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Motivated by applications from ride-sharing and kidney exchange, we study the problem of matching agents

who arrive at a marketplace over time and leave after d time periods. Agents can only be matched while they

are present in the marketplace. Each pair of agents can yield a different match value, and the planner’s goal is

to maximize the total value over a finite time horizon.

First we study the case in which vertices arrive in an adversarial order. We provide a randomized 1/4-

competitive algorithm building on a result by Feldman et al. [14] and Lehmann et al. [23]. We extend the

model to the case in which departure times are drawn independently from a distribution with non-decreasing

hazard rate, for which we establish a 1/8-competitive algorithm.

When the arrival order is chosen uniformly at random, we show that a batching algorithm, which computes

a maximum-weighted matching every (d + 1) periods, is 0.279-competitive.
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1 INTRODUCTION
Traffic congestion is a severe problem in metropolitan areas around the world. A resident in Los

Angeles is estimated to lose around $6,000 per year due to spending extra hours in traffic (Economist

2014). A couple of ways to relieve congestion are pricing [34] and carpooling, and online platforms

and other technological advances are now available to assist with these tasks [28].
1

Online ride-sharing platforms now offer the option to share rides which may contribute to

reducing congestion. Passengers who share rides also share the cost thereby paying a lower price

for their rides and can further use high occupancy lanes. However, a passenger may also experience
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additional waiting, detours, and less privacy. Facing these trade-offs, ride-sharing platforms seek to

increase the volume of shared rides, which will in turn help in reducing congestion.

This paper is concerned with the problem of matching two passengers together for carpooling

in the context of an on-demand ride-sharing platform. We present and study a stylized graph-

theoretic matching problem that captures the following three key features faced by ride-sharing

platforms. First is spatial; the farther away two passengers’ pickup locations or the more mismatch

between their routes, the higher the disutility from being matched. Second is temporal; ride-sharing

platforms offer passengers the option of waiting for a few minutes, during which time they are

eligible to be matched to one another. Third, the platform faces uncertainty about future demand,

and needs to commit to matching decisions within the waiting period that the passengers have

agreed to with imperfect knowledge of future matching opportunities.

The spatial aspect is captured by modeling passengers as vertices of a graph. Time is discrete and

one vertex arrives at each time period. An edge of the graph has a non-negative weight which is

the utility from matching the two passenger-vertices. A vertex cannot match more than d periods

after its arrival; after d units of time the vertex becomes critical and departs. It is useful to interpret

d as a service quality set by the platform: it is the maximum waiting period for a passenger to

get matched and if the platform is unable to match a given passenger within d units of time since

arrival, then the passenger must be assigned to a single ride.

The goal is to find a weighted matching with a large total weight in an online manner. This

means that the decision for every vertex has to be made no later than d periods after its arrival (this

differs from the classic online bipartite matching literature, in which d = 0). There is no a priori

information about edge weights and the underlying graph may be arbitrary and hence non-bipartite.

Contributions
Our first results are given for the setting in which the vertices arrive in an adversarial order. We

introduce for this setting a 1/4-competitive algorithm, termed Postponed Greedy (PG). We further

show that no algorithm achieves a competitive ratio that is higher than 1/2.

The key idea behind PG is to look at a virtual bipartite graph, in which each vertex is duplicated

into a “buyer" and a “seller" copy. We enforce that the seller copy does not match before the vertex

becomes critical. This enables us to postpone the matching decision until we have more information

about the graph structure and the likely matchings. We then proceed in a manner similar to [14]:

tentatively match each new buyer copy to the seller that maximizes its margin, i.e., the difference

between the weight of the edge with the seller and the value of the seller’s current match.

We extend the model to the case where the departure of vertices are determined stochastically.

We show that when the departure distribution is memoryless and realized departure times are

revealed to the algorithm just when becoming critical, one can adapt the PG algorithm to achieve a

competitive ratio of 1/8. It is worth noting that when departure times are chosen in an adversarial

manner no algorithm can achieve a constant competitive ratio.

Next we study the setting, in which vertices arrive in a random order. We analyze a batching
algorithm which, every d + 1 time steps, computes a maximum weighted matching among the last

d + 1 arrivals (batching-like algorithms are commonly used in ride-sharing platforms).
2
Vertices

that are left unmatched are discarded forever (again, one can interpret discards as single rides). We

show that when the number of vertices is sufficiently large, batching is 0.279-competitive.

