∗,𝝁

Let 𝑿 and 𝝁 store all the previously generated flow strategies and
attacks respectively, and both are initialized as empty set. Let 𝜇𝑜𝑙𝑑
denote the attack from the last iteration, and it is initialized to no
attacks. Let 𝑉 𝐿 and 𝑉 𝑈 denote the lower and the upper bound of the
game which are initialized to 0 and ∞, respectively. In each iteration
of the game, the administrator solves the optimization problem, ADM
to compute the optimal robust flow strategy against the previously
generated attack pool 𝝁. Note that the administrator’s optimization
problem (10a)–(10i) can have multiple optimal solutions. For example,
in the first iteration, the administrator essentially solves a max-flow
min-cost problem which can have multiple flow solutions with optimal
objective value. Let 𝒙̃ denote the set of optimal robust flow solutions
computed by the administrator in the current iteration3. In addition,
the upper bound of the game, 𝑉 𝑈 is updated to the administrator’s
objective value. From these flow solutions, we identify the flows, 𝒙𝑐
which are not executed before. If all the solutions of 𝒙̃ are executed
before, then the process terminates as any solution from 𝒙̃ would be
a robust flow against any plausible attack from 𝛹 . Otherwise, we
randomly pick one flow 𝑥∗ from 𝒙𝑐 and execute it. We also add this
new flow 𝑥∗ into the pool of flow solutions 𝑿.

Once the administrator generates a flow 𝑥∗ and executes it, the
adversary computes a best myopic attack 𝜇̃ to optimally disrupt the
flow 𝑥∗ by solving the optimization model ADV. In addition, the lower

3 For implementation purposes, we employ the solution pool feature in
PLEX which generates multiple solutions. In our experiments, we limit the
olver to a maximum of 20 optimal solutions for each solve.
8

i

bound of the game, 𝑉 𝐿 is updated to the adversary’s objective value.
If the adversary does not repeat the attack from the previous iteration
(i.e., 𝜇𝑜𝑙𝑑), then we add the new attack 𝜇̃ into the attack pool 𝝁, and
pdate 𝜇𝑜𝑙𝑑 to the new attack 𝜇̃. On the contrary, if the adversary
epeats the same attack from the previous iteration, then the process
onverges as 𝑥∗ is the robust flow strategy against 𝜇̃. Specifically, the
bjective values of both the players would converge at this point, and
e can guarantee that if the administrator executes the flow 𝑥∗, then

he lower bound on her objective value would be the value at which
he objectives of the players converged. It should be noted that as the
dministrator’s optimization problem can have uncountable number of
olutions with optimal objective value, a situation might arise where
lthough the objectives of both the players converge to the same value,
hey can come up with new strategies in subsequent iterations that
ead to the same objective value. However, as the game value does
ot change from this point onward, we terminate the process if the
ower and upper bound of the game converge. On the other hand, if the
ptimization problems of the players are solved sub-optimally (e.g., see
ection 5 for large-scale problems), then the lower and upper bound of
he game might not converge even though the players start repeating
heir previous strategies. To tackle these situations, we enforce both the
ermination conditions in Algorithm 1.

roposition 3. The proposed iterative game converges to a maximin
quilibrium and produces a robust and adaptive maximum flow strategy for
he administrator.

roof. As the adversary has a finite number of attacks (i.e., |𝛹 | =
(

||
𝛤

)

),
he proposed iterative game is guaranteed to converge. We begin the
roof by showing that if the players start repeating their previous
trategies and their respective decision problems are solved optimally,
hen the lower and upper bound of the game would converge. Let us
uppose the game converges after 𝐾 iterations, and the set of 𝐾 − 1
ttacks computed by the adversary in previous iterations is denoted by
. Let 𝑥̃ represent the flow strategy of the administrator and 𝜇̃ ∈ 𝝁
enote the attack from the final iteration. As the adversary repeats
ne of her previous attacks in the final iteration, the objective of the
dversary for the final iteration, 𝑉 𝐿 = 𝑀(𝑥̃, 𝜇̃) = min𝜇∈𝝁 𝑀(𝑥̃, 𝜇), where
(𝑥̃, 𝜇̃) represents the adaptive value of the flow 𝑥̃ under attack 𝜇̃,

hich can be computed using the LO model (3a)–(3f). Similarly, as
he administrator maximizes the minimum adaptive flow value over all
he attacks in 𝝁, the objective value of the administrator for the final
teration is 𝑉 𝑈 = min𝜇∈𝝁 𝑀(𝑥̃, 𝜇) = 𝑉 𝐿.

Let 𝑉 𝐿 = 𝑉 𝑈 = 𝑉 . From the adversary’s optimized solution,
ince ∀𝜇 ∈ 𝛹,𝑀(𝑥̃, 𝜇) ≥ 𝑉 , we know min𝜇∈𝛹 𝑀(𝑥̃, 𝜇) ≥ 𝑉 . On
he other hand, from the administrator’s optimized solution, since
𝑥 ∈  ,min𝜇∈𝝁 𝑀(𝑥, 𝜇) ≤ 𝑉 , we know min𝜇∈𝛹 𝑀(𝑥, 𝜇) ≤ 𝑉 . By
ombining these two inequalities, we have ∀𝑥 ∈  ,min𝜇∈𝛹 𝑀(𝑥̃, 𝜇) ≥
in𝜇∈𝛹 𝑀(𝑥, 𝜇), which concludes the proof that the administrator’s final

low strategy 𝑥̃ is maximin optimal. ■

If Algorithm 1 ends up considering all the attacks (i.e., 𝐾 = |𝛹 |),
hen the proposed iterative approach will be slower than solving the
riginal problem of identifying a flow strategy that maximizes the
inimum adaptive flow value by considering all the attacks in 𝛹 .
owever, it is reasonable to expect that only some attacking choices
re better to execute in practice than others. For example, if all the
ncoming edges to a node is attacked, then none of the outgoing edges
rom that node will be selected, or if the edge with maximum capacity
n a source to destination path is attacked, then other edges in that
ath are less likely to be attacked. Our proposed approach provides
principled way to identify those crucial attacks. In fact, for all the

roblem instances in our experiment, we observe that the proposed

terative game converges within 20 iterations.
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Table 1
IdentifyFlow(𝐺,𝑈, 𝑝, 𝑥̄, 𝜇)

max 𝑦(𝑡,𝑠) −
∑

𝑒∈
𝑝𝑒 ⋅ 𝑧𝑒

s.t.
∑

𝑒∈𝛿+𝑣

𝑦𝑒 −
∑

𝑒∈𝛿−𝑣

𝑦𝑒 ≥ 0 ∀𝑣 ∈  ⧵ 𝑠

𝑦𝑒 ≤ (1 − 𝜇𝑒)𝑈𝑒 + 𝜇𝑒𝑚𝑒 ∀𝑒 ∈ 
𝑦𝑒 ≤ (1 − 𝜋𝑒)𝑥̄𝑒 + 𝜋𝑒 ⋅ 𝑈𝑒 ∀𝑒 ∈ 
𝑧𝑒 ≥ 𝑦𝑒 − 𝑥̄𝑒 ∀𝑒 ∈ 
𝑦𝑒 ≥ 0; 𝑧𝑒 ≥ 0 ∀𝑒 ∈ 

5. Heuristics for large-scale networks

The runtime complexity of our iterative game approach increases
with the network size and the adversary’s budget value (refer to Sec-
tion 6.1.3). The key reason behind this behavior is that we need to
solve a non-convex quadratic program (7a)–(7g) for the adversary’s de-
cision problem in each iteration of the game. The adversary’s decision
problem seeks to identify 𝛤 best edges to attack so as to minimize the
resulting objective value of the administrator for a given flow strategy.
In case of ‘‘s-t planar graphs", this problem can be solved in polynomial
time (Wollmer, 1964) if the entire flow of an attacked edge is assumed
to be lost. However, if the flow of an attacked edge is allowed to reroute
through other paths, then the resulting flow at an edge after attack is
not upper bounded by the initial flow value and therefore, the existing
polynomial time algorithms cannot be employed to solve our problem.
Having said that, for a given attack, we can precompute the set of edges
through which the additional flow might be rerouted and compute an
upper bound on the resulting flow assigned to the edges. Therefore, the
utility of a given attack can be computed by solving a max-flow min-cost
problem in polynomial time, on a network whose edge capacities are
set to the upper bounds. However, to compute an optimal attack, we
need to solve such polynomial time algorithms for

(

||
𝛤

)

times using an
xhaustive search, which is practically intractable for large networks.

In this section, we provide two novel heuristic approaches to ef-
iciently solve the complex optimization problem of the adversary.
he first heuristic is developed using an accelerated greedy approach,
nd the second heuristic is a network partitioning based optimization
pproach. We now describe the details of these heuristic approaches for
olving the adversary’s decision problem.

