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1. Introduction Delage and Iancu 2015). In multistage robust prob-
In the operations research literature, there are many  lems, the decision maker does not choose a complete
different methodologies to address uncertainty in  solution at the beginning but instead makes partial
optimization problems. Stochastic approaches are  decisions sequentially after observing the values of
one of the main classes and are applicable if probability ~ uncertain parameters over different stages.

distributions of uncertain parameters are known. How- In robust optimization problems, choosing an ap-
ever, these approaches are usually criticized for re-  propriate uncertainty set is critical and can highly
quiring information on the probability distributions  affect the robustness and the optimal objective value
and also for computational complexities. Robust opti-  of the obtained solution. The decision maker should
mization, a more recent methodology, generally as-  select a suitable uncertainty set to reasonably repre-
sumes that uncertain parameters belong to an un-  sent the randomness of the uncertain parameters

certainty set, and it aims to find a robust solution =~ while taking into account the computational issues
immunizing the decision maker against the worst-case ~ arising in the solution algorithm. From the literature
scenario within this uncertainty set. on robust optimization, the most prevalent uncer-

Robust optimization was initially proposed for single-  tainty sets are box uncertainty sets (Soyster 1973), el-
stage optimization problems where the decision  lipsoidal uncertainty sets (El Ghaoui and Lebret 1997,
maker must choose a complete solution before the El Ghaoui et al. 1998, Ben-Tal and Nemirovski 1999),
disclosure of information about the real values of uncer-  polyhedral uncertainty sets, and I'-cardinality uncer-
tain parameters (Soyster 1973, Ben-Tal and Nemirovski  tainty sets (Bertsimas and Sim 2004). In box uncer-
1999). Then it was extended to multistage problems  tainty sets, uncertain parameters are assumed to take
where the values of uncertain parameters are revea-  their values from different intervals independently.
led gradually in several stages (Ben-Tal et al. 2004, = Boxuncertainty sets usually result in overly conservative
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solutions because all parameters are allowed to take
their worst values simultaneously. Ellipsoidal un-
certainty sets alleviate this issue by restricting the
uncertain parameters to an ellipsoidal space, and
this prevents them from taking worst values at the
same time. Polyhedral uncertainty sets confine the
uncertain parameters to a polyhedral space and can
be viewed as a special case of ellipsoidal uncertainty
sets (Ben-Tal and Nemirovski 1999). In I'-cardinality
uncertainty sets, for each constraint, the number of
uncertain parameters deviating from their nominal
values must be less than I'.

In the literature, convex uncertainty sets are used to
model robust problems. The main advantage of these
uncertainty sets is that they can be simply formulated
by continuous parameters, and the problem remains
tractable in many cases such as linear programs.
However, it is sometimes unavoidable or desirable to
use integer parameters to formulate the uncertainty
set, which results in an exponential number of sce-
narios. Nguyen and Lo (2012) studied a single-stage
robust portfolio problem where the weights of portfo-
lios are fixed such that a generic objective function
is optimized for the worst possible ranking of port-
folios. Thus, in this application it is necessary to use
integer parameters to formulate the ranking of portfo-
lios. Feige et al. (2007) and Gupta et al. (2014) also
studied several classical covering problems where in
their uncertainty sets, integer parameters were used
to choose a set of active clients in a graph. Moreover, in
some cases, integer parameters are used to approximate
nonconvex uncertainty sets. For instance, Siddiq (2013)
and Chanetal. (2018) studied a robust facility location
problem and discussed how nonconvex uncertainty
sets can be approximated by discretization.

In this work, we assume that the uncertainty appears
on the right-hand-side values and the corresponding
technology matrix of recourse decision variables has
a block-diagonal structure. The main contribution of
our work is a novel reformulation exploiting the
block-diagonal structure and three solution methods
for a class of two-stage robust problems with an ex-
ponential number of scenarios given implicitly. This
decomposition reduces the original two-stage problem
to a single-stage problem. We then develop a Benders
algorithm for the reformulated problem. We also de-
velop a heuristic algorithm and combine it with the
Benders algorithm to create a more effective hybrid Benders
algorithm. Because the master problem and subproblem
in the Benders algorithm are mixed-integer programs, it
is computationally expensive to solve them to opti-
mality. Hence, we propose novel stopping conditions
for these mixed-integer programs and prove the con-
vergence of the algorithm. We evaluate the computa-
tional performance of the proposed algorithms in a nurse
planning and a two-echelon supply chain application.

We organize the remainder of this paper as follows.
In Section 2, we provide a literature review on robust
optimization with a focus of two-stage problems. In
Section 3, we introduce the structure of the two-stage
robust optimization problems studied in this paper
and apply Dantzig-Wolfe decomposition to refor-
mulate the original two-stage robust problem as a
single-stage robust problem. In Section 4, we develop
solution methods for the reformulated problem. In
Section 5, we propose stopping conditions for the
master problem and subproblem of the Benders al-
gorithm. In Section 6, we show how to apply the
proposed reformulation on a two-stage nurse plan-
ning problem and a two-echelon supply chain prob-
lem. We provide extensive computational results
on these applications in Section 7. Finally, we give
concluding remarks and future research directions in
Section 8. Omitted proofs are provided in the elec-
tronic supplement.

2. Literature Review
In a single-stage robust optimization problem, con-
straints must be satisfied for all possible realizations
of uncertain parameters. Therefore, by repeating con-
straints for different values of uncertain parameters,
we can view a robust problem as a mathematical
program with a large number of constraints. Depending
on the structure of the uncertainty set, two techniques
are usually applied to solve single-stage robust prob-
lems. The first approach is to iteratively generate violated
constraints of the mathematical program explained
above using a constraint generation algorithm (Fischetti
and Monaci 2012, Bertsimas et al. 2016). In the second
approach, the problem is reformulated as its deter-
ministic robust counterpart and then solved directly.
Soyster (1973) presented such a deterministic coun-
terpart model for robust linear problems with box
uncertainty sets. Ben-Tal and Nemirovski (1999) pro-
posed a second-order cone program for uncertain
linear programs with ellipsoidal uncertainty sets.
They also showed that in the case of polyhedral un-
certainty sets, the robust counterpart model is a linear
program. Bertsimas and Sim (2004) showed that robust
linear programs with I'-cardinality uncertainty sets
canbereformulated as deterministic linear programs.
Multistage robust problems are more complicated
than single-stage robust problems and are generally
intractable (Ben-Tal et al. 2004). There are two com-
mon solution approaches for these problems. Both
approaches transform the multistage problem to a
single-stage problem and then apply the solution
methods of the single-stage robust problem. In the
first approach, the recourse decisions are restricted to
a function of uncertain parameters resulting in a
single-stage robust problem. In this context, affine
adaptability, also referred to as linear decision rules,
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assumes recourse decisions to be affine functions of
uncertain parameters. This method is very popular
and is applied in various areas such as supply chain
management (Ben-Tal et al. 2005), inventory control
(Ben-Tal et al. 2009), portfolio management (Fonseca
and Rustem 2012), warehouse management (Ang
et al. 2012), capacity management (Ouorou 2013),
and network design (Poss and Raack 2013). Chen and
Zhang (2009) introduced the extended affine adapt-
ability by reparameterizing the primitive parameters
and then applying the affine adaptability. Bertsimas
etal. (2011) proposed a more accurate approximation
of recourse decisions using polynomial adaptability.
A drawback of the functional adaptability is its in-
ability to handle problems with integer recourse de-
cisions. Another approach is finite adaptability in which
the uncertainty set is split into a number of smaller
subsets, each with its own set of recourse decisions.
The number of these subsets can be either fixed a priori
or decided by the optimization model (Bertsimas and
Caramanis 2010, Vayanos et al. 2011, Hanasusanto
et al. 2015, Bertsimas and Dunning 2016, Postek and
den Hertog 2016). An important advantage of the
finite adaptability is that, in contrast to the functional
adaptability approach, it easily handles problems with
integer recourse variables.

There are many papers in the literature that have
proposed Benders algorithms to solve two-stage robust
optimization problems (Zheng et al. 2012, Bertsimas
etal. 2013, Remli and Rekik 2013, Zhang et al. 2015). In
these papers, assuming that the problem is set as a
min-max-min problem, the authors have dualized the
inner minimization to reformulate the problem to a
min-max problem with bilinear terms in the objective
function. Then, they have applied a Benders algo-
rithm to solve the first-stage problem together with
cuts generated from an outer approximation algo-
rithm, which solves the maximization problem.