The analysis proceeds in three steps. First, we show that the competitive ratio is bounded by the

solution to a graph covering problem. Second, we show how a solution for small graphs can be

extended to covers for larger graphs. Finally, we establish a reduction that allows us to consider

2
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only a finite set of values for d . We conclude with a computer-aided argument for graphs in the

finite family.

Related literature
There is a growing literature related to ride-sharing. Santi et al. [31] finds that about 80% of rides in

Manhattan could be shared by two passengers. Many studies focus on rebalancing or dispatching

problems without pooling, e.g., Banerjee et al. [9], Pavone et al. [30], Santi et al. [31], Spieser et al.

[32], Zhang and Pavone [35]. Alonso-Mora et al. [3] studies real-time high-capacity ride-sharing.

They do not consider, however, a graph-theoretic online formulation for matching rides.

This paper is closely related to the online matching literature. In the classic problem, introduced

in Karp et al. [21], the graph is bipartite with vertices on one side waiting, while others are arriving

sequentially and have to be matched immediately upon arrival. This work has numerous extensions,

for example to stochastic arrivals and in the adwords context [15, 16, 20, 25, 27]. See [26] for a

detailed survey. Our work contributes to this literature in three ways. First and foremost, our graph

can be non-bipartite, which is the case in applications such as ride-sharing and kidney exchange.

Second, all vertices arrive over time and remain for some given time until they are matched or hit

their deadline and depart. Third, we provide algorithms that perform well on edge-weighted graphs.

Closely related is Huang et al. [18, 19], which studies a similar model to ours in the non-weighted

case, but allow departure times to be adversarial.

Several papers consider the problem of dynamic matching in the edge-weighted case. Feldman

et al. [14] find that in the classic online bipartite setting, no algorithm achieves a constant approxi-

mation. They introduce a free disposal assumption, which allows to discard a matched vertex in

favor of a new arriving vertex. They find, based on an algorithm by Lehmann et al. [23], that a

greedy algorithm that matches a vertex to the highest marginal vertex, is 0.5-competitive. We build

on this result for a special class of bipartite graphs. In the adversarial setting, Ashlagi et al. [5], Emek

et al. [13] study the problem of minimizing the sum of distances between matched vertices and the

sum of their waiting times. In their model no vertex leaves unmatched. Few papers consider the

stochastic setting [8, 17, 29]. These papers find that some waiting before matching is beneficial for

improving efficiency.

Related to our work are some works on job or packet scheduling. Jobs arrive online to a buffer,

and reveal upon arrival the deadline by which they need to be scheduled. The algorithm can

schedule at most one job per time and the value of scheduling a job is independent of the time slot.

Constant approximation algorithms are given by Chin et al. [11] and Li et al. [24].

Finally, there is a growing literature that focuses on dynamic matching motivated by kidney

exchange [4, 6, 12, 33]. These papers focus mostly on random graphs with no weights. Closer to

our paper is [2], which finds that in a sparse random graph, knowledge about the departure time

of a vertex is beneficial and matching a vertex only when it becomes critical performs well. Our

work differs from these papers in two ways: we consider the edge-weighted case, and, we make no

assumption on the graph structure.

2 MODEL
Consider a weighted graphG with n vertices indexed by i = 1, . . .n. Vertices arrive sequentially
over n periods and let σ (i) denote the arrival time of vertex i . Let vi j ≥ 0 denote the weight on the

undirected edge (i, j) between vertices i and j.
For vertices i and j with σ (i) < σ (j), the weight vi j on the edge between i and j is observed only

after vertex j has arrived.
For d ≥ 1, the online graph with deadline d , denoted byGd,σ , has the same vertices asG , and

the edge between i and j inG exists if an only if |σ (i) −σ (j)| ≤ d . We say that i becomes critical at



time σ (i)+d , at which time the online algorithm needs to either match it and collect the associated

edge weight, or let it remain unmatched.