.1. Greedy approach

The greedy approach incrementally identifies the set of edges to
e attacked by the adversary to disrupt the network for a given flow
trategy. We begin with an alternative formulation of the optimization
odel (3a)–(3f) to evaluate the utility of an attack 𝜇 for a given flow

cenario 𝑥̄. The alternative LO model is compactly shown in Table 1.
he value of 𝜋 is computed using Eq. (8), and is given as an input to
he LO model. The only differentiating constraints from the LO model
3a)–(3f) are the third set of constraints, which use 𝜋 values to ensure
he upper bound on the flow variables 𝑦. It should be noted that the
olution of the LO model from Table 1 can be obtained in polynomial
ime by solving a max-flow min-cost problem on a modified network
here the capacity of an edge 𝑒 is set to 0 if 𝜇𝑒 = 1, 𝑥̄𝑒 if 𝜋𝑒 = 0, and

otherwise it remains 𝑈𝑒.
Algorithm 2 provides the details of the greedy algorithm. We start

with an empty attacked edge set 𝜇. Let 𝐸 denote an edge set that
initially contains all the edges in  . We first compute the objective
value 𝑂 for the given flow strategy 𝑥̄ without executing any attacks in
he network. In each iteration, we calculate the utility 𝑔𝑒 for adding
n edge 𝑒 ∈ 𝐸 in the current attack set 𝜇 by employing the LO
odel from Table 1, and compute the marginal gain in the adversary’s

bjective value for attacking the edge 𝑒. Then we add the best edge 𝑒∗

that provides maximum marginal gain) into 𝜇 and remove it from the
andidate edge set 𝐸. This process continues until the budget for the
9

dversary is exhausted.
Algorithm 2: Greedy(𝐺 =<  ,  >,𝑈, 𝑝, 𝑥̄, 𝛤 )
1 Initialize: 𝜇 ← {}; 𝑖𝑡 ← 0;𝐸 ←  ;
2 𝑂 ← IdentifyFlow(𝐺,𝑈, 𝑝, 𝑥̄, 𝜇) ; ⊳ Compute objective for the

given flow 𝑥̄

3 repeat
4 𝑖𝑡 ← 𝑖𝑡 + 1 ;
5 𝑔𝑒, 𝑥̂ ← IdentifyFlow(𝐺,𝑈, 𝑝, 𝑥̄, 𝜇 ∪ {𝑒}) ∀𝑒 ∈ 𝐸;
6 𝑔𝑒 ← 𝑂 − 𝑔𝑒 ∀𝑒 ∈ 𝐸 ; ⊳ Compute marginal gain for edge 𝑒

7 𝑒∗ ← argmax
𝑒∈𝐸

𝑔𝑒 ; ⊳ Choose edge 𝑒∗ with highest marginal gain

8 𝑂 ← 𝑂 + 𝑔𝑒∗ ; ⊳ Update objective value for current attack 𝜇

9 𝜇 ← 𝜇 ∪ {𝑒∗} ; ⊳ Update current attack 𝜇

10 𝐸 ← 𝐸 − {𝑒∗} ; ⊳ Update candidate edge set 𝐸

11 until (|𝜇| ≥ 𝛤 );
12 return 𝜇

Although the LO model from Table 1 can be solved in polynomial
time, the greedy approach needs to solve it for (𝛤 ×||) times and there-
fore, it is not suitable for problems with a large number of edges. In case
of a sub-modular objective function, lazy greedy algorithms (Minoux,
1978) can be employed to accelerate the solution process. However,
the following two remarks show that the adversary’s decision problem
is neither sub-modular nor super-modular.

Remark 1 (The Adversary’s Decision Problem is not Sub-modular). A
function is monotone sub-modular if the marginal gain for adding an
element into the subset is always higher than adding the same element
into its superset. Fig. 2(a) illustrates that the adversary’s decision
problem does not exhibit this property. The network has 8 nodes and
11 edges, and the pair of numbers in each edge represents the flow
and capacity of the corresponding edge. Let us assume that the unit
cost for routing the flow is 0 for all the edges. If we add edge 𝑒37 in
an attacked edge set that only contains edge 𝑒26, the marginal gain in
the adversary’s objective value remains 0, as the entire disrupted flow
can be rerouted through the augmented path {𝑒36, 𝑒68}. In contrast, if
we add edge 𝑒37 in the superset which contains edge 𝑒26 and 𝑒45, then
he marginal gain in the objective value is 2, as the residual capacity
f edge 𝑒68 is now shared by the rerouted flow from both edge 𝑒37 and

𝑒45. As the marginal gain for adding edge 𝑒37 into the superset is higher,
he adversary’s decision problem is not sub-modular.

emark 2 (The Adversary’s Decision Problem is not Super-modular). A
function is monotone super-modular if the marginal gain for adding an
element into the subset is always lower than adding the same element
into its superset. Fig. 2(b) illustrates that the adversary’s decision
problem is not super-modular. We employ the same network with 8
nodes and 11 edges. In this example, if we add edge 𝑒37 in the attacked
edge set as the first element, then the entire flow is lost and therefore,
the marginal gain in the adversary’s objective value is 3. In contrast,
if we add edge 𝑒37 in the superset which contains edge 𝑒26, the entire
disrupted flow can be rerouted to the terminal node and the marginal
gain remains 0. Hence, the adversary’s decision problem is clearly
not super-modular, as the marginal gain for adding edge 𝑒37 into the
superset is lower.

Even though the adversary’s decision problem is neither sub-
modular nor super-modular, the following remark shows that the upper
bound on the marginal gain for attacking an edge can be precomputed,
which provides us the basis to develop an accelerated greedy algorithm.

Remark 3. The maximum amount of lost flow for attacking an edge
𝑒 is bounded by the flow assigned to that edge, 𝑥̄𝑒 if the adversary’s
budget value is 1 (i.e., 𝛤 = 1).
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Fig. 2. Adversary’s decision problem is (a) neither sub-modular; (b) nor super-modular.
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As we incrementally elect one edge at a time for the greedy ap-
roach, we exploit the observation from Remark 3 to develop an
ccelerated greedy algorithm which is shown in Algorithm 3. Let 𝐸
enote the set of candidate edges which initially contains all the edges
n  . Let 𝜇 denote the set of attacked edges which is initialized as an
mpty set. We first compute the objective value 𝑔0 for the given flow

strategy 𝑥̄ without considering any attacks. In each iteration, we keep
an upper bound 𝐵𝑒 on the marginal gain for edge 𝑒, which is initialized
to the given flow value 𝑥̄𝑒. We also introduce a set 𝐸̂ (initialized as
an empty set) that stores the edges for which the marginal gain has
already been computed in the current iteration. We iteratively select
the edge 𝑒∗ with maximum upper bound and add it to the edge set 𝐸̂.
Then we employ the LO model from Table 1 to compute the objective
value and marginal gain for adding the edge 𝑒∗ into the current attacked
edge set 𝜇 and update the upper bound 𝐵𝑒∗ with the marginal gain
value. In addition, as the flow values for the edges change due to
modified attacks, we store the updated flow strategy 𝑥̂. If the marginal
gain for edge 𝑒∗ is at least the upper bound for all the unexplored
edges (i.e., 𝑒 ∈ 𝐸 ⧵ 𝐸̂), then the best edge for the current iteration
is identified. We then select the edge 𝑒∗∗ with the highest marginal
gain, insert it to the set of attacked edges 𝜇 and remove it from the
candidate edge set 𝐸. Finally, we update the flow strategy 𝑥̄ with the
modified flow strategy 𝑥̂. Therefore, in each iteration, the accelerated
greedy algorithm is able to identify the best edge without executing
the LO model for |𝐸 ⧵ 𝐸̂| times in comparison to the greedy algorithm,
which significantly reduces the runtime. This iterative edge selection
process continues until the adversary’s budget is exhausted.

5.2. Network partitioning based optimization approach

As the adversary’s decision problem grows exponentially with the
number of edges in the network, our second heuristic identifies a
small subset of candidate edges that are highly likely to be present in
an optimal solution, and solves the adversary’s optimization problem,
ADV by only considering the subset of candidate edges. To identify
the candidate edges, we propose a network partitioning based iterative
approach. In each iteration, the network is partitioned into disjoint sub-
networks and those sub-problems are solved independently to elect 𝛤
best edges to attack.