Column-and-constraint generation is another exact
algorithm to solve a two-stage robust optimization
problem (Zhao and Zeng 2012b; Zeng and Zhao 2013;
Danandeh etal. 2014; Lee et al. 2014, 2015; Wang et al.
2014; Li et al. 2015, 2017; Chen et al. 2016; Ding et al.
2016; Wang et al. 2016; Neyshabouri and Berg 2017).
The underlying idea of this approach is to make
copies of recourse decision variables and also second-
stage constraints for each possible realization of un-
certain parameters which results in a large-scale
mixed-integer programming model. As it is impossible
to solve this model directly, a column-and-constraint
generation algorithm is essential to generate critical
uncertain scenarios and their corresponding recourse
decision variables and second-stage constraints. The
tricky part of this approach is the reformulation of the
max-min subproblem to a max problem using Karush-
Kuhn-Tucker conditions. The reformulated subproblem

includes bilinear terms in constraints, which are line-
arized later by introducing a set of binary variables
and adding big-M constraints.

The reformulation approach proposed in this paper
is different from the ones used in the aforementioned
Benders and column-and-constraint generation al-
gorithms, as it does not result in any bilinear term in
our models. Therefore, our solution methodology
does not require an outer approximation algorithm
(Bertsimas et al. 2013) or any linearization by intro-
ducing extra binary variables and big-M constraints
(Zeng and Zhao 2013). Moreover, our modeling ap-
proach is capable of handling second-stage inte-
ger variables, whereas these algorithms work only on
problems with continuous recourse variables. To handle
second-stage integer variables, Zhao and Zeng (2012a)
extended the original column-and-constraint gener-
ation algorithm to a trilevel algorithm. However, the
extended algorithm only works on special problems
satisfying three restrictive assumptions: (1) including
at least one continuous recourse variable, (2) holding
the extended relative complete recourse property for re-
course problem when the second-stage integer vari-
ables are ignored, and (3) satisfying the quasiconvex
property for the inner max-min problem. The first and
third conditions are not satisfied in applications stud-
ied in this paper.

The reformulation approach that we propose is
inspired from the one proposed in Siddiq (2013) that
presented a reformulation for a specific facility lo-
cation problem. The advantage of our reformulation
is that it is more general and applicable to any two-
stage robust problem with block-diagonal structure
in the technology matrix of recourse decision vari-
ables. Here, we emphasize that the block-diagonal
structure of uncertainty sets addressed in Ben-Tal
et al. (2006) and Ben-Tal and Nemirovski (2002) is
different from the block-diagonal structure in the
technology matrix of recourse decision variables
considered in this work. Moreover, the reformulation
proposed in this work is completely different from the
reformulation proposed by Zhang (2018) that provides
an augmented Lagrangian lower and upper bound
for a two-stage robust optimization problem with
objective uncertainty.

3. Model and Reformulation
We study a class of two-stage robust optimization
problems with the following structure:

P1 min|cjx + max| min cjy|]. 1
( ) xe¥ ( 1 uel (ye@(x,u) zy)) ( )
In the above formulation, x and y are the vectors of
decision variables in the first stage and the second
stage, respectively; u is the vector of uncertain parameters
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that are restricted to the uncertainty set U; and c; and
c; are given cost vectors. In the second-stage prob-
lem, we have ¥(x,u)={y e Y| Cy<b—-Ax—Bu}, where
A, B, and C are known matrices with appropriate
dimensions, and b denotes the known vector of
right-hand-side values. Also x € £ and y € ¥ repre-
sent the integrality and bound constraints that
we may have for variables in the first and second
stages, respectively. Objective (1) minimizes the
sum of the first- and second-stage costs. In this model,
x € X must be selected such that for all realiza-
tions u € AU there is at least one y € Y(x, u). We as-
sume that AU is a finite uncertainty set. This as-
sumption is necessary for the convergence proofs
of the proposed Benders algorithms discussed in
Section 5. The first- and second-stage variables can
be continuous, integer, or mixed, but without loss
of generality, all uncertain parameters are supposed
to be integer. In fact, our method generalizes to fi-
nite set of fractional parameters (as shown in Section
EC.14 of the electronic companion), and for the sake
of clarity, we present the overall approaches over
integer parameters. We also assume that C is a block-
diagonal matrix. The main focus of this research is
to exploit this block-diagonal structure and de-
velop algorithms to solve the reformulated problem
efficiently.

In the remainder of this section, we propose a refor-
mulation of model (P1) and use it to develop solu-
tion methods in Section 4. For this, we need the fol-
lowing additional notation, used throughout the rest
of the paper:

J{: The index set of blocks in matrix C.
Cy: The kth block in matrix C.
Rowy: The number of rows in block Cy.

Coli: The number of columns in block C;.
yx: The subset of variables y involved in block Cy.
%Yy: The set of integrality and bound constraints

corresponding to variables y.

cok: The subset of ¢, corresponding to variables .
by: The right-hand-side values in front of block Cy.
Ay: The rows in matrix A in front of block C;.
Bi: The rows in matrix B in front of block Cy.

With respect to the block-diagonal structure of
matrix C, we can rewrite constraint Cy < b — Ax — Bu
included within the second-stage feasible space Y(x, u)
as follows:

Ciye S by —Akx = Beu ke 3t (2)

Furthermore, we define some notation related to Bu
as follows:
1: The set of all realizations for Biu; that is,
¥}, = {v e RR|v= Byu,u € U}.
Fk: The index set of ¥}; that is, ¥ = {1,2,...,|F]}.
exs: The sth member of ¥} (defined for s € ¥y).

Wis: A binary variable that takes 1 if Byu is equal to
ers and 0 otherwise.
Using all the above notation, we reformulate model
(P1) as

(P2) rg?(c{x+ max ( min chkyk)), (3)

(u,w)eU, W) \yeY(x,w) ket
w,w) = {(u,w)|u €, 4)
Byu = Z CrsWks, ke, )
SES)k
D=1, ke, ©)
SESk

wis € 0,1}, kedse ka}, 7)

Y(x,w) = {y|yk € Yy, ke, (8)

Ckyk <bp—Ax— Z ersWis, k€ f’j{}. 9)

seSy

In the following, we introduce a new model that is
equivalent to model (P2) as we will show later in
Theorem 1 and Corollary 1. To introduce model (P3),
for each k € }, we make || copies of variables y; €
R and define variables y;, € R%k(s € ;). Model
(P3) is given by (10)-(12):

(P3) min (c{x+ max ( min >} >} cgky,’cswks)),

(1,w)e(U,W) \ vy’ €V’ (x) ket seT,
(10)

VY (x) = {y’ Iyl € Yy, kedsed, (1)

Ciyes <bk—Ax— e, keXse ka}. (12)

The structure of model (P3) is such that, if wy, takes 1,
Y}, is equal to the optimal solution of y; in model (P2).
Indeed, by introducing Constraint (12), we have made
|#«| copies of Constraint (9) to compute the values of y;
independently. Moreover, to ensure that the optimal
objective values of models (P2) and (P3) are the same,
CoYis in (10) is multiplied by wys.

Theorem 1. Suppose that model (P2) is feasible. Then,

a. X is a first-stage feasible solution of model (P2) if and
only if it is a first-stage feasible solution of model (P3),

b. the objective values of models (P2) and (P3) for the
first-stage solution X are the same if max,,,, and min,, are
solved optimally, and

c. for this first-stage solution, the optimal values of
variables vy, in model (P3) represent the second-stage
optimal policies in model (P2).

The following corollary states the relations between
models (P2) and (P3).
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Corollary 1. Models (P2) and (P3) are equivalent; that is,
either

1. both models are unbounded, or

2. both models are infeasible, or

3. both models are feasible and bounded with the same
optimal objective value and the same optimal solution for
the first-stage variables; in this case, the optimal solution of
variables y;, in model (P3) represents the optimal policies
for variables y in model (P2).

