
Yard crane scheduling for container storage, retrieval, and relocation

Virgile Galle∗,a Cynthia Barnharta,b Patrick Jailleta,c

vgalle@mit.edu cbarnhar@mit.edu jaillet@mit.edu

∗Corresponding author, vgalle@mit.edu
aOperations Research Center, MIT, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
bCivil & Environmental Engineering, MIT, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
cElectrical Engineering & Computer Science, MIT, 77 Massachusetts Ave, Cambridge, MA 02139, USA.

vgalle@mit.edu
cbarnhar@mit.edu
jaillet@mit.edu
vgalle@mit.edu

Yard Crane Scheduling for container storage, retrieval, and relocation

Abstract

This paper introduces a novel optimization problem resulting from the combination of two major existing problems

arising at storage yards in container terminals. The Yard Crane Scheduling Problem is typically concerned with routing

the crane given a sequence of storage and retrieval requests to perform, while the Container Relocation Problem tackles

the minimization of relocations when retrieving containers in a simpler setting. This paper is the first to consider a model

that integrates these two problems by scheduling storage, retrieval and relocations requests and deciding on storage and

relocation positions. We formulate this problem as an integer program that jointly optimizes current crane travel time

and future relocations. Based on the structure of the proposed formulation and the linear programming relaxation of

subproblems, we propose a heuristic local search scheme. Finally, we show the value of our solutions on both simulated

instances as well as real data from a port terminal.

Keywords. Combinatorial optimization; OR in maritime industry; Integer programming; Yard Crane Scheduling Problem;

Container relocation problem

1 Introduction

Container terminals, where containers are transferred between different modes of transportation both on the sea side

and land side, are crucial links in intercontinental supply chains. The rapid growth of container shipping and the increasing

competitive pressure to lower rates result in demand for higher productivity of both sea and land operations. At a typical

container terminal, sea-side operations include assigning ships to quay slots or discharging and loading ships with quay

cranes while land-side operations mostly involve routing internal trucks or storing and delivering containers in the storage

area. For both types of operations, the efficiency of container terminals can be clearly enhanced by investments in new

terminal devices (see Speer and Fischer (2017)). These investments can range from just improving current devices to

buying new state-of-the-art cranes. Another direction for improvement is to develop new techniques to operate more

efficiently existing devices, thus explaining the increasing research interests in optimizing operations in container terminals

(see Gharehgozli et al. (2016)). This paper focuses on improving the efficiency of the storage and delivery of containers in

the storage area through combinatorial optimization.

Due to limited space in the storage area, containers are stacked on top of each other. The resulting stacks create blocks

of containers as shown in Figure 1. If a container that needs to be retrieved is not located at the top of its stack, that is,

it is covered by other containers, the blocking containers must be relocated to another stack. As a result, during regular

operations, one or more relocation moves are performed by the yard cranes. Such relocations (also called reshuffles), which

cannot be charged to customers, create delays in operations, thus resulting in a substantial loss of revenue. Therefore, while

this block structure represents a gain in space, it results in a loss in operational efficiency.

As more thoroughly explained in Section 3, two problems have been studied separately in the literature. One, the

Container Relocation Problem, is concerned with minimizing the number of relocations given a sequence of requests in a

restricted setting, most of the time a single bay (Y = 1 in Figure 1). The other, the Yard Crane Scheduling Problem,

focuses on the routing of the crane and scheduling of storage and retrieval requests given space assignments for storage

and relocations. This paper bridges the gap between these two problems in a unified framework. To the best of the our

knowledge, this paper is the first to consider jointly these problems and to show the important benefits of jointly considering

these decisions. We model this new problem using a binary integer programming formulation and study some properties

of the problem. In practice, this problem has to be solved in real-time (a few minutes before the actual operations occur).

Hence, we provide a heuristic procedure to generate promising solutions in a limited amount of time (1 minute), thereby

showing the practical relevance and applicability of our approach.

1

Yard Crane (YC)

bay
s (Y)

rows (X)

tiers (Z)

stack

Figure 1: Container block with a single yard crane in port yard

The rest of our paper is organized as follows: After describing the problem of interest in Section 2, Section 3 explains

the contributions of this work in light of an extensive literature review of both the Yard Crane Scheduling Problem and

the Container Relocation Problem. Subsequently, Section 4 formulates the problem as a binary integer program and states

some properties about this mathematical formulation. Section 5 builds upon these results to introduce a practical heuristic

procedure. Algorithms are tested through computational experiments in Section 6. Finally, concluding remarks and future

directions are given in Section 7.

2 Problem description

This section describes the problem of interest in this paper. Appendix A summarizes all assumptions and notations

defined in this section.

2.1 Problem geometry

We consider the following situation. A block consists of X rows, Y bays and Z tiers (see Figure 1) and we assume that

this block is served by a single yard crane (YC), as shown in Figure 1. Each slot of the block can store a unique type of

container (for example, twenty-foot or forty-foot equivalent units). Note that X is limited by the width of the crane while

Z is limited by the height of the crane. Z corresponds to the maximum number of containers that can be stacked on the

top of each other. Typically, these values range from 6 to 13 for X, 10 to 40 for Y and 3 to 6 for Z. Note that the tiers

are counted from bottom to top. In this block, a stack s is uniquely characterized by a two-dimensional vector denoted by

(sx, sy) corresponding to its position in the x-y dimensions. We denote by SB the set of stacks in the block and note that

|SB | = X × Y .

We assume that there are M input/output (I/O) points around the block that we consider, denoted by I/Om for

m ∈ {1, . . . ,M}. These I/O points correspond to locations where vehicles, with storage or retrieval requests park. I/O

points are “artificial” stacks where no container can be stored except when retrieving a container. We denote by SI the set

of artificial stacks corresponding to I/O points. For the sake of clarity, we denote S = SB ∪ SI the set of all stacks.

General Automated Storage/Retrieval Systems (AS/RSs) can present many configurations of I/O points. In the case of

port yards, Wiese et al. (2010) and Carlo et al. (2014) discuss the two most frequent configurations (see Figures 2a and 2b),

which are commonly referred to as Asian and European style configurations. The ”double-sided” configuration is another

configuration of interest (see Figure 2c) but it has been less studied in related work. This latter configuration is mostly

used in ports where internal and external yards are completely separated (for instance when the internal yard is automated

or the external yard works on trains). The I/O points configuration is given as an input to the problem. In European and

double-sided configurations, we denote by M1 the number of I/O points on the seaside or internal yard side and M2 the

number of I/O points on the opposite side, such that M = M1 + M2. We mention that our solution methods are general

and independent from this configuration, thus could be generally applied to other configurations.

Initially, a stack s ∈ SB stores a certain number of containers which we denote by zis ∈ {0, . . . , Z}. Figure 4 shows these

numbers in an example with Asian configuration. Note that these numbers are not given in Figure 2 just for the sake of

clarity.

2

X

Y Z

I/O points

I/O6

I/O7

I/O8

I/O5

I/O1

I/O2

I/O3

I/O4

I/O9

I/O10

(a) Asian config.

I/O1 I/O2 I/O3

I/O4 I/O5 I/O6

Seaside

Landside

(b) European config.

I/O3

I/O6

I/O7

I/O8

I/O5

I/O1

I/O2

I/O4 I/O9

I/O10

In
tern

al
Y
ard

E
xt

er
n
a
l
Y
a
rd

(c) Double-sided config.

Figure 2: A top view of a block with three different I/O points configurations.

The most frequently used handling equipment in port storage yards are either rubber-tired gantry cranes (RTGs) or

rail-mounted gantry cranes (RMGs). RMGs are typically automated, hence also called automated stacking cranes (ASCs).

However, RTGs are more flexible as they can rotate and change blocks within the port yard (see Carlo et al. (2014) for

more details on handling equipment). In this paper, we assume that a unique YC (RTG or RMG) is allocated to the block

of interest and serves requests at this block. Its initial position in the block is denoted by si (∈ S) and corresponds to the

stack or the I/O point above which the crane’s spreader lies (see Gharehgozli et al. (2014) and Yuan and Tang (2017)). The

travel time of a YC is thoroughly studied in Speer and Fischer (2017) which shows that, in the case where there is no crane

interference, assuming constant speed in all dimensions is capturing well the actual travel times in real operations. Figure

3 shows the typical movement pattern of a RMG when performing a storage or retrieval request. Each request has four

phases. First, there is an empty drive from the position where the crane ended the previous request to the starting stack

of the new request. According to Speer and Fischer (2017), it is important to consider the time to size the spreader during

empty drives. However, we disregard this time because it is only required if there are different types of containers in the

block, which is not the case in this paper. Then, the crane picks up the container with its spreader, is driven loaded to the

destination stack and sets the container down. Based on this pattern, we introduce the following notations. Let
(
vx,E , vx,L

)
be the YC trolley speed with and without load,

(
vy,E , vy,L

)
the YC gantry speed and

(
vz,E , vz,L

)
the YC speed to lower

and hoist the spreader. We assume that all speeds are given in containers/s, i.e., how many containers can the crane pass

over per second in each dimension. In addition, th the handling time to pick up or set down a container, which is mainly

stabilization and changing direction.

Empty	drive

Move	trolley	(x)

Move	gantry	(y)
Hoist	

spreader
Pick	up
container

Lower	
spreader

Loaded	drive

Hoist	
spreader

Set	down
container

Lower	
spreader

t

Pick	up Set	down

Move	trolley	(x)

Move	gantry	(y)

Figure 3: Pattern of typical YC movements for a given cycle. Striped blue indicates empty movements, solid red loaded
movements and dotted green handling movements.

Using these notations, consider two stacks s, r ∈ S, then the time of an empty (respectively loaded) drive of the crane

3

from stack s to stack r can be computed as

t(E)
sr = max

{ |sx − rx|
vx,E

,
|sy − ry|
vy,E

}
and t(L)

sr = max

{ |sx − rx|
vx,L

,
|sy − ry|
vy,L

}
.

The times to pick up/set down a container at tier z ∈ {1, . . . , Z} (which means that the stack has z − 1 containers) are

equal and given by

t(H) (z) =
Z + 1− z
vz,E

+
Z + 1− z
vz,L

+ th =
2 (Z + 1− z)

vz
+ th,

where vz =
2

1
vz,E

+ 1
vz,L

is the harmonic mean of vz,E and vz,L.Recall that tiers are counted from bottom to top. We

assume that I/O points are equivalent to a stack with 0 containers, hence pick up/set down the container on tier 1 thus

the cost of t(H) (1) =
2Z

vz
+ th. This model is more general than the one presented in Gharehgozli et al. (2014). Finally, we

mention that the described pattern is similar for RMGs and RTGs. The main difference between both would be the values

of the parameters.

2.2 Requests

Given the problem geometry, the goal is to schedule storage and retrieval requests (also called productive requests or

productive moves) by operating the YC in a minimum amount of time. As this process is dynamic, the block sequencing

approach is typically adopted in order to consider a more static process (see Dell et al. (2009),Vis and Roodbergen (2009),

Gharehgozli et al. (2014), Speer and Fischer (2017), Yuan and Tang (2017)). In this approach, a set of urgent requests is

selected among the available ones. The selected requests are sequenced and executed by the YC. Once these are done, a new

set is selected and performed. In this setting, a suitable solution should only require a few minutes to solve as the problem

has to be solved repeatedly and the information about requests is not available much before it needs to be performed.

Generally, we consider a sequence of N storage and retrieval requests to perform. As accurate information is not known

much in advance, N is typically small compared to |SB | and usually ranges from 1 to 20. Requests are indexed based

on their arrival order. Container n and vehicle n are used to refer to the container and vehicle associated with request

n ∈ {1, . . . , N}. We denote by Ns (respectively Nr) the indices of requests corresponding to storage requests (respectively

retrieval requests) such that

{1, . . . , N} = Ns ∪Nr.

In today’s operations, requests are fulfilled solely on a first-come-first-served (FCFS) basis (see Vis and Roodbergen

(2009)). On one hand, previous studies of different AS/RSs have shown that relaxing the FCFS constraint can significantly

improve the overall service time. On the other hand, relaxing the FCFS policy is only possible to a certain extent in order to

avoid issues with truck unions and maintain fairness among drivers. Consequently, we model the flexibility of the nth request

(n ∈ {1, . . . , N}) by two parameters (δ−n , δ
+
n) ∈ N2, such that the nth request can be served between the n − δ−n -th request

and the n+ δ+
n -th request. Note that ∀n ∈ {1, . . . , N}, (δ−n , δ

+
n) = (0, 0) means that the crane can only serve requests on a

FCFS basis while ∀n ∈ {1, . . . , N}, (δ−n , δ
+
n) = (n− 1, N −n) means that all orders are feasible. This modeling assumption

is further motivated by the fact that a request can either be associated with an external or internal vehicle; the latter type

being owned by the port operator. Therefore, while not much flexibility can be assumed for external vehicles, the operator

has full control on the flexibility of its own vehicles.

For each request n ∈ {1, . . . , N}, we denote by Ln the set of stacks in which the container n can be picked up by the

crane. If n ∈ Ns, then Ln is the set of I/O points in which the vehicle n can park with container n. If n ∈ Nr, then Ln is

the stack in the block in which container n is stored. We denote En to be the set of stacks onto which container n can be

put down. Typically, in order to have as much flexibility as possible, we will consider En = SB for n ∈ Ns and En = SI for

n ∈ Nr, thus generalizing settings in Vis and Roodbergen (2009) or Gharehgozli et al. (2014).

As we mentioned, for each retrieval request n ∈ Nr, Ln = {sn} corresponds to the stack in the block in which container

n is stored. In addition, we must be given the exact tier of stack sn in which container n is stored. We denote this

tier by zn ∈ {1, . . . , zisn}. If container n is on the top of its stack, i.e., zn = zisn , then it can be retrieved directly.

However, for a significant number of requests, container n is blocked by other containers, i.e., zn < zisn , then the YC has

to relocate containers blocking containers n from stack sn to another stack of the block. These container moves are called

4

unproductive requests (also called relocations or reshuffles). They result both from a lack of information for future requests

and inefficient decisions in past operations of the YC. Minimizing these unproductive requests has been an important metric

for port operators (see Gharehgozli et al. (2016)).

We denote by Nu the set of unproductive requests needed to perform all retrieval requests in Nr. Therefore, the YC

effectively has N > N requests to perform where

{1, . . . , N} = Ns ∪Nr ∪Nu.

Naturally, we can extend the notations Ln, En, sn and zn to each relocation request n ∈ Nu. If Ln = {sn}, then sn is the

stack where the blocking container n is stored and zn is the tier of container n. Typically, we will consider En = SB \ Ln,

which means that container n could be relocated anywhere except where it is already. Given these N requests, we define

S(L) =
⋃

n∈{1,...,N}

Ln , S(E) =
⋃

n∈{1,...,N}

En,

such that S(L) is the set of starting stacks for loaded drives of the YC, while S(E) is the set of starting stacks for empty

drives of the YC. Finally, we define SR = SB ∩ S(L) as the set of stacks of the block where there is at least one container

that needs to be retrieved.

For each request n ∈ Nr ∪Nu, bn denotes the index of the container directly blocking container n (where bn = 0 means

that container n is on the top of its stack).

Finally, consider a stack s ∈ SB , we let ms denote the lowest container to be retrieved in s. Using this notation, we

define
∼
zs such that

∼
zs =

{
zms − 1, if s ∈ SR,
zis, otherwise.

.

Here,
∼
zs represents the number of containers in s after all containers have been retrieved and none has been stored or

relocated. Note that it is also the minimum number of containers stack s can have after performing all N requests.

As in Yuan and Tang (2017), we assume that the number of cycles (empty/loaded drives) done by the YC to perform

all N requests is exactly N . Consider a stack s ∈ SR where there is at least one container that needs to be retrieved. This

assumption prevents any containers to be relocated or stored on stack s before ms (the lowest container to be retrieved

in s) has been retrieved. Even though this assumption seems to be restrictive, each cycle of the crane takes a significant

amount of time. So, relocating a container twice for the same set of requests is inefficient. Moreover, we note that this

assumption is realistic due to the fact that N , hence N are small compared to |SB |, i.e., there always exists stacks /∈ SR
where stacking and relocation requests can be done. However, this also prevents a container to be moved twice before it is

retrieved and potentially makes the problem infeasible. In order to ensure that the FCFS policy is always feasible under

this assumption and regardless of the level of flexibility of both requests, we assume the following: consider the case where

two retrieval requests n, n′ ∈ Nr are such that containers n and n′ are stored in the same stack (i.e., Ln = Ln′) and no

containers in between needs to be retrieved. If container n lies above container n′, i.e., zn > zn′ , then we assume that

n < n′. Indeed, it is common practice for two trucks requesting containers in the same stack to change their orders: if the

truck waiting for the upper container arrived after the truck waiting for the lower container, then the truck waiting for the

upper container “skips” the line and gets served just before the truck waiting for the lower container.

Example Figure 4 shows a top view of a small block with Asian configuration (X = 5, Y = 10, Z = 4 and M = 10)

and each stack shows the initial number of containers (zsi)s∈SB . The crane starts above stack si = (3, 5). There are N = 5

productive requests, a single storage and four retrievals. We consider that only FCFS is possible, i.e., (δ−n , δ
+
n) = (0, 0).

We have Ns = {3} and the storage request can be done from any I/O point, i.e., L3 = SI and E3 = SB . The retrieval

requests (Nr = {1, 2, 4, 5}) are associated with containers shown in solid green in Figure 4. Containers to be retrieved are

located in stacks (L1, L2, L4, L5) = ({(3, 8)}, {(5, 2)}, {(4, 5)}, {(3, 8)}) and tiers (z1, z2, z4, z5) = (3, 3, 2, 1). These requests

require 4 relocations (shown with red stripped containers) such that Nu = {6, 7, 8, 9} and N = 9. In this example, we have

SR = {(5, 2), (4, 5), (3, 8)},
(
min(5,2),min(4,5),min(3,8)

)
= (2, 4, 5) and (b1, b2, b4, b5, b6, b7, b8, b9) = (6, 0, 7, 9, 0, 8, 0, 1). The

goal is to provide the route of the YC in order to perform all these requests and assign new stacks to stored and relocated

5

I/O6

I/O7

I/O8

I/O5

4 2 4 3 3

2 4 3 0 3

4 4 4 1 4

2 3 2 3 2

4 3 4 4 4

3 4 2 3 3

3 3 4 4 2

3 3 4 4 4

4 3 2 2 2

2 4 4 2 2 I/O1

I/O2

I/O3

I/O4

I/O9

I/O10

8

7

4

2

6

1

9

5

Nr

Nu

Figure 4: A top view of a block with Asian configuration. The integer in each stack of the block corresponds to the number
of containers currently stored in the stack. For stacks in SR, we highlight containers to be retrieved (Nr) and relocated
(Nu).

containers.

2.3 Objective function

When scheduling all N requests, the main goal is typically to minimize the crane travel time and make decisions about

storage and relocation locations accordingly. However, as we previously mentioned, the number of relocations for future

requests, hence the crane travel time for future requests is directly impacted by current storage and relocation decisions.

Because our problem is dynamic, we want to optimize both our current and future crane travel times. However, these are

naturally conflicting objectives. We explain and formalize this trade-off in the following objective function.

On one hand, the immediate objective refers to the crane travel time in order to perform the N requests. Minimizing

the immediate objective means that containers involved in stacking and relocation requests should be stored in the closest

stacks to the crane where a slot is available, potentially creating higher stacks.

On the other hand, the cost-to-go relates to the future crane travel time. Since we do not assume any information about

future requests, the variability in expected crane travel time is mostly correlated with the number of future relocations. It

has been shown when only considering retrievals that the expected number of blocking containers is a good proxy for the

number of relocations when the number of stacks is large (see Galle et al. (2016)). Moreover, this metric also makes sense

from a practical point of view. The widely used leveling heuristic minimizes the number of blocking containers and appears

to be optimal experimentally with respect to the expected number of relocations when requests come one at a time (see

Galle et al. (2017b)). Finally, this metric has the advantage to require only the number of containers per stack and avoids

creating high stacks. From now on, the cost-to-go function is taken to be the expected number of blocking containers in the

block.