We begin the discussion with a random network partitioning
method that is compactly shown in Algorithm 4. Let us consider a
network with 𝑁 ∶= || nodes. We first randomly sample (𝑁2 −1) nodes
hat excludes the source and the terminal node4. All the randomly

4 In case of multiple source nodes, we create an artificial source node
nd connect it to all the original source nodes. Similarly, in case of multiple
10
Algorithm 3: AcceleratedGreedy(𝐺 =<  ,  >,𝑈, 𝑝, 𝑥̄, 𝛤 )
1 Initialize: 𝜇 ← {}; 𝑖𝑡 ← 0;𝐸 ←  ;
2 𝑔0, 𝑥̂ ← IdentifyFlow(𝐺,𝑈, 𝑝, 𝑥̄, 𝜇) ; ⊳ Compute objective for the

given flow 𝑥̄

3 repeat
4 𝑖𝑡 ← 𝑖𝑡 + 1 ;
5 𝐵𝑒 ← 𝑥̄𝑒∀𝑒 ∈ 𝐸 ; ⊳ Update upper bounds with the new flow 𝑥̄

from last iteration
6 𝐸̂ ← {} ;
7 repeat
8 𝑒∗ ← argmax

𝑒∈𝐸
𝐵𝑒 ; ⊳ Find edge 𝑒∗ with highest upper bound

9 𝐸̂ ← 𝐸̂ ∪ {𝑒∗} ; ⊳ Update the list of visited edges
10 𝑔𝑖𝑡, 𝑥̂ ← IdentifyFlow(𝐺,𝑈, 𝑝, 𝑥̄, 𝜇 ∪ {𝑒∗});
11 𝐵𝑒∗ ← 𝑔𝑖𝑡−1 − 𝑔𝑖𝑡 ; ⊳ Update the upper bound for edge 𝑒∗

12 if 𝐵𝑒∗ ≥ 𝐵𝑒,∀𝑒 ∈ 𝐸 ⧵ 𝐸̂ then
13 𝑒∗∗ ← argmax

𝑒∈𝐸̂
𝐵𝑒 ; ⊳ Choose the edge 𝑒∗∗ with highest

marginal gain
14 𝜇 ← 𝜇 ∪ {𝑒∗∗} ; ⊳ Update current attacking edge set
15 𝐸 ← 𝐸 − {𝑒∗∗} ; ⊳ Update the candidate edge set 𝐸

16 𝑥̄ ← 𝑥̂ ; ⊳ Update flow 𝑥̄ according to new attack 𝜇

17 Break;

18 until True;
19 until (|𝜇| ≥ 𝛤 );
20 return 𝜇

sampled nodes along with the source node are kept in the first sub-
network and the remaining nodes are kept in the second sub-network.
In addition, an artificial terminal node 𝑡 for the first sub-network and
an artificial source node 𝑠̂ for the second sub-network are created. For
each directed edge 𝑒 ∶= (𝑢, 𝑣) in the network, we carry out the following
perations:

• If both 𝑢 and 𝑣 lie in the first sub-network, we create a directed
edge from node 𝑢 to node 𝑣.

• If both 𝑢 and 𝑣 lie in the second sub-network, we create a directed
edge from node 𝑢 to node 𝑣.

terminal nodes, we create an artificial terminal node and connect all the
original terminal nodes to the artificial terminal node. During the network
partitioning process, we ensure that all the original source nodes are kept in
the first sub-network and all the original terminal nodes are kept in the second
sub-network.
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• If 𝑢 lies in the first sub-network and 𝑣 lies in the second sub-
network, then we create two directed edges—one from node 𝑢
to node 𝑡 in the first sub-network and another one from node 𝑠̂
to node 𝑣 in the second sub-network. The flow and the capacity
values for both the newly introduced edges are directly taken
from edge 𝑒5.

• If 𝑢 lies in the second sub-network and 𝑣 lies in the first sub-
network, then we remove edge 𝑒 from the sub-problems.

xample 5.1. Fig. 3 illustrates our random network partitioning
pproach on a small synthetic network. The network has 8 nodes and
6 edges. The numbers associated with each directed edge represent
he corresponding flow and capacity values. The blue colored nodes
epresent the chosen nodes for the first sub-network, and other nodes
re kept in the second sub-network. We create an artificial terminal
ode ‘𝑑’ for the first sub-network and an artificial source node ‘𝑠’ for
he second sub-network. Finally, we replace each edge that connects
he two sub-networks with two artificial edges (shown in red color),
ne sinks to the artificial terminal node and other one originates from
he artificial source node. If multiple edges share the same source and
estination node, we replace them with a single artificial edge with
umulative flow and capacity values.

Algorithm 5 describes the key steps of our network partitioning
ased heuristic approach. Let 𝜇 denote the set of potential candidate
dges, which is initialized as an empty set. In each iteration, we
andomly partition the network into two sub-networks (i.e., 𝐺𝑠, 𝐺𝑡),
ompute the modified initial flows for two sub-networks (i.e., 𝑥̄𝑠, 𝑥̄𝑡),
nd solve the adversary’s decision problem for both the sub-networks
ndependently with a budget of 𝛤

2 for each sub-problem. Then we
nsert the resulting attacked edges from both the sub-problems to
he candidate edge set 𝜇 . This iterative process continues until a
redetermined number of iterations is completed or the cardinality
f the candidate edge set reaches a given threshold value 𝛥. Finally,
e solve the adversary’s optimization problem (7a)–(7g) to identify 𝛤
est edges to attack from the candidate edges set 𝜇 . Specifically, we
anually set the value of 𝜇𝑒 to 0 if the edge 𝑒 does not belong to the

andidate edge set (i.e., 𝑒 ∉ 𝜇 ). This problem is computationally less
xpensive as the search space reduces from || to |𝜇

|(≪ ||).
It should be noted that, in case of extensively large networks, even

the sub-problems might become intractable if we partition the network
into two sub-networks. In such scenarios, our approach can be extended
to recursively partition the sub-networks into even smaller networks,
and then the decision problem can be solved independently for all the
small networks to compute the set of candidate edges. In addition, as
the network size increases, the value of the threshold parameter 𝛥 needs
to be calibrated accordingly for efficiently solving the final decision
problem of the adversary over the candidate edges.

6. Empirical results

In this section, we demonstrate the performance of our two-player
iterative game approach on a set of synthetic and real-world data sets.
We perform experiments on a 3.4 GHz Intel Core i7 machine with 16GB
DDR3 RAM and all the linear optimization models are solved using
IBM ILOG CPLEX optimization Studio V12.7.1. Section 6.1 provides the
performance analysis of our optimal solution strategy from Section 4 on
a wide range of small-scale problem instances. Section 6.2 presents the
performance of our approach on a set of large-scale problem instances,

5 It should be noted that due to our edge reconstruction, there might be
ultiple parallel edges from one node of the first sub-network to the artificial

erminal node or from the artificial source node to another node of the second
ub-network. In that case, we replace all the parallel edges having same source
nd destination node with a single edge whose flow and capacity values are
11

omputed as the sum of flows and capacities of all the parallel edges.
Algorithm 4: NetworkPartitioning(𝐺 =<  ,  >)
1 𝑠 ← RandomSample ( ⧵ {𝑠, 𝑡}, ||∕2) ; ⊳ Randomly sample half of

the nodes
2 𝑠 ← 𝑠 ∪ {𝑠} ∪ {𝑡} ; ⊳ 𝑠 represents the set of nodes in the

first sub-network
3  𝑡 ←  ⧵ {𝑠 ∪ {𝑠}} ∪ {𝑠̂} ; ⊳  𝑡 represents the set of nodes in

the second sub-network
4 𝑠 ← {} ; ⊳ 𝑠 is the set of edges in the first sub-network
5  𝑡 ← {} ; ⊳  𝑡 is the set of edges in the second sub-network
6 for 𝑒 ∶= (𝑢, 𝑣) ∈  do
7 if 𝑢, 𝑣 ∈ 𝑠 then
8 𝑠 ← 𝑠 ∪ 𝑒 ; ⊳ Add edge 𝑒 directly if both 𝑢 and 𝑣 lie in

first sub-network

9 if 𝑢, 𝑣 ∈  𝑡 then
10  𝑡 ←  𝑡 ∪ 𝑒 ; ⊳ Add edge 𝑒 directly if both 𝑢 and 𝑣 lie in

second sub-network

11 if (𝑢 ∈ 𝑠) ∧ (𝑣 ∈  𝑡) then
12 𝑠 ← 𝑠 ∪ {𝑢, 𝑡} ; ⊳ Create an edge between 𝑢 and 𝑡 in first

sub-network
13  𝑡 ←  𝑡 ∪ {𝑠̂, 𝑣} ; ⊳ Create an edge between 𝑠̂ and 𝑣 in

second sub-network

14 return 𝐺𝑠 =< 𝑠, 𝑠 >,𝐺𝑡 =<  𝑡,  𝑡 >

Algorithm 5: PartitioningHeuristic(𝐺 =<  ,  >,𝑈, 𝑝, 𝑥̄, 𝛤 )
1 Initialize: 𝜇 ← {}; 𝑖𝑡 ← 0;
2 repeat
3 𝑖𝑡 ← 𝑖𝑡 + 1 ;
4 {𝐺𝑠, 𝐺𝑡} ← NetworkPartitioning(𝐺) ; ⊳ Random partitioning

5 𝜇𝑠 ← ADV(𝐺𝑠, 𝑈 , 𝑝, 𝑥̄𝑠, 𝛤2 ) ; ⊳ Solve for first sub-network

6 𝜇𝑡 ← ADV(𝐺𝑡, 𝑈 , 𝑝, 𝑥̄𝑡, 𝛤2 ) ; ⊳ Solve for second sub-network

7 𝜇 ← 𝜇 ∪ 𝜇𝑠 ∪ 𝜇𝑡 ; ⊳ Add the new set of potential edges to 𝜇

8 until (|𝜇
| ≥ 𝛥) ∨ (𝑖𝑡 ≥ 𝑀);

9 𝜇 ← ADV ({𝐺, 𝜇}, 𝑈 , 𝑝, 𝑥̄, 𝛤 ) ; ⊳ Solve the problem over 𝜇 edges
10 return 𝜇

where the adversary’s decision problem in each iteration of the game is
solved using heuristics from Section 5 for computational efficiency. We
compare the performance of our approach against the following four
well-known state-of-the-art benchmark approaches:

1. Max-flow min-cost solution (MF): In this approach, we assume
that the administrator is not aware of any attacks and sends
the optimal (i.e., a max-flow min-cost solution) flow through the
network.