Proof. Theorem 1 directly results in cases (1) and (3).
To prove case (2), we note that with respect to Theo-
rem 1 for any feasible solution in model (P2), there is an
equivalent feasible solution in model (P3). Therefore,
model (P3) is infeasible if and only if model (P2) is
infeasible.

The next theorem shows that model (P3) can be
reduced to a single-stage problem.

Theorem 2. [n model (P3), the objective function max,,z -
(miny, (.)) can be replaced by min,, (max,,q(.)).

Therefore, we can rewrite model (P3) as

(P4)  min (c{x + max (Z D c;ky,’(swks)).

(Y )e@,Y") (wa0)e(WW) \ 5 seJy
(13)

In fact, the reformulation presented in this section
shows that we can transform the two-stage robust prob-
lem (P1) to a single-stage robust problem. In the above
model, we have (X,%¥)={(x,v)|xeX,y e Y (x)}.
We use the latter model to present our solution me-
thods in Section 4.

4. Solution Methods

In this section we propose three solution methods for
model (P4). We present a Benders algorithm that it-
erates between a master problem and a subproblem to
tighten the optimality gap. We also propose a heu-
ristic that dualizes the linear programming relaxation
of the inner max problem in model (P4). Then it it-
eratively generates cuts to shape the convex hull of the
uncertainty set. We also present a hybrid Benders
algorithm that applies the heuristic within the frame-
work of the Benders algorithm.

4.1. Benders Algorithm
In our Benders algorithm, valid lower and upper bounds
are obtained by solving the master problem and the
subproblem, respectively. The algorithm iterates be-
tween these problems until the bounds converge. In
the following, we present the master problem and
subproblem. Then we explain the framework of the
Benders algorithm.

Suppose that m scenarios (i, @) € (W, W),j=1,2,...,m,
are already generated by solving the subproblem.

We define the master problem of the Benders algo-
rithm as

(MP) min 6 (14)

(xy")e(®,y"),0

; N
L EPIPIC A

j=1,2,...,m. (15)
kel seFy

Theorem 3. The optimal objective value of model (MP) is a
walid lower bound for model (P4).

For a feasible solution (%', ") € (¥,%’), a valid upper
bound is obtained by solving the inner max problem
in model (P4). We refer to the following problem as
the subproblem of the Benders algorithm:

(SP) max

X+ A wn . 16
(u,w)e(U,W) 1 Z Z 2k Y ks Wks ( )

keX sy

Algorithm 1 provides the pseudocode of the
Benders algorithm. In this algorithm, UB and LB re-
spectively denote the best upper and lower bounds
found during the algorithm. In line 3, we obtain an
initial solution (%,7’) by a heuristic algorithm that is
explained at the end of Section 4.2. In line 6, the al-
gorithm sets UB equal to the optimal objective value of
the subproblem if it is less than the current UB. The
stopping conditions of the Benders algorithm are then
checked in line 9, where 6B"rs and AlgTimeLimit
respectively denote the maximum acceptable opti-
mality gap and the available computational time.

Algorithm 1 (Benders Algorithm)
1: Input parameters: 654" and AlgTimeLimit.
: Set UB=00, LB=-00, and m = 0.
: Find an initial solution (&, ') by a heuristic.
repeat
Modify the objective function of subproblem
(SP) using (%, 7).
6:  Solve the subproblem and update UB if it is
necessary.
7:  Add a new optimality cut (15) to the master
problem and set m = m + 1.
Solve the master problem and update LB.
until (100(UB — LB)/LB < 68¢"¢'s or time limit

acc

AlgTimeLimit is reached)

4.2. Heuristic Algorithm

In this section we present a heuristic algorithm. This
algorithm dualizes the linear programming relaxa-
tion of the inner max problem in model (P4) to transform
the min-max problem to a single minimization problem.
Let us assume that constraints forming the convex hull
of the inner max problem in model (P4) are

Du + Ew < by. (17)
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In Constraint (17), u and w are the vectors of uncer-
tainty variables, D and E are technology matrices with
appropriate dimensions, and b, is the known vector
of right-hand-side values. Note that D, E, and b, are
independent from the values of (%, 7’) that are fixed in
the outer min problem in model (P4). This is because
the solution space of uncertainty variables does not
depend on the variables in the outer min problem.
If we have Constraints (17), we can replace constraints
(u, w) € (U, W) with them. In this case, the inner max
problem is a linear programming model for fixed
values of (%, ') in the outer min problem. Therefore by
dualizing the inner max problem, we obtain the fol-
lowing model:

(D-P4)  min(cix + byy) (18)
(x,y) € (& Y), (19)
ELY > s ke¥H,se Sy, (20)
D'y =0, (21)
y > 0. (22)

In model (D-P4), y is the vector of dual variables for
Constraint (17), and Ej is the column in E that in-
cludes coefficients of variable wy;. We can observe that
the min-max problem in model (P4) reduces to a
single min problem and can be solved directly as a
mixed-integer programming model. In the literature,
the above dualization technique is prevalent to sim-
plify single-stage robust problems where the inner
max problem is a linear programming model. How-
ever, in our model, the inner max problem is a mixed-
integer program and Constraints (17) forming the
convex hull of the uncertainty set are unknown. In the
following, we present a heuristic algorithm that re-
laxes the integrality constraints of the variables in the
inner max problem of model (P4). Then by iteratively
generating cuts, it attempts to shape the solution
space of the relaxed inner max problem into its convex
hull before the relaxation. To present this heuristic,
we first need to define models (P5) and (P6):

P5 min |cix+ max Ch Y Wis 23
(P5) (x,y')e(%,@v')( T ey (1;3{5529%{ 2%Yks k)) (23)
U, WY = {(u,w) € (U, W)] (24)

Fu+Gw<bs}. (25)

In model (P5), Constraint (25) is the set of valid cuts
that the heuristic algorithm generates iteratively. This
constraint set is empty at the beginning of the algo-
rithm. In this constraint, F and G are technology ma-
trices with appropriate dimensions and b3 the known
vector of right-hand-side values. We obtain the follow-
ing model (P6) by relaxing the integrality constraints

of variables 1 and w in model (P5) and then dualizing
the inner max problem:

P6 min |cjx+bim+bA+ > a 26
(P6) ! 3 4 ;ﬂ{ k (26)
(xy) € (&Y, (27)

Bipi +H' A+Fr=0, (28)

ax + e i+ G > ey, ke, s e Sy (29)

In model (P6), Bi and 7 are vectors of dual variables
for Constraints (5) and (25), respectively; oy is the dual
variable of Constraint (6) defined for each k € X; and
Gys is the column in G that includes coefficients of
variable wys. To write the dual of the inner max prob-
lem in model (P5), we have supposed that linear con-
straints hidden in uncertainty set U in Constraint (4)
are represented by Hu < by. In model (P6), A denotes
the vector of dual variables for Hu < by.

Algorithm 2 provides the pseudocode of our heu-
ristic algorithm. In line 2, we suppose that no instance
of Constraint (25) is available at the beginning of the
algorithm and that F, G, and b; are empty. The term Ife
is the iteration counter of the loop starting in line 3. In
line 5, we solve model (PP6) to obtain a feasible solution
for (%,7/). For a fixed solution (%,7’) in model (P5),
the inner max problem is an integer program, and
we denote it by InnerMax(%, §’). In line 7, we call Pro-
cedure 1. In each iteration of this procedure, we solve
the linear programming relaxation of InnerMax(%, i/’)
and obtain a new fractional scenario (i1, @). Then this
procedure generates a number of valid cuts to remove
this fractional scenario. This procedure continues
until it cannot detect any other violated cut or time
limit AlgTimeLimit is reached. We use an integer
programming solver to perform Procedure 1 and let it
generate valid cuts as explained above. In calling the
integer programming solver, we limit the maximum
number of nodes to be explored in the branch-and-
bound tree to one. In line 8 in Algorithm 2, we extract
the cuts generated by the integer programming solver
and update F, G, and b3 in models (P5) and (P6). In line 9,
the algorithm checks stopping criteria. One of these
stopping criteria checks whether the percentage of the
objective value improvement obtained in the current it-

. . H
eration is less than or equal to parameter 0.

Algorithm 2 (Heuristic Algorithm)

1: Input parameters: LocalTimeLimit, AlgTimeLimit,
and 6.