Formally, we define αz to be the expected number of blocking containers in a stack of z containers in the case where no

information is available. From Galle et al. (2016), we have α0 = 0 and

αz = z −
z∑
i=1

1

i
, ∀z ∈ {1, . . . , Z}. (1)

Now, consider that after performing all N requests, the height of stack s ∈ SB is denoted by zfs ∈ {0, . . . , Z}. Then,

using the previous notation, the cost to go which is the expected total number of blocking containers can be computed as

cost-to-go =
∑
s∈SB

αzfs . (2)

Let γ > 0 be the importance/conversion factor between future relocations and current crane travel time. Using a classic

6

scalarization technique, by minimizing

Objective function = immediate cost + γ × cost-to-go, (3)

we balance the objective between greedily minimizing immediate cost and minimizing the cost-to-go. Note that γ = 0

means that we only minimize immediate cost, while γ →∞ implies minimizing the expected number of relocations, hence

it is equivalent to the leveling heuristic.

3 Literature review and contributions

This section first reviews previous work in Yard Crane Scheduling (YCS). For the reasons we mention in the introduction

section, this topic has captured increasing attention over the last decade (see reviews from Lehnfeld and Knust (2014), Carlo

et al. (2014) and Gharehgozli et al. (2016)). We focus our review on YCS with a single crane and we briefly mention some

related work dealing with multiple cranes. Then, works on the Container Relocation Problem (CRP) and its variants are

reviewed. Finally, we explain how this paper and the problem introduced in the previous section contribute to practice by

bridging the gap between these two problems.

3.1 Yard Crane Scheduling

The first model for the YCSP with a single crane only considers retrieval requests and neither storage nor relocations

enforced by these retrievals. It assumes that containers of the same type are stored in the same bay and most works are

based on the Asian configuration. The retrieval schedule is given by groups of containers and the goal is to minimize crane

travel time through the bays (intra bays travel time is not taken into account). Several approaches were tried to solve this

problem: Kim and Kim (1999) propose the first Mixed Integer Program (MIP). Narasimhan and Palekar (2002) show the

NP-completeness of the problem, prove some structural properties on the optimal solution and suggest a MIP as well as a

branch and bound approach. The best solution of Kim and Kim (2003) uses encoding and decoding procedures embedded

in a neighborhood beam search. Later, Lee et al. (2007) consider the same problem for two blocks (one crane per block)

and introduce a simulated annealing scheme.

Ng and Mak (2005) extend the previous problem by including storage requests but still without considering relocations.

They assume that each request has fixed start/end locations (i.e. Ln and En are singleton) and different ready times.

In this setting, they assume the processing time of each request and traveling times between requests are given as inputs.

Minimizing the sum of request waiting times in this setting is equivalent to a variant of the job shop scheduling problem with

inter-job waiting times. They propose a solution based on a branch-and-bound (B&B) approach. For the same problem,

Guo et al. (2011) suggest to use A∗ and RBA∗ with an admissible heuristic.

Vis and Roodbergen (2009) are interested in sequencing of storage and retrieval requests within a block for a single

straddle carrier, which they identify as part of planning and scheduling for the transport of unit loads and a generalization

of routing an order picker in a warehouse. They assume a special structure for the block: rows are separated by aisles and

each row has one I/O point at each end. An important assumption is that the straddle carrier must exit the current row

on one of both ends in order to travel from one row to the other one, which is very restrictive and time consuming. They

reformulate the problem as an asymmetric Steiner traveling salesman problem and show that this problem can be solved in

polynomial time using dynamic programming to link rows together and optimal assignments to solve subproblems within

each row.

Dell et al. (2009) is the first work to include storage, retrieval and relocation requests as well as the assignment of

locations to relocation requests for the YCSP with a single crane. In addition, they schedule housekeeping moves when this

is possible. However, they simplify significantly the problem by decomposing the block into areas and only considering the

best position within each area for possible storage placement. Moreover, their approach is heuristic-based and considers

relocations sequentially. Finally, it is hard to implement in practice as it requires many manual input parameters such as the

value of the crane staying idle or the value of placing a container in a stack for each combination of container and stack. For

the case of a single crane, their objective is the total crane travel time and they introduce a three-step heuristic. The first

step solves a single MIP to prescribe the retrieval requests order and schedule as many storage requests as possible while

7

maximizing idle time for the next steps. Fixing the first step solution, Step 2 solves MIPs sequentially for each relocation

and storage move to be done. Finally, step 3 uses a rule based heuristic to schedule housekeeping moves if remaining time

is available. They also develop a similar method for two cranes and compares both systems in a simulation study based on

these methods.

Gharehgozli et al. (2014) considers a setting similar to the one presented in the previous section but disregard unpro-

ductive requests (or relocations). In addition, each storage request is associated with a prescribed I/O point (organized in

European configuration). They consider a unique crane to carry out storage and retrieval requests while minimizing crane

travel time. They prove the NP-hardness of this problem in the case where each retrieval request has a prescribed I/O

point (i.e., En is a singleton for n ∈ Nr). In the rest of their work, they do not make this latter assumption but assume

instead that the I/O point for a retrieval request can be uniquely determined when the next request is fixed. Under this as-

sumption, they model the problem as an Asymmetric Traveling Salesman Problem and formulate it with a continuous time

Integer Program (IP) with exponentially many constraints. Using specific problem properties, they propose a two-phase

solution method to optimally solve the problem: the first phase is a merging algorithm which patch subtours obtained

from the assignment relaxation of the problem (relaxing the exponential number of constraints). If the first phase did not

find a feasible solution to the original problem, the solution of the first phase is the starting point of a branch-and-bound

algorithm. Gharehgozli et al. (2017) show that this problem can be solved in polynomial time in the case of two I/O points.

The proposed algorithm is based on an improvement of the first phase previously mentioned. However, both papers do not

consider relocations moves by saying that the block utilization is low and each container to be retrieved is available on the

top of their stacks, which is not realistic in most ports.

Recently, Yuan and Tang (2017) solve a similar problem to the one in this paper but in the setting of coil warehouses.

They consider storage and retrieval requests as well as the relocations enforced by retrieval requests. One difference is

that the stacking structure enforces triangle blocking constraints instead of typical stack constraints. In addition, some

simplification assumptions are made. The I/O points configuration is simpler (European style with one side for storage

and one side for retrievals) and they consider Z = 2, hence reducing the number of relocations to consider. But most

importantly, their objective is only minimizing crane travel time, hence reducing the impact and the complexity of the

assignment of relocation and storage locations to a feasibility problem. In this setting, Yuan and Tang (2017) propose

a “time-space network flow” MIP formulation where they decompose the scheduling period into stages corresponding to

empty/loaded drives of the crane. They also suggest an exact dynamic programming (DP) approach. Both these methods

are impractical for large-sized problems (problems with (X,Y, Z,N) = (3, 5, 2, 12) cannot be solved within a 3 minutes’

requirement), so they propose an approximate DP method based on the exact DP and value function approximation.

Finally, even though it is not the primary focus of this paper, we mention that recent related works have focused their

attention on studying more complex handling systems. Similarly, to most works in the single crane setting, these assume

that all requests have a given start and end points and the goal is to minimize crane travel time or optimize a combination

of other objectives such as truck delays, crane utilization, etc. . . In this setting, Speer and Fischer (2017) give a detailed

study of crane cycle times. They review recent papers in twin RMG, double RMG, and triple RMG scheduling. Finally,

they compare these systems using a B&B approach and show the impact of considering all parts of the crane cycle times.

With respect to assignment of storage locations, Gharehgozli et al. (2015) propose a similar approach as that of Gharehgozli

et al. (2014) for twin yard cranes where several open locations are considered for each storage request. However, only few

open locations are considered for each request and they enforce that each location can only be selected by a single storage

request, which is not practical. Park et al. (2010) consider storage and relocation location assignment using heuristics for

twin RMG. However, as in Yuan and Tang (2017), they only take into account the crane travel time to perform N requests

and not future operations. For other related problems such as simulation based models or inter-block crane allocations, we

refer the reader to Carlo et al. (2014) and Gharehgozli et al. (2016).

3.2 Container relocation problem

The Container Relocation Problem (CRP) (also known as the Block Relocation Problem) is concerned with finding

a sequence of moves of containers within a single bay that minimizes the number of relocations needed to retrieve all

containers, while respecting a given order of retrieval requests. This problem was first formulated by Kim and Hong (2006)

in a dynamic programming model. The literature on the CRP can be decomposed in two approaches. The first one aims

8

to find the optimal solution. The three primary techniques involve IP (see Expósito-Izquierdo et al. (2015), Zehendner

et al. (2015), Galle et al. (2017a)), branch-and-bound (Expósito-Izquierdo et al. (2015) and Tricoire et al. (2017)) and the

A∗ algorithm (see Zhu et al. (2012), Tanaka and Takii (2016) and Borjian et al. (2015a)). Since the problem is NP-hard

(Caserta et al. (2012)), the second approach of studies tackles the CRP via heuristics such as constructive heuristics (for

e.g. Caserta et al. (2012)) or rake search (Tricoire et al. (2017)).

There are many variants to the CRP. Galle et al. (2017b) suggest decision tree based solution methods for a stochastic

version of the CRP. In relation to the YCS, Ünlüyurt and Aydın (2012) consider the objective function to be the crane

travel and handling times instead of the number of relocations. A B&B algorithms and two heuristics are investigated to

solve this problem. Lee and Lee (2010) extends the previous idea and propose a heuristic approach to solve the Container

Retrieval Problem. In this problem, all bays in the block are considered and the objective is the crane travel time. The

main difference with the YCS with only retrieval requests is that the goal of this problem is to retrieve all containers of the

block with a pre-defined order that is given initially.

Closely related to this paper, the dynamic CRP (DCRP) extends the CRP by considering both stacking and retrieval

requests. However, most papers either consider the number of relocations as the objective and/or assume that the schedule

of these requests is given and/or restrict the problem to a single bay. The first work for the DCRP is Wan et al. (2009) and

it assumes that the order of requests is given. They identify the optimal solution to empty a bay using an IP similar to the

ones proposed in the CRP. Then they suggest four heuristics to select locations for storage requests. Three heuristics are

rule-based (and inspired by heuristics developed for the CRP) and one is based on the proposed mathematical formulation.

Subsequently, Rei and Pedroso (2013) consider a similar problem where items have release and due dates and need to go

through a storage area under a given amount of relocations. They show this problem belongs to the complexity class NP
and formulate solutions based on graph-coloring. Motivated by the complexity of the problem, they present a technique to

reduce the size of the search space and propose two approaches: the first one is based on multiple simulation methods which

use a construction heuristic embedded in a discrete-event simulation model. The second solution proposes a Stochastic

Tree Search scheme using best-first-search. Hakan Akyüz and Lee (2014) consider the same problem as Wan et al. (2009)

where the arrival (departure) sequences of containers to (from) the yard-bay is assumed to be known a priori. A binary

IP is developed to solve the DCRP as well as three types of heuristic methods (index based, binary IP based, and beam

search heuristics). Borjian et al. (2015b) introduce a variant of the DCRP by considering a class of flexible service policies

to make minor changes in the order of container retrievals (a class generalized by our flexibilities introduced in Section 2).

In conclusion, Lehnfeld and Knust (2014) provide a general review and classification survey of the existing literature on

the CRP and other related problems such as stacking or pre-marshalling problems.

3.3 Contributions to the literature

Based on this literature review, most studies can be partitioned into two distinct groups: the first focuses on dynamic

crane scheduling for storage and retrieval requests without relocations (YCSP literature) while the second one only deals

with relocations but disregards major practicalities introduced in Section 2 such as the third dimension of the block, the

crane travel time features, the order flexibility and the dynamic nature of information (CRP and DCRP literature).

Recently some works have started to integrate these two groups and study the storage/retrieval schedule together with

relocations and storage location assignments, leading to more efficient solutions. We cited among these works Dell et al.

(2009) and Yuan and Tang (2017) for single crane scheduling or Park et al. (2010) in the case of two cranes. However, both

Dell et al. (2009) and Park et al. (2010) consider rule-based heuristic solutions with some strong dependence on parameters

that are hard to set in real operations. If Yuan and Tang (2017) is the first to provide an exact solution, their approach

only considers a greedy optimization of crane travel time. Moreover, it appears to only apply to the special problem of steel

plants which consider low stacks hence few relocations per request. Our work contributes to the existing literature and to

practice as follows:

1. We propose a model which considers together storage, retrieval and enforced relocation requests. To the best of our

knowledge, this is the first work giving an exact solution for the YCS problem with relocations in the case of a single

crane under realistic assumptions.

2. We introduce an objective function that jointly optimizes the current crane travel time and the expected number of

9

future relocations.

3. We develop a model and solutions that are general and applicable to other AS/RSs where stacking occurs (such as

steel plants). This model can apply to all aforementioned I/O point configurations and potentially more; it does not

assume any crane constraints and uses a detailed model for crane travel times.

4. We present more general scheduling constraints relaxing previous assumptions that all request orders were feasible. As

we mentioned, this is not practical in many applications where external customers are concerned as fairness becomes

an issue. The flexibility model proposed in this paper is widely applicable and could be worth studying in other

settings.

5. In the setting introduced in this paper, a solution method needs to answer two questions simultaneously: i) crane

movements; and ii) storage and relocation locations assignment. In order to solve the YCS problem under this more

realistic setting in a reasonable amount of time (e.g., a few minutes), we propose one exact algorithm and one efficient

heuristic integrating both decisions.

a. We formulate an intuitive binary IP based on crane cycles. By studying the structure of the proposed formulation,

we confirm previous results which state that the complexity of the problem lies not only in the number of orders

but also in the number of starting points for each request.

b. We propose a heuristic taking advantage of theoretical properties of the previous binary IP. This solution performs

a search on the feasible space of request orders and computes lower and upper bounds for each visited order. In

this paper, we use a standard local search but future work could be done to use meta-heuristics such as simulated

annealing, tabu search or genetic algorithms.

6. The last contribution of this paper is the testing of the two solution methods both on randomly generated data and

real data from a port terminal.

4 Binary integer program

This section presents an exact method to solve the YSC problem with storage and relocation location assignments. In

order to formulate the problem as a binary IP, we first describe the variables, then translate each constraint into linear

equalities/inequalities using these variables, and finally compute the objective function as a linear function of the variables.

Based on this formulation, we show that the integrality constraints of a significant portion of the variables can be relaxed

under Condition (A) for γ, described in page 16. Before stating the mathematical formulation, we present concisely the

main notations of Section 2:

� (X,Y, Z): dimensions of the block

� N : number of productive requests, indexed by arrival order.

� Ns: indices corresponding to storage requests.

� Nr: indices corresponding to retrieval requests.

� N : total number of requests to perform all N productive requests.

� Nu: indices corresponding to unproductive requests.

For each request n ∈ {1, . . . , N}, we are given:

� Ln: set of stacks from which container n can be picked up by the crane.

� En: set of stacks onto which container n can be put down by the crane.

� (δ−n , δ
+
n): flexibility of request n.

� bn: container directly blocking container n. If n is on top of its stack, bn = 0.

10

There are several stacks of interest:

� si: initial position of the crane.

� SB : set of stacks in the block.

� SR: set of stacks in the block where there is at least one container to be retrieved.

� S(L): set of stacks from which the crane can start a loaded drive.

� S(E): set of stacks from which the crane can start an empty drive.

Finally, we are given:

� mr: lowest container to be retrieved in stack r ∈ SR.

� ∼zr: number of containers in stack r ∈ SB after all containers have been retrieved and none has been stored or relocated.

� t(L)
sr : cost of a loaded drive of the crane from stack s ∈ S(L) to stack r ∈ S(E).

� t(E)
rs : cost of an empty drive of the crane from stack r ∈ S(E) to stack s ∈ S(L).

� γ: weight on the cost-to-go.

� αz: expected number of blocking containers in a stack with z containers.

� vz: harmonic mean of the vertical speeds with and without containers.

4.1 Formulation

4.1.1 Variables

The mathematical formulation introduced in this paper uses the following binary variables (∈ {0, 1}).

• wnsk indicates that container n is moved (retrieved, stored or relocated) from stack s during crane cycle k. This type

of variable is defined ∀ n ∈
{

1, . . . , N
}
, ∀ s ∈ Ln, ∀ k ∈

{
1, . . . , N

}
.

• dis indicates that the crane has an empty drive from its initial position si to stack s during the first cycle. These are

defined ∀ s ∈ S(L).

• d(E)
rsk indicates that the crane has an empty drive from stack r to stack s during its kth cycle. These variables are

defined ∀ r ∈ S(E), ∀ s ∈ S(L), ∀ k ∈
{

2, . . . , N
}

.

• d(L)
srk indicates that the crane has a loaded drive from stack s to stack r during its kth cycle , and is defined ∀ s ∈
S(L), ∀ r ∈ S(E), ∀ k ∈

{
1, . . . , N

}
.

• frz indicates that there are z containers in stack r after the N requests are performed. This last type of variable is

defined ∀ r ∈ S(E) ∩ SB , ∀ z ∈
{
∼
zr, . . . , Z

}
. Indeed, a stack can only receive a stored or relocated container if it is

both a potential ending stack for loaded drives (i.e., S(E)) and in the block (i.e., SB). In addition,
∼
zr is defined to be

a lower bound on the final number of containers in stack r.

4.1.2 Constraints

First, we denote by D the set of variables
(
di, d(E), d(L), f

)
. We denote the feasible polyhedron of our problem by P

such that our feasible set is by definition (w,D) ∈ P ∩ {0, 1}. We decompose P as follows:

P =W ∩D ∩ L,

where W is a polyhedron corresponding to constraints involving only w variables, and D to constraints involving only

variables in D. Finally, L is the polyhedron corresponding to constraints linking w and the variables in D (in particular

d(L)). We describe these three polyhedra in detail.

11

The polyhedron W This polyhedron is defined by three types of constraints. We say w ∈ W if it verifies Equations

(4)-(6).

Assignment of requests to crane cycles – Each container must be moved (delivered, stored or relocated) during a unique

crane cycle and each crane cycle must perform exactly one request:

∀ n ∈ {1, . . . , N},
∑
s∈Ln

k∈{1,...,N}

wnsk = 1, (4a)

∀ k ∈ {1, . . . , N},
∑

n∈{1,...,N}
s∈Ln

wnsk = 1. (4b)

Precedence constraints – Container n ∈ Nr ∪ Nu associated with a retrieval or relocation request, cannot be moved

during cycle k ∈ {1, . . . , N}, if there is a container blocking it (bn 6= 0), and container bn has not been previously moved

(for e.g., containers 4 and 9 in Figure 4):

∀ n ∈ {n′ ∈ Nr ∪Nu | bn′ 6= 0} , ∀ k ∈ {1, . . . , N},
∑
s∈Ln

wnsk −
∑
s∈Lbn

k′∈{1,...,k−1}

wbnsk′ 6 0, (5)

where the second sum is 0 when k = 1.

Order constraints – Recall that by definition of the flexibility of a productive request n ∈ {1, . . . , N}, this request has

to be served between the n− δ−n -th productive request and the n+ δ+
n -th productive request. An equivalent reformulation

is that productive request n can have at most n + δ+
n − 1 productive requests served before it, and at most N − n + δ−n

productive requests after it, which is how the last constraints are formulated below:

∀ n ∈ {1, . . . , N}, ∀ k ∈ {n+ δ+
n + 1, . . . , N},∑

n′∈{1,...,N}
s′∈Ln′

k′∈{1,...,k−1}

wn′s′k′ +
(
k −

(
n+ δ+

n

))
×
∑
s∈Ln

wnsk 6 k − 1,
(6a)

∀ n ∈ {1, . . . , N}, ∀ k ∈ {1, . . . , N − (N − n+ δ−n)− 1},∑
n′∈{1,...,N}
s′∈Ln′

k′∈{k+1,...,N}

wn′s′k′ +
(
N − k −

(
N − n+ δ−n

))
×
∑
s∈Ln

wnsk 6 N − k.
(6b)

The polyhedron D This polyhedron is defined by six types of constraints. We say D ∈ D if it verifies Equations (7)-(12).

