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Abstract— Vehicle-to-Infrastructure (V2I) communications
are increasingly supporting highway operations such as elec-
tronic toll collection, carpooling, and vehicle platooning. In
this paper we study the incentives of strategic misbehavior by
individual vehicles who can exploit the security vulnerabilities
in V2I communications and impact the highway operations. We
consider a V2I-enabled highway segment facing two classes of
vehicles (agent populations), each with an authorized access to
one server (subset of lanes). Vehicles are strategic in that they
can misreport their class (type) to the system operator and
get unauthorized access to the server dedicated to the other
class. This misbehavior causes a congestion externality on the
compliant vehicles, and thus, needs to be deterred. We focus
on an environment where the operator is able to inspect the
vehicles for misbehavior. The inspection is costly and successful
detection incurs a fine on the misbehaving vehicle. We formulate
a signaling game to study the strategic interaction between
the vehicle classes and the operator. Our equilibrium analysis
provides conditions on the cost parameters that govern the
vehicles’ incentive to misbehave, and determine the operator’s
optimal inspection strategy.

Index Terms— Cyber-physical Systems Security, Asymmetric
Information Games, Smart Highway Systems, Crime Deter-
rence.

I. INTRODUCTION

Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle
(V2V) communications are commonly regarded as an in-
tegral feature of smart highway systems [1], [2]. With the
projected growth of V2I and V2V capabilities, it is expected
that they will support important operations such as safety-
preserving maneuvers (overtaking), lane management, inter-
section control, etc., and also enable traffic management with
connected/autonomous vehicles [3], [4], [5]. These applica-
tions typically require the presence of road-side units (RSUs)
that are capable of receiving messages from individual vehi-
cles (i.e., their on-board units (OBUs)), authenticating these
messages, and providing relevant information to neighboring
vehicles and/or actuators (e.g., traffic signals). This message
exchange is typically supported by the Dedicated Short
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Range Communications (DSRC) technology, and it enables
the RSU to gather information such as vehicle identifier,
vehicle class, and safety-related data. In recent years, security
concerns have been identified in this context [6], [7], [8].
The prior work has focused on the identification of cyber-
security vulnerabilities and the design of defense solutions.
However, an aspect that has received relatively little attention
is the modeling of strategic misbehavior by vehicles that can
directly impact the highway operations.

In this paper, we focus on a generic setting of lane
management operation enabled by V2I communications, and
develop a model of strategic misbehavior using a signaling
game formulation. To better understand the setting, consider
a highway segment with a downstream bottleneck; see Fig.1.
The highway is equipped with a RSU and all incoming
vehicles have OBUs. The highway section has two classes
of lanes: the high-priority lanes are meant to serve the
travelers with preferential access to the system, and the low-
priority (or general purpose) lanes are meant to serve all
other travelers. We consider the two sets of lanes as parallel
servers. The RSU receives and authenticates the messages
from the incoming vehicles. A vehicle is provided access to
the high-priority server if the RSU is able to authenticate its
message and adjudge it to be a vehicle belonging to the high-
priority class. Due to the presence of congestion externalities,
the travel cost incurred in accessing each server increases
with the aggregate number of vehicles routed through that
server. We assume that the priority classes are pre-established
using well-known economic principles [9].

Fig. 1: A highway with V2I-based lane management opera-
tions.

The main feature that we consider in the abovementioned
setting is the ability of travelers to manipulate the commu-
nication between their vehicles OBU and the RSU, so that
they can access the server that does not correspond to their
vehicle class. Such an attack can be realized if the vehicles
(henceforth referred to as “agents”) of certain traffic class can
misreport their identity information to the RSU. We consider
this type of attack as an instance of strategic misbehavior,
which needs to be deterred by the system operator because
it can result in additional congestion externalities on the



other travelers. Technologically, deterrence can be facili-
tated by further inspecting the messages for their integrity,
checking the identity information for example, using video
cameras, number plate recognition, or manual inspection,
and imposing suitable fines on successful detection [10],
[11]. To make our model realistic, we make the following
assumptions: (i) The operator has incomplete information
about the priority class of incoming vehicles, in that the true
class of vehicle can be known only after inspection (which is
costly); (ii) Each misbehaving agent incurs a technological
cost for manipulating its message, and is subject to a fine if
inspected. These assumptions naturally lead us to pose our
model as a signaling game [12].

In our game, the agents are non-atomic and each agent
has private information about its type; i.e., each agent pri-
vately knows whether she is a high- or low-priority agent.
The operator has the technological capability of message
collection (via the RSU), inspection, and fine imposition.
We say that an agent misbehaves if she sends a signal that
is different from her true type and is thus provided access to
the lane (server) that does not correspond to her true type.
For the sake of generality, we consider that each type of
agents can misbehave by sending the signal of the other
type. All agents are subject to inspection by the operator who
observes the reported types, but does not know the true type
until she inspects. A misbehaving agent incurs a non-negative
technological cost, and if detected, is charged a non-negative
fine. Furthermore, we impose a natural assumption that the
technological cost and the fine for the low-priority agent are
strictly positive.