We will consider two settings regarding how arrivals are generated. In the Adversarial Order

(AO) setting, we assume that σ (i) = i . In the Random Order (RO) setting, we assume that σ is

sampled uniformly at random among all possible permutations Sn of [1,n].
The goal is to find an online algorithm that generates a matching with high total weight. More

precisely, we seek to design a randomized online algorithm that obtains in expectation a high

fraction of the expected maximum-weight of a matching over Gd,σ .

To illustrate a natural tradeoff, consider the example in Figure 1 for d = 1. At time 2, the planner

can either match vertices 1 and 2 or let vertex 1 remain unmatched. This simple example shows

that no deterministic algorithm can obtain a constant competitive ratio. Furthermore, no algorithm

can achieve a competitive ratio higher than 1/2.

1 2 3

v1,2 = 1 v2,3 = y

Fig. 1. Let d = 1. Therefore, there is no edge between vertices 1 and 3. The algorithm needs to decide whether
to match 1 with 2 and collect v1,2 without knowing y.

3 ADVERSARIAL ORDER (AO) OF ARRIVALS
The example in Figure 1 illustrates a necessary condition for the algorithm to achieve a constant

competitive ratio: with some probability, vertex 2 needs to forgo the match with vertex 1. We ensure

this property by assigning every vertex to be either a seller or a buyer. We then prevent sellers from

matching before they become critical, while we allow buyers to be matched at any time.

It will be useful to first study a special case, in which the underlying graph G is bipartite, with

sellers on one side and buyers on the other, and in the online graph a buyer and a seller cannot match

if the buyer arrives before the seller. For such online graphs we show that a greedy algorithm given

by Feldman et al. [14] is 0.5-competitive. We then build on this algorithm to design a randomized

1/4-competitive algorithm for arbitrary graphs.

3.1 Bipartite constrained online graphs
LetG be a bipartite graph andσ be the order of arrivals. The online graphGd,σ is called constrained
bipartite if for every seller s and every buyer b, there is no edge between s and b if σ (b) < σ (s), i.e.
b and s cannot match if b arrives before s .

Consider the following greedy algorithm, which attempts to match buyers in their arriving order.

An arriving buyer b is matched to the seller with the highest marginal value if the marginal value

is positive. If the seller is already matched to another buyer b ′, b ′ becomes unmatched and never

gets matched again. Formally:

Proposition 3.1 (Feldman et al. [14]). The greedy algorithm is 0.5-competitive for online bipartite
constrained graphs.

Feldman et al. [14] prove that this algorithm is 0.5-competitive for an online matching problem

with free disposal. In their setting all seller exists and buyer arrive one at a time. The algorithm

provides the same guarantees for constrained bipartite graph since, by construction, there is no

harm in assuming that all sellers exist rather than arriving over time. The key behind the proof is



Algorithm 1 Greedy algorithm [14]

• Input: constrained bipartite graph, Gd,σ .

• For each arrival i = 1, . . . ,n:
– If i is a seller, initialize p(i) = 0, andm(s) = null .
– If i is a buyer:
∗ Set s = argmaxs ′∈S {vis ′ − p(s

′)}, where S denote the set of sellers already arrived.

∗ If vis − p(s) > 0, setm(s) = i and set p(s) = vis .
• When a seller s becomes critical: match it to b =m(s) ifm(s) , null .

that the value p(s) function for each seller s is submodular. In fact the result is a special case of a

result by Lehmann et al. [23], who study combinatorial auctions with submodular valuations.

3.2 Arbitrary graphs
In this section we extend the greedy algorithm for constrained bipartite graphs to arbitrary graphs.

A naive way to generate a online constrained bipartite graph from an arbitrary one is to randomly

assign each vertex to be either a seller or a buyer, independently and with probability 1/2. Then only

keep the edges between each buyer and all the sellers who arrived before her. Formally:

Algorithm 2 Naive Greedy

• Input: an online graph with deadline d , Gd,σ .

• For each vertex t = 1, . . . ,n:
Toss a fair coin to decide whether i is a seller or a buyer. Construct the online constrained
bipartite graph G̃(d,σ ) by keeping only the edges between each buyer and the sellers who

arrived before her.

• Run the Greedy algorithm on G̃(d,σ ).

Corollary 3.2. The naive greedy algorithm is 1/8-competitive for arbitrary online graphs.