2: Set Ite = 0 and empty F, G, and b3 in models (P5)
and (P6).

3: repeat

4:  Ite+ +.
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5:  Solve model (P6) with time limit Local TimeLimit
to obtain a feasible solution (%, 7).

6:  Set Obj,, equal to the objective value of model
(P6)

7:  Apply Procedure 1 to generate several cuts (25).

8:  Extract the generated cuts and update F, G, and

b3 in models (P5) and (P6).

9: until (No cut is generated in line 7 in this iteration
or time limit AlgTimeLimit is reached or
(100(0bjy, = Objyy1)/ Objyyg < Onec)

Procedure 1 (Cut Generation for the Proposed Heuristic

Algorithm)

1: repeat

2:  Solve the linear programming relaxation of
InnerMax(%, i) to obtain (i1, ).

3:  Detect some valid cuts to remove the fractional
solution (i1, @).

4: Update F, G, and b3 in InnerMax(, i/’).

: until (No valid cut is generated or time limit
AlgTimeLimit is reached)

Q1

The proposed heuristic algorithm does not neces-
sarily find the optimal solution. Appendix EC.4 in the
electronic companion presents an example to dem-
onstrate that the heuristic algorithm does not guar-
antee optimality. In the Benders algorithm presented
in Algorithm 1, in line 3 we solve model (P6) with
empty F, G, and b; to find an initial solution (X, ).

4.3. Hybrid Benders Algorithm

In this section, we combine the Benders and heuristic
algorithms to create a more efficient algorithm. In this
hybrid algorithm, the Benders algorithm guarantees
the convergence of the algorithm. The proposed heuristic
algorithm improves the overall efficiency by gener-
ating valid cuts for the inner max problem and also by
finding better solutions (%, ) by solving model (P6).

Algorithm 3 (Hybrid Benders Algorithm)

1: Input parameters: WarmupTimeLimit,
AlgTimeLimit, LocalHeuristicTimeLimit,
EvaTimeLimit, 611, and oBenders,

2: Set UB = o0, LB = —c0, and m = 0, and empty F, G,
and b; in models (P5) and (P6).

3: Find an initial solution (%, ") by a heuristic.

4: repeat

5:  Modify the objective function of subproblem

(SP) using solution (%, i/’).

6:  Solve the subproblem and update UB if it is

necessary.

7:  Add a new optimality cut to the master prob-

lem and set m = m + 1.
8:  Solve the master problem, update LB, and save
(%, ) in the solution pool.
9: if (WarmupTimeLimit is reached) then
10: Set Ite = 0.
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11: repeat

12: Ite + +.

13: Apply Procedure 1 using solution (%, ") to
generate several cuts (25).

14: Extract the generated cuts and update F, G,
and b3 in models (P5) and (P6).

15: Solve model (P6) to obtain a solution (%, /")
and save it in the solution pool.

16: Set Objy,, to the objective value of model
(P6).

17: until (No cut is generated in line 14 or time

limit LocalHeuristicTimeLimit is reached or
100(Ob]lte - Objlte-l)/Objlte-l < 6chc)

18: Choose the best solution (%, ') from the
solution pool.
19:  end if

20: until (100(UB — LB)/LB < 8Benders or AlgTimeLimit
is reached)

Algorithm 3 provides the pseudocode of the hybrid
Benders algorithm. In line 3 of this algorithm, we
obtain an initial solution (%, /) by solving model (P6),
whereas F, G, and b3 are ignored. Lines 4-8 together
with line 20 are the same as the main loop of the
Benders algorithm given in Algorithm 1. The algo-
rithm finds a scenario by solving the subproblem in
line 6. We then add a new optimality cut to the master
problem and solve it to find a new solution (%,7/).
Then if time limit WarmupTimeLimit is already reached,
the algorithm enters an inner loop starting in line 11.
This loop is taken from the heuristic algorithm and
improves the current solution (%, ') by iteratively gen-
erating cuts (25) in line 13 and then solving model (P6)
in line 15. Then we check the stopping criteria of the
heuristic algorithm in line 17. To check whether time
limit LocalHeuristicTimeLimit is reached, the algorithm
tracks the time from the start of the inner loop in line 11.

After leaving the inner loop in line 17 and before
starting a new iteration of the algorithm, we have to
decide on the new solution (%,’) to modify the ob-
jective function of the subproblem inline 5. Therefore,
during the algorithm we save all generated solutions
(%,7’) in a solution pool. Then in line 18 among all
solutions in the pool, we choose the one with the lowest
worst objective value against all generated scenarios
as the current solution (%, 7). In line 9 of Algorithm 3,
we have a time limit WarmupTimeLimit to prevent
from entering the inner loop in line 11 before this time
limit. This is because, in small instances, the Benders
algorithm converges very quickly without any need
of the heuristic algorithm.

There are generally two advantages for combining
the Benders and heuristic algorithms. First, by gen-
erating cuts (25) in the heuristic algorithm and in-
cluding them in the subproblem, we hope that the
algorithm can solve the subproblem faster in next
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iterations. Also, it is possible to improve the best solution
(%,7’) by solving model (P6) in line 17 in Algorithm 3.

5. Stopping Conditions

The main shortcoming of the Benders and hybrid
Benders algorithms is that their master problem and
subproblem are mixed-integer programs (MIPs), and
therefore it would be very time consuming to opti-
mally solve them in all iterations of the algorithms. In
the following, we present novel stopping conditions
for these MIPs. Before explaining these conditions,
we define “e-dominant incumbents” for the master
problem and subproblem as follows: For a constant
€ >0, an e-dominant incumbent of the master prob-
lem is a feasible solution in the master problem with
an objective value that is less than the lower bound of
the recent subproblem by a margin of ¢. Similarly, an
e-dominant incumbent of the subproblem is a feasible
solution in the subproblem with an objective value
that is at least ¢ higher than the upper bound of the
recent master problem. The stopping conditions are
presented as follows:

Stopping Condition for the Master Problem (Sub-
problem): The mixed-integer program terminates
when the optimal solution is found or at least Timeyp
seconds (Timesp seconds) is passed from the moment
that the first e-dominant incumbent of the master
problem (subproblem) is found.

In Table 1, we present a numerical example with
€ =5 to explain this stopping condition for both the
master problem and the subproblem. In this table, the
results of the master problem and of the subproblem
are presented in separate columns. We report the
lower and upper bounds of the related mixed-integer
programs. Because these MIPs are not optimally
solved, there are gaps between the lower and upper
bounds. The “Order” columns also give the order in
which these MIPs are solved. In this example, in it-
erations 14, the upper bound of the master problem
is at least ¢ = 5 units less than the lower bound of the
previous subproblem. Moreover, in iterations 2—4, the
lower bound of the subproblem is at least € = 5 units
higher than the upper bound of the master problem in
the previous iteration. In iteration 5, when solving the
subproblem, we observe that the lower bound does
not increase to € =5 units higher than the upper
bound of the master problem in iteration 4. Therefore,
the stopping condition is not met, and the subproblem
has to be solved optimally. Similarly, in the same
iteration, when we solve the master problem, the
upper bound does not decrease to € = 5 units less than
the lower bound of the subproblem in that iteration.
Thus, the stopping condition is not satisfied, and the
master problem has to be solved to optimality.

Table 1. A Numerical Example to Explain the Stopping
Conditions of MIPs in the Benders Algorithm

Subproblem Master problem
Iteration Order LB UB Order LB UB
1 1 120 470 2 45 110
2 3 340 650 4 30 300
3 5 320 360 6 155 165
4 7 170 185 8 157 160
5 9 160 160 10 160 160

The upper bound in the master problem and the
lower bound in the subproblem correspond to feasible
solutions of MIPs. Therefore, the stopping condition
for the subproblem means that the subproblem ter-
minates before reaching the optimality if we find a
critical uncertain scenario. We refer to a scenario as a
critical one if by adding its corresponding cut (15) to
the master problem, the objective value of solution
(%,7’) found in the previous iteration increases by at
least ¢ units.

