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Abstract. This paper addresses a class of two-stage robust optimization models with an
exponential number of scenarios given implicitly.We apply Dantzig–Wolfe decomposition
to exploit the structure of these models and show that the original problem reduces to a
single-stage robust problem. We propose a Benders algorithm for the reformulated single-
stage problem.We also develop a heuristic algorithm that dualizes the linear programming
relaxation of the inner maximization problem in the reformulated model and iteratively
generates cuts to shape the convex hull of the uncertainty set. We combine this heuristic
with the Benders algorithm to create a more effective hybrid Benders algorithm. Because
themaster problem and subproblem in the Benders algorithm aremixed-integer programs,
it is computationally demanding to solve them optimally at each iteration of the algorithm.
Therefore, we develop novel stopping conditions for these mixed-integer programs and
provide the relevant convergence proofs. Extensive computational experiments on a nurse
planning problem and a two-echelon supply chain problem are performed to evaluate the
efficiency of the proposed algorithms.

History: Accepted by Andrea Lodi, Area Editor, Design & Analysis of Algorithms—Discrete.
Supplemental Material: Data and the electronic supplement are available at https://doi.org/10.1287/

ijoc.2019.0928.

Keywords: integer programming • Dantzig–Wolfe decomposition • two-stage robust optimization

1. Introduction
In the operations research literature, there are many
different methodologies to address uncertainty in
optimization problems. Stochastic approaches are
one of the main classes and are applicable if probability
distributions of uncertain parameters are known. How-
ever, these approaches are usually criticized for re-
quiring information on the probability distributions
and also for computational complexities. Robust opti-
mization, a more recent methodology, generally as-
sumes that uncertain parameters belong to an un-
certainty set, and it aims to find a robust solution
immunizing the decisionmaker against the worst-case
scenario within this uncertainty set.

Robust optimizationwas initially proposed for single-
stage optimization problems where the decision
maker must choose a complete solution before the
disclosure of information about the real values of uncer-
tain parameters (Soyster 1973, Ben-Tal and Nemirovski
1999). Then it was extended to multistage problems
where the values of uncertain parameters are revea-
led gradually in several stages (Ben-Tal et al. 2004,

Delage and Iancu 2015). In multistage robust prob-
lems, the decision maker does not choose a complete
solution at the beginning but instead makes partial
decisions sequentially after observing the values of
uncertain parameters over different stages.
In robust optimization problems, choosing an ap-

propriate uncertainty set is critical and can highly
affect the robustness and the optimal objective value
of the obtained solution. The decision maker should
select a suitable uncertainty set to reasonably repre-
sent the randomness of the uncertain parameters
while taking into account the computational issues
arising in the solution algorithm. From the literature
on robust optimization, the most prevalent uncer-
tainty sets are box uncertainty sets (Soyster 1973), el-
lipsoidal uncertainty sets (El Ghaoui and Lebret 1997,
El Ghaoui et al. 1998, Ben-Tal and Nemirovski 1999),
polyhedral uncertainty sets, and Γ-cardinality uncer-
tainty sets (Bertsimas and Sim 2004). In box uncer-
tainty sets, uncertain parameters are assumed to take
their values from different intervals independently.
Box uncertainty sets usually result in overly conservative
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solutions because all parameters are allowed to take
their worst values simultaneously. Ellipsoidal un-
certainty sets alleviate this issue by restricting the
uncertain parameters to an ellipsoidal space, and
this prevents them from taking worst values at the
same time. Polyhedral uncertainty sets confine the
uncertain parameters to a polyhedral space and can
be viewed as a special case of ellipsoidal uncertainty
sets (Ben-Tal and Nemirovski 1999). In Γ-cardinality
uncertainty sets, for each constraint, the number of
uncertain parameters deviating from their nominal
values must be less than Γ.

In the literature, convex uncertainty sets are used to
model robust problems. The main advantage of these
uncertainty sets is that they can be simply formulated
by continuous parameters, and the problem remains
tractable in many cases such as linear programs.
However, it is sometimes unavoidable or desirable to
use integer parameters to formulate the uncertainty
set, which results in an exponential number of sce-
narios. Nguyen and Lo (2012) studied a single-stage
robust portfolio problem where the weights of portfo-
lios are fixed such that a generic objective function
is optimized for the worst possible ranking of port-
folios. Thus, in this application it is necessary to use
integer parameters to formulate the ranking of portfo-
lios. Feige et al. (2007) and Gupta et al. (2014) also
studied several classical covering problems where in
their uncertainty sets, integer parameters were used
to choose a set of active clients in a graph. Moreover, in
some cases, integer parameters are used to approximate
nonconvex uncertainty sets. For instance, Siddiq (2013)
andChan et al. (2018) studied a robust facility location
problem and discussed how nonconvex uncertainty
sets can be approximated by discretization.

In this work, we assume that the uncertainty appears
on the right-hand-side values and the corresponding
technology matrix of recourse decision variables has
a block-diagonal structure. The main contribution of
our work is a novel reformulation exploiting the
block-diagonal structure and three solution methods
for a class of two-stage robust problems with an ex-
ponential number of scenarios given implicitly. This
decomposition reduces the original two-stage problem
to a single-stage problem. We then develop a Benders
algorithm for the reformulated problem. We also de-
velop a heuristic algorithm and combine it with the
Benders algorithm to create amore effective hybrid Benders
algorithm. Because the master problem and subproblem
in the Benders algorithm are mixed-integer programs, it
is computationally expensive to solve them to opti-
mality. Hence, we propose novel stopping conditions
for these mixed-integer programs and prove the con-
vergence of the algorithm. We evaluate the computa-
tional performance of the proposed algorithms in anurse
planning and a two-echelon supply chain application.

We organize the remainder of this paper as follows.
In Section 2, we provide a literature review on robust
optimization with a focus of two-stage problems. In
Section 3, we introduce the structure of the two-stage
robust optimization problems studied in this paper
and apply Dantzig–Wolfe decomposition to refor-
mulate the original two-stage robust problem as a
single-stage robust problem. In Section 4, we develop
solution methods for the reformulated problem. In
Section 5, we propose stopping conditions for the
master problem and subproblem of the Benders al-
gorithm. In Section 6, we show how to apply the
proposed reformulation on a two-stage nurse plan-
ning problem and a two-echelon supply chain prob-
lem. We provide extensive computational results
on these applications in Section 7. Finally, we give
concluding remarks and future research directions in
Section 8. Omitted proofs are provided in the elec-
tronic supplement.

2. Literature Review
In a single-stage robust optimization problem, con-
straints must be satisfied for all possible realizations
of uncertain parameters. Therefore, by repeating con-
straints for different values of uncertain parameters,
we can view a robust problem as a mathematical
programwith a large number of constraints. Depending
on the structure of the uncertainty set, two techniques
are usually applied to solve single-stage robust prob-
lems.Thefirst approach is to iterativelygenerateviolated
constraints of the mathematical program explained
above using a constraint generation algorithm (Fischetti
and Monaci 2012, Bertsimas et al. 2016). In the second
approach, the problem is reformulated as its deter-
ministic robust counterpart and then solved directly.
Soyster (1973) presented such a deterministic coun-
terpart model for robust linear problems with box
uncertainty sets. Ben-Tal and Nemirovski (1999) pro-
posed a second-order cone program for uncertain
linear programs with ellipsoidal uncertainty sets.
They also showed that in the case of polyhedral un-
certainty sets, the robust counterpart model is a linear
program.Bertsimas and Sim (2004) showed that robust
linear programs with Γ-cardinality uncertainty sets
can be reformulated as deterministic linear programs.
Multistage robust problems are more complicated

than single-stage robust problems and are generally
intractable (Ben-Tal et al. 2004). There are two com-
mon solution approaches for these problems. Both
approaches transform the multistage problem to a
single-stage problem and then apply the solution
methods of the single-stage robust problem. In the
first approach, the recourse decisions are restricted to
a function of uncertain parameters resulting in a
single-stage robust problem. In this context, affine
adaptability, also referred to as linear decision rules,
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assumes recourse decisions to be affine functions of
uncertain parameters. This method is very popular
and is applied in various areas such as supply chain
management (Ben-Tal et al. 2005), inventory control
(Ben-Tal et al. 2009), portfolio management (Fonseca
and Rustem 2012), warehouse management (Ang
et al. 2012), capacity management (Ouorou 2013),
and network design (Poss and Raack 2013). Chen and
Zhang (2009) introduced the extended affine adapt-
ability by reparameterizing the primitive parameters
and then applying the affine adaptability. Bertsimas
et al. (2011) proposed a more accurate approximation
of recourse decisions using polynomial adaptability.
A drawback of the functional adaptability is its in-
ability to handle problems with integer recourse de-
cisions. Another approach is finite adaptability in which
the uncertainty set is split into a number of smaller
subsets, each with its own set of recourse decisions.
The number of these subsets can be eitherfixed a priori
or decided by the optimization model (Bertsimas and
Caramanis 2010, Vayanos et al. 2011, Hanasusanto
et al. 2015, Bertsimas and Dunning 2016, Postek and
den Hertog 2016). An important advantage of the
finite adaptability is that, in contrast to the functional
adaptability approach, it easily handles problems with
integer recourse variables.