The equilibrium concept that we use is the Perfect
Bayesian Equilibrium (PBE) [13], [14]. In the PBE, (a)
the players satisfy sequential rationality, and (b) the op-
erator’s belief is consistent with the prior distribution of
agent types and the agents’ strategy according to the Bayes’
rule. The specific features that distinguish our game from
classical models of signaling games are: non-atomic agent
populations, and congestion externality imposed by an agent
on other agents accessing the same server. Under mild
assumptions on the cost functions of both servers, we provide
a complete characterization of the PBE for our signaling
game.

In particular, we show that in equilibrium (i) a high priority
agent does not have the incentive to misbehave for gaining
access to the low-priority server; (ii) not every low-priority
agent misbehaves. Moreover, we distinguish two regimes
based on how the technological cost of misbehavior com-
pares with the maximum gain from misbehavior (evaluated
as the difference in travel costs of two servers when no
agent misbehaves). In the first regime, the misbehavior is
completely deterred as the technological cost is high and the
operator does not inspect any agent. In the second regime,
the low-priority agents misbehave with a positive probability.
The inspection strategy of the operator in second regime can
be further distinguished by sub-regimes that correspond to
zero, partial, and complete inspection.

Our equilibrium analysis can be used to study the effects

of fraction of each priority class, the inspection cost, and
the fine. First, for given technological cost of misbehavior
and cost of inspection, the equilibrium misbehavior rate
(and the hence the rate of inspection) decreases as the
fraction of high-priority agents increases; Second, fine can
be effective for decreasing misbehavior rate even when the
inspection cost is high (relative to the cost of misbehavior),
but may not achieve complete deterrence; Third, if the fine
is sufficiently high, then there is no need to inspect all
agents in equilibrium. These insights can be relevant for the
design and deployment of inspection technologies to achieve
higher security of V2I-enabled highway operations. Finally,
we illustrate these effects in the specific setting of Electronic
Toll Collection (ETC), where the two servers are modeled as
M/M/1 queueing systems, and the fraction of high-priority
travelers (and the associated toll that they need to pay for
priority access) is exogenously known.

II. MODELING MISBEHAVIOR IN V2I-BASED HIGHWAY
OPERATIONS

In this section, we consider a simple model of lane
management operations on a highway section equipped with
vehicle-to-infrastructure (V2I) communications capability,
and discuss the misbehavior that can arise in this setting.

Suppose that the highway system faces a fixed traffic
demand comprised of two types of agent populations: a high
priority type, denoted h, and a low priority type, denoted l.
The fraction of type h agents is θ ∈ (0, 1), and the fraction of
type l agents is 1−θ. Throughout this article, we assume that
θ is exogenous and independent of potential misbehavior(see
Remark 1 below). There are two sets of lanes on the highway,
H and L, which we model as two parallel servers; see Fig. 2.
In the absence of any misbehavior, server H only serves type
h agents, and server L only serves type l agents.

Fig. 2: A highway with two servers (sets of lanes). Each
server is accessed by an authorized agent population (solid
arrows), and is also subject to potential misbehavior by the
other population (dashed arrows).

Remark 1: Admittedly, the assumption of fixed fractions
θ precludes us from considering situations where the agent
populations would choose their priority type (routing behav-
ior) in anticipation of the potential misbehavior that they
may face. Our analysis identifies the effect of θ on the
misbehavior rate.

Given any fraction of type h travelers, θ, the travel cost
(or queueing delay) on the H (resp. L) server is denoted
as cθH (resp. cθL). In general, cθH (resp. cθL) increases with
the aggregate demand of agents using the server H (resp.
L). In our setting, to reduce his/her travel cost, an agent



may take the server not for his type, which we consider as
misbehavior. We use σtl (resp. σth) to denote the fraction of
l (resp. h) agents that misbehave. Let a generic misbehavior
strategy σt = (σth, σ

t
l ). Since the fraction of misbehaving

agents impacts the demand of agents using each server, we
can use the notations cθH(σt) (resp. cθL(σt)) to denote the
cost of server H (resp. L) when the fraction of h type is θ,
and the strategy is σt. Our analysis holds for any travel cost
functions as long as the following assumptions are satisfied:
(A1) cθH(0, 0) <∞, cθL(0, 0) <∞, cθH(0, 0) < cθL(0, 0), and

cθH(0, 1) > cθL(0, 1).
(A2) cθH(σth, σ

t
l ) (resp. cθL(σth, σ

t
l )) decreases in σth (resp.

σtl ), and increases in σtl (resp. σth).
(A3) cθH(σth, σ

t
l ) increases in θ. cθL(σth, σ

t
l ) decreases in θ.