Uniqueness of empty drive – The crane can only have one empty drive for each cycle (the first being slightly different

as the cycle has to start at the initial position of the crane si):∑
s∈S(L)

dis = 1, (7a)

∀ k ∈ {2, . . . , N},
∑

r∈S(E)

s∈S(L)

d
(E)
rsk = 1. (7b)

Uniqueness of loaded drive – Similarly, the crane is only allowed one loaded drive for each cycle:

∀ k ∈ {1, . . . , N},
∑

s∈S(L)

r∈S(E)

d
(L)
srk = 1. (8)

“Conservation of flow” after an empty drive – During crane cycle k, if the crane empty drive ends in stack s to pick up

12

a container, then the loaded drive for this cycle should start from stack s:

∀s ∈ S(L),
∑

r∈S(E)

d
(L)
sr1 − dis = 0, (9a)

∀s ∈ S(L), ∀ k ∈ {2, . . . , N},
∑

r∈S(E)

d
(L)
srk −

∑
r∈S(E)

d
(E)
rsk = 0. (9b)

“Conservation of flow” after a loaded drive – Similarly, if during crane cycle k− 1, the crane loaded drive ends in stack

r, then the crane empty drive for cycle k should start from stack r:

∀r ∈ S(E), ∀ k ∈ {2, . . . , N},
∑

s∈S(L)

d
(E)
rsk −

∑
s∈S(L)

d
(L)
s,r,k−1 = 0. (10)

Uniqueness of final number of containers – Because the final number of containers in stack r is encoded into binary

variables, we need to ensure that only one integer (i.e., one variable) is selected:

∀ r ∈ S(E) ∩ SB ,
∑

z∈{∼zr,...,Z}

frz = 1. (11)

Final number of containers – For each stack r in the block where a loaded drive of the crane can end, the final number

of containers in stack r can be computed directly as
∑

z∈{∼zr,...,Z}

zfrz. This term has to be equal to the sum of two other

terms: the number of containers in r after all containers have been retrieved and before any container is stored or relocated

(i.e.,
∼
zr) and the total number of crane loaded drives ending on stack r over the N crane cycles. Thus,

∀ r ∈ S(E) ∩ SB ,
∑

z∈{∼zr,...,Z}

zfrz −
∑

s∈S(L)

k∈{1,...,N}

d
(L)
srk =

∼
zr. (12)

The polyhedron L Finally, we describe the two types of inequalities defining L that involve variables w and D (d(L)

specifically). We say that (w,D) ∈ L if (w,D) verify Equations (13)-(14).

Enforcing loaded drive – If container n is moved from stack s during crane cycle k, then the crane loaded drive of cycle

k must start from s and end in a stack in En:

∀ n ∈ {1, . . . , N}, ∀ s ∈ Ln, ∀ k ∈ {1, . . . , N},
∑
r∈En

d
(L)
srk − wnsk > 0. (13)

Precedence relation between last retrieval and storage/relocation location assignments – Based on our assumption in

Section 2, if r is a stack from which there is at least one retrieval request, then we assume that until mr has been retrieved,

no container can be stored or relocated to stack r (recall that mr is the lowest container in stack r that needs to be

retrieved):

∀ r ∈ SR, ∀ k ∈ {1, . . . , N},
∑

s∈S(L)

d
(L)
srk −

∑
k′∈{1,...,k−1}

wmrrk′ 6 0. (14)

4.1.3 Objective function

We now formulate Equation (3) as a linear function of the previous binary variables. We use the fact if zfr denotes

the number of containers in stack r after all N requests, then for any function h (.) we have h
(
zfr
)

=
∑

z∈{∼zr,...,Z}

h(z)frz.

Moreover, if r is a stack in the block but where no crane loaded drive can end, then its final number of containers is

necessarily the number of containers after all retrievals have been done, i.e., if r ∈ SB \S(E), then zfr =
∼
zr. Using these two

13

observations, the cost-to-go has a constant part equal to
∑
r∈SB\S(E) α∼zr and a variable part which can be expressed as:

∑
r∈S(E)∩SB
z∈{∼zr,...,Z}

αzfrz, (15)

where αz is defined in Equation (1).

Now we focus on expressing the immediate cost, which is the total travel time of the crane to perform the N requests.

As explained in Figure 3, each cycle can be decomposed in four phases (empty drive, pick-up, loaded drive and put-down),

which we now express mathematically:

Empty drives – For the first cycle, it is identified by variables dir. By definition, the empty first drive starts at stack si

such that the cost of the first empty drive is given by ∑
r∈S(L)

t
(E)
sir d

i
r. (16)

For other cycles, the empty drives are indicated by variables d
(E)
rsk , each with costs t

(E)
rs , so the cost of all other empty drives

is equal to ∑
r∈S(E)

s∈S(L)

k∈{2,...,N}

t(E)
rs d

(E)
rsk . (17)

Loaded drives – Similarly, to the empty drives, the cost of all loaded drives can be expressed as∑
s∈S(L)

r∈S(E)

k∈{1,...,N}

t(L)
sr d

(L)
srk. (18)

Pick-ups and put-downs – As we pointed out in Section 2, both these operations are assumed to have the same cost

structure (one loaded vertical move, one empty vertical move and one handling time). Thus we compute their total cost

jointly as follows.

Depending on the type of the request that is performed, these costs can either be constant (i.e., independent on the

variables) or not. For n ∈ Nr, both pick up and put down costs are constant. Indeed, the pick-up has to be done from

tier zn and the container has to be put down at one I/O point (on the floor, i.e. tier 1). Thus, the cost of the pick-up is

t(H) (zn) and the cost of put-down is t(H) (1). For n ∈ Ns, the pick-up has to occur at one I/O point so the cost of pick-up

is constant, i.e. t(H) (1). However, the cost of putting down a stored container depends on the selected stack, hence is

variable. Let us denote v(n) the tier at which container n is stored, then the cost of putting down a stored container is

given by t(H) (v(n)). Similarly, for n ∈ Nu, the cost of pick-up is constant, i.e. t(H) (zn) but the cost of putting down a

relocated container depends on the selected stack, i.e., t(H) (v(n)) if v(n) the tier at which container n is relocated. We

summarize this analysis in Table 1.

n Nr Ns Nu
Pick-up cost tH(zn) tH(1) tH(zn)
Put-down cost tH(1) tH(v(n)) tH(v(n))

Table 1: Pick-up and put-down costs for different types of requests. Terms in bold identify the variable costs.

In summary, the variable part is ∑
n∈Ns∪Nu

t(H) (v(n)) .

Recall that we have t(H) (v(n)) =
2(Z + 1− v(n))

vz
+th. Therefore, there is a constant part computed as C =

∑
n∈Nr∪Nu

t(H) (zn)+

14

|Nr ∪Ns| × t(H) (1) + |Ns ∪Nu| × t(H) (0), while the variable part can be expressed as

− 2

vz
×

∑
n∈Ns∪Nu

v(n).

The next lemma shows how to express this cost in terms of the final number of containers per stack, i.e.,
(
zfr
)
r∈SB

(the

proof is in Appendix).

Lemma 1. Let n ∈ Ns ∪ Nu. Let v(n) be the tier at which container n is stored or relocated when performing request n

and zfr the number of containers in stack r after performing all N requests, then we have

∑
n∈Ns∪Nu

v(n) =
1

2

∑
r∈S(E)∩SB

zfr
(
zfr + 1

)
− 1

2

∑
r∈S(E)∩SB

∼
zr

(
∼
zr + 1

)
.

Using Lemma 1, we add the second term to the constant to get C ′ = C +
1

vz

∑
r∈S(E)∩SB

∼
zr

(
∼
zr + 1

)
. Using the same

observation as that for the cost-to-go, the variable part of the cost to pick up and put down all containers is:

−
∑

r∈S(E)∩SB
z∈{∼zr,...,Z}

1

vz
z (z + 1) frz. (19)

Combining Equations (16)-(19), we can write the objective function as∑
s∈S(L)

t
(E)
sis d

i
s +

∑
r∈S(E)

s∈S(L)

k∈{2,...,N}

t(E)
rs d

(E)
rsk +

∑
s∈S(L)

r∈S(E)

k∈{1,...,N}

t(L)
sr d

(L)
srk +

∑
r∈S(E)∩SB
z∈{∼zr,...,Z}

βzfrz, (20)

where

βz = γ × αz −
1

vz
z (z + 1) = γ ×

(
z −

z∑
i=1

1

i

)
− 1

vz
z (z + 1) . (21)

Note that the objective function defined in Equation (20) only depends on variables in D and not w. Thus for the sake of

clarity, we can also express this objective function as cTD where c are the corresponding costs for each variable in D.

Condition (A). For the remaining of the paper, we say that γ verifies Condition (A) if

γ >
2Z(Z − 1)

vz
. (22)

Lemma 2. Let γ verify Condition (A), z, z1, z2 ∈ {0, . . . , Z} such that z2 < z < z1, then we have

z − z2

z1 − z2
βz1 +

z1 − z
z1 − z2

βz2 > βz.

4.1.4 Summary of formulation

In conclusion, we can formulate our problem as

min
(w,D)∈P∩{0,1}

(
cTD

)
.

15

Using the decomposition of P, this formulation can also be written as

min
(w,D)∈{0,1}

(
cTD

)
Equation (20)

s.t.


w ∈ W
D ∈ D
(w,D) ∈ L

Equations (4)-(6)

Equations (7)-(12)

Equations (13)-(14)

4.2 Relaxation of integrality conditions

Definition 1. Let P and P ′ be two optimization problems. We say that P and P ′ are equivalent if there exists a transfor-

mation from any optimal solution of P to an optimal solution of P ′ and vice versa.

Using the structure of the previous mathematical formulation, we now prove that, if γ verifies Condition (A), we can

relax the integrality constraints for variables in D and still get an integral solution. The process has two steps: first, given

some w ∈ W ∩{0, 1}, we formulate the subproblem as an equivalent binary IP that has a simpler structure. Then, we show

that, given that γ verifies Condition (A), any optimal extreme point of the relaxation of the simpler formulation is integral.

This implies that, given w ∈ W ∩ {0, 1}, the subproblem can be solved in polynomial time as we just have to solve a linear

program. Formally, let us consider

∀ w ∈ W, L(w) = {D ∈ D | (w,D) ∈ L and 0 6 D 6 1} .

Using this definition, we can re-write the original problem as:

min
w∈W∩{0,1}

(
min

D∈L(w)∩{0,1}

(
cTD

))
.

Let w ∈ W ∩ {0, 1}, consider Π(w) to be the subproblem associated with w and defined as

min
D∈L(w)∩{0,1}

(
cTD

)
.

In the first step, we reformulate Π(w) in an equivalent subproblem denoted by Π(w) and defined as

min
D∈L(w)∩{0,1}

(
cTD

)
,

such that Π(w) is simpler to analyze than Π(w). Under Condition (A), we show that any optimal extreme point of L(w)

is integral. Consequently, Π(w) is equivalent to its linear programming relaxation denoted by ΠL(w) and defined as

min
D∈L(w)

(
cTD

)
.

In conclusion, since the linear program ΠL(w) is equivalent to Π(w), then Π(w) can be solved in polynomial time.

4.2.1 Subproblem reformulation

Let w ∈ W ∩ {0, 1}, we now define problem Π(w) equivalent to Π(w) but with a simpler structure. In order to do so,

we define some notations:

∀ k ∈ {1, . . . , N}, (νk, σk) =
{

(n, s) ∈ {1, . . . , N} × S(L) | s ∈ Ln and wnsk = 1
}
. (23)

Here (νk, σk) represent the indices of the request performed at stage k and the stack from which this request is performed.

Note that these are clearly unique for each k ∈ {1, . . . , N} since w ∈ W ∩ {0, 1}. Using these notations, we can define

∀ k ∈ {1, . . . , N}, Eνk = {r ∈ Eνk | (r /∈ SR) or (r ∈ SR and ∃ k′ ∈ {1, . . . , k − 1} s.t. νk′ = mr)} (24)

16

where Eνk is a subset of stacks in Eνk where a request can end. In addition, it disregards stacks r ∈ SR for which mr has

not been retrieved before stage k. This leads to

SB = S(E) ∩ SB ∩
⋃

k∈{1,...,N}

Eνk , (25)

with SB the set of stacks where requests can end given w. Only these stacks are going to have a number of containers that

is different from
∼
zr. Finally, we consider

∀ r ∈ SB , Kr =
{
k ∈ {1, . . . , N}

∣∣ r ∈ Eνk } , (26)

which corresponds to the set of stages where a container can be stored or relocated to stack r. Based on these notations,

we consider Π(w) to be the following optimization problem

min
(d,f)∈{0,1}

 ∑
k∈{1,...,N}
r∈Eνk

trkdrk +
∑
r∈SB

z∈{∼zr,...,Z}

βzfrz



s.t.



∀ k ∈ {1, . . . , N},
∑
r∈Eνk

drk = 1,

∀ r ∈ SB ,
∑

z∈{∼zr,...,Z}

frz = 1,

∀ r ∈ SB ,
∑

z∈{∼zr,...,Z}

zfrz −
∑
k∈Kr

drk =
∼
zr,

where

∀ k ∈ {1, . . . , N},∀ r ∈ Eνk , trk =

{
t
(L)
σkr + t

(E)
rσk+1 if k < N,

t
(L)
σNr otherwise.

Note that this problem depends on w through ν which define Eνk and SB , as well as σ defining t.

For the sake of clarity, let us define D =
(
d, f
)

and c as the associated cost in Π(w). Finally, L(w) be the feasible set

of Π(w) without the integrality constraints. The next lemma states that Π(w) and Π(w) are equivalent problems.

Lemma 3. Let w ∈ W ∩ {0, 1}. Let Π(w) be the optimization problem defined as

min
D∈L(w)∩{0,1}

(
cTD

)
,

and Π(w) the optimization problem defined as

min
D∈L(w)∩{0,1}

(
cTD

)
,

then Π(w) and Π(w) are equivalent problems.

Sketch of the proof. The proof is provided in Appendix and is in three parts. We first show that there are 9 types of implied

constraints for Π(w). Second, we prove that these implied constraints are sufficient, in the sense that all original constraints

of Π(w) can be formulated using linear combinations of implied constraints. Third, implied constraints fix a subset of

variables to 0 or 1. Therefore, these variables can be deleted from the formulation since they are constants for this problem.

In addition, we reduce the final number of variables by using another implied constraint thus obtaining Π(w).

The following formula provides the transformation between a solution of Π(w) and Π(w) (variables not mentioned in

17

the formula are equal to 0):

dσ1
= 1,

f
r
∼
zr

= 1, ∀ r ∈
(
S(E) ∩ SB

)
\ SB ,

d
(E)
rσkk

= dr,k−1, ∀ k ∈ {2, . . . , N}, ∀ r ∈ Eνk−1
,

d
(L)
σkrk

= drk, ∀ k ∈ {1, . . . , N}, ∀ r ∈ Eνk ,

frz = frz, ∀ r ∈ SB , ∀ z ∈ {
∼
zr, . . . , Z}

(27)

4.2.2 Integrality of Π(w)

The next two main theorems show that,

• any extreme point D∗ = (d∗, f∗) of L(w) is such that d∗ ∈ {0, 1}.

• if this extreme point is optimal and γ verifies Condition (A), then f∗ ∈ {0, 1}.

Theorem 1. Let w ∈ W ∩ {0, 1} and D∗ = (d∗, f∗) be an extreme point of L(w), then

d∗ ∈ {0, 1}.

Sketch of the proof. The proof is provided in Appendix. We suppose by contradiction that d∗ /∈ {0, 1}, thus there exists

p, l such that d∗pl /∈ {0, 1}. We show that there exists q such that d∗ql /∈ {0, 1} and two main cases arise. In each case, we

construct D1, D2 such that D1, D2 ∈ L(w), D1 6= D2 6= D∗ and D∗ =
1

2

(
D1 +D2

)
which provides a contradiction to D∗

being an extreme point. The two cases are:

1. If the request performed during crane cycle l is a retrieval, then p and q are I/O points and we can easily construct

D1 and D2.

2. If the request performed during crane cycle l is not a retrieval, then constructing D1 and D2 is not straightforward

and requires the proof of a technical lemma (see Lemma 4 in Appendix).

Theorem 2. Let w ∈ W∩{0, 1}. If D∗ is an extreme point of L(w) such that D∗ = argmin
D∈L(w)

(
cTD

)
and γ verifies Condition

(A), then

D∗ ∈ {0, 1}.

Consequently, since Π(w) and Π(w) are equivalent problems, then Π(w) can be solved by solving the linear program

ΠL(w) defined by 

min
06(d,f)61

 ∑
k∈{1,...,N}
r∈Eνk

trkdrk +
∑
r∈SB

z∈{∼zr,...,Z}

βzfrz



s.t.



∀ k ∈ {1, . . . , N},
∑
r∈Eνk

drk = 1,

∀ r ∈ SB ,
∑

z∈{∼zr,...,Z}

frz = 1,

∀ r ∈ SB ,
∑

z∈{∼zr,...,Z}

zfrz −
∑
k∈Kr

drk =
∼
zr,

(28)

18

In conclusion, this section provides the first mathematical formulation to solve efficiently the scheduling of retrieval

and storage requests while routing the crane and taking into account relocations and storage locations assignments. This

mathematical formulation has two types of variables w and D. w corresponds to the scheduling of the requests as well as

fixing the loading stacks for storage requests, while D indicates the routing of the crane. The dimension of w is of the

order to N
2
M (typically hundreds or thousands) while D has a dimension of (XY)

2
N (typically hundreds of thousands or

millions).

In this section, we have shown that given a binary vector w ∈ W ∩ {0, 1}, we can relax the integrality constraints on D

and still get a integer solution by solving the linear program ΠL(w). Consider g(w) to be the optimal objective function of

ΠL(w), then our initial problem can be formulated as

min
w∈W∩{0,1}

(g(w)) . (29)

Therefore, since g(w) can be evaluated in polynomial time, solving our problem can be reduced to designing an efficient

search algorithm on W ∩ {0, 1}. Since the dimension of W is relatively much lower than the original feasible space P, we

show in the next section how these results helps solving efficiently the original problem. In addition, this new approach

suggests a simple way to solve larger instances where, in the given time limit, the IP could potentially only provide solutions

with high cost, or not even get a feasible solution. Instead, one could use any meta heuristic search (simulated annealing,

genetic algorithms, tabu search, etc...) on the space w ∈ W∩{0, 1}. These heuristics are expected to work better under this

new approach than if these were directly implemented for the original problem again due to the relatively small dimension

of W.

Instead of investigating which common meta heuristic would work the best, we provide a “simple” local search heuristic

on W ∩ {0, 1} that performs well on this problem and which provides some intuition as well.

Case where γ does not verify condition (A). Theorem 1 shows that any extreme point D∗ = (d∗, f∗) of L(w) is such

that d∗ ∈ {0, 1}. Simple counter-examples show that we could have f∗ /∈ {0, 1}. Nevertheless, variables f are only used to

compute the cost of a solution while actual decisions correspond to variables d∗. Thus, given w ∈ V ∩{0, 1}, solving ΠL(w)

provides a feasible sequence of decisions as d∗ ∈ {0, 1}. Therefore, the heuristic provided in the next section, which tries to

solve the problem defined in Equation (29), can still be applied in real operations even in the case where γ does not verify

Condition (A). The difference with the original problem is that the part of the cost that involves the variables f∗ could be

underestimated as we relax the integrality of f∗.

5 Heuristic procedure for real-time operations

Based on the analysis of the previous section, we now design an efficient heuristic method to search the spaceW∩{0, 1}.
This section describes a randomized algorithm which decomposes its search into two stages. The first stage takes an order

of requests as input and looks for a “good” set of starting stacks by sampling from a smaller promising set of stacks. The

second stage builds upon the first stage and searches in the space of request orders by using a repeated-random-start local

search. This algorithm requires two integer inputs R1, R2 ∈ N respectively corresponding to the number of samples in the

first stage and the number of re-starts for the second stage.

5.1 Search space decomposition

First, we explain the reason to decompose our search strategy in two stages. Notice that constraints defining W
only involve sums of wnsk over s ∈ Ln. This motivates the definition of the polyhedron V. We say that v ∈ V if

v = (vnk)n,k∈{1,...,N} and v verifies the following constraints:

∀ n ∈ {1, . . . , N},
∑

k∈{1,...,N}

vnk = 1,

19

∀ k ∈ {1, . . . , N},
∑

n∈{1,...,N}

vnk = 1.