2. One-step planning (OSP): This is a myopic game model where
the administrator first computes a max-flow min-cost solution,
then the adversary identifies an optimal attack to disrupt that
solution and finally, the administrator finds an optimal flow
solution for the network which is damaged according to the
attack revealed by the adversary. This one-stage game model is
applicable to the setting where the administrator takes a myopic
view and assumes that the attacker cannot observe the flow
sent by the administrator. Therefore, from the administrator’s
perspective, the best policy for the adversary is to attack the
initial max-flow min-cost solution which can be computed if the
network structure and edge capacities are known to her.

3. Robust flow solution (RF): In this approach, we compute a robust
flow solution where the entire flow of an attacked edge is as-
sumed to be lost. Bertsimas et al. (2013) propose an optimization
model for computing a robust flow solution by assuming that a
maximum of 𝛤 incoming edges to node 𝑣 can fail. We modify
𝑣
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the optimization model to ensure that a maximum of 𝛤 edges
in the network can be attacked. The details of the modified
optimization model is provided in A.

4. Approximate adaptive maximum flow solution (AAMF): In this
approach, our goal is to compute an adaptive maximum flow
solution where the flow can be adjusted after the edge failure
occurred. We employ a linear optimization model from Bertsi-
mas et al. (2013) which provides an approximate solution to the
adaptive maximum flow problem. The details of the approximate
adaptive maximum flow solution is provided in B.

Finally, we refer to our iterative game approach as robust and adaptive
maximum flow (RAMF) solution. To ensure fairness in comparison,
we assume that the adversary always acts as a follower and optimally
disrupts the resulting flow solution for all five approaches6. Since
our goal is to optimize the network flow solution under adversarial
conditions, we consider two crucial and complementary metrics for
performance comparison:

• Objective – The objective value of the administrator, which we
want to maximize, is computed as the difference between the
amount of flow pushed to the terminal node and the total cost
of routing and rerouting the flow through the network; and

• Lost flow – The amount of lost flow is computed as the difference
between the amount of flow sent from the source node and the
amount of flow reached to the terminal node. The amount of
lost flow is an important indicator in many practical applications,
e.g., these can correspond to congestion in case of urban trans-
portation or these can introduce additional pressure in pipes in
case of crude oil distribution application.

The trade-off between the objective value and the amount of lost flow
can be captured using the routing cost parameter. If the routing cost is
very high, then the optimal solution is to send zero flow through the
network. On the other hand, if the routing cost is 0, then the optimal
solution can have a large amount of lost flow. Therefore, we generate
the routing costs randomly from a given range and report both the
objective value and the amount of lost flow as performance metrics.

6.1. Empirical results on small-scale data sets

In this section, we provide the following key comparison results
of our RAMF approach against four benchmark approaches on small
problem instances:

1. Sensitivity results with respect to the amount of lost flow and the
administrator’s objective value on a set of synthetic networks by
varying three tunable input parameters: (a) the number of nodes;
(b) the edge density which controls the number of edges; and (c)
the budget value of the adversary, 𝛤 .

2. Runtime analysis and convergence results of our RAMF ap-
proach.

6 For all the experiments, we set the modified capacity of an edge 𝑒, 𝑚𝑒 to
if the edge is attacked by the adversary.
12

o

3. Performance of our proposed heuristic approaches against the
optimal solution.

4. Behavioral insights from the strategies generated by the admin-
istrator and by the adversary.

5. Performance analysis on a real-world benchmark data set called
SNDlib (Orlowski et al., 2010).

.1.1. Sensitivity results over different settings of input parameters
We now demonstrate the performance comparison on a set of

ynthetic problem instances. We generate random connected directed
etworks by varying the number of nodes and the edge density. The
nteger-valued edge capacities are drawn randomly from the range
f 1 to 20 and the unit costs for transporting flows, 𝑝 are generated
andomly from the range of 0.01 to 0.1. In the default setting of
xperiments, we use networks with 20 nodes and 0.8 edge density,
nd the adversary’s budget value is set to 5. For each input setting, we
enerate 5 random problem instances and report the average amount
f lost flow and the average percentage gains in the administrator’s
bjective value. Let 𝑈𝑚𝑎𝑥 denote the maximum capacity of an edge
i.e., 𝑈𝑚𝑎𝑥 = max𝑒 𝑈𝑒)7. Then, the maximum loss in the objective
alue due to adversarial attacks is upper bounded by (𝑈𝑚𝑎𝑥 × 𝛤 ). So,
he percentage gain of our approach against a benchmark approach
e.g., MF ) is computed as the ratio between the difference in objectives
nd the upper bound on the marginal gain.

Gain over 𝑀𝐹 =
(Obj of 𝑅𝐴𝑀𝐹 - Obj of 𝑀𝐹 )×100

𝑈𝑚𝑎𝑥 × 𝛤
(11)

Fig. 4(a) shows the net amount of lost flow due to attacks, where
we vary the number of nodes in the 𝑋-axis. As expected, the amount
of lost flow is significantly high for the MF approach, as it ignores the
adversary’s attacking behavior. The amount of lost flow for RF and
AAMF are also significantly higher than our RAMF approach. The OSP
approach is more conservative and therefore, the amount of lost flow
for the OSP is relatively lower. The amount of lost flow for our RAMF
approach is almost always lower than all four benchmark approaches.
Fig. 4(b) delineates the percentage gain in the objective value of the
administrator in a logarithmic scale. Our approach always outperforms
all the benchmark approaches. The average percentage gains in the
objective value for our approach over MF, OSP, RF and AAMF are 4.8%,
25.4%, 6.3% and 4.2%, respectively.

Fig. 4(c) shows the net amount of lost flow for all the approaches,
where we vary the edge density from 0.4 to 0.8 in the 𝑋-axis. We
observe a consistent pattern that the amount of lost flow for MF,

F, AAMF approaches are at least two times higher than the RAMF
pproach. While the amount of lost flow for the OSP approach is almost
imilar for edge density 0.4 to 0.6, our RAMF approach performs better
hen the number of edges increases. Fig. 4(d) delineates the percentage
ain in the objective value in a logarithmic scale. The gap between
bjectives and the gain for our approach remain consistent in all the
ettings. As expected, AAMF always outperforms RF approach due to
he flow adjustment. On an average, the percentage gains in objective

7 As the integer-valued edge capacities are drawn randomly from the range
f 1 to 20, we set the value of 𝑈𝑚𝑎𝑥 to 20.
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or our approach over MF, OSP, RF and AAMF approaches are 6%,
31.8%, 8.1% and 5.4%, respectively.

Fig. 4(e) exhibits the net amount of lost flow for all the approaches,
where we vary the adversary’s budget value from 1 to 10 in the 𝑋-axis.
The amount of lost flow for the MF approach increases monotonically
from 20 to 150 as we increase the adversary’s budget value, whereas
the amount of lost flow for the RAMF approach is always bounded
by 40. Moreover, we observe that the amount of lost flow for our
RAMF approach remains consistent when the value of 𝛤 goes beyond
7. Such sensitivity analysis results can be used for initial estimation
of the adversary’s budget value. Fig. 4(f) demonstrates the percentage
gains in the objective value for our RAMF approach. As the upper
bound on marginal gain (i.e., 𝑈𝑚𝑎𝑥 × 𝛤 ) increases with the adversary’s
udget value, the percentage gains in objective value over OSP, RF and
AMF approaches reduce monotonically with the value of 𝛤 . Although

he percentage gain for our approach over the MF approach remains
onsistent for different values 𝛤 , the net difference between the ob-
ective values increases monotonically. Therefore, these results clearly
ndicate that the performance of our approach improves gradually if
he adversary becomes stronger.

.1.2. Convergence results
Fig. 5(a) shows the convergence of our proposed iterative game on

problem with 35 nodes and edge density 0.4, where the adversary’s
udget is set to 5. The 𝑋-axis represents the iteration number of the
ame, and the 𝑌 -axis denotes the objective value obtained by both the
layers. As expected, the objective value for the administrator reduces
onotonically over the iterations. As the administrator generates a

onservative solution over the iterations, the adversary’s ability to
isrupt the flow strategy reduces. The objective values converge to 349
fter 15 iterations. So, we can claim that the administrator’s objective
ill at least be 349 (for any attack from 𝛹 ) if the resulting robust

low strategy is executed. Fig. 5(b) delineates the objective values of
he players in each iteration of the game on another problem instance
ith 20 nodes, edge density 0.8 and the adversary’s budget value as 10,
hich converges after 14 iterations. We experimentally observe that the
ame converges within 20 iterations for all the other problem instances.

.1.3. Runtime performance
As all the benchmark approaches provide solution from a single-step

ptimization model, the runtimes for them are always lower than our
terative RAMF approach. Therefore, we only demonstrate the runtime
erformance of our RAMF approach for different settings of network
13

t

nd the adversary’s budget value. Fig. 5(c) presents the runtime for the
AMF approach in seconds in a logarithmic scale. As shown clearly,

he runtime increases monotonically with the network size (in terms
f both the number of nodes and the number of edges). Furthermore,
he quadratic optimization problem for the adversary, ADV becomes
omputationally expensive as we increase the value of 𝛤 and therefore,
he runtime increases monotonically as the adversary becomes stronger.