Lower bounds in the master problem and the upper
bounds in the subproblem are valid lower and upper
bounds of the original robust problem, respectively.
Therefore, we can impose the following constraints
based on the best obtained lower and upper bounds
as the Benders algorithm proceeds:

6 > LB, (30)
6 < UB. (31)

Constraint (31) is valid because the optimal objective
value of the subproblem is an upper bound on the
optimal objective value of the original robust prob-
lem. As will be discussed at the end of the section,
Constraints (30) and (31) are vital for proving the
convergence of the Benders algorithm with stopping
conditions for the master problem and subproblem.

When we apply the stopping conditions, most of the
time the subproblem is not solved optimally. Therefore,
the best upper bound obtained by Algorithms 1 and 3
is poor if the algorithm times out. In this case, we call
Procedure 2 at the end of Algorithms 1 and 3 to im-
prove the quality of the best upper bound. This pro-
cedure sorts all solutions (%,#’) found by the master
problem based on their upper bounds. The upper
bound of each solution (%,7’) is the upper bound of
its corresponding subproblem obtained in line 6 of
Algorithms 1 and 3. Procedure 2 evaluates these so-
lutions separately by solving the subproblem without
any stopping condition. When solving a subproblem,
if we obtain a feasible solution with an objective value
higher than the best upper bound UB, the subproblem
terminates, and Procedure 2 evaluates the next solu-
tion (%, /') in the sorted list. This is because in this case,
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another solution with a better upper bound is already
known. We consider a time limit EvaTimeLimit for this
procedure.

Procedure 2 (Evaluation of the Generated Solutions (, y’))
1: Input parameters: EvaTimeLimit and 6B¢ers
2: if (100(UB — LB)/LB > &Benders) then
3:  Sort solutions (%,7’) in the solution pool.
4: for (i = 1 to NumberSolutions) do
5 Solve the subproblem for ith solution (%,’)
and update UB if necessary.

6: if (100(UB—LB)/LB < 8Benders or EvaTimeLimit
is reached) then
7: break;
8: end if
9: end for
10: end if

In the following, we discuss the convergence of the
Benders algorithm with and without stopping con-
ditions for the subproblem and master problem. We
use the following notation to present the next lemmas
and theorems:

W: The set of vectors w for which there is u € U
such that (u, w) € (U, W).
n: The number of scenarios in (U, W).

n’: The number of unique vectors w that the al-
gorithm visits in the subproblem before it
converges.

n”: The number of times that the algorithm visits

an already encountered vector w before it
converges.

e: A positive constant used in stopping condi-
tions of the master problem and subproblem.

Opt: The optimal objective value of the original
robust problem.

O?P: The optimal objective value of the subproblem

in iteration i.

UMP: The upper bound of the master problem in
iteration i.

f(j): The iteration in which for the jth times the
algorithm generates a scenario with a new
vector w in the subproblem.

g(i): The iteration in which for the ith times the
algorithm revisits any of the generated vec-
tors w in the subproblem.

I;: An indicator that is equal to 1 if in iteration i
the algorithm generates a scenario with a re-
peated vector w and 0 otherwise.

Observation 1. The Benders algorithm without stop-
ping conditions for the master problem and subproblem
converges in at most [W]+ 1 < n + 1 iterations.

In the following, we present Lemmas 1-4 where

Lemma 1 is a basis in the proofs of other lemmas and
Lemmas 2—4 are used in the proof of Theorem 4.

Lemma 1. In the Benders algorithm with stopping condi-
tions for the master problem and subproblem, if the algorithm
finds a scenario with a repeated vector w in the subproblem of
iteration i, then it is the optimal solution of the subproblem,
and the optimal objective value of the subproblem is equal to
the upper bound of the recent master problem in iteration
i—1 (ie., UMY = O9P).

Lemma 2. In the Benders algorithm with the stopping
conditions for the master problem and subproblem, if the
algorithm finds a scenario with a repeated vector w in the
subproblem of iteration iand OF — Opt > & holds, then in at
most k = |(O: — Opt)/¢] iterations, either the algorithm
finds a scenario with a new vector w or O — Opt < & holds.

Lemma 3. In the Benders algorithm with the stopping
conditions for the master problem and subproblem, if the
algorithm finds a scenario with a repeated vector w in the
subproblem of iteration i and O — Opt < ¢ holds, then in
the next iteration, either the Benders algorithm converges or
a scenario with a new vector w is found.

Lemma 4. In the Benders algorithm with the stopping con-
1.iitions,.relati'0n Q;ﬁl) > Q;Zz) holds for any integer numbers
iy and iy satisfying 1 < iy <ip <n”.

Theorem 4. The Benders algorithm with the stopping con-
ditions converges in at most 2% (1 + (|_(Oj§(1;)Jrl - Opt)/e] +
DIp)41) iterations that is bounded above by |°W|(L(O§fl) -
Opt)/e] + 2) iterations.

Ogg) is bounded as a result of the boundedness of the

feasible area in subproblem (SP). Therefore, Theorem 4
proves the convergence of the Benders algorithm in a
finite number of iterations.

6. Applications

In this section, we demonstrate how to apply the pro-
posed reformulation on a nurse planning and a two-
echelon supply chain problem.

6.1. Two-Stage Nurse Planning Problem

In a two-stage nurse planning problem, we plan wards’
nurses of a hospital for a medium term. The daily
workloads of nurses depend on the number of pa-
tients brought from operating rooms to wards. Patients
are already scheduled in operating rooms over the
planning horizon. Before transferring patients from
operating rooms to wards, they may stay in intensive
care units (ICUs) for several days. The lengths of stays
in ICUs and wards are uncertain and discrete. For each
patient, a number of local scenarios about the lengths
of stays in ICUs and wards is available.

In the first stage of this problem, we assign a
number of nurses to wards over the planning horizon.
In the second stage, if the nurses” workload on a day is
more than the service capacity of nurses assigned to
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that day, some extra nurses are hired. Nurses hired in
the second stage are paid more than those hired in the
first stage. Nurse staffing based on the workloads of
patients transferred from operating rooms to wards is
studied in the literature (Belién and Demeulemeester
2008). The problem is formulated as follows.

Parameters
c1: The daily cost of a nurse hired in the first stage.
c2: The daily cost of a nurse hired in the second stage.
M,: The maximum number of nurses available for
hiring on day 4 in the second stage.
0: The amount of service time provided by a first-
or second-stage nurses per day (in hours).
p: The average of required service time for each
patient per day (in hours).
The length of stay in ICUs for patient ¢ in local
scenario p € P;.
: Thelength of stay in wards for patient t in local
scenario p € P;.
d;: The surgery day for patient ¢.

ICU.
sy,

1 Ward
tp

Sets

: The set of days in the planning horizon.

: The set of patients already scheduled in op-
erating rooms over the planning horizon.

7 4: The set of patients scheduled on day d.

P;: The set of local scenarios for patient ¢t. Each
local scenario gives information on the lengths
of stays in ICUs and wards.

P.4: The subset of local scenarios in %; where
patient t is in wards on day d; that is, Py =
e d+15Y <d di + 15" + 1" > d}.

Variables
x4: The number of nurses assigned to day d in the
first stage.
ug: 1 if patient t follows local scenario p after its
surgery and 0 otherwise. (Uncertainty variable)
y4: The number of nurses hired on day 4 in the
second stage.

min (Z c1Xg + max( min Z(Czyd))) (32)

xeX o) uel \yeM(x,u) )
% = {x|x4 > 0, integer}, (33)
W=<ul dlup=1, teJ, (34)
peP,
wy (0,1}, ted, pe @t}, (35)

Y(x,u) = {yléyd >p> D> Uy —0xg d€D,  (36)

teT pePyy

0 <yys <My, integer, de% } (37)

Constraints (33) and (37) represent the bounds and
integrality constraints for first- and second-stage vari-
ables, respectively. Constraints (34) and (35) define the
discrete uncertainty set. Constraint (36) is the daily
demand constraints over the planning horizon.

In the following, we give the reformulation of the
corresponding nurse planning problem in the form of
model (P4). The definitions of variables x; and u;, from
the nurse planning problem remain unchanged.

New Set
F4: The set of all possible realizations for the
number of patients in wards on day d.