Observe that for vertices i , j with σ (i) < σ (j), edge (i, j) in the original graph remains in the

generated constrained bipartite graph with probability 1/4 (if i is a seller and j is a buyer). We then

use proposition 3.1 to prove that naive greedy is 1/8-competitive.

One source of inefficiency in the naive greedy algorithm is that the decision whether a vertex

becomes a seller or a buyer is done independently at random and without taking the graph structure

into consideration. We next introduce the Postponed Greedy algorithm that defers these decisions

as long as possible in order to construct the constrained bipartite graph more carefully.

When a vertex k arrives, we add two copies of k to a virtual graph: a seller sk and a buyer bk . Let
St and Bt be the set of sellers and buyers at arrival time t . On arrival, seller sk does not have any

edges, and buyer bk has edges towards any vertex sl ∈ Sk with value vl,k . Then we run the greedy

algorithm with the virtual graph as input. When a vertex k becomes critical, sk becomes critical in

the virtual graph, and we compute its matches generated by greedy.

Both sk and bk can be matched in this process. If we were to honor both matches, the outcome

would correspond to a 2-matching, in which each vertex has degree at most 2. Now observe that

because of the structure of the constrained bipartite graph, this 2-matching does not have any

cycles; it is just a collection of disjoint paths. We decompose each path into two disjoint matchings

and choose each matching with probability 1/2.

In order to do that, the algorithm must determine, for each original vertex k , whether the virtual
buyer bk or virtual seller sk will be used in the final matching. We say that k is a buyer or seller



depending on which copy is used. We say that vertex k is undetermined when the algorithm has not

yet determined which virtual vertex will be used. When an undetermined vertex becomes critical,

the algorithm flips a fair coin to decide whether to match according to the buyer or seller copy.

This decision is then propagated to the next vertex in the 2-matching: if k is a seller then the next

vertex will be a buyer and vice-versa. That ensures that assignments are correlated and saves a

factor 2 compared to uncorrelated assignments in the naive greedy algorithm.

Algorithm 3 Postponed Greedy (PG)

• Input: an online graph with deadline d , Gd,σ .

• Process events at time t in the following way:

(1) Arrival of a vertex k :
(a) Set k’s status to be undetermined.
(b) Add a virtual seller: St ← St−1 ∪ {sk }, p(sk ) ← 0 andm(sk ) = ∅.
(c) Add a virtual buyer: Bt ← Bt−1 ∪ {bk }.
(d) Find a virtual seller for the virtual buyer: s = argmaxs ′∈Stvs ′,bk − p(s

′).

(e) Match if marginal utility is positive: If vs,bk − p(s) > 0, then tentatively match bk to s by
settingm(s) ← bk and p(s) ← vs,bk .

(2) Vertex k becomes critical:
(a) Proceed if no match found: Ifm(sk ) = ∅, do nothing.

(b) Match in the virtual graph: Ifm(sk ) = bl . Set St ← St \ {sk }, and Bt ← Bt \ {bl }.
(c) If k’s status is undetermined, w.p 1/2 set it to be either seller or buyer.
(i) If k is a seller: finalize the matching of k to l and collect the reward vk,l . Set l ’s status

to be a buyer.

(ii) If k is a buyer: Set l ’s status to be a seller.

Theorem 3.3. The postponed greedy (PG) algorithm is 1/4-competitive for arbitrary online graphs.

All missing proofs appear in the full version.

3.3 Lower bounds
Claim 3.4. When the input is a constrained bipartite graph:

- No deterministic algorithm can obtain a competitive ratio above
√
5−1

2
≈ 0.618.

- No randomized algorithm can obtain a competitive ratio above 4

5
.

Next we show that our analysis for PG is tight.

Claim 3.5. There exists a constrained bipartite graph for which PG is 1/(4−2ϵ ) -competitive.

4 RANDOM PERMUTATION (RP) OF ARRIVALS
In some cases, the vertices can be assumed to come from a distribution that is unknown to the

online algorithm. One way to model this is to assume that the adversary chooses the underlying

graph, but that the vertices arrive in random order.

4.1 The batching algorithm
The batching algorithm computes a maximum-weight matching every d +1 time steps. Every vertex

in the matching is then matched, and all other vertices in the batch are discarded.