There are many papers in the literature that have
proposed Benders algorithms to solve two-stage robust
optimization problems (Zheng et al. 2012, Bertsimas
et al. 2013, Remli andRekik 2013, Zhang et al. 2015). In
these papers, assuming that the problem is set as a
min-max-min problem, the authors have dualized the
inner minimization to reformulate the problem to a
min-max problem with bilinear terms in the objective
function. Then, they have applied a Benders algo-
rithm to solve the first-stage problem together with
cuts generated from an outer approximation algo-
rithm, which solves the maximization problem.

Column-and-constraint generation is another exact
algorithm to solve a two-stage robust optimization
problem (Zhao and Zeng 2012b; Zeng and Zhao 2013;
Danandeh et al. 2014; Lee et al. 2014, 2015; Wang et al.
2014; Li et al. 2015, 2017; Chen et al. 2016; Ding et al.
2016; Wang et al. 2016; Neyshabouri and Berg 2017).
The underlying idea of this approach is to make
copies of recourse decision variables and also second-
stage constraints for each possible realization of un-
certain parameters which results in a large-scale
mixed-integer programming model. As it is impossible
to solve this model directly, a column-and-constraint
generation algorithm is essential to generate critical
uncertain scenarios and their corresponding recourse
decision variables and second-stage constraints. The
tricky part of this approach is the reformulation of the
max-min subproblem to a max problem using Karush-
Kuhn-Tucker conditions. The reformulated subproblem

includes bilinear terms in constraints, which are line-
arized later by introducing a set of binary variables
and adding big-M constraints.
The reformulation approach proposed in this paper

is different from the ones used in the aforementioned
Benders and column-and-constraint generation al-
gorithms, as it does not result in any bilinear term in
our models. Therefore, our solution methodology
does not require an outer approximation algorithm
(Bertsimas et al. 2013) or any linearization by intro-
ducing extra binary variables and big-M constraints
(Zeng and Zhao 2013). Moreover, our modeling ap-
proach is capable of handling second-stage inte-
ger variables, whereas these algorithms work only on
problems with continuous recourse variables. To handle
second-stage integer variables, Zhao and Zeng (2012a)
extended the original column-and-constraint gener-
ation algorithm to a trilevel algorithm. However, the
extended algorithm only works on special problems
satisfying three restrictive assumptions: (1) including
at least one continuous recourse variable, (2) holding
the extended relative complete recourse property for re-
course problem when the second-stage integer vari-
ables are ignored, and (3) satisfying the quasiconvex
property for the innermax-min problem. The first and
third conditions are not satisfied in applications stud-
ied in this paper.
The reformulation approach that we propose is

inspired from the one proposed in Siddiq (2013) that
presented a reformulation for a specific facility lo-
cation problem. The advantage of our reformulation
is that it is more general and applicable to any two-
stage robust problem with block-diagonal structure
in the technology matrix of recourse decision vari-
ables. Here, we emphasize that the block-diagonal
structure of uncertainty sets addressed in Ben-Tal
et al. (2006) and Ben-Tal and Nemirovski (2002) is
different from the block-diagonal structure in the
technology matrix of recourse decision variables
considered in this work. Moreover, the reformulation
proposed in this work is completely different from the
reformulation proposed byZhang (2018) that provides
an augmented Lagrangian lower and upper bound
for a two-stage robust optimization problem with
objective uncertainty.

3. Model and Reformulation
We study a class of two-stage robust optimization
problems with the following structure:

(P1) min
x∈-

cu1x +max
u∈8

min
y∈=(x,u)

cu2y
( )( )

. (1)

In the above formulation, x and y are the vectors of
decision variables in the first stage and the second
stage, respectively;u is the vector of uncertain parameters
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that are restricted to the uncertainty set 8; and c1 and
c2 are given cost vectors. In the second-stage prob-
lem, we have =(x,u) � {y∈ =̃ |Cy≤ b−Ax−Bu}, where
A, B, and C are known matrices with appropriate
dimensions, and b denotes the known vector of
right-hand-side values. Also x ∈ - and y ∈ =̃ repre-
sent the integrality and bound constraints that
we may have for variables in the first and second
stages, respectively. Objective (1) minimizes the
sum of the first- and second-stage costs. In this model,
x ∈ - must be selected such that for all realiza-
tions u ∈ 8 there is at least one y ∈ =(x, u). We as-
sume that 8 is a finite uncertainty set. This as-
sumption is necessary for the convergence proofs
of the proposed Benders algorithms discussed in
Section 5. The first- and second-stage variables can
be continuous, integer, or mixed, but without loss
of generality, all uncertain parameters are supposed
to be integer. In fact, our method generalizes to fi-
nite set of fractional parameters (as shown in Section
EC.14 of the electronic companion), and for the sake
of clarity, we present the overall approaches over
integer parameters. We also assume that C is a block-
diagonal matrix. The main focus of this research is
to exploit this block-diagonal structure and de-
velop algorithms to solve the reformulated problem
efficiently.

In the remainder of this section, we propose a refor-
mulation of model (P1) and use it to develop solu-
tion methods in Section 4. For this, we need the fol-
lowing additional notation, used throughout the rest
of the paper:

_: The index set of blocks in matrix C.
Ck: The kth block in matrix C.

Rowk: The number of rows in block Ck.
Colk: The number of columns in block Ck.
yk: The subset of variables y involved in block Ck.
=k: The set of integrality and bound constraints

corresponding to variables yk.
c2k: The subset of c2 corresponding to variables yk.
bk: The right-hand-side values in front of block Ck.
Ak: The rows in matrix A in front of block Ck.
Bk: The rows in matrix B in front of block Ck.

With respect to the block-diagonal structure of
matrix C, we can rewrite constraint Cy ≤ b − Ax − Bu
included within the second-stage feasible space =(x,u)
as follows:

Ckyk ≤ bk − Akx − Bku k ∈ _. (2)
Furthermore, we define some notation related to Bku
as follows:

6′
k: The set of all realizations for Bku; that is,

6′
k � {v ∈ RRowk | v� Bku,u ∈ 8}.

6k: The index set of 6′
k; that is, 6k � {1, 2, . . . , |6′

k |}.
eks: The sth member of 6′

k (defined for s ∈ 6k).

wks: A binary variable that takes 1 if Bku is equal to
eks and 0 otherwise.

Using all the above notation, we reformulate model
(P1) as

(P2) min
x∈-

cu1x + max
(u,w)∈(8,0)

min
y∈=(x,w)

∑
k∈_

cu2kyk

( )( )
, (3)

(8,0) �
{
(u,w) | u ∈ 8, (4)

Bku � ∑
s∈6k

ekswks, k ∈ _, (5)∑
s∈Sk

wks � 1, k ∈ _, (6)
wks ∈ 0, 1{ }, k ∈ _ s ∈ 6k

}
, (7)

=(x,w) � y | yk ∈ =k,

{
k ∈ _, (8)

Ckyk ≤ bk − Akx −
∑
s∈6k

ekswks, k ∈ _

}
. (9)

In the following, we introduce a new model that is
equivalent to model (P2) as we will show later in
Theorem 1 and Corollary 1. To introduce model (P3),
for each k ∈ _, we make |6k | copies of variables yk ∈
RColk and define variables y′ks ∈ RColk (s ∈ 6k). Model
(P3) is given by (10)–(12):

(P3) min
x∈-

cu1x + max
(u,w)∈(8,0)

min
y′∈=′(x)

∑
k∈_

∑
s∈6k

cu2ky
′
kswks

( )( )
,

(10)
=′(x) �

{
y′ | y′ks ∈ =k, k ∈ _ s ∈ 6k, (11)
Ckyks ≤ bk − Akx − eks, k ∈ _ s ∈ 6k

}
. (12)

The structure of model (P3) is such that, if wks takes 1,
y′ks is equal to the optimal solution of yk in model (P2).
Indeed, by introducingConstraint (12),we havemade
|6k | copies of Constraint (9) to compute the values of y′ks
independently. Moreover, to ensure that the optimal
objective values of models (P2) and (P3) are the same,
cu2ky

′
ks in (10) is multiplied by wks.

Theorem 1. Suppose that model (P2) is feasible. Then,
a. x̂ is a first-stage feasible solution of model (P2) if and

only if it is a first-stage feasible solution of model (P3),
b. the objective values of models (P2) and (P3) for the

first-stage solution x̂ are the same if maxu,w and miny′ are
solved optimally, and
c. for this first-stage solution, the optimal values of

variables y′ks in model (P3) represent the second-stage
optimal policies in model (P2).