New Variable
wgs: Equal to 1 if exactly s patients are in wards on
day d and 0 otherwise.

m%n (Z C1X; + max (Z > czwdsy;s)) (38)

@y)e@Ey)\ = (ww)e(U, W)\ 175 &7,

(Ou“/ C\‘/1/.) = (ul ZU) Z Wds = 1/ de gb/ (39)
sedy
DV D up =D swas, d€D,  (40)
teT pePy sedy
Siup =1, ted, (41
peP;
wys € {0,1}, dedD,sedy,

(42)

uy € {0,1}, te?f,pe%},

(43)

X, %) = {(x,y')léxd +Oy) > pxs, desed,,
(44)
xg 2 0,integer, dedp, (45)

0 <yj <My integer, de%,se Sd}.
(46)

6.2. Two-Echelon Supply Chain Problem
We consider a two-echelon supply chain problem where
each customer’s order requires different numbers
of various products. The second-layer facilities make
the products and send them to the first-layer facilities
that consolidate the products corresponding to each
customer before shipping. There are several uncer-
tain local scenarios for the demand of each customer.
Similar two-echelon supply chain problems are
studied in the literature (Amiri 2006, Gendron and
Semet 2009, Sadjady and Davoudpour 2012, Pan and
Nagi 2013).

In a two-stage robust optimization setting, the deci-
sion maker chooses which facilities to open in both
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layers in the first stage. Then the worst-case scenario
for customers’ demands realizes. In the second stage,
the decision maker decides on the transportation of
products from the second-layer facilities to first-layer
facilities and from them to the customers. We for-
mulate the problem as follows.

Sets
%1: The set of first-layer facilities.
%,: The set of second-layer facilities.
9: The set of customers.

Ji: The set of products.

%;: The set of local scenarios for customer i. Each
local scenario gives information on the de-
mands of the customer for various products.

Parameters
¢r: The opening cost of facility f.
dirp: The demand of customer i for product k in the
local scenario p € ?;.

txir: The per-unit transportation cost of product k
from first-layer facility f to customer i.

tig- The per-unit transportation cost of product k
from first-layer facility f to second-layer fa-
cility f”.

cifp: The transportation cost of products from first-
layer facility f to customer i if local scenario
p happens for the customer. We have ¢ =
Skear dikptris-

cikfp: The transportation cost of all products k
demanded by customer i, from first-layer fa-
cility f to second-layer facility f” if local sce-
nario p happens for the customer. We have
Cikprp = dikpligy -

by: The maximum amount of product k that can
be demanded by all customers.

Variables
xr: Equaltoliffacility f is opened and 0 otherwise.
ujp:Equal to 1 if local scenario p realizes for
customer i and 0 otherwise. (Uncertainty
variable)
yir:Equal to 1 if the first-layer facility f supplies
the demand of customer i and 0 otherwise.
yfkff,: Equal to 1 if customer i’s demand for product
kis transported from the second-layer facility
f” to the first-layer facility f and 0 otherwise.

53 orvrmax| min 355 Sapn )+

FEFUF, (Veqy("'”) i9 feTped;

+zzzszm%w

feF freF, ic9 kel; peP;

min
xeX

(47)

% = {x|x € {0,1}, fEFIUR),  (48)

ied, (49)

Z”fp =1,

peP;

Z Z d,'kpu,'p < bk, ke 3{, (50)

i€y peP;
up € {0,1}, ie$pe @l}, (51)
Y(x,u) = {y Dlyp=1, i€, (52)
fe%
Yie < %7, ied, feF, (53)
Z yzzkﬁ‘/ =y}f, ie$, keX, feF, (54)
f’Eg"z
Yigr < Xprs i€9, keXk, feF, f €T (55)

vy €{0,1}, i€y, feF, (56)

yfkﬁ, €{0,1}, i€e9, ke, feF, f e %}. (57)

Constraint (49) implies that exactly one of the local
scenarios realizes for each customer. Constraint (50) is
a budget constraint that makes the uncertainty set more
general. Constraint (52) states that each customer re-
ceives his or her order exactly from one of the first-
layer facilities. First- and second-stage variables are
linked by Constraints (53) and (55) that let y;; and v
take 1 only if x} =1 and x% =1 hold, respectively.
Constraint (54) links the second-stage variables ygf
and ¥4 to each other.

Model (47)-(57) is not in the format of model (P1)
because, in objective function (47), the second-stage
variables are multiplied by the uncertainty variables
ujp. After performing the reformulation explained in
Section EC.10 of the electronic companion, we obtain
the following model that is in the format of model (P4).

New Variables

y}fp: Equal to 1 if first-layer facility f supplies the
demand of customer i assuming that local
scenario p has happened for the customer and

0 otherwise.
yl.zkﬁ,p: Equal to 1 if customer i’s demand for product
k is transported from second-layer facility f’
to first-layer facility f assuming that local
scenario p has happened for the customer and

0 otherwise.

min | > cp+max| > > D (Cipttipyis,)+
(xy)e®,%Y) (fe%u% uel (169 feF pe®; lfP

pIPIPIP

fe% f'Egz

Z (Cikff'PuiPyzgkﬂ’p)) )
pe@,-

(58)
(49)-(51), (59)

eJl;
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(X, ) = {(x, W|xe{0,1}, feFUFR, (60)
Zy}f’:ll iE.g’,peg), (61)
fe%
Yip < X, i€y, feF, pe?,
(62)
2 Vi = Yipr i€9, ked, feF,
f’e?ﬁz
peP,
(63)
Yigrp < Xp, ied, ke, feF,
f’ S @2, p e 9),
(64)
Vi, € (0,1}, i€9, feF, pe?,
(65)

Yigrp €10,1}, i€y, ked, feF,

f/ € %y, p e 9)}
(66)

7. Computational Results
In this section, we present extensive computational
results for the nurse planning and two-echelon sup-
ply chain problems introduced in Section 6. We im-
plemented all algorithms in C++ and used IBM ILOG
CPLEX 12.6 to solve the mixed-integer programs. We
ran experiments on a computer with two 3.07 GHz
Intel Xeon X5675 processors and a total of 12 cores.
We ran each instance on a single core.

For all computational experiments, we set AlgTime-
Limit to 2 hours in Algorithms 1 to 3. In the hybrid
Benders algorithm, we fix the convergence limits

oBenders and 6 at 0.1%. We use the same values for

oBenders and M for the Benders and heuristic algorithms,
respectively. We also consider 5 seconds for Time;p and
Timeyp in the stopping conditions of the master
problem and the subproblem in Algorithms 1 and 3.
Furthermore, to run Procedure 2 for Algorithms 1 and 3,
we set EvaTimeLimit to 2 hours. Therefore, consid-
ering parameters AlgTimeLimit and EvaTimeLimit, we
run a problem instance for at most 4 hours by
Algorithms 1 and 3 and 2 hours by Algorithm 2. In
Algorithms 2 and 3, we fix LocalHeuristicTimeLimit at
30 seconds. In the hybrid Benders algorithm, we
consider 20 minutes for WarmupTimeLimit. The gen-
erated data sets for both applications are available as
online supplemental material.

7.1. Nurse Planning Instances

We generated 750 instances with different parameter
settings. The parameters considered in the generation
of the instances include the length of the planning

horizon (L), the incentive factor (IF), and the number
of operating rooms over the planning horizon (OR).
We set the number of weeks in the planning horizon to
{2,3,4}. We also assume that surgeries are scheduled
only on workdays. We define the incentive factor (IF)
as the ratio of c/c1, where ¢; and c; are the respective
daily costs of first-stage and second-stage nurses in
objective function (7). A higher value of the incentive
factor shows that the hospital pays more to second-
stage nurses than to first-stage ones. We set the in-
centive factor to {1.1, 1.3, 1.5, 1.7, 1.9}. We suppose
that first-stage nurses are paid one unit cost per hour,
which for eight work hours results in c¢; = 8. Fur-
thermore, we also fix the number of operating rooms
over the planning horizon at {1, 2, 3, 4, 5}. For each
operating room, we generate three, four, or five surger-
ies randomly with a uniform distribution. Consid-
ering a full factorial experiment, 75 combinations of L,
IF, and OR are possible, and we generate 10 instances
for each problem setting for a total of 750 instances.
For each patient, we generate two scenarios for the
lengths of stays in ICUs and wards. In each scenario,
both lengths of stays are uniformly generated from
interval [1 day, 10 days]. The total number of global
scenarios that include information for all patients can
be computed by 2Il, where |T|is the number of patients
in the planning horizon. It is worth noting that in our
small-sized instances with 39 surgeries, we have 2%° ~
5.4 x 10!! scenarios. We also assume that each nurse
works for eight hours a day (0 = 8), and the average
daily service time for each patient is two hours (p = 2).