(A1) ensures that if no agent misbehaves, then the travel
costs on both servers are bounded, and the travel cost on the
high-priority server H is smaller. However, if every type l
agent misbehaves, then the entire traffic demand is routed
through the high-priority server H, and there is no traffic on
the low-priority sever L. In such a case, it is reasonable to
assume that the travel time on H is greater than that on L.
(A2) implies that misbehaving agents impose a congestion
externality on other travelers. (A3) implies that as the fraction
of h type increases, the cost of H lane increases, and the
cost of L lane decreases. Note that these assumptions are
not restrictive since they can be satisfied as long as travel
cost functions are finite and increasing in the demand, and
H lane is prioritized in comparison to the L lane.

III. SIGNALING GAME FOR MISBEHAVIOR INSPECTION

In this section, we model the strategic interaction between
the agent populations that are prone to misbehavior and the
system operator who can decide to inspect them based on the
received messages. We consider that the agents are capable
of compromising the integrity of messages sent to the RSU in
order to obtain access to the server that does not correspond
to their true type. The operator cannot be known an agent’s
type with certainty unless the he inspects on the agent. This
information asymmetry between the agents and the operator
naturally leads to a signaling game formulation.

In the game, agents are modeled as a set of continuous
players. The cost of misbehavior is non-negative for each
type h agent, denoted pth ∈ R≥0, and strictly positive for
each type type l agent, denoted ptl ∈ R>0, since the travel
cost on server H is smaller than that on server L.1

As mentioned before, the operator (defender), denoted as
d, does not know the type of each agent, but can observe the
agent’s signal, i.e.the server taken by the agent. The signal
space is the set of servers {H,L}, and we say that a type l
(resp. type h) agent misbehaves if she chooses the server H
(resp. L). The operator forms a belief of the true type given
the observed signal. We denote β(H)

∆
= (β(h|H), β(l|H))

(resp. β(L)
∆
= (β(h|L), β(l|L))) as the operator’s belief given

the signal H (resp. L), where β(h|H) and β(l|H) (resp.

1Note that the assumption is consistent with our model of the highway
system, with server H as a high priority server.

β(h|L) and β(l|L)) are the posterior probabilities that an
agent on the server H (resp. L) is in fact a type h and l
agent, respectively. Based on the signal and the belief, the
operator chooses to inspect an agent, denoted I, or not to
inspect, denoted N. The inspection incurs a positive cost on
the operator, denoted pd ∈ R>0. We denote σdH (resp. σdL)
as the probability of inspecting an agent on the server H

(resp. L). The operator’s strategy is σd ∆
=
(
σdH, σ

d
L

)
, and the

strategy profile is σ ∆
=
(
σt, σd

)
. Furthermore, for simplicity,

we assume that if an agent misbehaves, and if he is inspected,
then the misbehavior is detected with probability 1. Note that
this is without loss of generality, since the inspection rate can
be alternatively interpreted as the rate of successful detection.
A fine Fh ∈ R≥0 (resp. Fl ∈ R≥0) is charged to the type h
(resp. l) agent if misbehavior is detected.

We are now ready to discuss the utility functions of
the agents and the operator. The utility of each agent is
the summation of three parts: (i) −cθH(σt) (resp. −cθL(σt)),
which is the travel cost if the agent chooses the server H
(resp. L); (ii) −pth (resp. −ptl), which is the technology
cost of misbehavior for a type h (resp. l) agent; (iii) −Fh
(−Fl), which is the fine if the misbehavior is detected upon
inspection of a type h (resp. l) agent. The utility of the
operator is the summation of two parts: (i) −pd, which is
the inspection cost; (ii) Fh (resp. Fl), which is collected fine
when the misbehavior of a type h (resp. l) agent is detected.

The game is played in three steps as follows (see Fig. 3):
First, the type of each agent is chosen by the fictitious player
“Nature” according to the probability distribution Pr(h) = θ
and Pr(l) = 1−θ; Second, agents send the signal (choose the
server) according to strategy σt based on their type; Third,
the operator observes the signal. The belief β is updated
based on observed signal. The operator then chooses to
inspect or not according to σd. All the game parameters are
common knowledge, except that each agent privately knows
his type.

Fig. 3: Game Tree with the agent’s utility (top) and the
operator’s utility (bottom) indicated at each leaf node.

Given strategy profile σ, we denote the expected utility of
type h agents choosing the server H (resp. L) as Eσ[U th(H)]
(resp. Eσ[U th(L)]). The expected utility for type l agents are
similarly denoted as Eσ[U tl (H)] and Eσ[U th(H)], respectively.
The expected utilities of agents can be written as follows:



Eσ [Uth(H)] = −cθH(σt), Eσ [Uth(L)] = −cθL(σt)− pth − Fhσ
d
L, (1a)

Eσ [Utl (H)] = −cθH(σt)− ptl − Flσ
d
H, Eσ [Utl (L)] = −cθL(σt). (1b)

Given any strategy profile σ and any belief β, the expected
utility of the operator when observing signal H (resp. L) is
denoted as Eσ[UdH|β] (resp. Eσ[UdL|β]), which can be written
as follows:

Eσ [UdH|β] =
(
−pd + Flβ(l|H)

)
σdH, (2a)

Eσ [UdL|β] =
(
−pd + Fhβ(h|L)

)
σdL. (2b)

Note that in all the cost functions (1a)-(1b) and (2a)-(2b),
the travel cost function is the expected travel time multiply
with the value of time, and hence can be added with the fine
and the misbehavior/inspection costs.