.1.4. Performance of heuristic approaches
To assess the performance of our two proposed heuristic approaches

gainst the optimal solution on small-scale problem instances, we
rovide two sets of experimental results: (a) Optimality gap in the
dministrator’s final flow solution quality if the adversary’s decision
n the intermediate stages of the game is solved using heuristic ap-
roaches; and (b) Optimality gap in the adversary’s solution quality
n each iteration of the game if her decision problem is solved with
euristic approaches as opposed to solving it optimally.

To understand the optimality gap in the administrator’s final solu-
ion quality, we generate two flow strategies for the administrator—one
y solving the adversary’s decision problem using heuristic approaches
n each iteration of the game and another by solving the adversary’s
ecision problem optimally in each iteration. Then, we employ the op-
imal attack from Section 4.1 to disrupt both these final flow strategies
nd compare their performance. Fig. 6 demonstrates the net objective
alue and the lost flow comparison. On an average, the administrator’s
inal objective value for our heuristic based solution is 6.8%, 9.7% and
.4% far from the optimal solution for different settings of nodes, edge
ensity and the adversary’s budget value, respectively.

To assess the optimality gap in the adversary’s solution quality, in
ach iteration of the game, we solve the adversary’s decision problem
oth optimally as well as using heuristic approaches, and execute her
ptimal attack for the game play. Fig. 7 exhibits the average solution
uality comparison between the attack generated using the heuristic
pproaches and the optimal attack in each iteration of the game. It
hould be noted that a lower objective value and higher amount of
ost flow are better for the adversary. On an average, the adversary’s
bjective values for the heuristic approaches are 3.2%, 4.5% and 5.1%
ar from the optimal solution for different settings of nodes, edge
ensity and the adversary’s budget value, respectively.

.1.5. Behavioral insights from the strategies of the administrator and the
dversary

We now provide behavioral insights generated from the strategies of

he adversary and the administrator for different approaches. Fig. 8(a)



Computers and Operations Research 138 (2022) 105558S. Ghosh and P. Jaillet

d
t
M
c
a
o
v
t
r
a
f
b
O
t
c
f
a
a
o
o

Fig. 5. Convergence of the proposed iterative game on problems with (a) 35 nodes and (b) 𝛤=10; (c) Runtime results of our RAMF approach for varying number of nodes, edges
and the adversary’s budget value.
Fig. 6. Performance comparison between the proposed heuristic approaches and optimal solution on (a) The amount of lost flow; and (b) The administrator’s objective value.
Fig. 7. Optimality gap for the heuristic approaches on (a) The amount of lost flow; and (b) The adversary’s objective value.
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emonstrates the average amount of initial flow assigned to edges
hat are being attacked by the adversary’s strategy. We observe that
F, RF and AAMF solutions transmit higher amount of flow through

ritical high capacity edges, and the adversary can gain significantly by
ttacking those critical edges. The OSP solution assigns a lower amount
f flow in all the edges that leads to a significantly lower objective
alue. Our RAMF solution is able to find intelligent flow strategies that
ransmit high amount of flow through the edges whose flow can be
erouted if attacked, and therefore, the adversary has more incentive in
ttacking edges with less flow than those important edges with higher
low. On an average, the amount of flow assigned to attacked edges
y our RAMF approach is 60%, 8%, 56% and 50% less than the MF,
SP, RF and AAMF approaches, respectively. To further investigate

he nature of the flow solutions generated by the administrator, we
ompute the residual capacity for the intermediate edges (i.e., except
or the edges connected to source or terminal node) in which the
dministrator has assigned a portion of flow. Fig. 8(b) depicts the
verage residual capacity left by the administrator’s initial flow solution
n the intermediate edges. In contrast to other benchmark approaches,
ur RAMF solutions diversify the flow assigned to intermediate edges
14

i

o maximize the flow reaching the terminal node under nominal con-
ition and leave enough residual capacity to reroute flows in case of
dversarial attacks.

.1.6. Performance analysis on SNDlib data set
In this section, we provide performance comparison results on

nstances from Survivable Network Design Library [SNDLib] (Orlowski
t al., 2010). SNDLib database consists of 26 problem instances. The
apacities of edges, 𝑈 are directly taken from the database8. The unit
dge costs for routing flows, 𝑝 are randomly drawn from the range of
.01 to 0.1. In the default setting of experiments, we set the adversary’s
udget value to 5. However, due to small number of edges in some
nstances, we observe that the flow reaching to the terminal node is
lways 0 for all the approaches, if we allow the adversary to attack 5
dges. So, we reduce the adversary’s budget value accordingly for those
nstances.

8 For some instances, the capacities for all the edges are stated as 0 in the
NDlib database. For those instances, we set the capacities to randomly drawn
nteger values between 500 and 1000.
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Table 2
Empirical results on SNDlib data set.
Problem instance Amount of lost flow %Gain in objective of RAMF over Runtime (s)

Name || || 𝛤 MF OSP RF AAMF RAMF MF OSP RF AAMF RAMF

abilene 14 22 2 1828 1602 1796 1692 1602 2.2 65.4 1.9 0.9 0.2
atlanta 17 31 3 28711 5000 12000 12000 7966 3.9 5.8 1.8 1.3 3.6
brain 163 399 5 4512 4142 4512 4220 4142 1.3 67.6 9.7 2.9 65.7
cost266 39 80 5 4507 3545 4314 4050 3859 2.9 55.5 2.2 2.4 11.0
dfn-bwin 12 50 5 3657 1155 3626 3060 118 8.4 19.8 10.2 8.5 2.6
dfn-gwin 13 54 5 3013 1361 2750 2795 979 8.8 37.7 10 8.4 2.0
di-yuan 13 49 5 4653 1869 4377 3850 1803 9.7 33.2 9.7 7.1 1.2
france 27 60 5 4502 2912 4236 4340 3755 2.5 42.7 2.5 3.1 1.3
geant 24 48 5 4633 3840 4467 4435 3984 1.8 64.3 3.5 2.7 2.3
germany50 52 109 5 4338 3989 4148 4130 4046 2.9 66.1 8.6 6.7 6.6
giul39 41 189 5 4710 1488 4447 4190 2118 10.5 24.3 33.7 13.0 3183
india35 37 97 5 4489 3421 4290 4195 3737 2.4 57.1 5.5 4.1 5.4
janos-us-ca 41 139 5 4647 3093 4219 4310 3100 9.3 44.7 16.1 14.7 2443
janos-us 28 97 5 3891 1784 3205 3205 3057 3.7 26.1 9.8 3.4 7.8
newyork 18 58 5 4700 3106 4607 4470 3604 3.9 46.5 3.3 4.1 4.1
nobel-eu 30 55 5 4403 3367 4020 3690 3582 3.9 52.4 2.7 1.5 0.8
nobel-germany 19 39 5 4691 2612 4400 4400 3441 2.6 39.3 1.5 1.5 1.8
nobel-us 16 33 5 4828 3293 4726 4665 4621 0.8 50.9 0.5 0.3 1.3
norway 29 64 5 4100 2321 3817 3215 3028 4.2 37.6 7.7 1.9 5.6
pdh 13 41 5 4283 1422 4039 3645 2062 8.6 21.0 9.5 8.9 0.8
pioro40 42 106 5 4283 1422 4039 3645 2062 1.5 57.2 6.4 2.2 15.1
polska 14 26 3 2695 1908 2672 2460 1837 3.9 54.1 7.1 6.7 0.3
sun 29 115 5 4552 2918 4324 3930 3692 4.0 45.3 17.6 5.8 53.2
ta1 26 66 5 4552 2918 4324 3930 3692 10.6 33.9 14.5 11.7 80.7
ta2 67 138 5 38464 15776 25200 15120 14023 9.3 17.1 5.4 1.3 8.0
zib54 56 108 5 4786 4378 4671 4523 4483 1.3 70.3 3.5 2.9 11.7
Table 2 elaborates the comparison results on all instances of SNDlib
ata set. For each instance, we show the network details (i.e., the
umber of nodes and edges, and the adversary’s budget value), the
mount of lost flow for all five approaches and the runtime for our
AMF approach. We also provide the percentage gains in objective
alue for our approach over four benchmarks. For all the instances,
he amount of lost flow for the MF approach is significantly higher

than the RAMF approach. The RAMF approach always outperforms all
benchmark approaches with respect to maximizing the administrator’s
objective value. On an average, our approach improves the objective
value by 4.8%, 43.7%, 7.9% and 4.9% over MF, OSP, RF and AAMF,
respectively. In addition, we observe that our approach is computation-
ally attractive for these structured benchmark networks. The runtime
for our approach is always bounded by 90 s except for two instances
(‘giul39’ and ‘janos-us-ca’) for which the edge capacities are generated
randomly as they are stated as 0 in the SNDlib database.

6.2. Empirical results on large-scale data sets

In this section, we present empirical results on a set of synthetic and
real-world large-scale problem instances. For these large-scale problem
15

instances, we employ heuristics from Section 5 to efficiently solve
the adversary’s decision problem. We demonstrate the following key
performance results on large-scale data sets:

1. Solution quality comparison between our two proposed heuris-
tics.

2. Sensitivity results on synthetic networks by varying three tun-
able input parameters.

3. Runtime analysis of our RAMF approach.
4. Performance analysis on a benchmark data set from RMFGEN

(Goldfarb and Grigoriadis, 1988) networks.