∀ n ∈ {n′ ∈ Nr ∪Nu | bn′ 6= 0} , ∀ k ∈ {1, . . . , N}, vnk −
∑

k′∈{1,...,k−1}

vbnk′ 6 0, (30)

∀ n ∈ {1, . . . , N}, ∀ k ∈ {n+ δ+
n + 1, . . . , N},∑

n′∈{1,...,N}
k′∈{1,...,k−1}

vn′k′ +
(
k −

(
n+ δ+

n

))
vnk 6 k − 1,

∀ n ∈ {1, . . . , N}, ∀ k ∈ {1, . . . , N − (N − n+ δ−n)− 1},∑
n′∈{1,...,N}
k′∈{k+1,...,N}

vn′k′ +
(
N − k −

(
N − n+ δ−n

))
vnk 6 N − k.

Note that if v ∈ V, then for any w such that vnk =
∑
s∈Ln wnsk we have w ∈ W. Therefore, we can reformulate the problem

under the point of view of Equation (29) into

min
v∈V∩{0,1}

 min
w∈{0,1}

vnk=
∑
s∈Ln wnsk

(g(w))

 ,

which itself can be written as

min
v∈V∩{0,1}

(
min
σ∈L

(h(v, σ))

)
. (31)

where L =
⊗

n∈{1,...,N}

Ln and h(v, σ) = g (w), such that wnsk = vnk1 {s = σn}. In this last formulation, it is important to

notice that by definition Ln = {sn} for n ∈ Nr ∪ Nu, hence σn is fixed, thus only σn for n ∈ Ns are actual variables. In

conclusion, the problem formulated in Equation (31) should be seen as a two-step process. First, given v ∈ V ∩ {0, 1}, the

goal is to find σ where σn corresponds to the stack where the loaded crane drive performing request n starts that minimizes

h(v, σ). In a second step, the goal is to find the best v ∈ V ∩ {0, 1}. The main reason to decompose the problem in this

way is that σ does not have any coupling constraints while v is constrained in several ways (assignment, flexibility and

precedence constraints). Therefore, we suggest to use two different search strategies for these two types of variables.

5.2 1st stage: restricted sampling on L

In this section, we consider v ∈ V ∩ {0, 1} and we define

κn =
{
k ∈ {1, . . . , N | vnk = 1

}
, ∀ n ∈ {1, . . . , N}.

As we mentioned, the goal is to be able to compute efficiently the function

φ (v) = min
σ∈L

(h(v, σ)) .

Note that a greedy evaluation requires an exponential number of evaluations of the function h(v, .) as |L| =
∏
n∈Ns

|Ln|.

Instead, we approximate φ(v) by sampling several promising σ and retain the best solution. The idea that we propose is to

take advantage of the LP relaxation of the binary integer program of Section 4 where we fix the order of requests according

20

to v. More specifically, consider the linear program Λ(v):

min
(w,D)

(
cTD

)
Equation (20)

s.t.


D ∈ D
(w,D) ∈ L∑
s∈Ln

wnsκn = 1

Equations (7)-(12)

Equations (13)-(14)

∀ n ∈ {1, . . . , N}

where the last constraints ensure that the order defined by v is respected. Note that this formulation can be sped up by

setting some variables to zero (details are provided in the Appendix). Let
(
wΛ, DΛ

)
be an optimal solution of this linear

program, then we define L (v) such that

L (v) =
{
σ = (σ1, . . . , σN) ∈ L

∣∣ wΛ
nσnκn > 0, ∀ n ∈ {1, . . . , N}

}
. (32)

We have noticed in the experiments that |L (v)| is relatively small compared to |L|. Moreover, the selected stacks are

indeed promising as they have been selected based on the LP relaxation. The other advantage of this procedure is that

λ(v) = cTDΛ provides a lower bound on the best attainable cost when the order of requests is set by v, which we will use

in the 2nd stage search. Given L (v) and wΛ, we sample σ = (σ1, . . . , σN) using wΛ as weights such that we have

∀ n ∈ {1, . . . , N},P [σn = s] = wΛ
nsκn and P [σ = (s1, . . . , sN)] =

∏
n

P [σn = sn] (33)

Note that, thanks to the last constraint of Λ(v), this is a well defined probability distribution. In conclusion, given a certain

v ∈ V ∩ {0, 1}, we can

1. Solve Λ(v) to get wΛ and λ(v) = cTDΛ.

2. Use wΛ to define L(v) from Equation (32) and a probability distribution on this subset of L from Equation (33).

3. Sample without replacement R′1 = min {R1, |L (v′) |} points from the aforementioned probability distribution over

L(v) (denoted by
(
σ1, . . . , σR

′
1

)
) and compute

ψ (v) = min
r∈{1,...,R′1}

(h(v, σr)) . (34)

First note that ψ (v) > φ (v) almost surely. The purpose of ψ (v) is to provide a good randomized approximation of φ (v).

As R1 → |L (v)|, then ψ (v)→ min
σ∈L(v)

(h(v, σ)) almost surely. Thanks to the way L (v) is constructed, we empirically observe

this latter value to be close to φ (v).

5.3 2nd stage: Repeated-random-start local search on V ∩ {0, 1}
This algorithm is an adaptation of a classical local search algorithm which repeatedly starts from a random feasible

solution and improves this solution until a local minimum is reached. This algorithm is parameterized by R2, the number

of repeated random starts. Its output is the best local minimum that was found among the R2 explored ones. In this

framework, we use the 1st stage procedure and an algorithm for sampling on V ∩ {0, 1} that we describe subsequently. The

pseudocode of this procedure is provided in Algorithm 1.

Note that the definition of neighborhood is given in the pseudocode of Algorithm 1 (lines 10-12). Let v(i) be the current

solution of the local search. We consider two requests n and m such that n < m (line 10). We then consider v′ such that

the crane cycles of n and m are exchanged between v(i) and v′ and all other requests are performed during the same crane

cycles (line 11). This automatically implies that v′ ∈ {0, 1}. If the precedence constraints are verified i.e. v′ ∈ V, then v′ is

a neighbor of v(i) (line 12). We also mention that lines 13-14 are added to enhance the speed of the local search. Indeed,

when solving Λ(v′), we have access to λ(v′) 6 ψ(v′). If λ(v′) > ψ(v(i)), then we know that ψ(v′) > ψ(v(i)), hence no need

to sample for on L(v′) as v′ cannot improve the current solution.

21

Algorithm 1 Heuristic based on Repeated-Random-Search Algorithm

1: procedure
(
vRRS , σRRS

)
= Repeated Random Search (R1, R2)

2: for i = 1, . . . , R2 do

3: Compute v(i) = Sample V();

4: Solve Λ(v(i)) and compute L (v(i)) from Equation (32). Let R′1 = min{R1, |L (v(i)) |};
5: for r = 1 . . . , R′1 do Sample σr without replacement from Equation (33);

6: Compute ψ (v(i)) = min
r∈{1,...,R′1}

{h(v(i), σr)} and σ(i) = argmin
r∈{1,...,R′1}

{h(v(i), σr)};

7: j = 0;

8: while j < N
(
N − 1

)
/2 do

9: Increment j = j + 1;

10: Sample without replacement (n,m) ∈ {1, . . . , N}2 s.t. n < m;

11: Consider v′ such that κ′n = κm(i), κ′m = κn(i) and κ′p = κp(i), ∀ p 6= n,m;

12: if v′ ∈ V then

13: Solve Λ(v′) to get λ (v′);

14: if λ (v′) < ψ (v(i)) then

15: Compute L (v′) from Equation (32). Let R′1 = min{R1, |L (v′) |};
16: for r = 1 . . . , R′1 do Sample σr without replacement from Equation (33);

17: Compute ψ (v′) = min
r∈{1,...,R′1}

{h(v′, σr)} and σ′ = argmin
r∈{1,...,R′1}

{h(v′, σr)};

18: if ψ (v′) < ψ (v(i)) then v(i) = v′, σ(i) = σ′ and j = 0;

19: return
(
vRRS , σRRS

)
= argmin
i∈{1,...,R2}

{h(v(i), σ(i))};

Sampling in V ∩ {0, 1}, an Accept-and-reject approach We now describe the procedure Sample V(). Note that a

point v ∈ V ∩ {0, 1} corresponds to a complete matching between requests and crane drives. Based on studies to sample

efficiently on complete matching (for e.g. in Huber (2006)), we use the common Accept-and-reject approach to sample

random points in V ∩ {0, 1}. The main difference with typical studies is that in addition to having matching constraints,

there are precedence constraints to take into account (see Equation (30)). The pseudocode of Sample V() is given in

Algorithm 2.

Algorithm 2 Sampling algorithm using Accept-and-reject

1: procedure (v) = Sample V()

2: v = {0}N2

, U (1) = {1, . . . , N}, k = 0 and kp = 1;

3: while k < N do Increment k = k + 1;

4: R(kp, k) = U (k) ∩ ({n ∈ Ns ∪Nr | n− δ−n 6 kp 6 n+ δ+
n } ∪ Nu);

5: while |R(kp, k)| > 0 do Sample n uniformly from R(kp, k) and consider v′ = v and v′nk = 1;

6: if v′ satisfies precedence constraints in Equation (30) ∀ k′ ∈ {1, . . . , k} then

7: v = v′, U (k + 1) = U (k) \ {n} and break;

8: R(kp, k) = R(kp, k) \ {n};
9: if |R(kp, k)| = 0 then v = {0}N2

, U(1) = {1, . . . , N}, k = 0 and kp = 1;

10: else if n ∈ Ns ∪Nr then Increment kp = kp + 1;

11: return v;

The idea behind this sampling algorithm is simple: For each crane cycle, assign randomly a request that can be assigned

to this crane cycle given the flexibility requirements and the precedence constraints. If, no request can be assigned to a

given crane drive, then restart the process until a complete matching satisfying all flexibility and precedence constraints is

found.

22

6 Computational experiments

In this section, we first compare the efficiency of the different methods developed in the previous sections through

randomly generated instances. Afterwards, we use real data from a real terminal in order to show the potential gain of

using our heuristic method compared to the actual practice. The study is performed on one processor (2.6 GHz Intel

E5-2690 v4) of a Dell C6300 with 4 gigabytes of RAM. The programming language is Julia 0.5.0 and all optimization

problems are solved using Gurobi 7.0.1. All results and code are available online at https://github.com/vgalle/YCSP.

Our experiments measure the performance of the proposed solutions over the long run, i.e., each instance considers a

large number of productive requests denoted by P . In this case, a typical performance indicator for a given solution is

defined as the total travel cost of the crane (all empty/loaded drives, pick-ups and put-downs) incurred by this solution to

perform all P productive requests, divided by P . This indicator represents the average cost of the given solution to perform

a productive request (including the cost of associated unproductive requests) over the long run.

Recall that this paper takes the block sequencing approach (see Speer and Fischer (2017), Yuan and Tang (2017)),

where a set of N “urgent” productive requests is considered and optimized before taking into account future productive

requests. Thus, in a single instance, we solve a sequence of optimization problems until all P productive requests have been

scheduled.

Consequently, each instance is defined by an initial block configuration, a sequence of P productive requests and a

sequence of number of requests known in advance (i.e., a sequence of Ns used in each optimization problem). Note the

sequence of Ns must sum up to P .

Moreover, in these experiments, we consider a block for import containers, i.e., storage requests are carried out by

internal trucks and retrieval requests by external trucks. A flexibility policy of interest for port operators is (0, δ) for

internal trucks and (δ, 0) for external trucks, where 0 6 δ 6 N . In practice, this corresponds to enforcing external

customers to be served at least before their position and internal trucks not too much after their position in order not to

delay ships significantly.

Each algorithm is given the realistic time limit of 60 seconds to solve one optimization problem. Other parameters of

the problems (crane speeds,...) are provided in Appendix A. Results for the heuristic method are reported for (R1, R2) =

(40, 40).

Important Note In all the following experiments, all algorithms integrate the practical constraint referred to as “re-

stricted” in the CRP literature (see assumption A1 in Caserta et al. (2012)). This constraint requires each retrieval request

n to be directly preceded by the relocation requests needed to retrieve container n. Mathematically, it can be formulated

as:

∀ n ∈ {n′ ∈ Nr ∪Nu | bn′ ∈ Nu } ,∀ k ∈
{

2, . . . , N
}
, vnk = vbn,k−1.

We show that even under this practical constraint, our algorithms have a major impact on operations. Future work could

include more experiments without this additional constraint.

6.1 Randomly generated instances

Using 30 randomly generated instances as explained below, we first assess the performance of the IP based algorithm

and our heuristic (as a function of γ) compared to a baseline. Subsequently, we evaluate the impact of the parameters δ

and N on the performance of the heuristic.

6.1.1 Simulation parameters

In order to generate an initial block configuration, we consider that the block has dimensions X = 7 rows, Y = 30 bays

and Z = 4 tiers, giving a total of XY = 210 stacks. The I-O point configuration is the right-sided Asian configuration.

Moreover, we assume that the initial number of containers is equal to b0.67 (XY Z − Y (Z − 1))c = 502 where 0.67 is called

the fill rate. Finally, the position of each container is drawn uniformly at random.

Each sequence of requests consists of P = 1500 productive requests that we generate randomly one at a time. A new

productive request is equally likely to be a storage request or a retrieval request, given the fact that the number of containers

23

https://github.com/vgalle/YCSP

denoted by C must satisfy XY 6 C 6 XY Z−Y (Z−1) at all times. If the new request is a retrieval request, we assume that

the container to be retrieved is picked at random among the ones that have spent at least a certain number of requests in

the block. We set this number of requests to 210 (i.e., a container can only be retrieved if there are at least 210 productive

requests between its arrival and its departure from the block). In addition, we assume that each container initially present

in the block can be retrieved as soon as the first retrieval request.

Concerning the sequence of number of requests known in advance, we consider, unless specified otherwise, that N

remains constant and is taken to be N = 5. In order to solve each optimization problem, the actual arrival order of trucks

is required as an input. Because the time at which this arrival order is known is clearly limited, it is not really realistic to

consider a much larger N (see the data processing in the next section). Unless specified otherwise, we consider

δ =

⌊
N

2

⌋
= 2,

i.e., retrieval requests have a flexibility of (2, 0) while storage requests have a flexibility of (0, 2).

6.1.2 Performance of different algorithms

γ

0 25 50 75100 200 500 1000

Baseline
Heuristic
IP

Algorithms

140

150

160

170

180

C
ra
n
e

tr
a
v
e
l
tim

e

p
e
r
p
ro
d
u
c
tiv
e

re
q
u
e
s
t

Performance of algorithms

Figure 5: Performance of algorithms as function of γ: Each point represents the mean indicator obtained by different
algorithms over the 30 randomly generated instances and the error bars represent ±0.310 = 1.699√

30
standard deviations,

corresponding to 95% confidence level. The red horizontal line corresponds to the mean of the baseline and the blue vertical
line correspond to the lower bound on γ in Condition (A).

We compare the following algorithms:

• Baseline, the binary integer program introduced in section 4 with γ = 0 and δ = 0, which corresponds to the greedy

optimization of the routing of the crane without considering future relocations, under the FCFS constraint for the

order of requests.

• Heuristic, as described in the previous section for different values of γ and δ = 2.

• IP, the binary integer program introduced in section 4 for different values of γ and δ = 2.

We tested γ ∈ {0, 25, 50, 75, 100, 200, 500, 1000}. We can draw several insights from Figure 5:

1. Figure 5 shows that increasing the weight on the cost-to-go can improve the solution. However, by putting too much

weight on the cost-to-go, both the heuristic and the IP worsen as they neglect the immediate cost. Thus, Figure 5

24

Algorithm Baseline
γ = 0 γ = 25 γ = 50 γ = 75 γ = 100 γ = 200 γ = 500 γ = 1000

IP Heur. IP Heur. IP Heur. IP Heur. IP Heur. IP Heur. IP Heur. IP Heur.

Mean 15.04 15.9 14.65 10.87 10.24 1.08 0.0 2.91 1.37 4.2 2.23 7.48 5.24 12.09 10.08 13.81 11.79

Standard dev. 1.54 1.81 1.91 1.72 1.54 0.94 0.0 0.8 0.7 0.84 0.81 1.25 1.08 1.89 1.65 2.1 2.03

T-statistic 53.428 48.258 42.104 34.672 36.428 6.297 - 19.978 10.79 27.504 15.041 32.666 26.476 35.02 33.368 36.043 31.841

Table 2: Estimated statistics on 30 instances for the percent difference between each algorithm and the best-performing
algorithm (heuristic with γ = 50). One can say that the best-performing algorithm improves over a given algorithm with
a 95% confidence level if the T-statistic is greater than 1.699.

suggests that γ = 50 is the best value for both the heuristic and the IP in the setting of our experiments. From this

point forward, we consider the best performing algorithm to be the heuristic with γ = 50. As a side

note, this γ does not verify condition (A) in our setting.

2. Concerning the potential improvement incurred by considering future relocations, Table 2 shows that the best perform-

ing heuristic improves the baseline by more than 15%. Most importantly, choosing the right γ leads to a statistically

significant improvement as all T-statistics are greater than the 95% confidence bound (1.699).

3. The heuristic is performing better on average than the IP given the practical time limit of 60 seconds to solve every

optimization problem (even though this difference is not statistically significant as their 95% confidence intervals are

overlapping). This demonstrates the value of using the heuristic over the IP even when N = 5. Table 3 reports

the percentage of optimization problems that are not proven to be solved optimally by the IP, averaged over all 30

instances. There are many cases as such, explaining the difference between the IP and the heuristic.

γ 0 25 50 75 100 200 500 1000

% of problems not proven
35% 25% 36% 47% 43% 47% 49% 48%

to be solved optimally by the IP

Table 3: Percentage of optimization problems not proven to be solved optimally by the IP in the practical time limit of 60
seconds.

6.1.3 Impact of parameter δ

We now study the impact on the heuristic solution of different levels of flexibility by varying δ and keeping N = 5.

Based on the results presented in Figure 6, the following insights can be obtained:

1. Increasing flexibility in the order of requests has a positive impact on the average crane travel time (about 1%) but

this benefit is not statistically significant (as the 95% confidence intervals are overlapping) and is relatively small

compared to the benefit of a well tuned γ (see Figure 5). As the flexibility level solely depends on the port operator’s

policy, this latter can be set in order to balance the crane’s efficiency (quantified in Figure 6) and truck driver’s

tolerance to this flexibility.

2. Most of this benefit is captured by setting a flexibility of δ = 2 or 3. This relates to the general intuition that in

scheduling problems, most of the benefits of flexibility is captured when δ is around half of N . Increasing δ might

help in some cases but on average a flexibility of N/2 is close to achieve the benefits of a fully flexible system.

6.1.4 Impact of parameter N

In some port terminals, the mean arrival rate of productive requests might be different which would lead to a different

N . Recall that, due to practical constraints (the full arrival order of trucks must be known), thus N cannot be arbitrarily

large. Consequently, this experiment considers N ∈ {2, 4, 5, 6, 10} while keeping a flexibility of δ = 2. Figure 7 quantifies

the benefit of having a larger N (around 1-2%). Indeed, having more information increases the impact that the heuristic

can have on efficiency. But, 5% confidence intervals show that this positive impact is not statistically significant. We also

25

δ

0 1 2 3 4 5

140

150

160

170

180
C
ra
n
e

tr
a
v
e
l
tim

e

p
e
r
p
ro
d
u
c
tiv
e

re
q
u
e
s
t

Impact of fexibility level

Figure 6: Impact of δ: Each point represents the mean
indicator obtained by the heuristic with γ = 50 over all

30 instances and the error bars represent ±0.310
standard deviations.

N

2 4 5 6 10

140

150

160

170

180

C
ra
n
e

tr
a
v
e
l
tim

e

p
e
r
p
ro
d
u
c
tiv
e

re
q
u
e
s
t

Impact of N with fxed fexibility

Figure 7: Impact of N : Each point represents the mean
indicator obtained by the heuristic with γ = 50 over all

30 instances and the error bars represent ±0.310
standard deviations.

performed the experiment where δ = bN/2c (varies with N). We observe very similar results with N having a slightly

bigger impact (on the order of 2-3%). Most importantly, note that γ is kept constant, so a bigger impact of N might be

observed by varying γ for each N . Finally, since we limit the run time of the algorithm, it might affect the true impact of

N .