The following corollary states the relations between
models (P2) and (P3).
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Corollary 1. Models (P2) and (P3) are equivalent; that is,
either

1. both models are unbounded, or
2. both models are infeasible, or
3. both models are feasible and bounded with the same

optimal objective value and the same optimal solution for
the first-stage variables; in this case, the optimal solution of
variables y′ks in model (P3) represents the optimal policies
for variables yk in model (P2).

Proof. Theorem 1 directly results in cases (1) and (3).
To prove case (2), we note that with respect to Theo-
rem 1 for any feasible solution in model (P2), there is an
equivalent feasible solution in model (P3). Therefore,
model (P3) is infeasible if and only if model (P2) is
infeasible.

The next theorem shows that model (P3) can be
reduced to a single-stage problem.

Theorem 2. In model (P3), the objective function maxu,w ·
(miny′ (.)) can be replaced by miny′ maxu,w .( )( ).

Therefore, we can rewrite model (P3) as

(P4) min
(x,y′)∈(-,=′)

cu1x + max
(u,w)∈(8,0)

∑
k∈_

∑
s∈6k

cu2ky
′
kswks

( )( )
.

(13)
In fact, the reformulation presented in this section

shows that we can transform the two-stage robust prob-
lem (P1) to a single-stage robust problem. In the above
model, we have (-,=′) � {(x, y′) | x ∈ -, y′ ∈ =′(x)}.
We use the latter model to present our solution me-
thods in Section 4.

4. Solution Methods
In this section we propose three solution methods for
model (P4). We present a Benders algorithm that it-
erates between amaster problem and a subproblem to
tighten the optimality gap. We also propose a heu-
ristic that dualizes the linear programming relaxation
of the inner max problem in model (P4). Then it it-
eratively generates cuts to shape the convex hull of the
uncertainty set. We also present a hybrid Benders
algorithm that applies the heuristic within the frame-
work of the Benders algorithm.

4.1. Benders Algorithm
In our Benders algorithm, valid lower and upper bounds
are obtained by solving the master problem and the
subproblem, respectively. The algorithm iterates be-
tween these problems until the bounds converge. In
the following, we present the master problem and
subproblem. Then we explain the framework of the
Benders algorithm.

Suppose thatm scenarios (ûj,ŵj) ∈ (8,0), j�1,2, . . . ,m,
are already generated by solving the subproblem.

We define the master problem of the Benders algo-
rithm as

(MP) min
(x,y′)∈(-,=′),θ

θ (14)
θ ≥ cT1x +

∑
k∈_

∑
s∈6k

cu2ky
′
ksŵ

j
ks, j � 1, 2, . . . ,m. (15)

Theorem 3. The optimal objective value of model (MP) is a
valid lower bound for model (P4).

For a feasible solution (x̂′, ŷ′) ∈ (-,=′), a valid upper
bound is obtained by solving the inner max problem
in model (P4). We refer to the following problem as
the subproblem of the Benders algorithm:

(SP) max
(u,w)∈(8,0)

cu1 x̂ +
∑
k∈_

∑
s∈6k

cu2kŷ
′
kswks

( )
. (16)

Algorithm 1 provides the pseudocode of the
Benders algorithm. In this algorithm, UB and LB re-
spectively denote the best upper and lower bounds
found during the algorithm. In line 3, we obtain an
initial solution (x̂, ŷ′) by a heuristic algorithm that is
explained at the end of Section 4.2. In line 6, the al-
gorithm setsUB equal to the optimal objective value of
the subproblem if it is less than the current UB. The
stopping conditions of the Benders algorithm are then
checked in line 9, where δBendersacc and AlgTimeLimit
respectively denote the maximum acceptable opti-
mality gap and the available computational time.

Algorithm 1 (Benders Algorithm)
1: Input parameters: δBendersacc and AlgTimeLimit.
2: Set UB=∞, LB=-∞, and m = 0.
3: Find an initial solution (x̂, ŷ′) by a heuristic.
4: repeat
5: Modify the objective function of subproblem

(SP) using (x̂, ŷ′).
6: Solve the subproblem and update UB if it is

necessary.
7: Add a new optimality cut (15) to the master

problem and set m � m + 1.
8: Solve the master problem and update LB.
9: until (100(UB − LB)/LB ≤ δBendersacc or time limit

AlgTimeLimit is reached)

4.2. Heuristic Algorithm
In this section we present a heuristic algorithm. This
algorithm dualizes the linear programming relaxa-
tion of the innermax problem inmodel (P4) to transform
the min-max problem to a single minimization problem.
Let us assume that constraints forming the convex hull
of the inner max problem in model (P4) are

Du + Ew ≤ b2. (17)
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In Constraint (17), u and w are the vectors of uncer-
tainty variables,D and E are technologymatrices with
appropriate dimensions, and b2 is the known vector
of right-hand-side values. Note that D, E, and b2 are
independent from the values of (x̂, ŷ′) that are fixed in
the outer min problem in model (P4). This is because
the solution space of uncertainty variables does not
depend on the variables in the outer min problem.
If we haveConstraints (17),we can replace constraints
(u,w) ∈ (8,0) with them. In this case, the inner max
problem is a linear programming model for fixed
values of (x̂, ŷ′) in the outermin problem. Therefore by
dualizing the inner max problem, we obtain the fol-
lowing model:

(D-P4) min
x̂,ŷ′,γ

cu1x + bu2γ
( )

(18)
(x, y′) ∈ (-,=′), (19)
Eu

ksγ ≥ cu2ky
′
ks, k ∈ _, s ∈ 6k, (20)

Duγ � 0, (21)
γ ≥ 0. (22)

In model (D-P4), γ is the vector of dual variables for
Constraint (17), and Eks is the column in E that in-
cludes coefficients of variablewks.We can observe that
the min-max problem in model (P4) reduces to a
single min problem and can be solved directly as a
mixed-integer programming model. In the literature,
the above dualization technique is prevalent to sim-
plify single-stage robust problems where the inner
max problem is a linear programming model. How-
ever, in our model, the inner max problem is a mixed-
integer program and Constraints (17) forming the
convex hull of the uncertainty set are unknown. In the
following, we present a heuristic algorithm that re-
laxes the integrality constraints of the variables in the
inner max problem of model (P4). Then by iteratively
generating cuts, it attempts to shape the solution
space of the relaxed innermax problem into its convex
hull before the relaxation. To present this heuristic,
we first need to define models (P5) and (P6):

(P5) min
(x,y′)∈(-,=′)

cu1x + max
(u,w)∈(8,0)′

∑
k∈_

∑
s∈6k

cu2ky
′
kswks

( )( )
(23)

(8,0)′ � (u,w) ∈ (8,0) |{ (24)
Fu + Gw ≤ b3}. (25)

In model (P5), Constraint (25) is the set of valid cuts
that the heuristic algorithm generates iteratively. This
constraint set is empty at the beginning of the algo-
rithm. In this constraint, F and G are technology ma-
trices with appropriate dimensions and b3 the known
vector of right-hand-side values. We obtain the follow-
ing model (P6) by relaxing the integrality constraints

of variables u and w in model (P5) and then dualizing
the inner max problem:

(P6) min
x,y′,π,λ,α,β

cu1x + bu3π + bu4λ +∑
k∈_

αk

( )
(26)

(x, y′) ∈ (-,=′), (27)
Bu

kβk +Huλ + Fuπ � 0, (28)
αk + euksβk + Gu

ksπ ≥ cu2ky
′
ks, k ∈ _, s ∈ 6k. (29)

In model (P6), βk and π are vectors of dual variables
for Constraints (5) and (25), respectively; αk is the dual
variable of Constraint (6) defined for each k ∈ _; and
Gks is the column in G that includes coefficients of
variable wks. To write the dual of the inner max prob-
lem in model (P5), we have supposed that linear con-
straints hidden in uncertainty set 8 in Constraint (4)
are represented by Hu ≤ b4. In model (P6), λ denotes
the vector of dual variables for Hu ≤ b4.
Algorithm 2 provides the pseudocode of our heu-

ristic algorithm. In line 2, we suppose that no instance
of Constraint (25) is available at the beginning of the
algorithm and that F,G, and b3 are empty. The term Ite
is the iteration counter of the loop starting in line 3. In
line 5,we solvemodel (P6) to obtain a feasible solution
for (x̂, ŷ′). For a fixed solution (x̂, ŷ′) in model (P5),
the inner max problem is an integer program, and
we denote it by InnerMax(x̂, ŷ′). In line 7, we call Pro-
cedure 1. In each iteration of this procedure, we solve
the linear programming relaxation of InnerMax(x̂, ŷ′)
and obtain a new fractional scenario (û, ŵ). Then this
procedure generates a number of valid cuts to remove
this fractional scenario. This procedure continues
until it cannot detect any other violated cut or time
limit AlgTimeLimit is reached. We use an integer
programming solver to perform Procedure 1 and let it
generate valid cuts as explained above. In calling the
integer programming solver, we limit the maximum
number of nodes to be explored in the branch-and-
bound tree to one. In line 8 in Algorithm 2, we extract
the cuts generated by the integer programming solver
and update F, G, and b3 inmodels (P5) and (P6). In line 9,
the algorithm checks stopping criteria. One of these
stopping criteria checks whether the percentage of the
objective value improvement obtained in the current it-
eration is less than or equal to parameter δHacc.