7.2. Results of Nurse Planning Instances

In this section, we present computational results for
three sets of experiments performed on nurse plan-
ning instances. In the first set of experiments, we aim
at evaluating the computational performance of our
proposed heuristic, Benders, and hybrid Benders al-
gorithms. In our computational experiments, we also
consider a trilevel Benders algorithm that is inspired
by Chen (2013). We give the details about the recent
algorithm in Section EC.11 of the electronic com-
panion. In Section EC.12, we have provided some
computational experiments to tune ¢ for the stopping
conditions of the Benders and hybrid Benders algo-
rithms that resulted in ¢ = 5.

In Table 2, we report the results for our heuristic,
Benders, and hybrid Benders algorithms and the
trilevel algorithm inspired from Chen (2013). In this
table, each row gives the average results for 50 in-
stances with different values of the incentive factor.
“Sur.” and “Ite.” respectively represent the number of
surgeries in the planning horizon and the number of
iterations for different algorithms. For the heuristic
algorithm, we do not report LB, as this algorithm does
not provide any lower bound. To compute the optimality
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gap values for the heuristic algorithm, we use the lower
bound values of the Benders algorithm. Moreover,
under the column “Hybrid Benders algorithm,” we
have reported A(UB)(%), which presents the gap be-
tween the upper bounds of the Benders and the hy-
brid Benders algorithms. We compute it by A(UB)(%) =
100(UBg — UByp)/UBg), where UBg and UBgyg denote
the upper bound values of the Benders and hybrid
Benders algorithms, respectively.

In Table 2, we observe that for most instances the
heuristic algorithm converges quickly after only a few
iterations and the average optimality gaps are worse
than those of the Benders and hybrid Benders algo-
rithms. This is because the heuristic algorithm is a
heuristic, whereas the two other algorithms are exact
algorithm and converge to the optimal solution. We
also observe that the averages of optimality gaps for
the hybrid Benders algorithm are 0.61%, 3.29%, and
5.46%. These averages are higher than the averages of
optimality gaps for the Benders algorithm. However,
the averages of A(UB) are —0.46%, 0.09%, and 0.94%.
These values show that the hybrid Benders algorithm
finds better upper bounds than the Benders algorithm
in instances with planning horizons of three and four
weeks. Moreover, the average optimality gaps for the
trilevel Benders algorithm, proposed in the litera-
ture, are 2.74%, 25.45%, and 37.53%, which are sig-
nificantly higher than those of our Benders and hy-
brid Benders algorithms. It is also noteworthy that the
trilevel Benders algorithm does not find feasible so-
lutions for L=3,0R=5and L =4,0R =4,5.

In the second set of experiments, we evaluate the
computational efficiency of the Benders algorithm for
different levels of block-diagonal decomposition in
the nurse planning problem. In Table 3, R stands for
the percentage of the smallest-size blocks (day blocks)
that are merged with other blocks to form larger ones.
“R = 0” represents an extreme case where the block-
diagonal structure of the nurse planning problem is
decomposed as much as possible and each block is
corresponding to a single day. Higher values of R mean
that the Benders algorithm benefits less from the block-
diagonal structure of the problem. This table shows that,
for the largest set of instances with L = 4, the average
optimality gap increases from 5.11% to 12.13% as R
increases. Figure 1 depicts the bound values and the
number of variables in the subproblem versus R. This
figure shows that both LB and UB values deteriorates
as R increases. This is because higher values of R lead
to more complicated subproblems (more variables) as
a result of less benefiting from the block-diagonal
structure. Figure 2 shows the improvement of the
lower bound during the run time for different value of
R. We can see that, during the run time, the lower
bound is stronger for cases with smaller R.

In the third set of experiments, we intend to eval-
uate the performance of our stopping conditions pro-
posed in Section 5. In Table 4, we report the results for
three implementations of our Benders algorithm. The
first implementation is the one with our proposed
stopping condition for ¢ =5. In the second imple-
mentation, we deactivated our proposed stopping con-
ditions and added the conventional stopping condition.
This stopping condition terminates the subproblem
as soon as it finds a solution that defines an inequal-
ity cutting off the master problem’s solution. We can
view this conventional stopping condition as a spe-
cial case of our proposed stopping condition with ¢ =
0 that works only for the subproblem. The third al-
gorithm reported in Table 4 is the branch-and-cut
implementation of our Benders algorithm. In this
algorithm, the master problem is solved only once,
and whenever a new incumbent solution is found
within the branch-and-bound tree, the algorithm
solves the subproblem and add the optimality cuts to
the tree.

In Table 4, each row gives the average results for 50
instances with different values of the incentive factor.
The results of “Time (sec),” “Ite.,” “LB,” “UB,” and
“Gap (%)” for the firstimplementation are the same as
those presented for the Benders algorithm in Table 2.
In fact, in Table 4, we report the same results for the
first implementation for ease of comparison with
the two other algorithms. Moreover, in this table, for
the Benders algorithm with our proposed stopping
conditions, we have presented additional results:
“LB,” and “UB,” give the lower and upper bounds in
the first iteration of the Benders algorithm, and Gap,
computes the gap between these bounds. Moreover,
“Imp” gives the percentage of the upper bound im-
provement obtained during the Benders algorithm.
We compute it by 100(UB; — UB)/UB;.

We observe that the average optimality gaps for the
Benders algorithm when we apply the proposed
stopping conditions are 0.05%, 2.57%, and 5.11% for
instances with L =2, L =3, and L = 4, respectively.
However, the average optimality gaps for the Benders
algorithm with the conventional stopping condition
are 0.29%, 5.59%, and 9.33% and for the branch-and-
cut algorithm are 2.32%, 27.06%, and 40.28%. This
observation indicates that the proposed stopping
conditions are essential for the efficiency of the pro-
posed Benders algorithm. For small instances such as
those with L =2,0R =1, 2,3, the algorithm with the
conventional stopping condition repeats more iter-
ations than the algorithm with the proposed stop-
ping conditions. However, for larger instances such
as those with L =4,0R =2,3,4, 5, the former algo-
rithm repeats significantly fewer iterations than the
latter algorithm does. There are two reasons for this
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Figure 1. (Color online) Lower Bound, Upper Bound, and the Number of Variables in the Subproblem vs. R
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behavior: (1) The algorithm with the conventional
stopping condition stops the subproblem as soon as it
finds a second-stage solution that cuts off the current
first-stage solution. As a result, the generated cuts are
generally less effective than the cuts that the algo-
rithm with the proposed stopping conditions gener-
ates, and therefore the first algorithm requires more
iterations for convergence. (2) For small instances, the
master problem is simpler, and the algorithm with the
conventional stopping condition can optimally solve it
fairly quickly. However, for larger instances, proving the
optimality of the master problem becomes the bottle-
neck of the algorithm, whereas the algorithm with the
proposed stopping conditions avoids this issue by
terminating the master problem when the e-stopping
condition is satisfied.

Furthermore, large optimality gaps of the branch-
and-cut algorithm are large because whenever the al-
gorithm finds a first-stage feasible solution, it solves
a subproblem that is a mixed-integer programming
model. This requires solving a larger number of mixed-
integer programs that is computationally expensive.
We also observe that the averages of initial gaps in the
first iteration of the Benders algorithm with the pro-
posed stopping conditions (Gap;) are 66.29%, 55.10%,
and 47.56%; these are considerably higher than the final
optimality gaps. This demonstrates that the Benders
algorithm significantly improves the optimality
gap. Moreover, the averages of Imp are 5.14%, 4.80%,
and 3.31%. These averages show that the Benders
algorithm improves the upper bound during the al-
gorithm and the improvement of optimality gap is
not only because of improving the lower bound. We
also observe that the upper bound improvement
decreases as the length of the planning horizon in-
creases. This observation confirms that instances with
longer planning horizons are more difficult and that
the Benders algorithm becomes less effective in

20
R

30 40

solving them. Similarly, instances with more operat-
ing rooms are more difficult, and the Benders algo-
rithm performs more iterations before stopping for
such instances.