Theorem 4.1. Batching is (0.279 +O(1/n))-competitive.



The proof of Theorem 4.1 works in three steps. In a first step, we reduce the analysis of the

competitive ratio of Batching to a graph covering problem. More precisely, we show that it is

enough to coverCd
n , the cycle with n vertices to the power d , with ensembles of cliques. Second, we

show how a cover for small n can be extended to any n at the cost of a small rounding error. Finally,

we establish a reduction that allows us to consider only a finite set of values for d . We conclude

with a computer-aided argument for graphs in the finite family.

We provide here the main steps of the proof.

4.1.1 Reducing to a graph theoretic problem. There is no harm in assuming that the underlying

graph G is a complete. Recall that Sn is the set of all permutations over integers 1, ...,n. For any
deadline d and any arrival sequence σ ∈ Sn , we define the path graph Pdn (σ ) with edge-weight

vi j = 1 if |σ (i) − σ (j)| ≤ d , and vi j = 0 otherwise.
3

Note that every batch in the algorithm has d + 1 vertices except the last batch which may have

fewer vertices. Let bi (σ ,d) be the batch of vertex i under permutation σ and batch size d +1: bi (σ ,d)
is the unique integer such that (d + 1)(bi − 1) < σ (i) ≤ (d + 1)bi .We define the batched graph Bdn(σ )
with edge-weight vi j = 1 if i and j are in the same batch (i.e. bi (σ ,d + 1) = bj (σ ,d + 1)), and vi j = 0

otherwise.
4

For any n ≥ d ≥ 1, denote Cd
n to be the n-cycle to the power d .

Definition 4.2 (Graph operations). For any two graphsH andH ′with vertices 1, ...,n and respective
edge weights vi j ,v

′
i j , we define the following:

(i) The linear combination aH + bH ′ denotes the graph with edge weights avi j + bv
′
i j ,

(ii) The product H ∗ H ′ denotes the graph with edge weights vi j ∗v
′
i j , and

(iii) We say that H is a cover of H ′ if for all i , j, vi, j ≥ v ′i j .

For any graphH , letm(H ) denote the value of a maximum-weight matching overH . Observe that

when the arrival sequence is σ , the graph Pdn (σ ) ∗G = G(d,σ ) and therefore the offline algorithm

collectsm(Pdn (σ ) ∗G). Note that the online algorithm collectsm(Bdn(σ ) ∗G).

Remark 4.3. Observe that for any graphs H ,H ′,G and any a,b ∈ R, we have:
- m(aH + bH ′) ≤ am(H ) + bm(H ′).
- If H is a cover of H ′, then,m(H ∗G) ≥ m(H ′ ∗G).

Definition 4.4 (Periodic permutation). For p < n such that p divides n, we say that a permutation

σ ∈ Sn is p-periodic if for all i ∈ [1,n − p], σ (i + p) ≡ σ (i) + p mod n.
We say that a permutation σ is periodic if there exists p such that σ is p-periodic.

Definition 4.5 ((α ,d)-cover). Let F be an unweighted graph with n vertices. We say that a set of

permutations {σ1, ...,σK } ∈ Sn forms an (α ,d)-cover of F if there exist values λ1, ..., λK ∈ [0, 1]
such that:

(i)

∑
k≤K λkB

d
n(σk ) is a cover of F .

(ii)

∑
k≤K λk = α .

We say that an (α ,d)-cover is p-periodic if for all k , σk is p-periodic.

The next proposition will allow us to abstract away from the weights that are chosen by the

adversary. For any graph H , we denote by Hi j the weight vi j in H .

Proposition 4.6. If there exists an (α ,d)-cover of Cd
n , then batching is 1/α-competitive.

3
Note that Pdn (σ ) corresponds to the path (σ (1), σ (2)), (σ (2), σ (3)), ..., (σ (n − 1), σ (n)) taken to the power d .

4
Note that Bdn (σ ) is a collection of disjoint (d + 1)-cliques.



We have reduced the analysis of Batching to a graph-theoretic problem without edge weights. In

what follows, we will show that we can reduce the problem further to find covers of Cd
n for only

small values of n and d .