Algorithm 2 (Heuristic Algorithm)
1: Input parameters: LocalTimeLimit, AlgTimeLimit,

and δHacc.
2: Set Ite � 0 and empty F, G, and b3 in models (P5)

and (P6).
3: repeat
4: Ite + +.
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5: Solve model (P6) with time limit LocalTimeLimit
to obtain a feasible solution (x̂, ŷ′).

6: Set ObjIte equal to the objective value of model
(P6).

7: Apply Procedure 1 to generate several cuts (25).
8: Extract the generated cuts and update F, G, and

b3 in models (P5) and (P6).
9: until (No cut is generated in line 7 in this iteration

or time limit AlgTimeLimit is reached or
(100(ObjIte −ObjIte-1)/ObjIte-1 ≤ δHacc))

Procedure 1 (Cut Generation for the Proposed Heuristic
Algorithm)

1: repeat
2: Solve the linear programming relaxation of

InnerMax(x̂, ŷ′) to obtain (û, ŵ).
3: Detect some valid cuts to remove the fractional

solution (û, ŵ).
4: Update F, G, and b3 in InnerMax(x̂, ŷ′).
5: until (No valid cut is generated or time limit

AlgTimeLimit is reached)

The proposed heuristic algorithm does not neces-
sarily find the optimal solution. Appendix EC.4 in the
electronic companion presents an example to dem-
onstrate that the heuristic algorithm does not guar-
antee optimality. In the Benders algorithm presented
in Algorithm 1, in line 3 we solve model (P6) with
empty F, G, and b3 to find an initial solution (x̂, ŷ′).

4.3. Hybrid Benders Algorithm
In this section, we combine the Benders and heuristic
algorithms to create amore efficient algorithm. In this
hybrid algorithm, the Benders algorithm guarantees
the convergenceof the algorithm. Theproposedheuristic
algorithm improves the overall efficiency by gener-
ating valid cuts for the inner max problem and also by
finding better solutions (x̂, ŷ′) by solving model (P6).

Algorithm 3 (Hybrid Benders Algorithm)
1: Input parameters: WarmupTimeLimit,

AlgTimeLimit, LocalHeuristicTimeLimit,
EvaTimeLimit, δHacc, and δBendersacc .

2: SetUB � ∞, LB � −∞, and m � 0, and empty F, G,
and b3 in models (P5) and (P6).

3: Find an initial solution (x̂, ŷ′) by a heuristic.
4: repeat
5: Modify the objective function of subproblem

(SP) using solution (x̂, ŷ′).
6: Solve the subproblem and update UB if it is

necessary.
7: Add a new optimality cut to the master prob-

lem and set m � m + 1.
8: Solve the master problem, update LB, and save

(x̂, ŷ′) in the solution pool.
9: if (WarmupTimeLimit is reached) then

10: Set Ite = 0.

11: repeat
12: Ite + +.
13: Apply Procedure 1 using solution (x̂, ŷ′) to

generate several cuts (25).
14: Extract the generated cuts and update F,G,

and b3 in models (P5) and (P6).
15: Solve model (P6) to obtain a solution (x̂, ŷ′)

and save it in the solution pool.
16: Set ObjIte to the objective value of model

(P6).
17: until (No cut is generated in line 14 or time

limit LocalHeuristicTimeLimit is reached or
100(ObjIte −ObjIte-1)/ObjIte-1 ≤ δHacc)

18: Choose the best solution (x̂, ŷ′) from the
solution pool.

19: end if
20: until (100(UB − LB)/LB ≤ δBendersacc or AlgTimeLimit

is reached)

Algorithm 3 provides the pseudocode of the hybrid
Benders algorithm. In line 3 of this algorithm, we
obtain an initial solution (x̂, ŷ′) by solving model (P6),
whereas F, G, and b3 are ignored. Lines 4–8 together
with line 20 are the same as the main loop of the
Benders algorithm given in Algorithm 1. The algo-
rithm finds a scenario by solving the subproblem in
line 6. We then add a new optimality cut to the master
problem and solve it to find a new solution (x̂, ŷ′).
Then if time limitWarmupTimeLimit is already reached,
the algorithm enters an inner loop starting in line 11.
This loop is taken from the heuristic algorithm and
improves the current solution (x̂, ŷ′) by iteratively gen-
erating cuts (25) in line 13 and then solving model (P6)
in line 15. Then we check the stopping criteria of the
heuristic algorithm in line 17. To check whether time
limit LocalHeuristicTimeLimit is reached, the algorithm
tracks the time from the start of the inner loop in line 11.
After leaving the inner loop in line 17 and before

starting a new iteration of the algorithm, we have to
decide on the new solution (x̂, ŷ′) to modify the ob-
jective function of the subproblem in line 5. Therefore,
during the algorithm we save all generated solutions
(x̂, ŷ′) in a solution pool. Then in line 18 among all
solutions in the pool, we choose the one with the lowest
worst objective value against all generated scenarios
as the current solution (x̂, ŷ′). In line 9 of Algorithm 3,
we have a time limit WarmupTimeLimit to prevent
from entering the inner loop in line 11 before this time
limit. This is because, in small instances, the Benders
algorithm converges very quickly without any need
of the heuristic algorithm.
There are generally two advantages for combining

the Benders and heuristic algorithms. First, by gen-
erating cuts (25) in the heuristic algorithm and in-
cluding them in the subproblem, we hope that the
algorithm can solve the subproblem faster in next
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iterations. Also, it is possible to improve the best solution
(x̂, ŷ′) by solving model (P6) in line 17 in Algorithm 3.

5. Stopping Conditions
The main shortcoming of the Benders and hybrid
Benders algorithms is that their master problem and
subproblem are mixed-integer programs (MIPs), and
therefore it would be very time consuming to opti-
mally solve them in all iterations of the algorithms. In
the following, we present novel stopping conditions
for these MIPs. Before explaining these conditions,
we define “ε-dominant incumbents” for the master
problem and subproblem as follows: For a constant
ε > 0, an ε-dominant incumbent of the master prob-
lem is a feasible solution in the master problem with
an objective value that is less than the lower bound of
the recent subproblem by a margin of ε. Similarly, an
ε-dominant incumbent of the subproblem is a feasible
solution in the subproblem with an objective value
that is at least ε higher than the upper bound of the
recent master problem. The stopping conditions are
presented as follows:

Stopping Condition for the Master Problem (Sub-
problem): The mixed-integer program terminates
when the optimal solution is found or at least TimeMP

seconds (TimeSP seconds) is passed from the moment
that the first ε-dominant incumbent of the master
problem (subproblem) is found.

In Table 1, we present a numerical example with
ε � 5 to explain this stopping condition for both the
master problem and the subproblem. In this table, the
results of the master problem and of the subproblem
are presented in separate columns. We report the
lower and upper bounds of the related mixed-integer
programs. Because these MIPs are not optimally
solved, there are gaps between the lower and upper
bounds. The “Order” columns also give the order in
which these MIPs are solved. In this example, in it-
erations 1–4, the upper bound of the master problem
is at least ε � 5 units less than the lower bound of the
previous subproblem.Moreover, in iterations 2–4, the
lower bound of the subproblem is at least ε � 5 units
higher than the upper bound of themaster problem in
the previous iteration. In iteration 5, when solving the
subproblem, we observe that the lower bound does
not increase to ε � 5 units higher than the upper
bound of the master problem in iteration 4. Therefore,
the stopping condition is notmet, and the subproblem
has to be solved optimally. Similarly, in the same
iteration, when we solve the master problem, the
upper bound does not decrease to ε � 5 units less than
the lower bound of the subproblem in that iteration.
Thus, the stopping condition is not satisfied, and the
master problem has to be solved to optimality.