7.3. Supply Chain Instances

We generated 600 instances for the supply chain
problem. The parameters that we considered to gen-
erate the instances include the number of customers
(19]), the number of first- and second-layer facilities
(I%1] and |%F,]), customers” demands (dj,), and trans-
portation costs (fx and tg ). For each instance, we
uniformly generate the coordinates of customers
and facilities in a square with a side length of 100 ki-
lometers. Then, we set tr = ax[(xi —x7)? + (yi—y5)*]*°
and g =04k[(xf—xj’r)2+(yf—yj’()2]0'5, where a; is the
per-kilometer transportation cost for product k €
J ={1,2,3} and is uniformly chosen from [0.7,1.3].
Also, we uniformly generate the demands dj, from
[100,200]. Moreover, we assume ¢s = Afs, where f; is
uniformly generated from [100,200] and A is a pa-
rameter to tune the relative magnitude of facilities

Figure 2. (Color online) Lower Bound Trends for Different
Values of R During the Run Time
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Table 4. Computational Results to Evaluate the Performance of the Proposed Stopping Conditions

Benders algorithm with the

Data info. Benders algorithm with the proposed stopping conditions  conventional stopping condition = Branch-and-cut algorithm
Gapr  Imp  Time Gap  Time Gap  Time Gap

L OR Sur. LB, UBy (%) (%) (sec) Ite. LB UB (%) (sec) Ite. LB UB (%) (sec) LB UB (%)
2 1 39 252 350 4122 396 2 29 33 336 0.00 1 35 33 336 0.00 2 336 336 0.00
2 79 426 686 70.61 5.16 12 49 650 650 0.00 14 55 650 650 0.00 216 650 650 0.00

3 119 586 1,008 8536 4.98 341 65 958 958 0.00 395 89 958 958 0.00 4,333 956 958 0.25

4 157 796 1,334 7727 591 1,567 91 1,254 1,254 0.00 9,402 96 1,250 1,259 0.64 13960 1,234 1,270 3.00

5 202 1,111 1,677 5697 571 8512 113 1,577 1,581 0.24 14,400 124 1,572 1,586 0.83 14,400 1,516 1,640 8.34
Average 634 1,011 6629 514 2,087 69 955 956 0.05 4,842 80 953 958 029 6,582 938 971 2.32
3 1 59 432 713 7508 5.64 28 44 672 672 0.00 28 46 672 672 0.00 167 672 672 0.00
2 121 860 1,424 7792 6.83 7,235 101 1,323 1,326 0.23 12971 85 1,320 1,329 0.69 14,135 1,282 1,356 5.72

3 182 1,474 2,076 4481 531 14,400 171 1,913 1,965 2.68 14,400 95 1,876 2,002 6.53 14,400 1,799 2,440 35.44

4 240 1945 2,718 4270 358 14,400 258 2,506 2,618 4.46 14,400 97 2,441 2,683 948 14,400 2,203 3,323 50.98

5 300 2,552 3,383 3453 257 14,400 370 3,122 3,294 548 14,400 75 3,040 3,385 11.24 14,400 2,815 4,031 43.16
Average 1,453 2,063 55.01 479 10,093 189 1,907 1,975 257 11,240 80 1,870 2,014 559 11,501 1,754 2,365 27.06
4 1 80 687 1,100 69.40 6.25 886 84 1,031 1,031 0.00 938 92 1,031 1,031 0.00 9,148 1,028 1,036 0.73
2 163 1,421 2,167 61.82 443 14,400 183 2,001 2,070 3.40 14,400 68 1967 2,106 693 14,400 1,888 2,723 43.41

3 241 2,283 3,119 4094 3.02 14,400 459 2,853 3,022 590 14,400 64 2,763 3,064 10.61 14,400 2,582 4,145 60.17

4 318 3,114 4,057 3217 1.67 14,400 523 3,717 3,988 725 14,400 59 3,603 4,098 13.42 14,400 3,351 5,118 52.56

5 397 3,833 5,043 33.08 1.14 14,400 565 4,573 4,985 898 14,400 51 4,423 5139 15.69 14,400 4,227 6,116 44.52
Average 2,268 3,097 4748 330 11,697 363 2,835 3,019 511 11,708 67 2,757 3,087 9.33 13,350 2,615 3,828 40.28

fixed costs compared with the transportation costs.
We set the number of customers (|$]) to {50,60,70}.
For the number of facilities, we consider five cases
of (|%F1l,1%2]) € {(5,5), (5,10), (10, 10), (10,20), (20,20)}.
Finally, we set the relative cost parameter A to
{1,10,100,1,000}. We generated 600 instances by
considering 10 instances for each combination of
|91, (1%1],1%2]), and A. For each test instance, we set
b in Constraint (50) equal to 1.5 X;cq di/|$|, where
dy represents the average demand of product k by
customer i.

7.4. Results of Supply Chain Instances

As demonstrated in Table 2, the Benders algorithm
outperforms the heuristic and hybrid Benders algo-
rithms in terms of the optimality gap. Therefore, in
Table 5, we have provided the computational results
to compare the proposed Benders algorithm with the
trilevel Benders algorithm proposed by Chen (2013).
We have explained the different components of the
trilevel algorithm for the supply chain problem in Sec-
tion EC.13 of the electronic companion. In Table 5,
columns “LBy,” “UB1,” “Gapi (%),” “Imp (%),” “Time
(sec),” “LB,” “UB,” and “Gap (%)” are the same as those
in Tables 2 and 4. Furthermore, under the “Trilevel
Benders algorithm from the literature” column, we
have reported A(UB) (%), which gives the gap between
the upper bounds of the Benders and trilevel algorithms.
We compute it by A(UB) (%) = 100(UBt — UBg)/ UBr),
where UBp and UBr denote the upper bound values

of the Benders and trilevel Benders algorithms, re-
spectively. Table 5 shows that the average optimality
gap of the proposed Benders algorithm for instances
with L =2, 3, and 4 is 0.78%, 1.25%, and 1.23%, re-
spectively. However, the optimality gaps for the trilevel
Benders algorithm are very poor, mainly because of very
weak lower bounds. As explained at the end of Section
EC.13 of the electronic companion, this is because the
structure of the supply chain problem is such that op-
timality cuts for the outer master problem cannot be
enhanced. Also, the average values of A(UB)(%) are
30.47%, 28.57%, and 28.90%, implying that the so-
lutions found by the proposed Benders algorithm are
significantly superior to those of the trilevel Benders
algorithm. There are also two noteworthy points about
Gap1 (%) and Imp (%). Comparison of Gap; (%) and
Gap (%) for the Benders algorithm shows that the
algorithm significantly improves the optimality gap
from the first iteration to the last one. Also, the values
of Imp (%) show that the final upper bound values are
about 60% stronger than the initial upper bound
values. This demonstrates that the improvement of
the optimality gap from the first iteration to the last
iteration of the Benders algorithm is not just because
of improving the lower bound.

8. Conclusion

We have considered a class of two-stage robust op-
timization models with an exponential number of
scenarios. We exploited the structure of the problem
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using Dantzig-Wolfe decomposition and reduced the
original two-stage robust problem to a single-stage
robust problem. We then proposed a Benders and a
heuristic algorithm for the reformulated problem and
combined them to create a more effective hybrid al-
gorithm capable of finding solutions with better ob-
jective values. Because the master problem and sub-
problem of the Benders algorithm are mixed-integer
programs, it is computationally demanding to opti-
mally solve them in each iteration of the algorithm.
Therefore, we presented novel stopping conditions
for them and provided the relevant convergence
proofs. We performed extensive computational ex-
periments to evaluate the performance the proposed
algorithms in a nurse planning problem and a supply
chain problem. For the nurse planning problem, the
computational results demonstrated that the Benders
and hybrid Benders algorithms find solutions with an
average optimality gap of less than 3% over all instances
with planning horizons up to four weeks. Moreover,
our experiments showed that the proposed Benders
algorithm is capable of finding quality solutions with
an average optimality gap of less than 1.25% for the
supply chaininstances with up to 70 customers and 40
facilities. A possible future research direction would
be to explore the extension of the proposed algorithms
to multistage robust problems with exponential sce-
narios. Moreover, applying the proposed algorithms to
other applications should be of interest.
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