6.2 Data from a real terminal

6.2.1 Data processing

We collected data from two import blocks of a real port for 17 days in September 2017. The data included the position

of each container in these two blocks on 09/07/2017 at 05:35:04 AM local time. For the next 17 days, each move of the

cranes operating in these blocks was recorded. We summarize the main figures of this data set in Table 4. From this data,

we can extract the initial block configuration as well as the sequence of productive requests.

Parameter X Y Z C IO-Points
P = # of productive # of unproductive

moves (requests) moves (relocations)

Block 1 7 19 5 297 right-sided Asian 1502 729
Block 2 7 20 5 185 right-sided Asian 679 201

Table 4: Data summary for requests in two blocks for 17 days in September 2017

N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.00

0.05

0.10

0.15

0.20

0.25

D
e
n
s
ity

Distribution of number of requests within 30 minutes of a new request.
 Mean: 3.88 std: 3.03

8a Block 1

N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.0

0.1

0.2

0.3

0.4

0.5

D
e
n
s
ity

Distribution of number of requests within 30 minutes of a new request.
 Mean: 2.81 std: 3.45

8b Block 2

Figure 8: Distribution of N of requests from two blocks for 17 days in September 2017

26

Recall that the third piece of data needed for our simulation is the sequence of Ns. In order to infer this from our

data, we make the reasonable assumption that each request is available a fixed amount of time before the request was

actually performed. The operator suggested we fix this amount of time to 30 minutes. Because we have access to every

time-stamp for all requests, we can construct the sequence of Ns. More precisely, for each new request (i.e., not yet

considered in an optimization problem), a new problem is considered with N equal to the number of requests available in

the 30 minutes following the new request. Because this is close to what actually happens, we refer to this sequence of Ns

as the real scenario. Figure 8 presents the distributions of N for the two blocks over the 17 days. From these distributions,

we also consider the ideal scenario where N remains constant and is taken to be the rounded mean of the aforementioned

distributions (N = 4 for Block 1 and N = 3 for Block 2). Note that in order to consider the same number of productive

requests, the last optimization problem may use a different N than the mean.

Finally, we consider the same parameters as for randomly generated instances: retrieval requests have a flexibility of

(2, 0) while storage requests have a flexibility of (0, 2); the heuristic uses (R1, R2) = (40, 40) and is given 60 seconds to solve

each optimization problem; other speed parameters are given in Appendix A.

6.2.2 Results

Results are reported in Figure 9 for both blocks. These experiments provide three main insights:

1. Most importantly, using a good value for γ (here, 100) leads to an important improvement over the current practice.

In the real scenario, the improvement is of the order of 8% in Block 1 and 16% in Block 2, therefore proving the

efficacy of our proposed method in real operations.

2. The performance of the heuristic as a function of γ in Block 1 are quite similar to the ones from the randomly

generated instances, with the noticeable difference that the current practice is clearly outperforming the heuristic for

γ = 0 (thus our artificial baseline which was even worse). This is not surprising as current practice should be taking

future relocations into account, thus only a γ properly set can outperform the current practice. In the case of Block

2, the impact of γ appears to be quite different. Indeed, any value of γ outperforms clearly the current practice but

larger values of γ are similar to the best value of γ (100). Indeed, the heuristic has a very similar behavior for all

γ > 75. Intuitively, increasing γ should not change the heuristic after a certain point, because it tends to minimize

only future relocations. In this case, this point is relatively small (75) because empty stacks are always quite close to

the current position of the crane (due to the low fill rate of the block of about 0.3). The difference in the results for

γ > 75 can mostly be explained by the randomized nature of the heuristic. Therefore, taking future relocations into

account seems to have an even larger impact by reducing dramatically the number of relocations.

3. Finally, an interesting point is the small difference between the real and ideal scenarios (at most on the order of 3%).

This validates our analysis from the randomly generated data where N is taken to be constant and future experiments

could make this assumption for real scenarios. In addition, the ideal scenario show a slightly larger improvement than

the real scenario for most cases. This suggests that having a steady flow of requests could potentially slightly improve

the operations as compared to having rush/empty hours.

Note that the data only represents two particular instances and the conclusions we have drawn here might not apply in

other specific cases.

6.3 Main insights

These experiments (both synthetic and from real data) lead us to conclude that the most important parameter of our

model is the parameter γ. Variations of this parameter can lead to important improvement over the baseline and current

practice. This parameter tuning appears to be all the more crucial in the case of high fill rates. Once this parameter is

fixed, allowing for some flexibility in the order of requests is not expected to provide much if any benefit.

27

γ

0

2
5

5
0

7
5

1
0
0

2
0
0

5
0
0

1
0
0
0

Current
Heuristic_Real
Heuristic_Ideal

Algorithms

160

170

180

190

200

C
ra
n
e

tr
a
v
e
l
tim

e

p
e
r
p
ro
d
u
c
tiv
e

re
q
u
e
s
t

Performance of heuristic compared with current practice on Block 1

9a Block 1

γ

0

2
5

5
0

7
5

1
0
0

2
0
0

5
0
0

1
0
0
0

Current
Heuristic_Real
Heuristic_Ideal

Algorithms

130

140

150

160

170

C
ra
n
e

tr
a
v
e
l
tim

e

p
e
r
p
ro
d
u
c
tiv
e

re
q
u
e
s
t

Performance of heuristic compared with current practice on Block 2

9b Block 2

Figure 9: Performance of heuristic algorithm as function of γ on real data: Each point represents the average crane travel
time obtained by the heuristic under the real and ideal scenarios. The red horizontal line corresponds to the mean of the

current practice and the blue vertical line correspond to the lower bound on γ in Condition (A).

7 Conclusion

During the last decade, the increasing need for efficient systems at container terminals has led to the development

of several operations research models. Due to the complexity of these models, researchers have mostly considered them

in isolation, such as in the Yard Crane Scheduling Problem and the Container Relocation Problem. To the best of

our knowledge, our paper is the first work that integrates both problems and makes decisions for storage, retrieval and

enforced relocation requests in a realistic setting. Our model jointly optimizes current crane travel time and expected

future relocations. First, we formulate this problem as a binary integer programming model. Then, we leverage theoretical

properties of this formulation to develop a heuristic based on a reduced state space decomposition and repeated random start

local search. Finally, computational experiments on randomly generated and data from a real terminal are conducted to

show the efficiency and practicality of our heuristic method compared to the current practice. These experiments highlight

for practitioners the importance of balancing crane travel time and future unproductive moves (which is shown through the

28

importance of tuning the look-ahead parameter γ).

Future research could find more efficient solutions for this new model and ways to automatically set γ based on simple

business criteria. Important future work could consider our model with multiple crane systems in the case of ports dealing

with crane interference (similar to Speer and Fischer (2017)). Another major challenge is the tactical allocation of incoming

containers to blocks at the port level. Future research on this problem could optimize block allocation by modeling each

block using our model.

References

Borjian, S., Galle, V., Manshadi, V. H., Barnhart, C., and Jaillet, P. (2015a). Container Relocation Problem: Approxima-

tion, Asymptotic, and Incomplete Information. CoRR, abs/1505.04229. (Accessed 11.01.2017).

Borjian, S., Manshadi, V. H., Barnhart, C., and Jaillet, P. (2015b). Managing Relocation and Delay in Container Terminals

with Flexible Service Policies. CoRR, abs/1503.01535. (Accessed 11.01.2017).

Carlo, H. J., Vis, I. F., and Roodbergen, K. J. (2014). Storage yard operations in container terminals: Literature overview,

trends, and research directions. European Journal of Operational Research, 235(2):412–430.

Caserta, M., Schwarze, S., and Voß, S. (2012). A mathematical formulation and complexity considerations for the blocks

relocation problem. European Journal of Operational Research, 219(1):96–104.

Dell, R. F., Royset, J. O., and Zyngiridis, I. (2009). Optimizing container movements using one and two automated stacking

cranes. Journal of Industrial and Management Optimization, 5(2):285–302.

Expósito-Izquierdo, C., Melián-Batista, B., and Moreno-Vega, J. M. (2015). An exact approach for the Blocks Relocation

Problem. Expert Systems with Applications, 42(17–18):6408 – 6422.

Galle, V., Barnhart, C., and Jaillet, P. (2017a). A new 0-1 formulation of the restricted container relocation problem based

on a binary encoding of congurations. submitted manuscript. (Accessed 11.01.2017).

Galle, V., Borjian, S., Manshadi, V., Barnhart, C., and Jaillet, P. (2017b). The Stochastic Container Relocation Problem.

submitted manuscript. (Accessed 11.01.2017).

Galle, V., Borjian Boroujeni, S., Manshadi, V., Barnhart, C., and Jaillet, P. (2016). An average-case asymptotic analysis

of the Container Relocation Problem. Operations Research Letters, 44(6):723–728.

Gharehgozli, A. H., Laporte, G., Yu, Y., and de Koster, R. (2015). Scheduling Twin Yard Cranes in a Container Block.

Transportation Science, 49(3):686–705.

Gharehgozli, A. H., Roy, D., and de Koster, R. (2016). Sea container terminals: New technologies and OR models. Maritime

Economics & Logistics, 18(2):103–140.

Gharehgozli, A. H., Yu, Y., de Koster, R., and Udding, J. T. (2014). An exact method for scheduling a yard crane. European

Journal of Operational Research, 235(2):431–447.

Gharehgozli, A. H., Yu, Y., Zhang, X., and de Koster, R. (2017). Polynomial Time Algorithms to Minimize Total Travel

Time in a Two-Depot Automated Storage/Retrieval System. Transportation Science, 51(1):19–33.

Guo, X., Huang, S. Y., Hsu, W. J., and Low, M. Y. H. (2011). Dynamic yard crane dispatching in container terminals with

predicted vehicle arrival information. Advanced Engineering Informatics, 25(3):472–484.

Hakan Akyüz, M. and Lee, C.-Y. (2014). A mathematical formulation and efficient heuristics for the dynamic container

relocation problem. Naval Research Logistics (NRL), 61(2):101–118.

Huber, M. (2006). Exact Sampling from Perfect Matchings of Dense Regular Bipartite Graphs. Algorithmica, 44(3):183–193.

Kim, K. H. and Hong, G.-P. (2006). A heuristic rule for relocating blocks. Computers & Operations Research, 33(4):940–954.

Kim, K. H. and Kim, K. Y. (1999). An optimal routing algorithm for a transfer crane in port container terminals.

29

http://arxiv.org/abs/1505.04229
http://arxiv.org/abs/1505.04229
https://arxiv.org/pdf/1503.01535
https://arxiv.org/pdf/1503.01535
https://doi.org/10.1016/j.ejor.2013.10.054
https://doi.org/10.1016/j.ejor.2013.10.054
https://doi.org/10.1016/j.ejor.2011.12.039
https://doi.org/10.1016/j.ejor.2011.12.039
http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=4129
http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=4129
https://doi.org/10.1016/j.eswa.2015.04.021
https://doi.org/10.1016/j.eswa.2015.04.021
https://dspace.mit.edu/handle/1721.1/109978
https://dspace.mit.edu/handle/1721.1/109978
https://dspace.mit.edu/handle/1721.1/107762
http://www.sciencedirect.com/science/article/pii/S0167637716300840
http://www.sciencedirect.com/science/article/pii/S0167637716300840
https://doi.org/10.1287/trsc.2014.0533
https://doi.org/10.1057/mel.2015.3
http://www.sciencedirect.com/science/article/pii/S0377221713007935
https://doi.org/10.1287/trsc.2014.0562
https://doi.org/10.1287/trsc.2014.0562
http://www.sciencedirect.com/science/article/pii/S1474034611000073
http://www.sciencedirect.com/science/article/pii/S1474034611000073
http://dx.doi.org/10.1002/nav.21569
http://dx.doi.org/10.1002/nav.21569
https://doi.org/10.1007/s00453-005-1175-9
http://www.sciencedirect.com/science/article/pii/S0305054804001959
https://doi.org/10.1287/trsc.33.1.17

Transportation Science, 33(1):17–33.

Kim, K. Y. and Kim, K. H. (2003). Heuristic algorithms for routing yard-side equipment for minimizing loading times in

container terminals. Naval Research Logistics (NRL), 50(5):498–514.

Lee, D.-H., Cao, Z., and Meng, Q. (2007). Scheduling of two-transtainer systems for loading outbound containers in port

container terminals with simulated annealing algorithm. International Journal of Production Economics, 107(1):115–124.

Lee, Y. and Lee, Y.-J. (2010). A heuristic for retrieving containers from a yard. Computers & Operations Research,

37(6):1139–1147.

Lehnfeld, J. and Knust, S. (2014). Loading, unloading and premarshalling of stacks in storage areas: Survey and classifi-

cation. European Journal of Operational Research, 239(2):297–312.

Narasimhan, A. and Palekar, U. S. (2002). Analysis and algorithms for the transtainer routing problem in container port

operations. Transportation science, 36(1):63–78.

Ng, W. and Mak, K. (2005). Yard crane scheduling in port container terminals. Applied mathematical modelling, 29(3):263–

276.

Park, T., Choe, R., Ok, S. M., and Ryu, K. R. (2010). Real-time scheduling for twin RMGs in an automated container

yard. OR Spectrum, 32(3):593–615.

Rei, R. and Pedroso, J. P. (2013). Tree search for the stacking problem. Annals of Operations Research, 203(1):371–388.

Speer, U. and Fischer, K. (2017). Scheduling of Different Automated Yard Crane Systems at Container Terminals. Trans-

portation Science, 51(1):305–324.

Tanaka, S. and Takii, K. (2016). A Faster Branch-and-Bound Algorithm for the Block Relocation Problem. IEEE Trans-

actions on Automation Science and Engineering, 13(1):181–190.

Tricoire, F., Fechter, J., and Beham, A. (2017). New insights on the block relocation problem. Computers & Operations

Research.

Ünlüyurt, T. and Aydın, C. (2012). Improved rehandling strategies for the container retrieval process. Journal of Advanced

Transportation, 46(4):378–393.

Vis, I. F. and Roodbergen, K. J. (2009). Scheduling of container storage and retrieval. Operations Research, 57(2):456–467.

Wan, Y.-w., Liu, J., and Tsai, P.-C. (2009). The assignment of storage locations to containers for a container stack. Naval

Research Logistics (NRL), 56(8):699–713.

Wiese, J., Suhl, L., and Kliewer, N. (2010). Mathematical models and solution methods for optimal container terminal

yard layouts. OR Spectrum, 32(3):427–452.

Yuan, Y. and Tang, L. (2017). Novel time-space network flow formulation and approximate dynamic programming approach

for the crane scheduling in a coil warehouse. European Journal of Operational Research, 262(2):424–437.

Zehendner, E., Casserta, M., Feillet, D., Schwarze, S., and Voß, S. (2015). An improved mathematical formulation for the

blocks relocation problem. European Journal of Operational Research, 245(2):415–422.

Zhu, W., Qin, H., Lim, A., and Zhang, H. (2012). Iterative Deepening A* Algorithms for the Container Relocation Problem.

IEEE Transactions on Automation Science and Engineering, 9(4):710–722.

30

http://dx.doi.org/10.1002/nav.10076
http://dx.doi.org/10.1002/nav.10076
http://www.sciencedirect.com/science/article/pii/S0925527306002155
http://www.sciencedirect.com/science/article/pii/S0925527306002155
http://www.sciencedirect.com/science/article/pii/S0305054809002433
http://www.sciencedirect.com/science/article/pii/S0377221714002252
http://www.sciencedirect.com/science/article/pii/S0377221714002252
https://doi.org/10.1287/trsc.36.1.63.576
https://doi.org/10.1287/trsc.36.1.63.576
http://www.sciencedirect.com/science/article/pii/S0307904X04001167
https://doi.org/10.1007/s00291-010-0209-0
https://doi.org/10.1007/s00291-010-0209-0
https://doi.org/10.1007/s10479-012-1186-2
https://doi.org/10.1287/trsc.2016.0687
https://doi.org/10.1109/TASE.2015.2434417
http://www.sciencedirect.com/science/article/pii/S0305054817302174
http://doi.org/10.1002/atr.1193
https://doi.org/10.1287/opre.1080.0621
http://dx.doi.org/10.1002/nav.20373
https://doi.org/10.1007/s00291-010-0203-6
https://doi.org/10.1007/s00291-010-0203-6
http://www.sciencedirect.com/science/article/pii/S0377221717301935
http://www.sciencedirect.com/science/article/pii/S0377221717301935
https://doi.org/10.1016/j.ejor.2015.03.032
https://doi.org/10.1016/j.ejor.2015.03.032
https://doi.org/10.1109/TASE.2012.2198642

A Assumptions and notations summary

A.1 Assumptions

• Each block is considered as an independent entity which can only store a unique type of container and is limited in

all three dimensions to (X,Y, Z) of such containers.

• A single yard crane (of any type, i.e., RMG, TRG,...) operates in the considered block, hence without any interference

with another crane.

• The model used to compute travel times of the yard crane is the one introduced by Speer and Fischer (2017) where

spreader sizing is disregarded due to the unique type of containers stored in the block.

• Any configuration with m I/O points can be considered.

• In order to deal with the continuous nature of the problem, the classical block sequencing approach is taken: given

the initial number of containers per stack and the initial position of the crane handler, we only consider a list of

urgent productive requests (retrieval and storage), as well as the unproductive requests (relocations) implied by the

aforementioned retrieval requests.

• The number of crane cycles in one optimization problem is exactly equal to the number of productive and unproductive

requests. This implies that no container can be stacked or relocated before all containers have been retrieved from a

given stack.

• Each request has a given order flexibility as well as location limitations in picking up and dropping off containers.

• First-Come-First-Serve policy is always assumed feasible. In order to do so, we assume that, if two containers are

retrieved from the same stack, the above container should retrieved first.

A.2 Notations

X: the number of rows of the block. Typical values range from 6 to 13.

Y : the number of bays of the block. Typical values range from 10 to 40.

Z: the number of tiers of the block, also the maximum number of containers in a given stack. Typical values range

from 3 to 6.

s = (sx, sy): a stack of the block identified by its two coordinates.

SB : the set of stacks in the block.

M : total number of I/O points (M1, number of I/O points on seaside or internal yard side; M2, number of I/O points

on landside or external yard side). Typical values are of the order of number of bays for Asian and double-sided styles

and of the order of rows for European style.

SI : the set of I/O points or “artificial” stacks.

S: the set of all stacks.

zis: initial number of containers stored in stack s ∈ SB . We have zis ∈ {0, . . . , Z}.

si: initial position of the YC (si ∈ S).(
vx,E , vx,L

)
: YC trolley speed without and with load (both equal to 0.50 containers/s from Table 5).(

vy,E , vy,L
)
: YC gantry speed without and with load (0.37 and 0.20 containers/s).(

vz,E , vz,L
)
: YC speed to lower and hoist the spreader (0.39 and 0.20 containers/s).

31

vz: harmonic mean of vz,E and vz,L (0.26 containers/s).

th: handling time (or stabilization time) to pick up or set down a container on a stack (20 s).

t
(E)
sr : time for an empty drive of the YC from stack s to stack r.

t
(L)
sr : time for a loaded drive of the YC from stack s to stack r.

t(H) (z): : time for lifting/setting down a container from/onto a stack on tier z ∈ {1, . . . , Z}. The I/O points is

equivalent to set on the ground (i.e. z = 1)

N : the number of requests (or productive moves). Typical values range from 1 to 15. Requests are indexed based on

their arrival order.

Ns: the indices corresponding to storage requests (Ns ⊂ {1, . . . , N}).

Nr: the indices corresponding to retrieval requests (Nr ⊂ {1, . . . , N}).

(δ−n , δ
+
n): flexibility of request n. Request n can be served between the n− δ−n -th request and the n+ δ+

n -th request.

zn: the tier at which container n (∈ Sr) is stored in stack s (∈ Ln). Note that zn ∈ {1, . . . , zis}.

Nu: the indices corresponding to unproductive requests implied by retrieval requests.

N : the total number of requests (including relocations) to perform by the YC to fulfill all N productive requests.