6.2.1. Performance comparison between our two proposed heuristic ap-
proaches

We begin by showing performance comparison between the accel-
erated greedy approach from Section 5.1 and the network partitioning
based heuristic approach from Section 5.2. We empirically observe that
the partitioning based heuristic mostly performs better than the greedy
approach, especially at the later stage of the game. However, as both
the approaches provide sub-optimal solutions, the greedy approach
outperforms the partitioning based heuristic in some cases. To illustrate
this behavior, we show the amount of lost flow, the net objective value
and the runtime for both the heuristic approaches in each iteration

of the game on a problem instance with 50 nodes, 0.4 edge density
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Table 3
Solution quality and runtime comparison between two proposed heuristic approaches.

Iteration Amount of lost flow Objective value Runtime (s)

Greedy Partitioning Greedy Partitioning Difference Greedy Partitioning

1 466 447 1171.99 1190.91 −18.92 2.05 106.68
2 143 213 1071.76 1011.77 59.99 29.92 224.19
3 124 185 1096.4 1040.24 56.16 31.24 132.21
4 135 185 1118.11 1077.06 41.05 30.86 183.59
5 178 197 1117.71 1104.38 13.33 24.18 265.3
6 168 151 1157.89 1181.58 −23.69 25.66 684.01
7 187 182 1152.21 1158.04 −5.83 26.14 505.1
8 135 165 1206.67 1187.68 18.99 31.19 278.07
9 144 173 1201.79 1179.36 22.43 32.65 240.05
10 127 138 1214.84 1211.69 3.15 32.49 822.93
11 127 135 1214.81 1214.27 0.54 32.53 523.11
Fig. 9. Effect of number of nodes on (a) The amount of lost flow and (b) The objective value; Effect of number of edges on (c) The amount of lost flow and (d) The objective
value; Effect of the value of 𝛤 on (e) The amount of lost flow and (f) The objective value.
nd the adversary’s budget as 10. As the adversary seeks to minimize
he administrator’s objective value, a better quality solution should
rovide lower objective value and higher amount of lost flow. As shown
n Table 3, while the partitioning based heuristic mostly outperforms
he greedy approach, the solution quality of the greedy approach is
etter in some iterations (e.g., 1, 6 and 7). As the partitioning based
euristic does not always dominate the greedy approach, we solve the
dversary’s decision problem using both heuristics in each iteration of
he game and choose the attack with better solution quality. In terms
f the computational complexity, as expected, the greedy approach is
roven to be much faster than the network partitioning based heuristic.

.2.2. Sensitivity results with different settings of input parameters
We now present empirical results on a set of large-scale synthetic

roblem instances. We use the same setting used in Section 6.1.1 to
enerate a set of large directed connected synthetic networks. For all
he networks, we randomly draw integer-valued edge capacities from
he range of 1 to 50. The unit costs for routing flows through edges are
rawn randomly from the range of 0.01 to 0.1. In the default setting
f experiments, we use networks with 50 nodes and 0.4 edge density,
nd the adversary’s budget value is set to 10.

Fig. 9(a) demonstrates the net amount of lost flow for different
pproaches, where we vary the number of nodes from 40 to 75 in
he 𝑋-axis. The amount of lost flow for the MF approach is signifi-
antly high in all the settings. The RF and AAMF approaches perform
qually poorly in reducing the amount of lost flow. Except for relatively
mall problem instances with 40 nodes, our RAMF approach always
utperforms all four benchmark approaches in terms of reducing the
16
amount of lost flow. Fig. 9(b) delineates the percentage gains in the
objective value for our RAMF approach against four benchmarks in a
logarithmic scale. As clearly shown, the percentage gains in objective
for our approach over all the benchmarks are always positive. The
average percentage gains in the objective value for our approach over
MF, OSP, RF and AAMF approaches are 7.7%, 50.1%, 18.2% and
14.97%, respectively.

Fig. 9(c) shows the net amount of lost flow for all five approaches,
where we vary the edge density from 0.2 to 0.7 in the 𝑋-axis. The
amount of lost flow for MF, RF and AAMF approaches are always
significantly high. Except for edge density 0.2 and 0.3, our RAMF
approach outperforms the OSP approach in terms of reducing the
amount of lost flow. Fig. 9(d) delineates that the AAMF approach
always provides a better quality solution over the RF approach. The MF
approach outperforms the RF and AAMF approaches on larger problem
instances with edge density 0.4 and beyond. As expected, the OSP
approach performs poorly in maximizing the administrator’s objective
value in all the cases. On an average, the percentage gains in objective
value for our RAMF approach over MF, OSP, RF and AAMF approaches
are 8.2%, 47.3%, 15.2% and 10.5%, respectively.

Fig. 9(e) exhibits the net amount of lost flow for all the approaches,
where we vary the budget of the adversary from 2 to 20 in the 𝑋-axis.
The amount of lost flow for the MF approach increases monotonically
from 100 to almost 900 as we increase the adversary’s budget, whereas
the amount of lost flow for our RAMF approach is always bounded by
160. Moreover, we observe that the amount of lost flow for our RAMF
approach remains steady when the adversary’s budget value goes be-
yond 14. Although Fig. 9(f) demonstrates that the percentage gains
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Fig. 10. Runtime results for large problem instances.

n objective value for our approach over the benchmark approaches
lmost always reduce monotonically with the increasing value of 𝛤 ,

the net difference between the objective values increases monotonically
with the value of 𝛤 , which indicates that the performance of our
approach improves gradually if the adversary becomes stronger. On
an average, the percentage gains in the objective value for our RAMF
approach over MF, OSP, RF and AAMF approaches are 10.4%, 38.1%,
21.1% and 17.6%, respectively.

In a nutshell, we observe a consistent pattern that our RAMF ap-
proach reduces the amount of lost flow significantly over MF, RF
and AAMF approaches. On the other hand, the percentage gain in
the objective value for the RAMF approach over the OSP approach
is always significantly high. Therefore, we can conclude that among
five approaches, only our RAMF approach is able to maintain the
right trade-off between the two performance metrics. Moreover, the
empirical results on large-scale problem instances replicate the similar
trend observed for the optimal results on the small problem instances
as presented in Section 6.1.1.

6.2.3. Runtime performance
We now demonstrate the runtime performance of our RAMF ap-

proach for different settings of network size and the adversary’s budget
value. As the number of iterations required to converge the game may
vary randomly for different problems, we show the average runtime in
each iteration of the game.

Fig. 10 presents the runtime for the RAMF approach in minutes in a
logarithmic scale. The runtime almost always increases monotonically
with the network size (both in terms of the number of nodes and edges).
The runtime increases monotonically with the adversary’s budget value
until 𝛤 = 10. However, as the sub-problems of the network partitioning
based heuristic approach have relatively small number of edges and
the optimization problem tries to identify 𝛤

2 potential edges from a
mall set of edges, the combinatorial space of the sub-problems reduces
nce the budget value becomes large. Therefore, the runtime starts to
ecrease as the value of 𝛤 goes beyond 10.

.2.4. Performance analysis on RMFGEN data set
In the last thread of results, we provide performance comparison be-

ween different approaches on instances from RMFGEN networks (Gold-
arb and Grigoriadis, 1988). RMFGEN networks are widely used for
alidating large-scale network flow solutions. We employ 7 moderately
arge RMFGEN networks for the experiments9. As some of the prob-
em instances are undirected networks, we convert them into directed
etworks by randomly adding edges until it evolves into a connected
i.e., every node has at least one incoming and one outgoing edge)
etwork. As the capacities of edges are mentioned as continuous values

9 The data set is collected from http://elib.zib.de/pub/mp-testdata/
axflow/index.html
17
in the database, we generate random integer-valued edge capacities
from the range of 10 to 50. The unit routing costs for the edges are
randomly drawn from the range of 0.01 to 0.1. Finally, we set the
adversary’s budget value to 10 for all the problem instances.

Table 4 elaborates the performance comparison results on the in-
stances of RMFGEN networks. For each instance, we show the network
details (i.e., the number of nodes and edges, and the adversary’s budget
value), the amount of lost flow and the objective values for all five
approaches, and the average runtime (in minutes) per iteration for
the RAMF approach. The amount of lost flow is always significantly
igher for MF, RF and AAMF approaches in comparison to our RAMF
pproach. For all the problem instances, the RAMF approach also
rovides higher objective value over all the benchmark approaches.
n an average, our approach improves the objective value by 8%,
0.1%, 47.9% and 39.6% over MF, OSP, RF and AAMF approaches,

respectively. Most importantly, we observe that our proposed heuristic
approaches can scale gracefully to solve these large problem instances
while providing a significant performance gain over the benchmark
approaches.

7. Model extension: Full flow rerouting in the third stage

In this paper, we propose a solution methodology for the network
flow games by assuming that the administrator can only reroute flows
from an attacked edge through a forward walk. That is to say, the
flow of an attacked edge 𝑒 ∶= (𝑢, 𝑣) can only be rerouted through
dges that lie in one of the walks from the node 𝑢 to the terminal
ode. However, in some practical flow applications, the administrator
an have the power to reroute additional flows through any active
dges in the network once the attack has been realized. In this section,
e demonstrate that our proposed solution methodology can easily be
xtended to tackle such situations where the administrator is allowed
o reroute flows through all the active edges in the third stage of the
ame.