The upper bound in the master problem and the
lower bound in the subproblem correspond to feasible
solutions of MIPs. Therefore, the stopping condition
for the subproblem means that the subproblem ter-
minates before reaching the optimality if we find a
critical uncertain scenario. We refer to a scenario as a
critical one if by adding its corresponding cut (15) to
the master problem, the objective value of solution
(x̂, ŷ′) found in the previous iteration increases by at
least ε units.
Lower bounds in themaster problem and the upper

bounds in the subproblem are valid lower and upper
bounds of the original robust problem, respectively.
Therefore, we can impose the following constraints
based on the best obtained lower and upper bounds
as the Benders algorithm proceeds:

θ ≥ LB, (30)
θ ≤ UB. (31)

Constraint (31) is valid because the optimal objective
value of the subproblem is an upper bound on the
optimal objective value of the original robust prob-
lem. As will be discussed at the end of the section,
Constraints (30) and (31) are vital for proving the
convergence of the Benders algorithm with stopping
conditions for the master problem and subproblem.
Whenwe apply the stopping conditions,most of the

time the subproblem is not solved optimally. Therefore,
the best upper bound obtained by Algorithms 1 and 3
is poor if the algorithm times out. In this case, we call
Procedure 2 at the end of Algorithms 1 and 3 to im-
prove the quality of the best upper bound. This pro-
cedure sorts all solutions (x̂, ŷ′) found by the master
problem based on their upper bounds. The upper
bound of each solution (x̂, ŷ′) is the upper bound of
its corresponding subproblem obtained in line 6 of
Algorithms 1 and 3. Procedure 2 evaluates these so-
lutions separately by solving the subproblemwithout
any stopping condition. When solving a subproblem,
if we obtain a feasible solution with an objective value
higher than the best upper boundUB, the subproblem
terminates, and Procedure 2 evaluates the next solu-
tion (x̂, ŷ′) in the sorted list. This is because in this case,

Table 1. A Numerical Example to Explain the Stopping
Conditions of MIPs in the Benders Algorithm

Iteration

Subproblem Master problem

Order LB UB Order LB UB

1 1 120 470 2 45 110
2 3 340 650 4 30 300
3 5 320 360 6 155 165
4 7 170 185 8 157 160
5 9 160 160 10 160 160
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another solution with a better upper bound is already
known. We consider a time limit EvaTimeLimit for this
procedure.

Procedure 2 (Evaluation of theGeneratedSolutions (x̂, ŷ′))
1: Input parameters: EvaTimeLimit and δBendersacc .
2: if (100(UB − LB)/LB > δBendersacc ) then
3: Sort solutions (x̂, ŷ′) in the solution pool.
4: for (i = 1 to NumberSolutions) do
5: Solve the subproblem for ith solution (x̂, ŷ′)

and update UB if necessary.
6: if (100(UB−LB)/LB≤ δBendersacc or EvaTimeLimit

is reached) then
7: break;
8: end if
9: end for

10: end if

In the following, we discuss the convergence of the
Benders algorithm with and without stopping con-
ditions for the subproblem and master problem. We
use the following notation to present the next lemmas
and theorems:

0: The set of vectors w for which there is u ∈ 8
such that (u,w) ∈ (8,0).

n: The number of scenarios in (8,0).
n′: The number of unique vectors w that the al-

gorithm visits in the subproblem before it
converges.

n′′: The number of times that the algorithm visits
an already encountered vector w before it
converges.

ε: A positive constant used in stopping condi-
tions of the master problem and subproblem.

Opt: The optimal objective value of the original
robust problem.

OSP
i : The optimal objective value of the subproblem

in iteration i.
UMP

i : The upper bound of the master problem in
iteration i.

f (j): The iteration in which for the jth times the
algorithm generates a scenario with a new
vector w in the subproblem.

g(i): The iteration in which for the ith times the
algorithm revisits any of the generated vec-
tors w in the subproblem.

Ii: An indicator that is equal to 1 if in iteration i
the algorithm generates a scenario with a re-
peated vector w and 0 otherwise.

Observation 1. The Benders algorithm without stop-
ping conditions for the master problem and subproblem
converges in at most |0| + 1 ≤ n + 1 iterations.

In the following, we present Lemmas 1–4 where
Lemma 1 is a basis in the proofs of other lemmas and
Lemmas 2–4 are used in the proof of Theorem 4.

Lemma 1. In the Benders algorithm with stopping condi-
tions for the master problem and subproblem, if the algorithm
finds a scenario with a repeated vector w in the subproblem of
iteration i, then it is the optimal solution of the subproblem,
and the optimal objective value of the subproblem is equal to
the upper bound of the recent master problem in iteration
i − 1 (i.e., UMP

i−1 � OSP
i ).

Lemma 2. In the Benders algorithm with the stopping
conditions for the master problem and subproblem, if the
algorithm finds a scenario with a repeated vector w in the
subproblem of iteration i and OSP

i −Opt > ε holds, then in at
most k � �(OSP

i −Opt)/ε	 iterations, either the algorithm
finds a scenario with a new vector w or OSP

i+k −Opt ≤ ε holds.

Lemma 3. In the Benders algorithm with the stopping
conditions for the master problem and subproblem, if the
algorithm finds a scenario with a repeated vector w in the
subproblem of iteration i and OSP

i −Opt ≤ ε holds, then in
the next iteration, either the Benders algorithm converges or
a scenario with a new vector w is found.

Lemma 4. In the Benders algorithm with the stopping con-
ditions, relation OSP

g(i1) ≥ OSP
g(i2) holds for any integer numbers

i1 and i2 satisfying 1 ≤ i1 < i2 ≤ n′′.

Theorem 4. The Benders algorithm with the stopping con-
ditions converges in at most

∑n′
j�1(1 + (�(OSP

f (j)+1 −Opt)/ε	 +
1)If (j)+1) iterations that is bounded above by |0|(�(OSP

g(1) −
Opt)/ε	 + 2) iterations.
OSP

g(1) is bounded as a result of the boundedness of the
feasible area in subproblem (SP). Therefore, Theorem 4
proves the convergence of the Benders algorithm in a
finite number of iterations.

6. Applications
In this section, we demonstrate how to apply the pro-
posed reformulation on a nurse planning and a two-
echelon supply chain problem.

6.1. Two-Stage Nurse Planning Problem
In a two-stage nurse planning problem, we plan wards’
nurses of a hospital for a medium term. The daily
workloads of nurses depend on the number of pa-
tients brought from operating rooms to wards. Patients
are already scheduled in operating rooms over the
planning horizon. Before transferring patients from
operating rooms to wards, they may stay in intensive
care units (ICUs) for several days. The lengths of stays
in ICUs andwards are uncertain and discrete. For each
patient, a number of local scenarios about the lengths
of stays in ICUs and wards is available.
In the first stage of this problem, we assign a

number of nurses to wards over the planning horizon.
In the second stage, if the nurses’workload on a day is
more than the service capacity of nurses assigned to
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that day, some extra nurses are hired. Nurses hired in
the second stage are paid more than those hired in the
first stage. Nurse staffing based on the workloads of
patients transferred from operating rooms to wards is
studied in the literature (Beliën and Demeulemeester
2008). The problem is formulated as follows.

Parameters
c1: The daily cost of a nurse hired in thefirst stage.
c2: Thedaily cost of anursehired in the secondstage.

Md: The maximum number of nurses available for
hiring on day d in the second stage.

δ: The amount of service time provided by a first-
or second-stage nurses per day (in hours).

ρ: The average of required service time for each
patient per day (in hours).

lICUtp : The length of stay in ICUs for patient t in local
scenario p ∈ 3t.

lWard
tp : The length of stay inwards for patient t in local

scenario p ∈ 3t.
d′t : The surgery day for patient t.

Sets
$: The set of days in the planning horizon.
7: The set of patients already scheduled in op-

erating rooms over the planning horizon.
7d: The set of patients scheduled on day d.
3t: The set of local scenarios for patient t. Each

local scenario gives information on the lengths
of stays in ICUs and wards.

3td: The subset of local scenarios in 3t where
patient t is in wards on day d; that is, 3td �
{p ∈ 3t : d′t + lICUtp ≤ d, d′t + lICUtp + lWard

tp > d}.
Variables

xd: The number of nurses assigned to day d in the
first stage.

utp: 1 if patient t follows local scenario p after its
surgery and 0 otherwise. (Uncertainty variable)

yd: The number of nurses hired on day d in the
second stage.

min
x∈-

∑
d∈$

c1xd +max
u∈8

min
y∈=(x,u)

∑
d∈$

(c2yd)
( )( )

(32)

- � x | xd ≥ 0, integer
{ }

, (33)

8 � u

⃒⃒⃒
⃒⃒ ∑
p∈3t

utp � 1,

{
t ∈ 7, (34)

utp ∈ 0, 1{ }, t ∈ 7, p ∈ 3t

}
, (35)

=(x, u) � y | δyd ≥ ρ
∑
t∈7

∑
p∈3td

utp − δxd

{
d ∈ $, (36)

0 ≤ yd ≤ Md, integer, d ∈ $

}
. (37)

Constraints (33) and (37) represent the bounds and
integrality constraints for first- and second-stage vari-
ables, respectively. Constraints (34) and (35) define the
discrete uncertainty set. Constraint (36) is the daily
demand constraints over the planning horizon.
In the following, we give the reformulation of the

corresponding nurse planning problem in the form of
model (P4). The definitions of variables xd and uip from
the nurse planning problem remain unchanged.

New Set
6d: The set of all possible realizations for the

number of patients in wards on day d.