Ln: the set of stacks in which the container n ∈ {1, . . . , N} can be picked up by the crane.

En: the set of stacks onto which container n ∈ {1, . . . , N} can be put down.

bn: container directly blocking n ∈ Nr ∪Nu. If n is on the top of its stack, then bn = 0.

S(L): the set of starting stacks for loaded drives of the YC.

S(E): the set of starting stacks for empty drives of the YC.

SR: the set of stacks of the block where there is at least one container that needs to be retrieved.

∼
zr: the number of containers in stack r ∈ SB after all containers have been retrieved and none has been stored or

relocated.

mr: the lowest container to be retrieved in r ∈ SR.

γ: the weight on the cost-to-go.

αz: the expected number of blocking containers in a stack with z containers.

B Technical Proofs

Lemma 1. Let n ∈ Ns ∪ Nu. Let v(n) be the tier at which container n is stored or relocated when performing request n

and zfr the number of containers in stack r after performing all N requests, then we have

∑
n∈Ns∪Nu

v(n) =
1

2

∑
r∈S(E)∩SB

zfr
(
zfr + 1

)
− 1

2

∑
r∈S(E)∩SB

∼
zr

(
∼
zr + 1

)
.

32

Variable Value

Trolley speed without load of the YC 1.17 m/s
Trolley speed with load of the YC 1.17 m/s
Gantry speed without load of the YC 2.17 m/s
Gantry speed with load of the YC 1.17 m/s
Hoisting speed without load of the YC 0.93 m/s
Hoisting speed with load of the YC 0.47 m/s
Container width 2.35 m
Container length 5.90 m
Container height 2.39 m
Time to handle and stabilize container 20 s

Table 5: Inputs of the simulation study (yard speed from Liebherr.com and TEU size from dsv.com). Assumptions: No
acceleration is considered. All containers are 20 feet long and dry. Note that these values are similar to Gharehgozli et al.
(2014). No separating space between containers is considered.

Proof. First, note that each container can only be moved once. Therefore, the tier at which container n is stored or relocated

when performing request n is the same as the tier at which container n is stored after all N requests are performed.

Consider a given stack r ∈ S(E) ∩ SB . If zfr =
∼
zr, then no container was stored or relocated to stack r. If zfr >

∼
zr, then

there are zfr −
∼
zr containers that got stored or relocated to stack r, each of which corresponds to a unique n ∈ Ns ∪ Nu.

The tiers of stack r at which these containers got stacked range from
∼
zr + 1, . . . , zfr .

By summing this observation for all stacks r ∈ S(E) ∩ SB , we get the tiers of all containers n ∈ Ns ∪ Nu. Indeed, no

container can be stored or relocated to a stack r′ ∈ SB \ S(E). Thus:

∑
n∈Ns∪Nu

v(n) =
∑

r∈S(E)∩SB

zfr∑
z=
∼
zr+1

z

=
∑

r∈S(E)∩SB

(
zfr −

∼
zr

) (zfr +
∼
zr + 1

)
2

=
1

2

∑
r∈S(E)∩SB

zfr
(
zfr + 1

)
− 1

2

∑
r∈S(E)∩SB

∼
zr

(
∼
zr + 1

)
.

Lemma 2. Let γ verify Condition (A), z, z1, z2 ∈ {0, . . . , Z} such that z2 < z < z1, then we have

z − z2

z1 − z2
βz1 +

z1 − z
z1 − z2

βz2 > βz.

Proof. First, we show that

βz+1 + βz−1 > 2βz. (35)

By definition of βz, this inequality is equivalent to

γ

z(z + 1)
− 2

vz
> 0.

Since z < z1 6 Z, we have z 6 Z − 1. In addition, γ verifies Condition (A), i.e., γ >
2Z(Z − 1)

vz
. Thus, we get

γ

z(z + 1)
− 2

vz
>

γ

(Z − 1)Z
− 2

vz
>

2

vz
− 2

vz
= 0,

33

https://www.liebherr.com/shared/media/maritime-cranes/downloads-and-brochures/brochures/lcc/liebherr-rtg-cranes-technical-description.pdf
http://www.dsv.com/sea-freight/sea-container-description/dry-container

which completes the proof of Equation (35). Using Equation (35) repeatedly, we have

βz1 + (z1 − z)βz−1 > (z1 − z + 1)βz and (z − z2)βz+1 + βz2 > (z − z2 + 1)βz. (36)

Consequently, we have

z − z2

z1 − z2
βz1 +

z1 − z
z1 − z2

βz2 >
(z − z2) (z1 − z + 1)

z1 − z2
βz −

(z − z2) (z1 − z)
z1 − z2

βz−1

+
(z1 − z) (z − z2 + 1)

z1 − z2
βz −

(z1 − z) (z − z2)

z1 − z2
βz+1

= βz −
(z1 − z) (z − z2)

z1 − z2
(βz+1 + βz−1 − 2βz)

> βz,

where the first inequality holds thanks to Equation (36) and the second holds with Equation (35) and z2 < z < z1. This

concludes the proof of Lemma 2.

Lemma 3. Let w ∈ W ∩ {0, 1}. Let Π(w) be the optimization problem defined as

min
D∈L(w)∩{0,1}

(
cTD

)
,

and Π(w) the optimization problem defined as

min
D∈L(w)∩{0,1}

(
cTD

)
,

then Π(w) and Π(w) are equivalent problems.

Proof. In order to prove the equivalence between Π(w) and Π(w), we show that Π(w) has several implied equalities/inequalities.

Using these implied constraints, we can reduce the number of variables and constraints to obtain the formulation of Π(w).

We prove the following implied inequalities in this order:

∀ k ∈ {1, . . . , N},
{
∀ s ∈ S(L) \ {σk}, ∀r ∈ S(E), d

(L)
srk = 0,

∀r ∈ S(E) \ Eνk , d
(L)
σkrk

= 0.
(37)

∀ k ∈ {1, . . . , N},
∑
r∈Eνk

d
(L)
σkrk

= 1. (38)

{
diσ1

= 1,

∀ s ∈ S(L) \ {σ1} , dis = 0.
(39)

∀ k ∈ {2, . . . , N}, ∀ r ∈ S(E), ∀s ∈ S(L) \ {σk}, d(E)
rsk = 0. (40)

∀ k ∈ {2, . . . , N}, ∀ r ∈ Eνk−1
, d

(E)
rσkk

− d(L)
σk−1,r,k−1 = 0. (41)

∀ k ∈ {2, . . . , N}, ∀ r ∈ S(E) \ Eνk−1
, d

(E)
rσkk

= 0. (42)

∀r ∈ SB ,
∑

z∈{∼zr,...,Z}

zfrz −
∑
k∈Kr

d
(L)
σkrk

=
∼
zr. (43)

∀r ∈ SB ,
∑

z∈{∼zr,...,Z}

frz = 1, (44)

∀r ∈
(
S(E) ∩ SB

)
\ SB ,

{
f
r
∼
zr

= 1,

∀ z ∈ {∼zr + 1, . . . , Z}, frz = 0.
(45)

34

Proof of implied Constraint (37) We first show that

∀ k ∈ {1, . . . , N},∀ s ∈ S(L) \ {σk}, ∀r ∈ S(E), d
(L)
srk = 0,

∀ k ∈ {1, . . . , N}, ∀r ∈ S(E) \ Eνk , d
(L)
σkrk

= 0.
(46)

Let k ∈ {1, . . . , N}. By definition, we have wνkσkk = 1, so Constraint (13) for n = νk and s = σk implies that

0 6
∑
r∈Eνk

d
(L)
σkrk

− wνkσkk =
∑
r∈Eνk

d
(L)
σkrk

− 1.

We combine this inequality with Constraint (8) which implies that

0 =
∑

s∈S(L)

r∈S(E)

d
(L)
srk − 1

=
∑

s∈S(L)\{σk}
r∈S(E)

d
(L)
srk +

∑
r∈S(E)\Eνk

d
(L)
σkrk

+
∑
r∈Eνk

d
(L)
σkrk

− 1

>
∑

s∈S(L)\{σk}
r∈S(E)

d
(L)
srk +

∑
r∈S(E)\Eνk

d
(L)
σkrk

,

Since d
(L)
srk are non-negative, this proves Equation (46). We further improve this constraint by showing that

∀ k ∈ {1, . . . , N},∀ r ∈ Eνk \ Eνk , d
(L)
σkrk

= 0. (47)

Let k ∈ {1, . . . , N} and r ∈ Eνk \ Eνk . First, using Equation (46), we have
∑

s∈S(L)

d
(L)
srk = d

(L)
σkrk

. Moreover, by definition

of Eνk , we must have r ∈ SR and ∀ k′ ∈ {l, . . . , k − 1}, νk′ 6= mr. Since w ∈ W, it implies that ∀ k′ ∈ {1, . . . , k − 1},
wmrrk′ = 0, thus

∑
k′∈{1,...,k−1}

wmrrk′ = 0. By using both these observations in Constraint (14), we have

0 >
∑

s∈S(L)

d
(L)
srk −

∑
k′∈{1,...,k−1}

wmrrk′ = d
(L)
σkrk

.

As d
(L)
σkrk

are non-negative, this proves Equation (47). Combined with Equation (46), this proves implied Constraint (37).

Proof of implied Constraint (38) Using implied Constraint (37) together with Constraint (8), we directly get implied

Constraint (38).

Proof of implied Constraint (39) We have

diσ1
=

∑
r∈S(E)

d
(L)
σ1r1

=
∑
r∈Eν1

d
(L)
σ1r1

= 1,

where the first equality comes from Constraint (9a) for s = σ1, the second from implied Constraint (37) and the last from

implied Constraint (38) for k = 1. By combining this latter fact with Constraint (7a), we get

0 =
∑

s∈S(L)

dis − 1 =
∑

s∈S(L)\{σ1}

dis + diσ1
− 1 =

∑
s∈S(L)\{σ1}

dis,

thus, since dis are non-negative, we get implied Constraint (39).

35

Proof of implied Constraint (40) Let k ∈ {2, . . . , N}, we first have∑
r∈S(E)

d
(E)
rσkk

=
∑

r∈S(E)

d
(L)
σkrk

=
∑
r∈Eνk

d
(L)
σkrk

= 1,

where the first equality is Constraint (9b) for s = σk, the second equality comes from implied Constraint (37) and the last

from implied Constraint (38). Based on this observation, we use Constraint (7b) to get

0 =
∑

r∈S(E)

s∈S(L)

d
(E)
rsk − 1 =

∑
r∈S(E)

s∈S(L)\{σk}

d
(E)
rsk +

∑
r∈S(E)

d
(E)
rσkk

− 1 =
∑

r∈S(E)

s∈S(L)\{σk}

d
(E)
rsk

which by non-negativity of d
(E)
rsk proves Equation (40).

Proof of implied Constraint (41) Let k ∈ {2, . . . , N} and r ∈ Eνk−1
, we have

0 =
∑

s∈S(L)

d
(E)
rsk −

∑
s∈S(L)

d
(L)
s,r,k−1 = d

(E)
rσkk

− d(L)
σk−1,r,k−1,

which proves implied Constraint (41). The first equality is Constraint (10) since r ∈ Eνk−1
⊂ Eνk−1

⊂ S(E). The second

equality results from both implied Constraints (40) and (37).

Proof of implied Constraint (42) Let k ∈ {2, . . . , N} and r ∈ S(E) \Eνk−1
. Using both implied Constraints (41) and

(37), we have

d
(E)
rσkk

= d
(L)
σk−1,r,k−1 = 0,

proving implied Constraint (42).

Proof of implied Constraint (43) Let r ∈ S(E) ∩ SB . Using implied Constraint (37) and by definition of Kr, we note

that ∑
s∈S(L)

k∈{1,...,N}

d
(L)
srk =

∑
k∈{1,...,N}

d
(L)
σkrk

=
∑
k∈Kr

d
(L)
σkrk

.

By replacing this expression in Constraint (12), we get

∀ r ∈ S(E) ∩ SB ,
∑

z∈{∼zr,...,Z}

zfrz −
∑
k∈Kr

d
(L)
σkrk

=
∼
zr. (48)

Since SB ⊂ S(E) ∩ SB , this proves implied Constraint (43).

Proof of implied Constraint (44) This implied constraint is directly proven by Constraint (11) since SB ⊂ S(E) ∩SB .

Proof of implied Constraint (45) Let r ∈
(
S(E) ∩ SB

)
\ SB . By definition, it implies that r ∈ S(E) and r /∈⋃

k∈{1,...,N}Eνk , i.e., ∀k ∈ {1, . . . , N}, r /∈ Eνk . In conclusion, ∀k ∈ {1, . . . , N} r ∈ S(E) \Eνk . Using this fact with implied

Constraint (37) we have ∀k ∈ {1, . . . , N}, d(L)
σkrk

= 0, thus∑
k∈{1,...,N}

d
(L)
σkrk

= 0.

36

Consequently, we have

0 =
∼
zr −

∑
z∈{∼zr,...,Z}

zfrz +
∑

k∈{1,...,N}

d
(L)
σkrk

=
∼
zr −

∑
z∈{∼zr,...,Z}

zfrz

=
∼
zr(1− fr∼zr) +

∑
z∈{∼zr+1,...,Z}

zfrz

>
∑

z∈{∼zr+1,...,Z}

zfrz

>
∑

z∈{∼zr+1,...,Z}

frz,

and since frz are non-negative, this proves that ∀ z ∈ {∼zr + 1, . . . , Z}, frz = 0. We note that the first equality comes from

Constraint (12), the second from the previous observation, the first inequality from f
r
∼
zr

6 1 and the second inequality from

z > 1 for z ∈ {∼zr + 1, . . . , Z}. Finally, using this fact and Constraint (11), we have

1 =
∑

z∈{∼zr,...,Z}

frz = f
r
∼
zr
,

which proves implied Constraint (45).

Redundancy of original constraints We now show that Constraints (7)-(14) are redundant with implied Constraints

(37)-(45).

Constraint (7a) is redundant with implied Constraint (39):∑
s∈S(L)

dis = diσ1
= 1.

Constraint (7b) is redundant with implied Constraints (40), (42), (41) and (39):

∀ k ∈ {2, . . . , N},
∑

r∈S(E)

s∈S(L)

d
(E)
rsk =

∑
r∈Eνk−1

d
(E)
rσkk

=
∑

r∈Eνk−1

d
(L)
σk−1,r,k−1 = 1.

Constraint (8) is redundant with implied Constraints (37) and (39):

∀ k ∈ {1, . . . , N},
∑

s∈S(L)

r∈S(E)

d
(L)
srk =

∑
r∈Eνk

d
(L)
σk,r,k

= 1.

Constraint (9a) is redundant with implied Constraints (37), (39) and (38):

∀ s ∈ S(L),


if s = σ1,

∑
r∈S(E)

d
(L)
σ1r1
− diσ1

=
∑
r∈Eν1

d
(L)
σ1r1
− 1 = 1− 1 = 0.

if s 6= σ1,
∑

r∈S(E)

d
(L)
sr1 − dis = 0− 0 = 0.

Constraint (9b) is redundant with implied Constraints (37), (40), (42) and (38):

∀ s ∈ S(L)

∀ k ∈ {2, . . . , N} ,


if s = σk,

∑
r∈S(E)

d
(L)
σkrk

−
∑

r∈S(E)

d
(E)
rσkk

=
∑
r∈Eνk

d
(L)
σkrk

−
∑

r∈Eνk−1

d
(L)
σk−1,r,k−1 = 1− 1 = 0.

if s 6= σk,
∑

r∈S(E)

d
(L)
srk −

∑
r∈S(E)

d
(E)
rsk = 0− 0 = 0.

37

Constraint (10) is redundant with implied Constraints (37), (40), (42) and (38):

∀ r ∈ S(E)

∀ k ∈ {2, . . . , N} ,


if r ∈ Eνk ,

∑
s∈S(L)

d
(E)
rsk −

∑
s∈S(L)

d
(L)
s,r,k−1 = d

(L)
σk−1,r,k−1 − d

(L)
σk−1,r,k−1 = 0.

if r /∈ Eνk ,
∑

s∈S(L)

d
(E)
rsk −

∑
s∈S(L)

d
(L)
s,r,k−1 = d

(E)
rσkk

− d(L)
σk−1,r,k−1 = 0− 0 = 0.

Constraint (11) is redundant with implied Constraints (44) and (45):

∀ r ∈ SB ,


if r ∈ SB ,

∑
z∈{∼zr,...,Z}

frz = 1,

if r ∈/∈ SB ,
∑

z∈{∼zr,...,Z}

frz = f
r
∼
zr

= 1.

Constraint (12) is redundant with implied Constraints (37), (43) and (45):

∀ r ∈ SB ,



if r ∈ SB ,
∑

z∈{∼zr,...,Z}

zfrz −
∑

s∈S(L)

k∈{1,...,N}

d
(L)
srk =

∑
z∈{∼zr,...,Z}

zfrz −
∑
k∈Kr

d
(L)
σkrk

=
∼
zr.

if r /∈ SB ,
∑

z∈{∼zr,...,Z}

zfrz −
∑

s∈S(L)

k∈{1,...,N}

d
(L)
srk =

∼
zr − 0 =

∼
zr.

Constraint (13) is redundant with implied Constraints (37) and (38):

∀ n ∈ {1, . . . , N}
∀ s ∈ Ln

∀ k ∈ {1, . . . , N}
,


if n = νk and s = σk,

∑
r∈Eνk

d
(L)
σkrk

− wνkσkk =
∑
r∈Eνk

d
(L)
σkrk

− 1 = 0 > 0.

if n 6= νk or s 6= σk,
∑
r∈En

d
(L)
srk − wnsk =

∑
r∈En

d
(L)
srk > 0.

Recall that by definition, if r ∈ SR∩Eνk then ∃ k′ ∈ {1, . . . , k−1} such that νk′ = mr, i.e., wmrrk′ = 1 so
∑

k′∈{1,...,k−1}

wmrrk′ =

1. Thus, Constraint (14) is redundant with implied Constraints (37):

∀ r ∈ SR
∀ k ∈ {1, . . . , N} ,


if r ∈ Eνk ,

∑
s∈S(L)

d
(L)
srk −

∑
k′∈{1,...,k−1}

wmrrk′ 6 d
(L)
σkrk

− 1 6 0.

if r /∈ Eνk ,
∑

s∈S(L)

d
(L)
srk −

∑
k′∈{1,...,k−1}

wmrrk′ = 0−
∑

k′∈{1,...,k−1}

wmrrk′ 6 0.

Thus Π(w) is equivalent to

min
D∈{0,1}

(
cTD

)
s.t. D satisfice Constraints (37)-(45)

Equivalence of Π(w) and Π(w) Among Constraints (37)-(45), some of them fix variables to 0 or 1. In summary, we

have

∀ k ∈ {1, . . . , N},
{
∀ s ∈ S(L) \ {σk}, ∀r ∈ S(E), d

(L)
srk = 0,

∀r ∈ S(E) \ Eνk , d
(L)
σkrk

= 0.{
diσ1

= 1,

∀ s ∈ S(L) \ {σ1} , dis = 0.

∀ k ∈ {2, . . . , N},
{
∀ r ∈ S(E), ∀s ∈ S(L) \ {σk}, d(E)

rsk = 0,

∀ r ∈ S(E) \ Eνk−1
, d

(E)
rσkk

= 0,

38

∀r ∈
(
S(E) ∩ SB

)
\ SB ,

{
f
r
∼
zr

= 1,

∀ z ∈ {∼zr + 1, . . . , Z}, frz = 0.

These constraints and their associated variables can be treated as constant for the subproblem Π(w). By deleting these

constraints and variables, we get that Π(w) is equivalent to the optimization problem Π1(w) defined as

min


∑

k∈{2,...,N}
r∈Eνk−1

t(E)
rσk

d
(E)
rσkk

+
∑

k∈{1,...,N}
r∈Eνk

t(L)
σkr

d
(L)
σkrk

+
∑
r∈SB

z∈{∼zr,...,Z}

βzfrz



s.t.