4.1.2 Reducing n: periodic covers. We now wish to find (α ,d)-covers for Cd
n for every n and d . In

Proposition 4.7, we show that it is sufficient to find periodic covers for small values of n.

Proposition 4.7. Let p be a multiple of d + 1, and n1 a multiple of p. Any p-periodic (α ,d)-cover
of Cd

n1

can be extended into an (α +O(p/n),d)-cover of Cd
n for any n ≥ n1.

The proof of Proposition 4.7 first considers the case in which in which n is a multiple of p and

then analyzes the general case.

4.1.3 Reducing d : cycle contraction. In Proposition 4.7, we show that it is enough to find periodic

(α ,d)-covers of Cd
n for small values of n. Next, we provide a reduction that enables us to consider

only a finite set of values for d .
The key idea of the reduction is that we can contract vertices ofCd

n into n/u groups of u vertices.

The resulting graph also happens to be a cycle C(d+1)/un/u . In Proposition 4.9, we provide a way to

expand an (α ,u − 1)-cover on the contracted graph into an (α ,d) cover on the original graph.

Definition 4.8 (Cycle contraction). For any n,d and an integer u which divides n, we define the
u-contraction fu (C

d
n ) to be the graph with vertices ak = {uk + 1, ...,u(k + 1)} for k ∈ [0, n/u − 1],

and edges (ak ,al ) if and only if there exist i ∈ ak and j ∈ al with an edge (i, j) in Cd
n .

Fig. 2. Left: C3

12
, with contraction for u = 2. Right: Contracted graph f (C3

12
) = C2

6
with vertices a = {1, 2},

b = {3, 4}, ... f = {11, 12}.

Proposition 4.9. Fix d ≥ 1. For d + 1 > k ≥ 1, suppose that there is a periodic (α ,k − 1)-cover of
Ck
rk .

(i) For any integer r , if k divides d + 1 then there exists a periodic (α ,d)-cover of Cd
r (d+1).

(ii) In general, ifv is the remainder of the euclidian division of d + 1 by k , then there exists a periodic(
α(1 + v/d+1−v)2,d

)
-cover of Cd

r (d+1).



4.1.4 Final step: Computer-aided proof of factor 2.79. We apply here apply Proposition 4.7 with

p = 2(d + 1) and n1 = 4(d + 1). Let Ωd be the set of 2(d + 1)-periodic permutations of 1, ..., 4(d + 1).
We can find covers for Cd

4(d+1) using the following linear program:

min

∑
σ ∈Ωd

λσ

s.t.

∑
σ ∈Ωd

λσ I[bi (σ ,d) = bj (σ ,d)] ≥ 1, ∀(i, j) ∈ Cd
4(d+1)

λσ ∈ R
+, σ ∈ Ωd

(LPd )

Proposition 4.10. Let αd be the solution to LPd . Let α = supd≥1 αd . Batching is (1/α +O(1/n))-
competitive.

The Linear program (LPd ) hasO(d!) variables, and solving it may not be computationally possible

when d is large. Using Proposition 4.9, we provide a way to find upper bounds on αd by solving a

different LP on a smaller graph.

4.2 Lower bound in random order.
Proposition 4.11. No algorithm is more than 1

2
-competitive even under the random arrival order.

5 EXTENSIONS
5.1 Stochastic departures in the AO setting
We relax the assumption that all vertices depart after exactly d time steps.

We therefore focus on the stochastic case, in which the departure time di of vertex i is sampled

independently from a distribution D. We assume that the realizations di are only known at the

time i becomes critical.

Proposition 5.1. Suppose that there exists α ∈ (0, 1) such that D satisfies the property that for all
i < j,

P[i + di ≤ j + dj |i + di ≥ j] ≥ α .

Then PG is α/4-competitive.

For a memory-less process, conditional on i still being present when j arrives, the probability
that i departs first is exactly 1/2. Therefore the above condition is satisfied with α = 1/2.

Corollary 5.2. PG is 1/8-competitive when D is memory-less.

5.2 Look-ahead under RP setting
We assume now that the online algorithm knows vertices that will arrive in l time steps (and their

adjacent edges). We can update the Batching Algorithm in the following way: every d + l + 1 time

steps, compute a maximum-weight matching on both the current vertices and the next l arrivals.
Match vertices as they become critical according to the matching, and discard unmatched vertices.