New Variable
wds: Equal to 1 if exactly s patients are in wards on

day d and 0 otherwise.

min
(x,y′)∈(-,=′)

∑
d∈$

c1xd + max
(u,w)∈(8,0)

∑
d∈$

∑
s∈6d

c2wdsy′ds

( )( )
(38)

(8,0) �
{
(u,w)

⃒⃒⃒
⃒⃒ ∑
s∈6d

wds � 1, d ∈ $, (39)
∑
t∈7

∑
p∈3td

utp �
∑
s∈6d

swds, d ∈ $, (40)
∑
p∈3t

utp � 1, t ∈ 7, (41)

wds ∈ 0, 1{ }, d ∈ $, s ∈ 6d,

(42)
utp ∈ 0, 1{ }, t ∈ 7, p ∈ 3t

}
,

(43)
(-,=′) �

{
(x, y′) | δxd + δy′ds ≥ ρ × s, d ∈ $, s ∈ 6d,

(44)
xd ≥ 0, integer, d ∈ $, (45)
0 ≤ y′ds ≤ Md, integer, d ∈ $, s ∈ Sd

}
.

(46)

6.2. Two-Echelon Supply Chain Problem
We consider a two-echelon supply chain problemwhere
each customer’s order requires different numbers
of various products. The second-layer facilities make
the products and send them to the first-layer facilities
that consolidate the products corresponding to each
customer before shipping. There are several uncer-
tain local scenarios for the demand of each customer.
Similar two-echelon supply chain problems are
studied in the literature (Amiri 2006, Gendron and
Semet 2009, Sadjady and Davoudpour 2012, Pan and
Nagi 2013).
In a two-stage robust optimization setting, the deci-

sion maker chooses which facilities to open in both
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layers in the first stage. Then the worst-case scenario
for customers’ demands realizes. In the second stage,
the decision maker decides on the transportation of
products from the second-layer facilities to first-layer
facilities and from them to the customers. We for-
mulate the problem as follows.

Sets
^1: The set of first-layer facilities.
^2: The set of second-layer facilities.
(: The set of customers.
_: The set of products.
3i: The set of local scenarios for customer i. Each

local scenario gives information on the de-
mands of the customer for various products.

Parameters
cf : The opening cost of facility f .

dikp: The demand of customer i for product k in the
local scenario p ∈ 3i.

tkif : The per-unit transportation cost of product k
from first-layer facility f to customer i.

t′kff ′ : The per-unit transportation cost of product k
from first-layer facility f to second-layer fa-
cility f ′.

cifp: The transportation cost of products fromfirst-
layer facility f to customer i if local scenario
p happens for the customer. We have cifp �∑

k∈_ dikptkif .
cikff ′p :The transportation cost of all products k

demanded by customer i, from first-layer fa-
cility f to second-layer facility f ′ if local sce-
nario p happens for the customer. We have
cikff ′p � dikptkff ′ .

bk:The maximum amount of product k that can
be demanded by all customers.

Variables
xf : Equalto1if facility f is opened and 0 otherwise.
uip: Equal to 1 if local scenario p realizes for

customer i and 0 otherwise. (Uncertainty
variable)

y1if : Equal to 1 if the first-layer facility f supplies
the demand of customer i and 0 otherwise.

y2ikff ′: Equal to 1 if customer i’s demand for product
k is transported from the second-layer facility
f ′ to the first-layer facility f and 0 otherwise.

min
x∈-

∑
f∈^1∪^2

cf xf +max
u∈8

min
y∈=(x,u)

∑
i∈(

∑
f∈^1

∑
p∈3i

(cifpuipy1if )+
((

+ ∑
f∈^1

∑
f ′∈^2

∑
i∈(

∑
k∈_i

∑
p∈3i

(cikff ′puipy2ikff ′ )
))

(47)
- � x | xf ∈ {0, 1}, f ∈ ^1 ∪^2

{ }
, (48)

8 �
{
u

⃒⃒⃒
⃒⃒ ∑
p∈3i

uip � 1, i ∈ (, (49)
∑
i∈(

∑
p∈3i

dikpuip ≤ bk, k ∈ _, (50)
uip ∈ 0, 1{ }, i ∈ ( p ∈ 3i

}
, (51)

=(x,u) �
{
y

⃒⃒⃒
⃒⃒ ∑
f∈^1

y1if � 1, i ∈ (, (52)

y1if ≤ xf , i ∈ (, f ∈ ^1, (53)∑
f ′∈^2

y2ikff ′ � y1if , i ∈ (, k ∈ _, f ∈ ^1, (54)
y2ikff ′ ≤ xf ′ , i ∈ (, k ∈ _, f ∈ ^1, f ′ ∈ ^2, (55)
y1if ∈ {0, 1}, i ∈ (, f ∈ ^1, (56)

y2ikff ′ ∈ {0, 1}, i ∈ (, k ∈ _, f ∈ ^1, f ′ ∈ ^2

}
. (57)

Constraint (49) implies that exactly one of the local
scenarios realizes for each customer. Constraint (50) is
a budget constraint that makes the uncertainty set more
general. Constraint (52) states that each customer re-
ceives his or her order exactly from one of the first-
layer facilities. First- and second-stage variables are
linked by Constraints (53) and (55) that let y1if and y2ikff ′
take 1 only if x1f � 1 and x2f ′ � 1 hold, respectively.
Constraint (54) links the second-stage variables y1if
and y2ikff ′ to each other.
Model (47)–(57) is not in the format of model (P1)

because, in objective function (47), the second-stage
variables are multiplied by the uncertainty variables
uip. After performing the reformulation explained in
Section EC.10 of the electronic companion, we obtain
the following model that is in the format of model (P4).

New Variables
y1ifp: Equal to 1 if first-layer facility f supplies the

demand of customer i assuming that local
scenario phas happened for the customer and
0 otherwise.

y2ikff ′p: Equal to 1 if customer i’s demand for product
k is transported from second-layer facility f ′
to first-layer facility f assuming that local
scenario p has happened for the customer and
0 otherwise.

min
(x,y)∈(-,=)

∑
f∈^1∪^2

cf xf +max
u∈8

∑
i∈(

∑
f∈^1

∑
p∈3i

(cifpuipy1ifp)+
((

+ ∑
f∈^1

∑
f ′∈^2

∑
i∈(

∑
k∈_i

∑
p∈3i

(cikff ′puipy2ikff ′p)
))

(58)
(49) – (51), (59)
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(-,=) �
{
(x, y)

⃒⃒⃒
⃒⃒ xf ∈ {0, 1}, f ∈ ^1 ∪^2, (60)∑

f∈^1

y1ifp � 1, i ∈ (, p ∈ 3, (61)
y1ifp ≤ xf , i ∈ (, f ∈ ^1, p ∈ 3,

(62)∑
f ′∈^2

y2ikff ′p � y1ifp, i ∈ (, k ∈ _, f ∈ ^1,

p ∈ 3,

(63)
y2ikff ′p ≤ xf ′ , i ∈ (, k ∈ _, f ∈ ^1,

f ′ ∈ ^2, p ∈ 3,

(64)
y1ifp ∈ {0, 1}, i ∈ (, f ∈ ^1, p ∈ 3,

(65)
y2ikff ′p ∈ {0, 1}, i ∈ (, k ∈ _, f ∈ ^1,

f ′ ∈ ^2, p ∈ 3

}
.

(66)
7. Computational Results
In this section, we present extensive computational
results for the nurse planning and two-echelon sup-
ply chain problems introduced in Section 6. We im-
plemented all algorithms in C++ and used IBM ILOG
CPLEX 12.6 to solve the mixed-integer programs. We
ran experiments on a computer with two 3.07 GHz
Intel Xeon X5675 processors and a total of 12 cores.
We ran each instance on a single core.

For all computational experiments, we set AlgTime-
Limit to 2 hours in Algorithms 1 to 3. In the hybrid
Benders algorithm, we fix the convergence limits
δBendersacc and δHacc at 0.1%. We use the same values for
δBendersacc and δHacc for the Benders and heuristic algorithms,
respectively. We also consider 5 seconds for TimeLB and
TimeUB in the stopping conditions of the master
problem and the subproblem in Algorithms 1 and 3.
Furthermore, to runProcedure 2 forAlgorithms 1 and3,
we set EvaTimeLimit to 2 hours. Therefore, consid-
ering parameters AlgTimeLimit and EvaTimeLimit, we
run a problem instance for at most 4 hours by
Algorithms 1 and 3 and 2 hours by Algorithm 2. In
Algorithms 2 and 3, we fix LocalHeuristicTimeLimit at
30 seconds. In the hybrid Benders algorithm, we
consider 20 minutes for WarmupTimeLimit. The gen-
erated data sets for both applications are available as
online supplemental material.