The main impediment in allowing full rerouting in the third stage
f the game comes from the fact that one can imagine a trivial optimal
olution to such a three-stage model that sends zero flow in the first
tage, then the attacker reveals no attack (or a random poor attack)
lan in the second stage and in the third stage, the administrator sends
max-flow min-cost solution. However, such a trivial solution does not

erve our purpose, as we need to generate a first stage solution that
erforms well under nominal condition. Therefore, in the third stage
olution, we need to enforce that flow arriving in the network from the
ource node should be upper bounded by the initial flow (i.e., first stage
low solution) sent from the source node.

To allow full rerouting of flows in the third stage, we begin by re-
efining the 𝜋-variables (refer to Eq. (8)), that control the upper bounds
n the amount of allocated flows in the third stage, using Eq. (12). We
et the value of 𝜋𝑒 to 0 only if the originating node 𝑢 of the edge 𝑒 is
ither the source node of the network, or it belongs to the set of source
odes 𝑆, in case the network has multiple source nodes. Specifically,
f an edge is originated from the source node, then the third stage
djusted flow in that edge is upper bounded by the initial amount of
llocated flow, otherwise the upper bound is set to the capacity of the
dge 𝑈𝑒, by fixing the value of 𝜋𝑒 to 1.

𝑒 =

{

0 if 𝑒 ∶= (𝑢, 𝑣)|𝑢 ∈ 𝑆
1 otherwise

(12)

With this modified definition of the 𝜋-variables, we now present the
ecision problems of the administrator and the adversary, where the
dministrator can reroute flows through all the edges in the third stage
f the game. To solve the administrator’s decision problem, we can
irectly employ the optimization model (10a)–(10i), where the input
-variables are computed using Eq. (12), instead of Eq. (8). From the
dversary’s perspective, the full rerouting of flows further simplifies
er decision problem. The optimization model (13a)–(13f), denoted by

http://elib.zib.de/pub/mp-testdata/maxflow/index.html
http://elib.zib.de/pub/mp-testdata/maxflow/index.html
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Table 4
Empirical results on RMFGEN data set.
Problem instance Amount of lost flow Objective value Runtime/Iteration

Name || || 𝛤 MF OSP RF AAMF RAMF MF OSP RF AAMF RAMF RAMF

elist96 96 348 10 357 169 276 269 145 155.5 61.2 170.9 163.8 216.7 18.30
elist96d 96 539 10 439 343 378 376 213 452.9 307.0 323.6 365.4 508.2 11.26
elist160 160 586 10 438 266 370 370 310 408.7 255.7 345.3 345.4 449.1 28.07
elist160d 160 933 10 481 377 456 454 345 1602.1 1380.1 1356.1 1467.8 1647.7 54.14
elist200 200 818 10 463 344 408 405 352 969.3 737.2 840.8 904.8 1010.9 25.37
elist200d 200 1370 10 476 413 458 458 452 2255.4 1938.3 1823.5 1750.6 2272.8 35.64
elist500 500 2042 10 477 422 453 440 430 3106.8 2799.6 2694.4 2848.2 3126.1 56.11
Fig. 11. Empirical results on small-scale data sets with full rerouting in the third stage of the game: Effect of number of nodes on (a) The amount of lost flow and (b) The objective
value; Effect of number of edges on (c) The amount of lost flow and (d) The objective value; Effect of the value of 𝛤 on (e) The amount of lost flow and (f) The objective value.
ADV-F, demonstrates the modified decision problem of the adversary.
he only differentiating factor from the optimization model (6a)–(6h),
resented in Section 4.1, is that instead of representing the 𝜋-variables
s a function of the attack variables 𝜇, the 𝜋-variables are now given
s inputs (computed using Eq. (12)) to the optimization model ADV-F.

ADV-F = min
𝜇∈𝛹

{

max 𝑦(𝑡,𝑠) −
∑

𝑒∈
𝑝𝑒 ⋅ 𝑧𝑒

}

(13a)

s.t.
∑

𝑒∈𝛿+𝑣

𝑦𝑒 −
∑

𝑒∈𝛿−𝑣

𝑦𝑒 ≥ 0 ∀𝑣 ∈  ⧵ {𝑠} (13b)

𝑦𝑒 ≤ (1 − 𝜇𝑒)𝑈𝑒 + 𝜇𝑒𝑚𝑒 ∀𝑒 ∈  (13c)

𝑧𝑒 ≥ 𝑦𝑒 − 𝑥̄𝑒 ∀𝑒 ∈  (13d)

𝑦𝑒 ≤ (1 − 𝜋𝑒)𝑥̄𝑒 + 𝜋𝑒𝑈𝑒 ∀𝑒 ∈  (13e)

𝑦𝑒 ≥ 0; 𝑧𝑒 ≥ 0 ∀𝑒 ∈  (13f)

As the inner maximization problem is a linear program, we employ
the same dualization technique from Section 4.1 to convert the entire
problem into a minimization problem. The quadratic dual problem,
denoted by ADV-F, is compactly shown using the optimization model
(14a)–(14f), where 𝛼, 𝛽, 𝜔 and 𝛾 represent nonnegative dual price vari-
ables for constraints (13b)–(13e), respectively. Finally, we can employ
the same heuristic approaches from Section 5 to solve the adversary’s
decision problem for large-scale networks. The only change required is
to solve the third stage evaluation model in Table 1 using the modified
definition of 𝜋-variables from Eq. (12).

ADV-F = min
𝛼,𝛽,𝛾,𝜔,𝜇

∑

𝑒∈
𝛽𝑒𝑈𝑒 −

∑

𝑒∈
𝛽𝑒𝜇𝑒(𝑈𝑒 − 𝑚𝑒) +

∑

𝑒∈
𝜔𝑒𝑥̄𝑒

+
∑

𝛾𝑒
[

𝑥̄𝑒 + 𝜋𝑒(𝑈𝑒 − 𝑥̄𝑒)
]

(14a)
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𝑒∈
s.t. 𝛽𝑒 + 𝛾𝑒 + 𝜔𝑒 + 𝛼𝑣 − 𝛼𝑤 ≥ 0 ∀𝑒 ∶= (𝑣,𝑤) ∈  (14b)

𝜔𝑒 ≤ 𝑝𝑒 ∀𝑒 ∈  (14c)
∑

𝑒∈
𝜇𝑒 ≤ 𝛤 (14d)

𝛼𝑡 = 1; 𝛼𝑠 = 0 (14e)

𝛼𝑣, 𝛽𝑒, 𝛾𝑒, 𝜔𝑒 ≥ 0;𝜇𝑒 ∈ {0, 1} (14f)

To evaluate the performance of our proposed two-player game-
based solution methodology in the setting where the administrator is
allowed to reroute flows through all the edges, we carry out the same
set of experiments from Section 6.1.1 on synthetic small-scale data sets.
Fig. 11 demonstrates the performance of our proposed RAMF approach
against four benchmark approaches with respect to the amount of lost
flow and the administrator’s objective value, for different settings of
the number of nodes, edge density and the adversary’s budget value.
We observe a similar and consistent pattern as shown in Fig. 4 with the
forward flow rerouting assumption. Our RAMF approach significantly
reduces the amount of lost flow over all the benchmark approaches
(albeit by a small amount over the OSP approach). In terms of the
administrator’s objective value, on an average over all the settings,
the RAMF approach provides 5.8%, 30%, 8.7% and 5.7% gains over
MF, OSP, RF and AAMF approaches, respectively. Furthermore, we
observe that the full rerouting of flows has a limited impact on the
percentage gains in the administrator’s objective value in comparison
to the experimental results presented in Section 6.1.1. Over all the
different settings of network size and the adversary’s budget value,
the average percentage gains in the administrator’s objective value for
the RAMF approach with full rerouting deteriorate only by 0.032%,
−0.033%, 0.05% and 0.029% over MF, OSP, RF and AAMF approaches,

in comparison to the percentage gains with forward flow rerouting.
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Fig. 12. Distances from the attacked edges to the terminal node—understanding the
behavior of the adversary’s solutions generated with full rerouting vs. forward path
rerouting.

Lastly, we demonstrate the behavior of the solutions generated with
full rerouting against the solutions presented in Section 6.1.1. If we
allow rerouting of flows from an attacked edge in a forward path only,
then intuitively the adversary has benefits in attacking edges that are
closer to the terminal node. Therefore, in Fig. 12, we show the average
shortest path length from the source node of an attacked edge to the
terminal node, for both the forward path and full rerouting settings.
The average shortest path length over all the problem instances for the
forward path and full rerouting settings are 2.08 and 2.1, respectively.
These results indicate that the adversary does not necessarily attack
edges near to the terminal node in case of forward path rerouting, as
the administrator might take the advantage by rerouting flows through
shorter residual paths that incurs minimal rerouting cost. However, as
expected, we observe that the adversary is prone to attack edges that
disconnect the source node of an attacked edge to the terminal node in
case of forward path rerouting, so as to disrupt the entire flow reaching
to that source node. Over all the problem instances across different
settings of nodes, edges and the adversary’s budget value, the adversary
attacks such edges 69 times in total for the forward path rerouting, as
opposed to only 20 times in case of full rerouting.