Note that this is the same as running Batching when the deadline is d + l .

Proposition 5.3. There exists an (d+l+1l+1 ,d + l)-cover of C
d
n .

Corollary 5.4. Batching with l-lookahead is l+1
d+l+1 -competitive when n is large.



5.3 AO setting: alternative to Greedy
Observe that the greedy algorithm discards a buyer that becomes unmatched and does not attempt

to subsequently rematch it. In this section, we introduce the Dynamic Deferred Acceptance (DDA)

algorithm, which takes as input a constrained bipartite graph and returns a matching (formally

presented below). Although the DDA provides the same theoretical guarantees as greedy, we

will see in Section 6 that it rationalizes Re-Optimization algorithms, which perform very well on

practical instances of the carpooling problem.

The main idea is to maintain a tentative maximum-weight matchingm at all times during the

run of the algorithm. This tentative matching is updated according to an auction mechanism: every

seller s is associated with a price ps , which is initiated at zero upon arrival. Every buyer b that that

already arrived and yet to become critical is associated with a profit margin qb which corresponds

to the value of matching to their most preferred seller minus the price associated with that seller.

Every time a new buyer arrives, she bids on her most preferred seller at the current set of prices.

This triggers a bidding process that terminates when no unmatched buyer can profitably bid on a

seller.

When a seller becomes critical, she is irrevocably matched to her tentative match. A buyer is

discarded only if she is unmatched and becomes critical.

At any point t throughout the algorithm, we maintain a set of sellers St , a set of buyers Bt , as
well as a matchingm, a price ps for every seller s ∈ St , and a marginal profit qb for every buyer

b ∈ Bt .

Algorithm 4 Dynamic Deferred Acceptance

• Input: an online graph with deadline d , Gd,σ .

• Process each event in the following way:

(1) Arrival of a seller s: Initialize ps ← 0 andm(s) ← ∅.
(2) Arrival of a buyer b: Start the following ascending auction.

Repeat

(a) Let qb ← maxs ′∈St vs ′,b − ps ′ and s ← argmaxs ′∈Stvs ′,b − ps ′ .
(b) If qb > 0 then

(i) ps ← ps + ϵ .
(ii) m(s) ← b (tentatively match s to b)
(iii) Set b to ∅ if s was not matched before. Otherwise, let b be the previous match of s .
Until qb ≤ 0 or b = ∅.

(3) Departure of a seller s: If seller s becomes critical andm(s) , ∅, finalize the matching of s
andm(s) and collect the reward of vs,m(s).

Our algorithm bears similarities to the auction algorithm by [10]. Prices in this auction increase

by ϵ to ensure termination, and optimality is proven through ϵ-complementary slackness conditions.

For the analysis, we consider the limit ϵ → 0 and assume the auction phase terminates with the

maximum weight matching.
5

The auction phase is always initiated at the existing prices and profit margins. This, together

with the fact that the graph is bipartite, ensures that prices never decrease and and marginal profits

never increase throughout the algorithm. Furthermore, the prices and marginal profits of the sellers

and buyers that are present in the “market" form an optimum dual for the matching linear program.

5
One way to formalize this argument is through the Hungarian algorithm [22], where prices are increased simultaneously

along an alternating path that only uses edges for which the dual constraint is tight.



Lemma 5.5. Consider the DDA algorithm on a constrained bipartite graph.
(1) Sellers’ prices never decrease, and buyers’ profit margins never increase.
(2) At the end of every ascending auction, prices of the sellers and the marginal profits of the buyers

form an optimal solution to the dual of the matching linear program associated with buyers and
sellers present at that particular time.

Maintaining a maximum-weight matching along with optimum dual variables does not guarantee

an efficient matching for the whole graph. The dual values are not always feasible for the offline

problem. Indeed, the profit margin of some buyer b may decrease after some seller departs the

market. This is because b may face increasing competition from new buyers, while the bidding

process excludes sellers that have already departed the market (whether matched or not). The main

result in this section is established using the primal-dual framework.

Proposition 5.6. DDA is 1/2-competitive for constrained bipartite graphs.