7.1. Nurse Planning Instances
We generated 750 instances with different parameter
settings. The parameters considered in the generation
of the instances include the length of the planning

horizon (L), the incentive factor (IF), and the number
of operating rooms over the planning horizon (OR).
We set the number ofweeks in the planning horizon to
{2, 3, 4}. We also assume that surgeries are scheduled
only on workdays. We define the incentive factor (IF)
as the ratio of c2/c1, where c1 and c2 are the respective
daily costs of first-stage and second-stage nurses in
objective function (7). A higher value of the incentive
factor shows that the hospital pays more to second-
stage nurses than to first-stage ones. We set the in-
centive factor to {1.1, 1.3, 1.5, 1.7, 1.9}. We suppose
that first-stage nurses are paid one unit cost per hour,
which for eight work hours results in c1 � 8. Fur-
thermore, we also fix the number of operating rooms
over the planning horizon at {1, 2, 3, 4, 5}. For each
operating room, we generate three, four, or five surger-
ies randomly with a uniform distribution. Consid-
ering a full factorial experiment, 75 combinations of L,
IF, and OR are possible, and we generate 10 instances
for each problem setting for a total of 750 instances.
For each patient, we generate two scenarios for the
lengths of stays in ICUs and wards. In each scenario,
both lengths of stays are uniformly generated from
interval [1 day, 10 days]. The total number of global
scenarios that include information for all patients can
be computed by 2|T|, where |T| is the number of patients
in the planning horizon. It is worth noting that in our
small-sized instances with 39 surgeries, we have 239 ≈
5.4 × 1011 scenarios. We also assume that each nurse
works for eight hours a day (δ � 8), and the average
daily service time for each patient is two hours (ρ � 2).

7.2. Results of Nurse Planning Instances
In this section, we present computational results for
three sets of experiments performed on nurse plan-
ning instances. In the first set of experiments, we aim
at evaluating the computational performance of our
proposed heuristic, Benders, and hybrid Benders al-
gorithms. In our computational experiments, we also
consider a trilevel Benders algorithm that is inspired
by Chen (2013). We give the details about the recent
algorithm in Section EC.11 of the electronic com-
panion. In Section EC.12, we have provided some
computational experiments to tune ε for the stopping
conditions of the Benders and hybrid Benders algo-
rithms that resulted in ε � 5.
In Table 2, we report the results for our heuristic,

Benders, and hybrid Benders algorithms and the
trilevel algorithm inspired from Chen (2013). In this
table, each row gives the average results for 50 in-
stances with different values of the incentive factor.
“Sur.” and “Ite.” respectively represent the number of
surgeries in the planning horizon and the number of
iterations for different algorithms. For the heuristic
algorithm, we do not report LB, as this algorithm does
not provideany lowerbound.To compute theoptimality
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gap values for the heuristic algorithm, we use the lower
bound values of the Benders algorithm. Moreover,
under the column “Hybrid Benders algorithm,” we
have reported Δ(UB)(%), which presents the gap be-
tween the upper bounds of the Benders and the hy-
brid Benders algorithms. We compute it by Δ(UB)(%) �
100(UBB−UBHB)/UBB), where UBB and UBHB denote
the upper bound values of the Benders and hybrid
Benders algorithms, respectively.

In Table 2, we observe that for most instances the
heuristic algorithm converges quickly after only a few
iterations and the average optimality gaps are worse
than those of the Benders and hybrid Benders algo-
rithms. This is because the heuristic algorithm is a
heuristic, whereas the two other algorithms are exact
algorithm and converge to the optimal solution. We
also observe that the averages of optimality gaps for
the hybrid Benders algorithm are 0.61%, 3.29%, and
5.46%. These averages are higher than the averages of
optimality gaps for the Benders algorithm. However,
the averages of Δ(UB) are −0.46%, 0.09%, and 0.94%.
These values show that the hybrid Benders algorithm
finds better upper bounds than the Benders algorithm
in instances with planning horizons of three and four
weeks. Moreover, the average optimality gaps for the
trilevel Benders algorithm, proposed in the litera-
ture, are 2.74%, 25.45%, and 37.53%, which are sig-
nificantly higher than those of our Benders and hy-
brid Benders algorithms. It is also noteworthy that the
trilevel Benders algorithm does not find feasible so-
lutions for L � 3,OR � 5 and L � 4,OR � 4, 5.

In the second set of experiments, we evaluate the
computational efficiency of the Benders algorithm for
different levels of block-diagonal decomposition in
the nurse planning problem. In Table 3, R stands for
the percentage of the smallest-size blocks (day blocks)
that are merged with other blocks to form larger ones.
“R � 0” represents an extreme case where the block-
diagonal structure of the nurse planning problem is
decomposed as much as possible and each block is
corresponding to a single day. Higher values of R mean
that the Benders algorithm benefits less from the block-
diagonal structure of the problem. This table shows that,
for the largest set of instances with L � 4, the average
optimality gap increases from 5.11% to 12.13% as R
increases. Figure 1 depicts the bound values and the
number of variables in the subproblem versus R. This
figure shows that both LB and UB values deteriorates
as R increases. This is because higher values of R lead
to more complicated subproblems (more variables) as
a result of less benefiting from the block-diagonal
structure. Figure 2 shows the improvement of the
lower bound during the run time for different value of
R. We can see that, during the run time, the lower
bound is stronger for cases with smaller R.

In the third set of experiments, we intend to eval-
uate the performance of our stopping conditions pro-
posed in Section 5. In Table 4, we report the results for
three implementations of our Benders algorithm. The
first implementation is the one with our proposed
stopping condition for ε � 5. In the second imple-
mentation, we deactivated our proposed stopping con-
ditions and added the conventional stopping condition.
This stopping condition terminates the subproblem
as soon as it finds a solution that defines an inequal-
ity cutting off the master problem’s solution. We can
view this conventional stopping condition as a spe-
cial case of our proposed stopping condition with ε �
0 that works only for the subproblem. The third al-
gorithm reported in Table 4 is the branch-and-cut
implementation of our Benders algorithm. In this
algorithm, the master problem is solved only once,
and whenever a new incumbent solution is found
within the branch-and-bound tree, the algorithm
solves the subproblem and add the optimality cuts to
the tree.
In Table 4, each row gives the average results for 50

instances with different values of the incentive factor.
The results of “Time (sec),” “Ite.,” “LB,” “UB,” and
“Gap (%)” for the first implementation are the same as
those presented for the Benders algorithm in Table 2.
In fact, in Table 4, we report the same results for the
first implementation for ease of comparison with
the two other algorithms. Moreover, in this table, for
the Benders algorithm with our proposed stopping
conditions, we have presented additional results:
“LB1” and “UB1” give the lower and upper bounds in
the first iteration of the Benders algorithm, and Gap1
computes the gap between these bounds. Moreover,
“Imp” gives the percentage of the upper bound im-
provement obtained during the Benders algorithm.
We compute it by 100(UB1 −UB)/UB1.
We observe that the average optimality gaps for the

Benders algorithm when we apply the proposed
stopping conditions are 0.05%, 2.57%, and 5.11% for
instances with L � 2, L � 3, and L � 4, respectively.
However, the average optimality gaps for the Benders
algorithm with the conventional stopping condition
are 0.29%, 5.59%, and 9.33% and for the branch-and-
cut algorithm are 2.32%, 27.06%, and 40.28%. This
observation indicates that the proposed stopping
conditions are essential for the efficiency of the pro-
posed Benders algorithm. For small instances such as
those with L � 2,OR � 1, 2, 3, the algorithm with the
conventional stopping condition repeats more iter-
ations than the algorithm with the proposed stop-
ping conditions. However, for larger instances such
as those with L � 4,OR � 2, 3, 4, 5, the former algo-
rithm repeats significantly fewer iterations than the
latter algorithm does. There are two reasons for this
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behavior: (1) The algorithm with the conventional
stopping condition stops the subproblem as soon as it
finds a second-stage solution that cuts off the current
first-stage solution. As a result, the generated cuts are
generally less effective than the cuts that the algo-
rithm with the proposed stopping conditions gener-
ates, and therefore the first algorithm requires more
iterations for convergence. (2) For small instances, the
master problem is simpler, and the algorithmwith the
conventional stopping condition can optimally solve it
fairly quickly.However, for larger instances, proving the
optimality of the master problem becomes the bottle-
neck of the algorithm, whereas the algorithmwith the
proposed stopping conditions avoids this issue by
terminating the master problem when the ε-stopping
condition is satisfied.

Furthermore, large optimality gaps of the branch-
and-cut algorithm are large because whenever the al-
gorithm finds a first-stage feasible solution, it solves
a subproblem that is a mixed-integer programming
model. This requires solving a larger number of mixed-
integer programs that is computationally expensive.
We also observe that the averages of initial gaps in the
first iteration of the Benders algorithm with the pro-
posed stopping conditions (Gap1) are 66.29%, 55.10%,
and 47.56%; these are considerably higher than the final
optimality gaps. This demonstrates that the Benders
algorithm significantly improves the optimality
gap. Moreover, the averages of Imp are 5.14%, 4.80%,
and 3.31%. These averages show that the Benders
algorithm improves the upper bound during the al-
gorithm and the improvement of optimality gap is
not only because of improving the lower bound. We
also observe that the upper bound improvement
decreases as the length of the planning horizon in-
creases. This observation confirms that instances with
longer planning horizons are more difficult and that
the Benders algorithm becomes less effective in

solving them. Similarly, instances with more operat-
ing rooms are more difficult, and the Benders algo-
rithm performs more iterations before stopping for
such instances.