8. Concluding remarks

To evaluate the resilience and sustainability of modern critical in-
frastructure networks, we propose a robust and adaptive network flow
model by assuming that the network parameters are deterministic but
the network structure (e.g., edges) is vulnerable to adversarial attacks
or failures. To compute a robust and adaptive network flow strategy, we
introduce a novel scenario generation approach based on a two-player
iterative game between the network administrator and an adversary. In
each iteration of the game, the adversary identifies an optimal attack
to disrupt the flow strategy generated by the administrator in the
current iteration, and the administrator computes a robust flow strategy
by considering a set of attacks revealed by the adversary in previous
iterations. As the computational complexity of the adversary’s decision
problem increases significantly with network size, we propose two
novel heuristics – one leverages an accelerated greedy approach and
the other employs a network partitioning based optimization approach
– to speed up the solution process. The empirical results on multiple
synthetic and real-world benchmark data sets demonstrate that our
proposed approach scales gracefully to large-scale problem instances
and improves the operational efficiency of the network by reducing the
expected amount of lost flow.

In the future, this work can be extended in the following two
directions: (a) Develop faster heuristics for solving the decision prob-
lem of both the adversary and the administrator, to scale up the
solution process to massive real-world urban networks with tens of
thousands of edges; and (b) Incorporate precise domain constraints
19

in the optimization models of both the players to cater to specific
real-world application domain. For example, in the context of urban
transportation, a detailed traffic model with congestion effects would
make the model more realistic. However, incorporating precise traffic
details (e.g., representing the routing cost as a latency function of traffic
to capture the congestion effects) would make our solution approach
computationally intractable due to non-linearity in objective function
and therefore, efficient approximation methods need to be designed by
analyzing the properties of the specific application domain.
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Appendix A. Robust flow solution

In this section, we provide the details of the robust flow (RF)
solution (Bertsimas et al., 2013) that is used as a benchmark approach.
For this benchmark approach, our goal is to proactively compute a
robust flow solution by assuming that the entire flow of an attacked
edge is lost. For a fair comparison with other approaches, we modified
the robust flow solution proposed by Bertsimas et al. (2013) to ensure
that a maximum of 𝛤 edges in the network can be attacked. Let 𝑥
denote the resulting robust flow scenario and 𝛤 denote the worst-case
lost flow value if the adversary is restricted to attack a maximum of 𝛤
edges. The optimization model (A.1) compactly delineates the details of
our robust flow solution, where the inner optimization model computes
the value of 𝛤 as the sum of the first 𝛤 biggest edge flow values.

max
𝑥

𝑥(𝑡,𝑠) − 𝛤 𝐰𝐡𝐞𝐫𝐞, 𝛤 = max
𝜇

∑

𝑒
𝑥𝑒𝜇𝑒

s.t.
∑

𝑒∈𝛿+𝑣

𝑥𝑒 −
∑

𝑒∈𝛿−𝑣

𝑥𝑒 = 0, ∀𝑣 ∈  ⧵ {𝑠} s.t.
∑

𝑒
𝜇𝑒 ≤ 𝛤

0 ≤ 𝑥𝑒 ≤ 𝑈𝑒, ∀𝑒 ∈  0 ≤ 𝜇𝑒 ≤ 1, ∀𝑒 ∈ 

(A.1)

The two components of the problem (A.1) can be combined by
taking the dual of the inner problem 𝛤 . To achieve this goal, we
first compute the Lagrangian function (A.2) by introducing the price
variables 𝜃 and 𝜁 . From this Lagrangian function, we construct the dual
problem (A.3).

min
𝜁,𝜃

−
∑

𝑒
𝑥𝑒𝜇𝑒 + 𝜁 (

∑

𝑒
𝜇𝑒 − 𝛤 ) +

∑

𝑒
𝜃𝑒(𝜇𝑒 − 1) (A.2)

max
𝜁,𝜃

−
∑

𝑒
𝜃𝑒 − 𝜁𝛤

s.t. 𝜃𝑒 + 𝜁 ≥ 𝑥𝑒, ∀𝑒 ∈ 

𝜃𝑒 ≥ 0, 𝜁 ≥ 0

(A.3)

Putting the optimization models (A.1) and (A.3) together, we con-

struct the linear optimization model (A.4) that is used to solve the
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robust maximum flow problem.

max
𝑥,𝜃,𝜁

𝑥(𝑡,𝑠) −
∑

𝑒
𝜃𝑒 − 𝜁𝛤

s.t.
∑

𝑒∈𝛿+𝑣

𝑥𝑒 −
∑

𝑒∈𝛿−𝑣

𝑥𝑒 = 0, ∀𝑣 ∈  ⧵ {𝑠}

𝜃𝑒 + 𝜁 ≥ 𝑥𝑒, ∀𝑒 ∈ 

0 ≤ 𝑥𝑒 ≤ 𝑈𝑒, ∀𝑒 ∈ 

𝜃𝑒 ≥ 0, 𝜁 ≥ 0

(A.4)

ppendix B. Approximate adaptive maximum flow solution

In this section, we provide the details of another benchmark ap-
roach that computes an approximate adaptive maximum flow (AAMF)
olution by assuming that the flow can be adjusted after the edge failure
ccurred. Bertsimas et al. (2013) show that the adaptive maximum
low problem is strongly NP-hard. Therefore, they propose a scalable
inear optimization model to approximately solve the problem. Let 𝑥
enote the resulting approximate adaptive maximum flow solution and
denote the largest edge flow value. In addition, let us define an 𝑠 − 𝑡

ut for the network as a subset 𝑆 ∈  of nodes with 𝑠 ∈ 𝑆 and
∈ 𝑉 ⧵ 𝑆. We say that a node 𝑣 is on the 𝑠-side if 𝑣 ∈ 𝑆 and on

he 𝑡-side if 𝑣 ∈  ⧵ 𝑆. Let 𝛿+(𝑆) denote the set of directed outgoing
dges 𝑒 ∶= (𝑣,𝑤) from the 𝑆 side such that 𝑣 ∈ 𝑆 and 𝑤 ∈  ⧵ 𝑆 and
−(𝑆) represent the set of directed incoming edges 𝑒 ∶= (𝑣,𝑤) to the 𝑆
ide with 𝑣 ∈  ⧵ 𝑆 and 𝑤 ∈ 𝑆. Then, the capacity of the 𝑠 − 𝑡 cut is
efined as: 𝐶𝑎𝑝(𝑆) =

∑

𝑒∈𝛿+(𝑆) 𝑈𝑒. Let us assume that 𝑆 represents the
−𝑡 cut with minimum capacity value for the network of interest (i.e., a
in-cut solution). The linear optimization model (B.1) provides details

f the approximate solution proposed in Bertsimas et al. (2013).

max
𝑥,𝜃

∑

𝑒∈𝛿+(𝑆)
𝑥𝑒 −

∑

𝑒∈𝛿−(𝑆)
𝑥𝑒 − 𝜃𝛤

s.t.
∑

𝑒∈𝛿+𝑣

𝑥𝑒 −
∑

𝑒∈𝛿−𝑣

𝑥𝑒 = 0, ∀𝑣 ∈  ⧵ {𝑠, 𝑡}

𝑥𝑒 ≤ 𝜃, ∀𝑒 ∈ 

0 ≤ 𝑥𝑒 ≤ 𝑈𝑒, ∀𝑒 ∈ 

(B.1)

Let 𝑥∗ be a flow with maximum robust flow value, such that
Val(𝑥∗) ≤ RVal(𝑥∗) for some 𝛽 ∈ (0, 1], where Val(𝑥∗) represents the
bjective value for the administrator if no attack is executed in the
etwork, and RVal(𝑥∗) denotes the robust flow value of 𝑥∗. Further,
uppose 𝑥̄, 𝜃̄ be the optimal solution for the optimization problem (B.1).
et 𝜌 denote the value of (1 − (1 − 1

𝑛 )
𝑛), where 𝑛 represents the number

of nodes in the network. Then, Bertsimas et al. (2013) show that 𝑥̄ is a
1 − (((1 − 𝜌)∕𝜌)((1 − 𝛽)∕𝛽))-approximation of 𝑥∗, i.e.,

RVal(𝑥̄) ≥
(

1 −
1 − 𝜌
𝜌

1 − 𝛽
𝛽

)

RVal(𝑥∗)

n addition, Bertsimas et al. (2013) show that the resulting flow from
roblem (B.1) provides an 𝛼-approximation to the optimal adaptive
aximum flow solution. Let 𝑥∗ be an adaptive maximum flow such

hat 𝛽Val(𝑥∗) ≤ RVal(𝑥∗) for some 𝛽 ∈ (0, 1], and 𝑥̄, 𝜃̄ be the optimal
olution for the optimization problem (B.1). Then, the adaptive value
f 𝑥̄, AVal(𝑥̄) yields a 𝛽(1 − (((1 − 𝜌)∕𝜌)((1 − 𝛽)∕𝛽)))-approximation for

the adaptive value of 𝑥∗, i.e.,

AVal(𝑥̄) ≥ 𝛽
(

1 −
1 − 𝜌
𝜌

1 − 𝛽
𝛽

)

AVal(𝑥∗)
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