6 NUMERICAL RESULTS
The results from section 5.3 motivate a modified algorithm, termed Re-Optimization, in which

vertices are no longer separated into buyers and sellers. At each time step, Re-Opt re-computes

a tentative (non-bipartite) maximum weight matching over all the vertices that are present in

the graph. Only vertices that are critical are matched to their tentative match at that time. This

modified algorithm does not have theoretical guarantees, but we will show that it performs well on

data-driven compatibility graphs.

We compare the Re-Opt against three benchmarks that have been previously considered, or that

are commonly used in practice:

- The Greedy algorithm. The algorithm matches vertices as soon as possible to their available

neighbor with the highest value (ties are broken in favor of the earliest arrival).

- The Batching(b) algorithm. The algorithm waits k times-steps and then finds a maximum-

weight matching. Unmatched vertices are kept in the next batch.
6
We report the best simula-

tion results across parameters a number of batch sizes.

- The Patient algorithm. This algorithm waits until waits until a vertex becomes critical, and

matches it to the neighbor with the highest match value (ties are broken in favor of the

earliest arrival). This allows to separate the value from knowing the time in which vertices

become critical and the value of optimization.

Data
For this numerical experiment, we use a data set of all taxi rides in New York City over an hour

time period
7
. For any pair k, l of trips, we can compute the Euclidean distance that would have

been traveled had the two passengers taken the same taxi (with multiple stops). The value vk,l
represents the “distance saved” by combining the trips.

This enables us to generate a dynamic graph in the following way. For t ∈ [1,T ]:

(1) Sample with replacement an arrival t from the data set.

(2) For any vertex l that is present in the pool, compute the value vt,l of matching t to l .
(3) Sample a departure time dt ∼ D.

We consider three settings, termed deterministic and exponential and uniform respectively, in

which D is either constant with value d , exponentially distributed with mean d , or uniform [0, 2d].
We will report simulation results for d between 50 and 150.

6
See [1, 7] in the case of ride-sharing and kidney exchange respectively.

7
http://www.andresmh.com/nyctaxitrips/
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Fig. 3. Performance of our 4 algorithms on taxi data (weighted compatibility graph).

In Figure 3, we observe that both the Patient and Batching algorithms outperform Greedy across

all three departure settings. Intuitively, having vertices wait until they become critical helps to

thicken the market and gives vertices higher valued match options. We notice that when departures

are deterministic, Batching with the optimal batch size will be almost as efficient as Re-Opt. However
when the departures are stochastic, there is value in matching vertices as they become critical.

We observe that Re-Opt outperforms all other algorithm, although in the cases where the

departures are deterministic, Batching performs close to Re-Opt when the batch size k is carefully

chosen. This shows the value of both having information on agents’ departure times and also

subsequent optimization.

It is important to note that the experiments we ran do not take into account the cost of waiting.

We think that a richer model that accounts for this would be an interesting future direction. Two

interesting areas for future work include the setting when the information about agent’s departure

times is uncertain, as well as models that are less restrictive than the adversarial setting (see, e.g.,

Ozkan and Ward [29]).

7 CONCLUSION
This paper introduces a model for dynamic matching, in which all agents arrive and depart after

some deadline. Match values are heterogeneous and the underlying graph is non-bipartite. We

study online algorithms for two settings, where vertices arrive in an adversarial or random order.

In the adversarial arrival case, we introduce two new 1/4-competitive algorithmswhen departures

are deterministic and known in advance. We also provide a 1/8-competitive algorithm when

departures are stochastic, i.i.d, memoryless, and known at the time a vertex becomes critical. Finally

we show that no online algorithm is more than 1/2-competitive.

In the random arrival case, we show that a batching algorithm is 0.279-competitive. We also

show that with knowledge of future arrivals, its performance guarantee increases towards 1.



Importantly, our model imposes restrictions on the departure process and requires the algorithm

to know when vertices become critical. Other than closing the gaps between the upper bound 1/2

and the achievable competitive ratios, we point out a just a few interesting directions for future

research. Our model imposes that matches retain the same value regardless of when they are

conducted. An interesting direction is to account for agents’ waiting times. A different interesting

objective is to achieve both a high total value and a large fraction of matched agents. Finally, it

is interesting to consider the stochastic setting with prior information over weights and future

arrivals.
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