7.3. Supply Chain Instances
We generated 600 instances for the supply chain
problem. The parameters that we considered to gen-
erate the instances include the number of customers
(|(|), the number of first- and second-layer facilities
(|^1| and |^2|), customers’ demands (dikp), and trans-
portation costs (tkif and tkff ′ ). For each instance, we
uniformly generate the coordinates of customers
and facilities in a square with a side length of 100 ki-
lometers. Then, we set tkif �αk[(xi−xf )2+ (yi−yf )2]0.5
and tkff ′ �αk[(xf −x′f )2+(yf −y′f )2]0.5, where αk is the
per-kilometer transportation cost for product k ∈
_ � {1, 2, 3} and is uniformly chosen from [0.7, 1.3].
Also, we uniformly generate the demands dikp from
[100, 200]. Moreover, we assume cf � λβf , where βf is
uniformly generated from [100, 200] and λ is a pa-
rameter to tune the relative magnitude of facilities

Figure 1. (Color online) Lower Bound, Upper Bound, and the Number of Variables in the Subproblem vs. R

Figure 2. (Color online) Lower Bound Trends for Different
Values of R During the Run Time

Hashemi Doulabi et al.: Exploiting the Structure of Two-Stage RO Models with Exponential Scenarios
158 INFORMS Journal on Computing, 2021, vol. 33, no. 1, pp. 143–162, © 2020 INFORMS



fixed costs compared with the transportation costs.
We set the number of customers (|(|) to {50, 60, 70}.
For the number of facilities, we consider five cases
of (|^1|, |^2|) ∈ {(5, 5), (5, 10), (10, 10), (10, 20), (20, 20)}.
Finally, we set the relative cost parameter λ to
{1, 10, 100, 1, 000}. We generated 600 instances by
considering 10 instances for each combination of
|(|, (|^1|, |^2|), and λ. For each test instance, we set
bk in Constraint (50) equal to 1.5

∑
i∈( d̄ik/|(|, where

d̄ik represents the average demand of product k by
customer i.

7.4. Results of Supply Chain Instances
As demonstrated in Table 2, the Benders algorithm
outperforms the heuristic and hybrid Benders algo-
rithms in terms of the optimality gap. Therefore, in
Table 5, we have provided the computational results
to compare the proposed Benders algorithm with the
trilevel Benders algorithm proposed by Chen (2013).
We have explained the different components of the
trilevel algorithm for the supply chain problem in Sec-
tion EC.13 of the electronic companion. In Table 5,
columns “LB1,” “UB1,” “Gap1 (%),” “Imp (%),” “Time
(sec),” “LB,” “UB,” and “Gap (%)” are the sameas those
in Tables 2 and 4. Furthermore, under the “Trilevel
Benders algorithm from the literature” column, we
have reportedΔ(UB) (%), which gives the gap between
the upper bounds of the Benders and trilevel algorithms.
We compute it by Δ(UB) (%) � 100(UBT −UBB)/UBT),
where UBB and UBT denote the upper bound values

of the Benders and trilevel Benders algorithms, re-
spectively. Table 5 shows that the average optimality
gap of the proposed Benders algorithm for instances
with L � 2, 3, and 4 is 0.78%, 1.25%, and 1.23%, re-
spectively. However, the optimality gaps for the trilevel
Benders algorithm are very poor,mainly because of very
weak lower bounds. As explained at the end of Section
EC.13 of the electronic companion, this is because the
structure of the supply chain problem is such that op-
timality cuts for the outer master problem cannot be
enhanced. Also, the average values of Δ(UB)(%) are
30.47%, 28.57%, and 28.90%, implying that the so-
lutions found by the proposed Benders algorithm are
significantly superior to those of the trilevel Benders
algorithm. There are also two noteworthypoints about
Gap1 (%) and Imp (%). Comparison of Gap1 (%) and
Gap (%) for the Benders algorithm shows that the
algorithm significantly improves the optimality gap
from the first iteration to the last one. Also, the values
of Imp (%) show that the final upper bound values are
about 60% stronger than the initial upper bound
values. This demonstrates that the improvement of
the optimality gap from the first iteration to the last
iteration of the Benders algorithm is not just because
of improving the lower bound.

8. Conclusion
We have considered a class of two-stage robust op-
timization models with an exponential number of
scenarios. We exploited the structure of the problem

Table 4. Computational Results to Evaluate the Performance of the Proposed Stopping Conditions

Data info. Benders algorithm with the proposed stopping conditions
Benders algorithm with the

conventional stopping condition Branch-and-cut algorithm

L OR Sur. LB1 UB1

Gap1
(%)

Imp
(%)

Time
(sec) Ite. LB UB

Gap
(%)

Time
(sec) Ite. LB UB

Gap
(%)

Time
(sec) LB UB

Gap
(%)

2 1 39 252 350 41.22 3.96 2 29 336 336 0.00 1 35 336 336 0.00 2 336 336 0.00
2 79 426 686 70.61 5.16 12 49 650 650 0.00 14 55 650 650 0.00 216 650 650 0.00
3 119 586 1,008 85.36 4.98 341 65 958 958 0.00 395 89 958 958 0.00 4,333 956 958 0.25
4 157 796 1,334 77.27 5.91 1,567 91 1,254 1,254 0.00 9,402 96 1,250 1,259 0.64 13,960 1,234 1,270 3.00
5 202 1,111 1,677 56.97 5.71 8,512 113 1,577 1,581 0.24 14,400 124 1,572 1,586 0.83 14,400 1,516 1,640 8.34

Average 634 1,011 66.29 5.14 2,087 69 955 956 0.05 4,842 80 953 958 0.29 6,582 938 971 2.32

3 1 59 432 713 75.08 5.64 28 44 672 672 0.00 28 46 672 672 0.00 167 672 672 0.00
2 121 860 1,424 77.92 6.83 7,235 101 1,323 1,326 0.23 12,971 85 1,320 1,329 0.69 14,135 1,282 1,356 5.72
3 182 1,474 2,076 44.81 5.31 14,400 171 1,913 1,965 2.68 14,400 95 1,876 2,002 6.53 14,400 1,799 2,440 35.44
4 240 1,945 2,718 42.70 3.58 14,400 258 2,506 2,618 4.46 14,400 97 2,441 2,683 9.48 14,400 2,203 3,323 50.98
5 300 2,552 3,383 34.53 2.57 14,400 370 3,122 3,294 5.48 14,400 75 3,040 3,385 11.24 14,400 2,815 4,031 43.16

Average 1,453 2,063 55.01 4.79 10,093 189 1,907 1,975 2.57 11,240 80 1,870 2,014 5.59 11,501 1,754 2,365 27.06

4 1 80 687 1,100 69.40 6.25 886 84 1,031 1,031 0.00 938 92 1,031 1,031 0.00 9,148 1,028 1,036 0.73
2 163 1,421 2,167 61.82 4.43 14,400 183 2,001 2,070 3.40 14,400 68 1,967 2,106 6.93 14,400 1,888 2,723 43.41
3 241 2,283 3,119 40.94 3.02 14,400 459 2,853 3,022 5.90 14,400 64 2,763 3,064 10.61 14,400 2,582 4,145 60.17
4 318 3,114 4,057 32.17 1.67 14,400 523 3,717 3,988 7.25 14,400 59 3,603 4,098 13.42 14,400 3,351 5,118 52.56
5 397 3,833 5,043 33.08 1.14 14,400 565 4,573 4,985 8.98 14,400 51 4,423 5,139 15.69 14,400 4,227 6,116 44.52

Average 2,268 3,097 47.48 3.30 11,697 363 2,835 3,019 5.11 11,708 67 2,757 3,087 9.33 13,350 2,615 3,828 40.28
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using Dantzig–Wolfe decomposition and reduced the
original two-stage robust problem to a single-stage
robust problem. We then proposed a Benders and a
heuristic algorithm for the reformulated problem and
combined them to create a more effective hybrid al-
gorithm capable of finding solutions with better ob-
jective values. Because the master problem and sub-
problem of the Benders algorithm are mixed-integer
programs, it is computationally demanding to opti-
mally solve them in each iteration of the algorithm.
Therefore, we presented novel stopping conditions
for them and provided the relevant convergence
proofs. We performed extensive computational ex-
periments to evaluate the performance the proposed
algorithms in a nurse planning problem and a supply
chain problem. For the nurse planning problem, the
computational results demonstrated that the Benders
and hybrid Benders algorithms find solutions with an
average optimality gapof less than3% over all instances
with planning horizons up to four weeks. Moreover,
our experiments showed that the proposed Benders
algorithm is capable of finding quality solutions with
an average optimality gap of less than 1.25% for the
supply chain instanceswith up to 70 customers and 40
facilities. A possible future research direction would
be to explore the extension of the proposed algorithms
to multistage robust problems with exponential sce-
narios. Moreover, applying the proposed algorithms to
other applications should be of interest.
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