The equilibrium concept in this game is the perfect
Bayesian equilibrium (PBE), see [13]:

Definition 1: A pair (σ∗, β∗) of a strategy profile σ∗ and a
belief assessment β∗ is said to be a PBE if (σ∗, β∗) satisfies
both sequential rationality and consistency:

• Sequential rationality: (i) The servers that are used by
each type of agents incur the highest expected utility:

σt∗h > 0 ⇒ Eσ∗ [Uth(L)] ≥ Eσ∗ [Uth(H)], (3a)

σt∗h < 1 ⇒ Eσ∗ [Uth(L)] ≤ Eσ∗ [Uth(H)], (3b)

σt∗l > 0 ⇒ Eσ∗ [Utl (H)] ≥ Eσ∗ [Utl (L)], (3c)

σt∗l < 1 ⇒ Eσ∗ [Utl (H)] ≤ Eσ∗ [Utl (L)]. (3d)

(ii) The operator maximizes expected utility:
σd∗H = arg max

σd
H∈[0,1]

Eσ [UdH|β
∗], σd∗L = arg max

σd
L∈[0,1]

Eσ [UdL|β
∗] (4)

• Consistency: β∗ is updated according to the agent’s
strategy σ∗ and Bayes’ rule:

β∗(h|H) =
θ
(
1− σt∗h

)
θ
(
1− σt∗h

)
+ (1− θ)σt∗l

, (5a)

β∗(h|L) =
θσt∗h

θσt∗h + (1− θ)
(
1− σt∗l

) , (5b)

and β∗(l|H) = 1− β∗(h|H), β∗(l|L) = 1− β∗(h|L).
We offer two remarks to explain this definition. First, with

regard to the sequential rationality of agents (modeled as a
continuous player set), the rationality constraints (3a) and
(3c) ensure that if the agents of a given type misbehave
with positive probability in equilibrium, then the expected
utility in choosing to access the other server is no less
than the expected utility in choosing to access the server
corresponding to their own type. On the other hand, (3b)
and (3d) constraints ensure that if agents use the server for
their true type with positive probability in equilibrium, then
the utility of choosing the other server is not strictly higher.

Second, the consistency of beliefs requires that the opera-
tor’s updated belief of each type given the received signal is
consistent with the prior distribution and the agents’ strategy
in accordance with the Bayes’ rule.

IV. EQUILIBRIUM CHARACTERIZATION

In this section, we characterize the PBE of the signaling
game. In Sec. IV-A, we show three properties of PBE that are
crucial for equilibrium analysis given any game parameters.
In Sec. IV-B, we focus on analyzing the equilibrium regimes,
where the qualitative properties of PBE are distinguished.

A. General properties of PBE

From Assumption (A1), the costs of both servers are
finite when no agent misbehaves. In fact, the following
lemma shows that the costs of both servers are also finite
in equilibrium.

Lemma 1: In any PBE, cθH(σt∗) <∞ and cθL(σt∗) <∞.
The next proposition shows that type h agents do not
misbehave in equilibrium. Consequently, the operator does
not inspect agents that choose to access the server L.

Proposition 1: In any PBE, (σ∗, β∗) satisfies:

σt∗h = 0, σd∗L = 0, β∗(l|L) = 1, β∗(h|L) = 0.
In addition, the next proposition ensures that not all type l
agents misbehave in equilibrium.

Proposition 2: In any PBE, σt∗l < 1.
Proposition 1 and Proposition 2 together show that both

servers are used in equilibrium.2 Consequently, we only need
to further consider σt∗l , β∗ and σd∗H . For simplicity, we abuse
the notation, and henceforth use cθH(σtl ) (resp. cθL(σtl )) to
denote the cost of server H (resp. L) when type l agents’
strategy is σtl , and σth = 0. Additionally, we define ∆cθ(σtl )
as the cost difference between L and H when the strategy of
type l agents is σtl :

∆cθ(σtl )
∆
= cθL(σtl )− cθH(σtl ).

From Assumption (A2), we know that ∆cθ (σtl ) must be de-
creasing in σtl . The function ∆cθ(σtl ) evaluates the incentive
of a type l agent to misbehave given that the fraction of
misbehaving type l agents is σtl .