∀ k ∈ {1, . . . , N},
∑
r∈Eνk

d
(L)
σkrk

= 1,

∀ k ∈ {2, . . . , N}, ∀ r ∈ Eνk−1
, d

(E)
rσkk

− d(L)
σk−1,r,k−1 = 0,

∀ r ∈ SB ,
∑

z∈{∼zr,...,Z}

zfrz −
∑
k∈Kr

d
(L)
σkrk

=
∼
zr,

∀ r ∈ SB ,
∑

z∈{∼zr,...,Z}

frz = 1.

where the cost is the equal to cTD minus the constant t
(E)
siσ1

+
∑

r∈(S(E)∩SB)\SB

α∼
zr

.

Using the second constraint of Π1(w) (which also is implied Constraint (41)), we can replace d
(E)
rσkk

by d
(L)
σk−1,r,k−1, thus

Π1(w) is equivalent to the problem Π2(w) defined as

min

 ∑
k∈{1,...,N−1}

r∈Eνk

(
t(E)
rσk+1

+ t(L)
σkr

)
d

(L)
σkrk

+
∑
k=N
r∈Eνk

t(L)
σkr

d
(L)
σkrk

+
∑
r∈SB

z∈{∼zr,...,Z}

βzfrz



s.t.



∀ k ∈ {1, . . . , N},
∑
r∈Eνk

d
(L)
σkrk

= 1,

∀ r ∈ SB ,
∑

z∈{∼zr,...,Z}

zfrz −
∑
k∈Kr

d
(L)
σkrk

=
∼
zr,

∀ r ∈ SB ,
∑

z∈{∼zr,...,Z}

frz = 1.

By changing the variables of Π2(w) such that

∀ k ∈ {1, . . . , N}, ∀ r ∈ Eνk , drk = d
(L)
σkrk

,

and

∀ s ∈ SB , ∀ z ∈ {
∼
zr, . . . , Z}, frz = frz,

and by definition of trk, we obtain Π(w). Consequently, Π(w) and Π2(w) are identical. Since Π(w) is equivalent to Π1(w),

itself equivalent to Π2(w), we have proven that Π(w) and Π(w) are equivalent problems.

39

Theorem 1. Let w ∈ W ∩ {0, 1} and D∗ = (d∗, f∗) be an extreme point of L(w), then

d∗ ∈ {0, 1}.

Proof. Let D∗ = (d∗, f∗) be an extreme point of L(w) (not necessarily optimal). Let us prove by contradiction that

d∗ ∈ {0, 1}. We suppose by contradiction that there exists l ∈ {1, . . . , N} and p ∈ Eνl such that d∗pl /∈ {0, 1}. Since

D∗ ∈ L(w), we have

1 =
∑
r∈Eνl

d∗rl = d∗pl +
∑

r∈Eνl\{p}

d∗rl

Therefore, we have
∑

r∈Eνl\{p}

d∗rl /∈ {0, 1}. Since 0 6 d∗rl 6 1, there exists q ∈ Eνl \ {p} such that d∗ql /∈ {0, 1}. We consider

two distinct cases:

If νl ∈ Nr, then Eνl ∩ SB = ∅, thus Eνl ∩ SB = ∅, thus p, q /∈ SB . Consider

ε = min
{
d∗pl, 1− d∗pl, d∗ql, 1− d∗ql

}
> 0,

and D1 =
(
d1, f∗

)
and D2 =

(
d2, f∗

)
such that

d1
pl = d∗pl − ε d2

pl = d∗pl + ε

d1
ql = d∗ql + ε d2

ql = d∗ql − ε

otherwise d1
rk = d2

rk = d∗rk. Let us show that D1, D2 ∈ L(w). First, by definition of ε, 0 6 d1, d2 6 1. Moreover, let us

prove that ∀k ∈ {1, . . . , N},
∑
r∈Eνk

d1
rk =

∑
r∈Eνk

d2
rk =

∑
r∈Eνk

d∗rk. Indeed, let k ∈ {1, . . . , N}

• If k 6= l, then ∀ r ∈ Eνk , d1
rk = d2

rk = d∗rk, thus
∑
r∈Eνk

d1
rk =

∑
r∈Eνk

d2
rk =

∑
r∈Eνk

d∗rk.

• If k = l, then we have ∑
r∈Eνl

d1
rl =

∑
r∈Eνl
r 6=p,q

d1
rl + d1

pl + d1
ql =

∑
r∈Eνl
r 6=p,q

d∗rl + d∗pl − ε+ d∗ql + ε =
∑
r∈Eνl

d∗rl,

and ∑
r∈Eνl

d2
rl =

∑
r∈Eνl
r 6=p,q

d2
rl + d2

pl + d2
ql =

∑
r∈Eνl
r 6=p,q

d∗rl + d∗pl + ε+ d∗ql − ε =
∑
r∈Eνl

d∗rl.

Since p, q /∈ SB , then ∀r ∈ SB ,
∑

k∈{1,...,N}

d1
rk =

∑
k∈{1,...,N}

d2
rk =

∑
k∈{1,...,N}

d∗rk. Therefore, since only these sums involve the

variable d in the constraints of L(w), and that D∗ ∈ L(w), then D1, D2 ∈ L(w). However, it is clear that d∗ = 1
2

(
d1 + d2

)
so D∗ = 1

2

(
D1 +D2

)
, and since ε > 0, D1 6= D2 6= D∗, In conclusion, D∗ is not an extreme point which leads to a

contradiction.

If νl /∈ Nr, then Eνl ⊂ SB , thus Eνl ⊂ SB , so p, q ∈ SB . The proof of Theorem 1 under this case requires a technical

lemma (Lemma 4). Let us define

∀ k ∈ {1, . . . , N}, Rk =
{
r ∈ Eνk | d∗rk /∈ {0, 1}

}
and R =

⋃
k∈{1,...,N}

Rk.

40

By definition, we have p, q ∈ Rl so |R| > 0. We also define

∀ r ∈ R, Kr =
{
k ∈ Kr | r ∈ Rk

}
and K =

⋃
r∈R
Kr.

such that l ∈ Kp ∩ Kq and l ∈ K. By definition, if r ∈ Rk, then k ∈ Kr.

Definition 2. We say that r ∈ R is a stack linked through fractional solutions to stack p at stage l if r = p or if there

exists J ∈ {2, . . . , |K|} and two sequences (k1, . . . , kJ) ∈ K and (r1, . . . , rJ) ∈ R such that:

(i) k1 6= . . . 6= kJ and r1 6= . . . 6= rJ .

(ii) k1 = l and r1 = p.

(iii) ∀ j ∈ {1, . . . , J − 1}, rj ∈ Rkj ∩Rkj+1
, i.e., d∗rjkj /∈ {0, 1} and d∗rjkj+1

/∈ {0, 1}.

(iv) rJ = r and r ∈ RkJ , i.e., d∗rkJ /∈ {0, 1}.

We denote by Tp,l the set of stacks linked through fractional solutions to stack p at stage l.

We now state the technical lemma to identify two sub-cases:

Lemma 4. Let Tp,l the set of stacks linked through fractional solutions to stack p at stage l, then at least one of the two

following statements is true:

(∗) q ∈ Tp,l.

(∗∗) there exists r ∈ Tp,l such that
∑
k∈Kr

d∗rk /∈ N.

Before proving Lemma 4, we assume this lemma holds and concludes the proof of Theorem 1. Therefore, using Lemma

4, we consider two sub-cases:

If Condition (∗) holds, since p 6= q, then we know that there exists J ∈ {2, . . . , |K|} and two sequences (k1, . . . , kJ) ∈ K
and (r1, . . . , rJ) ∈ R such that: (i) k1 6= . . . 6= kJ and r1 6= . . . 6= rJ , (ii) k1 = l and r1 = p, (iii) ∀ j ∈ {1, . . . , J − 1},
rj ∈ Rkj ∩Rkj+1 , and (iv) rJ = q and q ∈ RkJ . Now consider

ε = min

{
min

j∈{1,...,J−1}

{
d∗rjkj , 1− d∗rjkj , d∗rjkj+1

, 1− d∗rjkj+1

}
, d∗qkJ , 1− d∗qkJ , d∗ql, 1− d∗ql

}
> 0,

and D1 =
(
d1, f∗

)
and D2 =

(
d2, f∗

)
such that

∀ j ∈ {1, . . . , J − 1},
{

d1
rjkj

= d∗rjkj − ε
d1
rjkj+1

= d∗rjkj+1
+ ε

∀ j ∈ {1, . . . , J − 1},
{

d2
rjkj

= d∗rjkj + ε

d2
rjkj+1

= d∗rjkj+1
− ε

d1
qkJ = d∗qkJ − ε d2

qkJ = d∗qkJ + ε

d1
ql = d∗ql + ε d2

ql = d∗ql − ε

otherwise d1
rk = d2

rk = d∗rk. We illustrate the changes made in D1 and D2 compared to D∗ in Figure 10. Let us

show that D1, D2 ∈ L(w). First, by definition of ε, 0 6 d1, d2 6 1. Moreover, let us prove that ∀k ∈ {1, . . . , N},∑
r∈Eνk

d1
rk =

∑
r∈Eνk

d2
rk =

∑
r∈Eνk

d∗rk. Indeed, let k ∈ {1, . . . , N}

• If ∀j ∈ {2, . . . , J}, k 6= kj and k 6= l, then ∀ r ∈ Eνk , d1
rk = d2

rk = d∗rk, thus∑
r∈Eνk

d1
rk =

∑
r∈Eνk

d2
rk =

∑
r∈Eνk

d∗rk.

41

...

l = k1

k2

k3

r1 = p

r2

r3

� ✏

� ✏

� ✏

� ✏

� ✏

+ ✏

+ ✏

+ ✏

+ ✏

kJ-1

kJ

rJ-1

rJ = q

0

0

0

0

0

(a) Illustration of D1

...

l = k1

k2

k3

r1 = p

r2

r3

� ✏

� ✏

� ✏

� ✏

+ ✏

+ ✏

+ ✏

+ ✏

kJ-1

kJ

rJ-1

rJ = q+ ✏

0

0

0

0

0

(b) Illustration of D2

Figure 10: Illustration of two feasible points D1 and D2 such that their average is an extreme point D∗ in the case where
Condition (∗) holds. Numbers on the right show the change of balance for nodes (rj)j∈{1,...,J}.

• If ∃j ∈ {2, . . . , J}, k = kj , then we have∑
r∈Eνkj

d1
rkj =

∑
r∈Eνkj
r 6=rj ,rj−1

d1
rkj + d1

rjkj + d1
rj−1kj =

∑
r∈Eνkj
r 6=rj ,rj−1

d∗rkj + d∗rjkj − ε+ d∗rj−1kj + ε =
∑

r∈Eνkj

d∗rkj ,

and ∑
r∈Eνkj

d2
rkj =

∑
r∈Eνkj
r 6=rj ,rj−1

d2
rkj + d2

rjkj + d2
rj−1kj =

∑
r∈Eνkj
r 6=rj ,rj−1

d∗rkj + d∗rjkj + ε+ d∗rj−1kj − ε =
∑

r∈Eνkj

d∗rkj .

• If k = l, then we have ∑
r∈Eνl

d1
rl =

∑
r∈Eνl
r 6=p,q

d1
rl + d1

pl + d1
ql =

∑
r∈Eνl
r 6=p,q

d∗rl + d∗pl − ε+ d∗ql + ε =
∑
r∈Eνl

d∗rl,

and ∑
r∈Eνl

d2
rl =

∑
r∈Eνl
r 6=p,q

d2
rl + d2

pl + d2
ql =

∑
r∈Eνl
r 6=p,q

d∗rl + d∗pl + ε+ d∗ql − ε =
∑
r∈Eνl

d∗rl.

Moreover, let us now show that ∀ r ∈ SB ,
∑
k∈Kr

d1
rk =

∑
k∈Kr

d2
rk =

∑
k∈Kr

d∗rk. Indeed, let r ∈ SB ,

• If ∀j ∈ {1, . . . , J − 1}, r 6= rj and r 6= q, then we have ∀ k ∈ Kr, d
1
rk = d2

rk = d∗rk, thus∑
k∈Kr

d1
rk =

∑
k∈Kr

d2
rk =

∑
k∈Kr

d∗rk.

• If ∃j ∈ {1, . . . , J − 1}, r = rj , then we have∑
k∈Krj

d1
rjk =

∑
k∈Krj

k 6=kj ,kj+1

d1
rjk + d1

rjkj + d1
rjkj+1

=
∑
k∈Krj

k 6=kj ,kj+1

d∗rjk + d∗rjkj − ε+ d∗rjkj+1
+ ε =

∑
k∈Krj

d∗rjk,

42

and ∑
k∈Krj

d2
rjk =

∑
k∈Krj

k 6=kj ,kj+1

d2
rjk + d2

rjkj + d2
rjkj+1

=
∑
k∈Krj

k 6=kj ,kj+1

d∗rjk + d∗rjkj + ε+ d∗rjkj+1
− ε =

∑
k∈Krj

d∗rjk.

• If r = q, then we have∑
k∈Kq

d1
qk =

∑
k∈Kq

k 6=kJ ,l

d1
qk + d1

qkJ + d1
ql =

∑
k∈Kq

k 6=kJ ,l

d∗qk + d∗qkJ − ε+ d∗ql + ε =
∑
k∈Kq

d∗qk,

and ∑
k∈Kq

d2
qk =

∑
k∈Kq

k 6=kJ ,l

d2
qk + d2

qkJ + d2
ql =

∑
k∈Kq

k 6=kJ ,l

d∗qk + d∗qkJ + ε+ d∗ql − ε =
∑
k∈Kq

d∗qk,

Therefore, since only these sums involve the variable d in the constraints of L(w), and that D∗ ∈ L(w), then D1, D2 ∈ L(w).

However, it is clear that d∗ = 1
2

(
d1 + d2

)
so D∗ = 1

2

(
D1 +D2

)
, and since ε > 0, D1 6= D2 6= D∗, In conclusion, D∗ is not

an extreme point which leads to a contradiction.

If Condition (∗) does not hold but Condition (∗∗) does, then there exists s ∈ Tp,l such that
∑
k∈Ks

d∗sk /∈ N. Since

(d∗, f∗) ∈ L(w), we have ∑
z∈{∼zs,...,Z}

zf∗sz =
∼
zs +

∑
k∈Ks

d∗sk /∈ N.

This implies that, if we consider

zs = max
{
z ∈ {∼zs, . . . , Z} | f∗sz > 0

}
and zs = min

{
z ∈ {∼zs, . . . , Z} | f∗sz > 0

}
,

then we have

zs > zs,

and consequently

f∗szs /∈ {0, 1} and f∗szs /∈ {0, 1}.

Moreover, since s ∈ Tp,l, then there exists J ∈ {2, . . . , |K|} and two sequences (k1, . . . , kJ) ∈ K and (s1, . . . , sJ) ∈ R such

that: (i) k1 6= . . . 6= kJ and s1 6= . . . 6= sJ , (ii) k1 = l and s1 = p, (iii) ∀ j ∈ {1, . . . , J − 1}, sj ∈ Rkj ∩ Rkj+1 , and (iv)

sJ = s and s ∈ RkJ .

Similarly, we can use Lemma 4 with q. Since Condition (∗) does not hold, then q /∈ Tp,l and thus p 6= Tq,l. Therefore,

we know that there exists t ∈ Tq,l such that
∑
k∈Kt

d∗tk /∈ N. With the same argument, we know that if

zt = max
{
z ∈ {∼zt, . . . , Z} | f∗tz > 0

}
and zt = min

{
z ∈ {∼zt, . . . , Z} | f∗tz > 0

}
,

then

zt > zt, f
∗
tzt /∈ {0, 1} and f∗tzt /∈ {0, 1}.

In addition, there exists I ∈ {2, . . . , |K|} and two sequences (l1, . . . , lI) ∈ K and (t1, . . . , tI) ∈ R such that: (i) l1 6= . . . 6= lI

and t1 6= . . . 6= tI , (ii) l1 = l and t1 = q, (iii) ∀ i ∈ {1, . . . , I − 1}, ti ∈ Rli ∩Rli+1
, and (iv) tI = t and t ∈ RlI .

43

Note that q /∈ Tp,l implies that ∀(j, i) ∈ {1, . . . , J} × {1, . . . , I}, sj 6= ti and kj 6= li. We now consider

ε = min



min
j∈{1,...,J−1}

{
d∗sjkj , 1− d∗sjkj , d∗sjkj+1

, 1− d∗sjkj+1

}
, d∗sJkJ , 1− d∗sJkJ ,

min
i∈{1,...,I−1}

{
d∗tili , 1− d∗tili , d∗tili+1

, 1− d∗tili+1

}
, d∗tI lI , 1− d∗tI lI ,(

zs − zs
)
f∗szs ,

(
zs − zs

) (
1− f∗szs

)
,
(
zs − zs

)
f∗szs ,

(
zs − zs

) (
1− f∗szs

)
,(

zt − zt
)
f∗tzt ,

(
zt − zt

) (
1− f∗tzt

)
,
(
zt − zt

)
f∗tzt ,

(
zt − zt

) (
1− f∗tzt

)
,


> 0.

and D1 =
(
d1, f1

)
and D2 =

(
d2, f2

)
such that

∀ j ∈ {1, . . . , J − 1},
{

d1
sjkj

= d∗sjkj − ε
d1
sjkj+1

= d∗sjkj+1
+ ε

∀ j ∈ {1, . . . , J − 1},
{

d2
sjkj

= d∗sjkj + ε

d2
sjkj+1

= d∗sjkj+1
− ε

∀ i ∈ {1, . . . , I − 1},
{

d1
tili

= d∗tili + ε

d1
tili+1

= d∗tili+1
− ε ∀ i ∈ {1, . . . , I − 1},

{
d2
tili

= d∗tili − ε
d2
tili+1

= d∗tili+1
+ ε

d1
skJ = d∗skJ − ε d2

skJ = d∗skJ + ε

d1
tlI = d∗tlI + ε d2

tlI = d∗tlI − ε

f1
szs = f∗szs +

ε

zs − zs
f2
szs = f∗szs −

ε

zs − zs
f1
szs = f∗szs −

ε

zs − zs
f2
szs = f∗szs +

ε

zs − zs
f1
tzt = f∗tzt −

ε

zt − zt
f2
tzt = f∗tzt +

ε

zt − zt
f1
tzt = f∗tzt +

ε

zt − zt
f2
tzt = f∗tzt −

ε

zt − zt

otherwise d1
rk = d2

rk = d∗rk and f1
rz = f2

rz = f∗rz. We illustrate the changes made in D1 and D2 compared to D∗ in Figure

11.

...

...

+ ✏

+ ✏

+ ✏

+ ✏
+ ✏

� ✏

� ✏

� ✏

� ✏

� ✏

k2

kJ

lI

tI-1

sJ-1

l = k1 = l1

l2

0

0

0

0

s1 = p

t1 = q

tI = t

sJ = s

(a) Illustration of D1

...

...

+ ✏

+ ✏

+ ✏

+ ✏

+ ✏

� ✏

� ✏

� ✏

� ✏
� ✏

k2

kJ

lI

tI-1

sJ-1

l = k1 = l1

l2

0

0

0

0

sJ = s

s1 = p

t1 = q

tI = t

(b) Illustration of D2

Figure 11: Illustration of two feasible points D1 and D2 such that their average is an extreme point D∗ in the case
where Condition (∗) does not hold but Condition (∗∗) does. Numbers on the right show the change of balance for nodes
(sj)j∈{1,...,J} and (ti)i∈{1,...,I}.

Let us show that D1, D2 ∈ L(w). First, by definition of ε, 0 6 d1, d2 6 1 and 0 6 f1, f2 6 1. Moreover, let us prove

that ∀k ∈ {1, . . . , N},
∑
r∈Eνk

d1
rk =

∑
r∈Eνk

d2
rk =

∑
r∈Eνk

d∗rk. Indeed, let k ∈ {1, . . . , N}

44

• If ∀j ∈ {2, . . . , J}, k 6= kj and ∀i ∈ {2, . . . , I}, k 6= li and k 6= l, then ∀ r ∈ Eνk , d1
rk = d2

rk = d∗rk, thus∑
r∈Eνk

d1
rk =

∑
r∈Eνk

d2
rk =

∑
r∈Eνk

d∗rk.