B. Equilibrium regimes

We now focus on how the PBE changes with game
parameters. From Propositions 1-2, we know that in general,
there are two possible cases in equilibrium: In the first case,
no agents of type l take server H, which means misbehavior
is completely deterred; and in the other case, a fraction of
type l agent population takes server H. Indeed, we find that
there exist two equilibrium regimes, each corresponding to
one of the two cases. Furthermore, the second regime (i.e.
a positive fraction of type l agents take server H) can be
divided into three sub-regimes depending on whether the
inspection rate of the operator on server H is zero, positive
or one.

Before we characterize the PBE, we first introduce the
following “threshold” function of pd:

σ̂tl (p
d)

∆
=

pdθ

(1− θ)(Fl − pd)
. (6)

The next lemma provides the best response correspondence
σd∗H in equilibrium.

Lemma 2: Given any PBE:
- If σt∗l < σ̂tl (p

d), then β∗(l|H) < pd/Fl and σd∗H = 0.
- If σt∗l = σ̂tl (p

d), then β∗(l|H) = pd/Fl and σd∗H ∈ [0, 1].
- If σt∗l > σ̂tl (p

d), then β∗(l|H) > pd/Fl and σd∗H = 1.

2This result implies that “pooling” equilibrium, in which agents of
different types send identical signals, does not exist in our game due to
the congestion nature in the cost functions.



Lemma 2 shows that according to Bayes’ rule in (5),
σ̂tl (p

d) leads to the belief β∗(l|H) = pd/Fl, which is
the threshold belief such that the operator is indifferent
between the action I and N in equilibrium. If σt∗l is higher
(resp. lower) than σ̂tl (p

d), then the operator will inspect
the agents taking the server H with probability one (resp.
zero). Specifically, as the fraction of h type goes to zero
(i.e. θ → 0), the threshold σ̂tl (p

d) → 0, which implies that
the defender will always inspect with probability 1.

We next introduce the equilibrium regimes:3

1) In regime A, ptl satisfies ptl > ∆cθ(0).
2) In regime B, ptl satisfies: ptl < ∆cθ(0). There are three

sub-regimes of regime B.
Subregime B1:{(

ptl , p
d
) ∣∣∣∣ max{∆cθ(σ̂tl (p

d)), 0} < ptl < ∆cθ(0),
pd > 0.

}
(7)

Subregime B2:(ptl , pd)
∣∣∣∣∣∣

max{∆cθ(σ̂tl (p
d))− Fl, 0} < ptl

< max{∆cθ(σ̂tl (p
d)), 0},

pd > 0.

 (8)

Subregime B3:{(
ptl , p

d
) ∣∣∣∣ 0 < ptl < max{∆cθ(σ̂tl (p

d))− Fl, 0},
pd > 0.

}
(9)

The interpretations of regime boundaries are more straight-
forward once we present the PBE in each regime, and thus
will be discussed after Theorem 1. Note that these regime
definitions are valid; however, B3 can be empty.

We are now ready to fully characterize the PBE.
Theorem 1: The PBE is unique in each regime, and can

be written as follows:
(a) Regime A:

σt∗l = 0, σd∗H = 0, β∗(h|H) = 1, β∗(l|H) = 0. (10)

(b) Regime B:
Subregime B1:

0 < σt∗l < σ̂tl (p
d), σd∗H = 0, (11a)

β∗(h|H) =
θ

θ + (1− θ)σt∗l
, β∗(l|H) =

(1− θ)σt∗l
θ + (1− θ)σt∗l

,

(11b)

and the unique σt∗l satisfies ∆cθ(σt∗l ) = ptl .
Subregime B2:

σt∗l = σ̂tl (p
d), σd∗H =

∆cθ(σ̂tl (p
d))− ptl

Fl
, (12a)

β∗(h|H) =
Fl − pd

Fl
, β∗(l|H) =

pd

Fl
. (12b)

Subregime B3:

σt∗l > σ̂tl (p
d), σd∗H = 1, (13a)

β∗(h|H) =
θ

θ + (1− θ)σt∗l
, β∗(l|H) =

(1− θ)σt∗l
θ + (1− θ)σt∗l

,

(13b)

and the unique σt∗l satisfies ∆cθ(σt∗l ) = ptl + Fl. �
First, we interpret the regime boundaries:

3We only discuss generic cases, where the game parameters are in the
interior of each regime.

(i) Regimes A and B are distinguished by the threshold
∆cθ(0), which is the cost reduction that a type l agent
enjoys by misbehaving given that all the remaining
agents do not misbehave.

(ii) Regime B is distinguished into three sub-regimes by
two thresholds: ∆cθ(σ̂tl (p

d)) and ∆cθ(σ̂tl (p
d)) − Fl.

For any pd, the threshold ∆cθ(σ̂tl (p
d)) is the gain from

misbehavior given that the misbehavior rate is σ̂tl (p
d)

and the operator does not inspect at all. The threshold
∆cθ(σ̂tl (p

d))−Fl is the increase in utility from misbe-
havior given that the misbehavior rate is σ̂tl (p

d) and the
operator inspects each agent requesting access to server
H. We say that the misbehavior cost ptl is relatively
high compared to pd, if ptl > ∆cθ(σ̂tl (p

d)); relatively
medium if ∆cθ(σ̂tl (p

d))−Fl < ptl < ∆cθ(σ̂tl (p
d)), and

relatively low if ptl < ∆cθ(σ̂tl (p
d))− Fl.

Second, we relate the PBE strategy profiles and the
conditions determining the regime boundaries:
[Regime A]: Misbehavior cost ptl > ∆cθ(0), thus misbe-

havior is deterred, and no inspection is needed.
[Regime B]: Misbehavior cost ptl < ∆cθ(0), thus misbe-

havior occurs with positive probability.
- B1: [Misbehavior cost is relatively high (7).] Misbehav-

ior rate is lower than the threshold σ̂tl (p
d). The operator

does not inspect.
- B2: [Misbehavior cost is relatively medium (8).] Misbe-

havior rate is equal to the threshold σ̂tl (p
d). The operator

inspects a positive fraction of agents.
- B3: [Misbehavior cost is relatively low (9).] Misbehav-

ior rate is higher than the threshold σ̂tl (p
d). The operator

inspects all the agents.
Third, we summarize how PBE changes with the misbe-

havior and inspection costs in table I:

A B1 B2 B3

ptl increases σt∗l − ↓ − ↓
σd∗ − − − −

pd increases
σt∗l − − ↑ −
σd∗ − − ↓ −

TABLE I: Qualitative properties of PBE

Fourth, we emphasize the implications of PBE:
- The misbehavior is completely deterred only when the

misbehavior cost is sufficiently high.
- In sub-regime B2, the belief β∗(H) does not depend on
θ. The intuition is that since in this sub-regime, both the
agents and the operator use mixed strategies in equilib-
rium, the strategy σ̂tl (p

d) in (6) increases in θ to ensure
that the belief β∗(l|H) (resp. β∗(h|H)) is maintained
at the threshold value pd/Fl (resp. 1 − pd/Fl), which
makes the operator indifferent between I and N.

- One can verify the intuitive property that the utility
of the type l (resp. h) agents is non-increasing (resp.
non-decreasing) in ptl and non-decreasing (resp. non-
increasing) in pd. Similarly, the operator’s utility is non-
decreasing in ptl and non-increasing in pd.



- In general, the misbehavior rate σt∗l is non-increasing
in ptl , and non-decreasing in pd. The inspection rate σd∗

is non-decreasing in ptl , and non-increasing in pd.

Finally, from Assumption (A3), we know that the minimal
technology cost that deters misbehavior, ∆cθ(0), decreases
in θ, and ∆cθ(σ̂tl (p

d)) also decreases in θ for any given pd.
Therefore, as θ increases, the sizes of regime A (no misbe-
havior, no inspection) and sub-regime B1 (low misbehavior
rate, no inspection) increase, and the sizes of the two other
regimes decrease. This implies that the misbehavior rate is
lower and the inspection is less needed when more agents
are of type h. Note again that θ is defined exogenously, and
is common knowledge in our work. However, if the operator
does not know θ, and he over-estimates θ, then the actual
inspection rate will be lower than the optimal strategy.

Moreover, as Fl increases, the size of B2 increases, and
the size of B3 decreases or becomes empty. However, Fl
has no effect on A and B1, where inspection is not needed.
This observation implies that (i) Fine is effective to decrease
the misbehavior rate when the inspection cost is relatively
high compared to the misbehavior cost, but cannot deter
misbehavior. (ii) If the fine is higher than ∆cθ(0), then
inspecting all agents is not needed.

V. A SIMPLE EXAMPLE OF TOLL EVASION

In this section, we apply our equilibrium results to a
specific example of Electronic Toll Collection (ETC) system.
In the ETC setting, server H (resp. L) represents the tolled
(resp. toll-free) lanes. Type h are the agents that are willing
to pay the toll, and type l are the agents that are not willing to
pay. The total arrival rate of both types of agents is λ = 2400
veh/hr. The fraction θ = 0.3 is the fraction of type h agents.
Therefore, the arrival rate of type h (resp. l) agents is θλ
(resp. (1− θ)λ). The toll is collected electronically, and the
access is granted to the tolled lanes to the paying agents after
the RSU obtains their reported identifier. Such an operation
is technologically feasible; see e.g. the European DSRC Toll
Collection systems [2].

We model the highway as two parallel M/M/1 queuing
systems, one representing the tolled lanes (H), and the
other representing the toll-free lanes (L). For background on
modeling highway traffic with stochastic queuing models, see
[15], [16]. Both the tolled lanes and the toll-free lanes have a
capacity (service rate) of 1700 veh/hr, i.e. µH = µL = 1700
veh/hr. For ease of presentation, we assume that the travel
cost on a server is the product of the expected system time
and the value of time VoT = 50 USD/hr. The fine is
Fl = 100 USD. Following standard results in queuing theory
(see e.g. [17]), the expected cost functions are as follows:

cθH(σ) =


VoT

µH−θλ(1−σt
h
)−(1−θ)λσt

l

,

if θλ(1− σth) + (1− θ)λσtl < µH,
∞, o.w.

cθL(σ) =


VoT

µL−(1−θ)λ(1−σt
l
)−θλσt

h

,

if (1− θ)λ(1− σ) + θλσth < µL,
∞, o.w.