• If ∃j ∈ {2, . . . , J}, k = kj , then we have∑
r∈Eνkj

d1
rkj =

∑
r∈Eνkj
r 6=rj ,rj−1

d1
rkj + d1

rjkj + d1
rj−1kj =

∑
r∈Eνkj
r 6=rj ,rj−1

d∗rkj + d∗rjkj − ε+ d∗rj−1kj + ε =
∑

r∈Eνkj

d∗rkj ,

and ∑
r∈Eνkj

d2
rkj =

∑
r∈Eνkj
r 6=rj ,rj−1

d2
rkj + d2

rjkj + d2
rj−1kj =

∑
r∈Eνkj
r 6=rj ,rj−1

d∗rkj + d∗rjkj + ε+ d∗rj−1kj − ε =
∑

r∈Eνkj

d∗rkj .

• If ∃i ∈ {2, . . . , I}, k = li, then we have∑
r∈Eνli

d1
rli =

∑
r∈Eνli
r 6=ti,ti−1

d1
rli + d1

tili + d1
ti−1li =

∑
r∈Eνli
r 6=ti,ti−1

d∗rli + d∗tili + ε+ d∗ti−1li − ε =
∑

r∈Eνli

d∗rli ,

and ∑
r∈Eνli

d2
rli =

∑
r∈Eνli
r 6=ti,ti−1

d2
rli + d2

tili + d2
ti−1li =

∑
r∈Eνli
r 6=ti,ti−1

d∗rli + d∗tili − ε+ d∗ti−1li + ε =
∑

r∈Eνli

d∗rli ,

• If k = l = k1 = l1, then we have∑
r∈Eνl

d1
rl =

∑
r∈Eνl
r 6=p,q

d1
rl + d1

pl + d1
ql =

∑
r∈Eνl
r 6=p,q

d∗rl + d∗pl − ε+ d∗ql + ε =
∑
r∈Eνl

d∗rl,

and ∑
r∈Eνl

d2
rl =

∑
r∈Eνl
r 6=p,q

d2
rl + d2

pl + d2
ql =

∑
r∈Eνl
r 6=p,q

d∗rl + d∗pl + ε+ d∗ql − ε =
∑
r∈Eνl

d∗rl.

Moreover, let r ∈ SB , we check that
(
d1, f1

)
and

(
d2, f2

)
verify the two types of constraints of L(w) associated with r:

• If r 6= s, t, then ∀z ∈ {∼zr, . . . , Z}, f1
rz = f2

rz = f∗rz. In addition, we prove that∑
k∈Kr

d1
rk =

∑
k∈Kr

d2
rk =

∑
k∈Kr

d∗rk,

which by feasibility of D∗ would prove that the two constraints associated with r are satisfied.

� If ∀j ∈ {1, . . . , J − 1}, r 6= rj and ∀i ∈ {1, . . . , I − 1}, r 6= ti, then ∀ k ∈ Kr, d
1
rk = d2

rk = d∗rk, thus∑
k∈Kr

d1
rk =

∑
k∈Kr

d2
rk =

∑
k∈Kr

d∗rk.

� If ∃j ∈ {1, . . . , J − 1}, r = sj , then we have∑
k∈Ksj

d1
sjk =

∑
k∈Ksj

k 6=kj ,kj+1

d1
sjk + d1

sjkj + d1
sjkj+1

=
∑
k∈Ksj

k 6=kj ,kj+1

d∗sjk + d∗sjkj − ε+ d∗sjkj+1
+ ε =

∑
k∈Ksj

d∗sjk,

45

and ∑
k∈Ksj

d2
sjk =

∑
k∈Ksj

k 6=kj ,kj+1

d2
sjk + d2

sjkj + d2
sjkj+1

=
∑
k∈Ksj

k 6=kj ,kj+1

d∗sjk + d∗sjkj + ε+ d∗sjkj+1
− ε =

∑
k∈Ksj

d∗sjk.

� If ∃i ∈ {1, . . . , I − 1}, r = ti, then we have∑
k∈Kti

d1
tik =

∑
k∈Kti
k 6=li,li+1

d1
tik + d1

tili + d1
tili+1

=
∑
k∈Kti
k 6=li,li+1

d∗tik + d∗tili + ε+ d∗tili+1
− ε =

∑
k∈Kti

d∗tik,

and ∑
k∈Kti

d2
tik =

∑
k∈Kti
k 6=li,li+1

d2
tik + d2

tili + d2
tili+1

=
∑
k∈Kti
k 6=li,li+1

d∗tik + d∗tili − ε+ d∗tili+1
+ ε =

∑
k∈Kti

d∗tik.

• If r = s or r = t, (both cases are similar, we only treat the case of r = s) we have∑
z∈{∼zs,...,Z}

f1
sz =

∑
z∈{∼zs,...,Z}
z 6=zs,zs

f1
sz + f1

szs + f1
szs =

∑
z∈{∼zs,...,Z}
z 6=zs,zs

f∗sz + f∗szs +
ε

zs − zs
+ f∗szs −

ε

zs − zs
=

∑
z∈{∼zs,...,Z}

f∗sz = 1,

and ∑
z∈{∼zs,...,Z}

f2
sz =

∑
z∈{∼zs,...,Z}
z 6=zs,zs

f2
sz + f2

szs + f2
szs =

∑
z∈{∼zs,...,Z}
z 6=zs,zs

f∗sz + f∗szs −
ε

zs − zs
+ f∗szs +

ε

zs − zs
=

∑
z∈{∼zs,...,Z}

f∗sz = 1,

Moreover,

∑
z∈{∼zs,...,Z}

zf1
sz −

∑
k∈Ks

d1
sk =

∑
z∈{∼zs,...,Z}
z 6=zs,zs

zf1
sz + zsf

1
szs + zsf

1
szs −

∑
k∈Ks
k 6=kJ

d1
sk + d1

skJ



=
∑

z∈{∼zs,...,Z}
z 6=zs,zs

zf∗sz + zsf
∗
szs +

εzs

zs − zs
+ zsf

∗
szs −

εzs
zs − zs

−

∑
k∈Ks
k 6=kJ

d∗sk + d∗skJ − ε


=

∑
z∈{∼zs,...,Z}

zf∗sz −
∑
k∈Ks

d∗sk =
∼
zs.

Similarly,

∑
z∈{∼zs,...,Z}

zf2
sz −

∑
k∈Ks

d2
sk =

∑
z∈{∼zs,...,Z}
z 6=zs,zs

zf2
sz + zsf

2
szs + zsf

2
szs −

∑
k∈Ks
k 6=kJ

d2
sk + d2

skJ



=
∑

z∈{∼zs,...,Z}
z 6=zs,zs

zf∗sz + zsf
∗
szs −

εzs

zs − zs
+ zsf

∗
szs +

εzs
zs − zs

−

∑
k∈Ks
k 6=kJ

d∗sk + d∗skJ + ε


=

∑
z∈{∼zs,...,Z}

zf∗sz −
∑
k∈Ks

d∗sk =
∼
zs.

In conclusion, D1, D2 ∈ L(w). However, it is clear that d∗ = 1
2

(
d1 + d2

)
and f∗ = 1

2

(
f1 + f2

)
so D∗ = 1

2

(
D1 +D2

)
, and

46

since ε > 0, D1 6= D2 6= D∗, In conclusion, D∗ is not an extreme point which leads to a contradiction and concludes the

proof of Theorem 1.

47

Proof of Lemma 4. Suppose by contradiction that q /∈ Tp,l and ∀ r ∈ Tp,l, we have∑
k∈Kr

d∗rk ∈ N.

Let r ∈ Tp,l ⊂ R, then by definition we have ∀ k ∈ Kr \ Kr, d∗rk ∈ {0, 1}. Consequently,∑
k∈Kr

d∗rk ∈ N.

By summing on all r ∈ Tp,l, then

if Θ =
∑
r∈Tp,l

∑
k∈Kr

d∗rk, then Θ ∈ N.

Now consider

Kp,l = {k ∈ K |∃ r ∈ Tp,l s.t. k ∈ Kr } .

Let k ∈ Kp,l, then we have

{r ∈ Tp,l |k ∈ Kr } = {r ∈ Tp,l |r ∈ Rk } = Rk ∩ Tp,l,

thus

Θ =
∑
r∈Tp,l

∑
k∈Kr

d∗rk =
∑
k∈Kp,l

∑
r∈{r′∈Tp,l|k∈Kr′ }

d∗rk =
∑
k∈Kp,l

∑
r∈Rk∩Tp,l

d∗rk.

Let k ∈ Kp,l \ {l}. Let us show that

Rk ∩ Tp,l = Rk.

In order to do so, we prove that Rk ⊂ Tp,l, i.e., let s ∈ Rk then we prove that s ∈ Tp,l. If s = p, then s ∈ Tp,l. Now

suppose that s 6= p. First, since k ∈ Kp,l, then by definition there exists r ∈ Tp,l such that k ∈ Kr, thus r ∈ Rk. If r = s,

then s ∈ Tp,l. Otherwise, we have r 6= s. In addition, since k 6= l, we can assume that r 6= p. Indeed, as we have shown

for the existence of q in Theorem 2, if |Rk| 6= 0, then |Rk| > 2. Consequently, we take r ∈ Tp,l such that r 6= p. So there

exists J ∈ {2, . . . , |K|} and two sequences (k1, . . . , kJ) ∈ K and (r1, . . . , rJ) ∈ R that verifies properties (i), (ii), (iii) and

(iv) rJ = r and r ∈ RkJ . We consider three sub-cases. In each cases, we construct I ∈ {2, . . . , |K|} and two new sequences

(l1, . . . , lI) ∈ K, (s1, . . . , sI) ∈ R that verifies properties (i), (ii), (iii) and (iv) sI = s and s ∈ RlI , hence getting the result

s ∈ Tp,l.

� If there exists j ∈ {2, . . . , J} such that rj = s, then consider I = j ∈ {2, . . . , |K|} and

(l1, . . . , lI) = (k1, . . . , kj) ∈ K and (s1, . . . , sI) = (r1, . . . , rj) ∈ R.

Clearly, (l1, . . . , lI) and (s1, . . . , sI) verify properties (i), (ii), (iii) and (iv) sI = s and s ∈ RlI .

� If r /∈ {r2, . . . , rJ} but there exists j ∈ {2, . . . , J} such that kj = k. In this case, consider I = j ∈ {2, . . . , |K|} and

(l1, . . . , lI) = (k1, . . . , kj) ∈ K and (s1, . . . , sI−1, sI) = (r1, . . . , rj−1, s) ∈ R.

Clearly, (l1, . . . , lI) and (s1, . . . , sI) verify properties (i), (ii), (iii) and (iv) sI = s and s ∈ RlI .

� If r /∈ {r2, . . . , rJ} and k /∈ {k2, . . . , kJ}. Since k /∈ {k1, . . . , kJ}, then we must have J < |K|. Consider I = J + 1 ∈
{2, . . . , |K|} and

(l1, . . . , lI) = (k1, . . . , kJ , k) ∈ K and (s1, . . . , sI) = (r1, . . . , rJ , r) ∈ R.

Clearly, (l1, . . . , lI) and (s1, . . . , sI) verify properties (i), (ii) and (iv) sI = s and s ∈ RlI = Rk. Note that ∀ i ∈
{1, . . . , I − 1}, property (iii) holds by definition of (k1, . . . , kJ) and (r1, . . . , rJ). In addition, we have sI−1 = rJ ∈
RkJ = RsI−1

by definition, and sI−1 = rJ = r ∈ Rk = RsI which proves property (iii).

48

In any case, s ∈ Tp,l and thus Rk ⊂ Tp,l and Rk ∩ Tp,l = Rk. Using this fact, we have

Θ =
∑
k∈Kp,l

∑
r∈Rk∩Tp,l

d∗rk

=
∑

k∈Kp,l\{l}

∑
r∈Rk∩Tp,l

d∗rk +
∑

r∈Rl∩Tp,l

d∗rl

=
∑

k∈Kp,l\{l}

∑
r∈Rk

d∗rk +
∑

r∈Rl∩Tp,l

d∗rl

= Θ1 + Θ2,

where Θ1 =
∑

k∈Kp,l\{l}

∑
r∈Rk

d∗rk and Θ2 =
∑

r∈Rl∩Tp,l

d∗rl. We know that Θ ∈ N and we now show that Θ1 ∈ N but Θ2 /∈ N,

which leads to the contradiction.

First, by definition, we have Kp,l \ {l} ⊂ {1, . . . , N} and
∑
r∈Eνk

d∗rk =
∑
r∈Rk

d∗rk. By feasibility of d∗, we must have

∀ k ∈ Kp,l \ {l},
∑
r∈Rk

d∗rk = 1 ∈ N,

which by summing over all k ∈ Kp,l \ {l} gives ∑
k∈Kp,l\{l}

∑
r∈Rk

d∗rk ∈ N,

so

Θ1 ∈ N.

Second, we have by definition p ∈ Tp,l ∩Rl, so by non-negativity of d∗, we have

Θ2 =
∑

r∈Rl∩Tp,l

d∗rl > d∗pl > 0.

Similarly, since q ∈ Rl \ Tp,l we have ∑
r∈Rl\Tp,l

d∗rl > d∗ql > 0,

Using the feasibility of d∗ we have

1 =
∑
r∈Rl

d∗rl =
∑

r∈Rl\Tp,l

d∗rl +
∑

r∈Rl∩Tp,l

d∗rl =
∑

r∈Rl\Tp,l

d∗rl + Θ2 > Θ2.

Therefore, 0 < Θ2 < 1, so

Θ2 /∈ N.

In conclusion, we have

Θ = Θ1 + Θ2,

with Θ ∈ N, Θ1 ∈ N but Θ2 /∈ N, leading to a contradiction and proving Lemma 4.

49

Theorem 2. Let w ∈ W∩{0, 1}. If D∗ is an extreme point of L(w) such that D∗ = argmin
D∈L(w)

(
cTD

)
and γ verifies Condition

(A), then

D∗ ∈ {0, 1}.

Proof. We have proven in Theorem 1. that if D∗ = (d∗, f∗) is an extreme point of L(w), then d∗ ∈ {0, 1}. Now we further

assume that D∗ is optimal and that γ verifies Condition (A) to show that f∗ ∈ {0, 1} by contradiction. Let r ∈ SB , since

∀ k ∈ Kr, d
∗
rk ∈ {0, . . . , 1}, then we have

∑
k∈Kr

d∗rk ∈ N. Therefore, we have

if z∗ =
∼
zr +

∑
k∈Kr

d∗rk, then z∗ ∈ N.

Note that we omit the r index in z∗ just for the sake of clarity. Recall that since D∗ is feasible, we have∑
z∈{∼zr,...,Z}

zf∗rz =
∼
zr +

∑
k∈Kr

d∗rk = z∗.

Let us show that f∗rz∗ = 1, and f∗rz = 0 otherwise. First, if z∗ =
∼
zr or z∗ = Z, then the only feasible solution is f∗rz∗ = 1,

and f∗rz = 0 otherwise.

Otherwise, we have z∗ ∈ {∼zr+1, . . . , Z−1}. Let us suppose by contradiction that f∗rz∗ < 1. Then, since
∑

z∈{∼zr,...,Z}

zf∗rz =

z∗, there exist z and z such that z < z∗ < z with f∗rz > 0 and f∗rz > 0. Let

ε = min
{

(z − z∗) f∗rz, (z∗ − z) f∗rz
}
> 0,

and consider

frz = f∗rz −
ε

z − z∗ , frz = f∗rz −
ε

z∗ − z and frz∗ = f∗rz∗ +
ε

z − z∗ +
ε

z∗ − z .

Let us show that (d∗, f) ∈ L(w). First, we have∑
z∈{∼zr,...,Z}

frz =
∑

z∈{∼zr,...,Z}
z 6=z,z,z∗

frz + frz + frz + frz∗

=
∑

z∈{∼zr,...,Z}
z 6=z,z,z∗

f∗rz + f∗rz −
ε

z − z∗ + f∗rz −
ε

z∗ − z + f∗rz∗ +
ε

z − z∗ +
ε

z∗ − z

=
∑

z∈{∼zr,...,Z}

f∗rz = 1.

Moreover, by definition of ε, we have 1 > f∗rz > frz > 0, 1 > f∗rz > frz > 0, frz∗ > f∗rz∗ > 0 and since
∑

z∈{∼zr,...,Z}

frz = 1,

50

we have frz∗ 6 1. Thus 0 6 f 6 1. Finally,∑
z∈{∼zr,...,Z}

zfrz =
∑

z∈{∼zr,...,Z}
z 6=z,z,z∗

zfrz + zfrz + zfrz + z∗frz∗

=
∑

z∈{∼zr,...,Z}
z 6=z,z,z∗

zf∗rz + zf∗rz −
zε

z − z∗ + zf∗rz −
zε

z∗ − z + z∗f∗rz∗ +
z∗ε

z − z∗ +
z∗ε

z∗ − z

=
∑

z∈{∼zr,...,Z}

zf∗rz − ε+ ε

=
∑

z∈{∼zr,...,Z}

zf∗rz = z∗.

so (d∗, f) ∈ L(w). Consequently, by optimality of (d∗, f∗), we have∑
z∈{∼zr,...,Z}

βzfrz >
∑

z∈{∼zr,...,Z}

βzf
∗
rz.

However,∑
z∈{∼zr,...,Z}

βzfrz =
∑

z∈{∼zr,...,Z}
z 6=z,z,z∗

βzfrz + βzfrz + βzfrz + βz∗frz∗

=
∑

z∈{∼zr,...,Z}
z 6=z,z,z∗

βzf
∗
rz + βzf

∗
rz −

ε

z − z∗ βz + βzf
∗
rz −

ε

z∗ − z βz + βz∗f
∗
rz∗ +

(
ε

z − z∗ +
ε

z∗ − z

)
βz∗

=
∑

z∈{∼zr,...,Z}

βzf
∗
rz −

ε (z − z)
(z − z∗) (z∗ − z)

(
z∗ − z
z − z βz +

z − z∗
z − z βz − βz∗

)
.

Since γ verifies Condition (A), z∗, z, z ∈ {0, . . . , Z} and z < z∗ < z, then using Lemma 2, we have

z∗ − z
z − z βz +

z − z∗
z − z βz > βz∗ .

Therefore, we have ∑
z∈{∼zr,...,Z}

βzfrz <
∑

z∈{∼zr,...,Z}

βzf
∗
rz

which leads to a contradiction and concludes the proof of Theorem 2.

51

C Speed up of Λ(v)

Recall that Λ(v) corresponds to

min
(w,D)

(
cTD

)
Equation (20)

s.t.


D ∈ D
(w,D) ∈ L∑
s∈Ln

wnsκn = 1

Equations (7)-(12)

Equations (13)-(14)

∀ n ∈ {1, . . . , N}

As we mention in Section 5, there are several variables that we can set up to 0. Among these, we have the four following

ones:

∀ n, k ∈ {1, . . . , N} s.t. k 6= κn, then ∀ s ∈ Ln, wnsk = 0.

Let n{1, . . . , N} s.t. κn = 1, then ∀ s ∈ S(E) \ Ln, dis = 0.

∀ k ∈ {1, . . . , N} s.t. κn = k, then ∀ s ∈ S(L) \ Ln,∀ r ∈ S(E) \ En, d(L)
srk = 0.

∀ k ∈ {2, . . . , N} s.t. κn = k − 1 and κm = k, then ∀ r ∈ S(E) \ En,∀ s ∈ S(L) \ Lm, d(E)
rsk = 0.

52

	Introduction
	Problem description
	Problem geometry
	Requests
	Objective function

	Literature review and contributions
	Yard Crane Scheduling
	Container relocation problem
	Contributions to the literature

	Binary integer program
	Formulation
	Variables
	Constraints
	Objective function
	Summary of formulation

	Relaxation of integrality conditions
	Subproblem reformulation
	Integrality of (w)

	Heuristic procedure for real-time operations
	Search space decomposition
	1st stage: restricted sampling on L
	2nd stage: Repeated-random-start local search on V {0,1}

	Computational experiments
	Randomly generated instances
	Simulation parameters
	Performance of different algorithms
	Impact of parameter
	Impact of parameter N

	Data from a real terminal
	Data processing
	Results

	Main insights

	Conclusion
	Assumptions and notations summary
	Main assumptions
	Notations

	Technical Proofs
	Speed up of (v)