We can check that the cost functions satisfy Assumptions
(A1) - (A3). Fig. 4 illustrates the regimes of PBE.

Fig. 4: PBE regimes.

In this example, the minimum ptl that deters misbehavior is
∆cθ(0) = 2.35 USD. Note that this is the technology cost per
signal. A device that is used to manipulate the message sent
to the RSU can be expensive, but if the device is repeatedly
used, the average cost can be low.

Additionally, since the fine Fl = 100 > ∆cθ(0) = 2.35,
the sub-regime B3 is empty. This implies that given any ptl
and pd, the misbehavior rate is no higher than σ̂tl (p

d) (in
sub-regime B2), and there is no need to inspect all agents.
Given parameters in B2, ptl = 0.5 USD and pd = 5 USD,
the equilibrium misbehavior rate is σt∗l = σ̂tl (p

d) = 2.15%,
and the inspection rate is σd∗H = 0.34%.

VI. CONCLUDING REMARKS

In this article, we formulate a signaling game to study the
misbehavior of two classes of agents with different priorities
and the inspection strategy of the operator in a V2I-based
highway system. We provide complete characterization of
PBE, and study how the equilibrium structure changes with
fine, costs parameters, and relative sizes of the two traffic
classes.

One open question is how we can design an efficient
V2I-based highway system that incorporates the inspection
of misbehavior. Our analysis shows that as θ decreases,
misbehavior is less likely to be deterred. This dampens the
advantage of agents with high priority, and increases the need
for inspection. Therefore, when designing the two-classes
traffic system, the operator not only needs to consider the
demand in each class and the overall efficiency in terms of
the expected travel cost, but also should consider how the
rate of misbehavior effects the congestion externalities in
each class and the resulted inspection costs.

APPENDIX A: PROOFS OF STATEMENTS

Proof of Lemma 1. We prove by contradiction. If cθH(σt∗) =∞, the
aggregate amount of agents taking server H in equilibrium must be
higher than that without misbehavior. Hence, the amount of agents
on server L is lower than that without misbehavior, which ensures
cθL(σt∗) < ∞. Given any operator’s strategy σd ∈ [0, 1], from
(1), we must have Eσ∗ [U th(H)] < Eσ∗ [U th(L)] and Eσ∗ [U tl (H)] <
Eσ∗ [U tl (L)]. From (3b) and (3c), we have σt∗h = 1 and σt∗l = 0, i.e.
no agents use server H in equilibrium. This contradicts the claim
that cθH(σt∗) =∞. Analogously, we argue that cθL(σt∗) <∞. �

Proof of Proposition 1. We first prove σt∗h = 0 by contradiction.
Assume that there exists a PBE such that σt∗h > 0, i.e. there



exists a fraction of type h agents using server L. From (1a)

and (3a), we must have −cθL(σt∗) − pth
(1a)
≥ Eσ∗ [U th(L)]

(3a)
≥

Eσ∗ [U th(H)]
(1a)
= −cθH(σt∗). Thus, cθL(σt∗) ≤ cθH(σt∗) − pth. Since

pth ≥ 0, cθL(σt∗) ≤ cθH(σt∗). From (1b), we have Eσ∗ [U tl (L)]
(1b)
=

−cθL(σt∗) ≥ −cθH(σt∗)
(??)
> Eσ∗ [U tl (H)]. Hence, from (3c), we

must have σt∗l = 0, i.e. no agents of type l take server H.
Additionally, since cL(σt) is increasing in σth and decreasing in
σtl , when σt∗h > 0 and σt∗l = 0, we have cθL(σt∗) > cθL(0, 0).
Analogously, cH(σt) is increasing in σtl and decreasing in σth, and
thus cθH(σt∗) < cθH(0, 0). Consequently, cθH(0, 0) > cθH(σt∗) ≥
cθL(σt∗) > cθL(0, 0). However, this contradicts Assumption (A1).
Therefore, we can conclude that σt∗h = 0.

Next, from (5), we can check that the belief updated by Bayes’
rule satisfies β∗(l|L) = 1 and β∗(h|L) = 0.

Finally, since β∗(l|L) = 1 implies that only type l agents take
server L. From (2b), the action I is strictly dominated by the action
N. Hence, σd∗L = 0. �

Proof of Proposition 2. Again we prove this claim by contradiction.
Assume that σt∗l = 1, i.e. all the agents of type l uses server H.
From Proposition 1, agents of type h do not use server L in equilib-
rium. Therefore, in PBE, no agents use server L. From Assumption
(A1), we know that Eσ∗ [U tl (L)] = −cθL(0, 1) > −cθH(0, 1) ≥
Eσ∗ [U tl (H)], which contradicts the equilibrium condition in (3c).
Hence, σt∗l < 1. �

Proof of Lemma 2. From (5), we can check that if σt∗l = σ̂tl , then
β∗(l|H) = pd/Fl. In this case, −pd + Flβ

∗(l|H) = 0, and thus
any σd∗H ∈ [0, 1] maximizes Eσ[UdH|β∗] in (2a). Additionally, since
β∗(l|H) increases in σt∗l , if σt∗l < σ̂tl , we must have β∗(l|H) <
pd/Fl. Consequently, −pd + Flβ

∗(l|H) < 0, and from (2a) and
(4), σd∗H = 0. The case for σt∗l > σ̂tl can be argued analogously. �

Proof of Theorem 1.
(a) In regime A, since ptl > ∆cθ(0), from (1b), we have

Eσ∗ [U tl (H)] ≤ −cθH(σt∗l )− ptl < −cθL(σt∗l ) = Eσ∗ [U tl (L)].
Therefore, from (3c), we must have σt∗l = 0. From (5), we
can check that β∗(h|H) = 1 and β∗(l|H) = 0. Following
from Lemma 2, σd∗H = 0. Thus, the PBE in (10) is the unique
equilibrium.

(b) In regime B, we first prove by contradiction that σt∗l ∈
(0, 1). Assume that σt∗l = 0, then from (4) and (5), β∗

and σd∗L must be in (10). Then, from (1b), Eσ∗ [U tl (L)] =
−cθL(0). However, if type l agents deviate to choose H, the
utility is −cθH(0) − ptl . Since in regime B, ptl < ∆cθ(0),
type l agents has incentive to deviate to H, which contradicts
σt∗l = 0. Additionally, from Proposition 2, σt∗l < 1.
Therefore, in this regimes σt∗l ∈ (0, 1), i.e. type l agents
take both servers in equilibrium, which implies the follows:

Eσ∗ [U tl (L)] = Eσ∗ [U tl (H)]. (15)

Furthermore, there are three cases for σd∗H : σd∗H = 0, σd∗H ∈
(0, 1) and σd∗H = 1. It turns out that these three cases
correspond to sub-regime B1, B2 and B3, respectively.
(B2) σd∗H ∈ (0, 1): In this case, from Lemma 2, we know

that β∗(l|H) must be pd/Fl, and σt∗l = σ̂tl in (6) is the
unique equilibrium strategy. Additionally, from (15),
the operator’s strategy σd∗L should satisfy −cθL(σt∗l ) =
−cθH(σt∗l )−ptl−Flσd∗L . Thus, σd∗L is in (12a). Further-
more, it remains to be shown that σt∗l and σd∗L in (12a)
are feasible strategies in this case, i.e. 0 < σt∗l < 1 and
0 ≤ σd∗L < 1. We can check that these constraints are
satisfied when pd and ptl satisfy (8). Therefore, PBE in
(12) is the unique equilibrium in B2.

(B1) σd∗H = 0: In this case, Eσ∗ [U tl (H)] = −cθH(σt) − ptl .
From (15), we must have Eσ∗ [U tl (H)] = −cθH(σt∗l )−

ptl = −cθL(σt∗l ) = Eσ∗ [U tl (L)], which leads to
∆cθ(σt∗l ) = ptl . From (5), β∗ is in (11b).
We now discuss the conditions on ptl and pd, under
which the strategy profile in (11a) is a PBE in this
case. We have argued that the condition ptl < ∆cθ(0)
is needed to ensure that σt∗l ∈ (0, 1). Additionally,
we need to show that the operator has no incentive to
deviate. From Lemma 2, as long as β∗(l|H) < pd/Fl,
the action N strictly dominates the action I. Therefore,
we need σt∗l < σ̂tl . Since ∆cθ(σtl ) decreases in σtl
and ∆cθ(σt∗l ) = ptl , we must have ptl = ∆cθ(σt∗l ) >
∆cθ(σ̂tl ), which leads to constraints in (7).

(B3) σd∗H = 1: In this case, from (15), we obtain
Eσ∗ [U tl (L)] = −cθL(σt∗l ) = −cθH(σt∗l ) − ptl − Fl =
Eσ∗ [U tl (H)]. Therefore, σt∗l satisfies ∆cθ(σt∗l ) = ptl +
Fl. From (5), β∗ is obtained from (13b). To ensure that
the action I is a dominant strategy for the operator, from
Lemma 2, we need β∗(l|H) > pd/Fl, and σt∗l > σ̂tl .
Besides, ∆cθ(σt∗l ) decreases in σtl and ∆cθ(σt∗l ) =
ptl + F , we can conclude that ptl + F = ∆cθ(σt∗l ) <
∆cθ(σ̂tl ), i.e. ptl satisfies (9). �
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