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Abstract

Due to the popularity of hub-and-spoke networks in the airline and telecommunica-
tion industries, there has been a growing interest on hub location problems and related
routing policies.

In this paper, we introduce flow-based models for designing capacitated networks
and routing policies. No a priori hub-and-spoke structure is assumed. The resulting
networks may suggest the presence of “hubs”, if cost efficient.

The network design problem is concerned with the operation of a single airline with
a fixed share of the market. We present three basic integer linear programming models,
each corresponding to a different service policy. Due to the difficulty of solving (even
small) instances of these problems to optimality, we propose heuristic schemes based on
mathematical programming.

The procedure is applied and analyzed on several test problems consisting of up to
39 U.S. cities. We provide comments and partial recommendations on the use of hubs

in the resulting network structures.
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1 Introduction

Since the 1978 Airline Deregulation Act, perhaps the most significant innovation in the
airline industry has been the adoption of hub-and-spoke systems. Flights from different
origins to a same destination , or from a same origin to different destinations are consolidated
via intermediate nodes called hubs. Hubs exploit economies of scale by allowing a smaller
number of higher capacitated arcs to serve a large number of origin-destination pairs. The
concept has also been applied to telecommunication networks.

Past studies on hub-and-spoke networks in the airline industries have appeared both
in the area of airline economics (e.g., Bailey, Graham and Kaplan, 1985, Brown, 1991,
Drezner, 1994, Hansen and Kanafani, 1990, Morrison and Winston, 1986, Reynolds and
Feighan, 1992) and in the area of operations research/transportation science (e.g., Aykin,
1994, 1995a, 1995b, Campbell, 1994a, 1994b, 1994c¢, Ernst and Krishnamoorthy, 1996,
O’Kelly, 1987, O’Kelly, Skorin-Kapov and Skorin-Kapov, 1995, Skorin-Kapov and Skorin-
Kapov, 1994, Skorin-Kapov, Skorin-Kapov and O’Kelly, 1995). Our paper falls in this
second category, which we now briefly review.

Campbell (1994a) provides a nice survey of network hub location problems. A classical
and most frequently addressed problem is the single allocation p-hub median problem with
non-hub routes prohibited. Given that there must be p hubs in the network, find an optimal
set of locations such that each non-hub city is connected to a single hub, while the total
transportation cost to serve a specified set of flows is minimized. Flows between nodes
are generally routed via one or (at most) two hubs. O’Kelly (1987) presents a quadratic
integer program for the problem as well as two heuristics. The procedures are tested on a
data set consisting of air passenger traffic in the United States in 1970 as evaluated by the
Civil Aeronautics Board (CAB). Following this seminal paper, many papers have appeared
on this problem. For example, Skorin-Kapov and Skorin-Kapov (1994) use tabu search
in order to get some of the best solutions for the CAB data, Campbell (1994c) proposes
two new heuristics based on greedy interchange, O’Kelly, Skorin-Kapov and Skorin-Kapov
(1995) develop lower bounds for hub location problems, and Skorin-Kapov, Skorin-Kapov
and O’Kelly (1995) and Ernst and Krishnamoorthy (1996) propose exact solution methods
based on tight linear programming relaxations.

Multiple allocation version of the p-hub median problem allows a non-hub city to be
connected to more than one hub. Campbell (1994b) presents integer programming formu-

lations for a variety of single and multiple allocation hub location problems, and introduces



hub center and hub covering problems. O’Kelly and Miller (1994) present various classes of
hub location problems corresponding to different decisions on the allocation type, non-hub
routes and hub level network topology.

In an attempt to introduce a more comprehensive framework with networking policies,
Aykin (1994, 1995a, 1995b) develops several integer programming models for single alloca-
tion and multiple allocation hub location problems. Two networking policies are considered:
(i) Nonstrict hubbing, in which channeling flows through hubs is not required but chosen if
efficient and (ii) strict hubbing, in which all flows to/from a node are channeled through the
same hub. In both cases, at most two-hub-stop services are allowed. Aykin’s models also
include fixed costs for establishing hubs. The proposed solution procedures include enumer-
ation algorithms and greedy-interchange heuristics, along with Lagrangian relaxation-based
lower bounds.

All models discussed above are based on the following rationale: Economies of scale
due to hubbing are explicitly and a priori modeled by having inter-hub transportation cost
discounted by a constant factor 0 < a < 1, or, in more elaborate models, by three constant
factors a1, a,as € [0,1], for spoke-to-hub, inter-hub, and hub-to-spoke links, respectively.
In addition, Aykin’s more elaborate models also indirectly consider the impact on aircraft
loading, and thus on revenue. Flights between hub cities are assumed to have a constant 80%
load factor (percentage of seats filled by revenue paying passengers), and flights between
hub and spoke cities a 60% average load factor. Consequently, in all these models, there is
no need to keep track of the number of passengers on each flight, and to make decisions on
aircraft types, and the number of aircraft of each type in order to meet the demand (i.e.
to provide enough capacity on each arcs). Finally all the models generally assume that the
total flow of a given origin-destination pair will be served via a single path only (obtained
as an output of the models).

In this paper we propose a radically different approach for the design of airline net-
works. First we do not assume a priori a hub-and-spoke structure, and thus our models do
not consist of locating a given fixed number of hubs (if consolidation of flights through a
given city is cost efficient, the models are intended to exhibit this behavior). Second, our
models track the number of passengers on a given flight, and involve the choice of different
aircraft types of different capacity and of the number of aircraft of each type to meet the
demand (the impact of economies of scale on cost and load factor is an output of the model
and will vary across pairs of cities). Third, our models allow many different paths between a

given origin-destination pair (due to capacity constraints or opportunities for consolidation



and economies of scale, a fraction of the demand may go on a direct flight, another fraction
might have a one-stop flight, etc.). These three points considerably change the nature of the
problem, and a direct quantitative comparison with the previous models would be mean-
ingless (cost structures, objective functions, and decision variables are different). However
we will test our algorithms on the CAB data and see if both approaches suggest similar
cities as hubs (definition of a hub in this paper will be discussed later).

In Section 2, we introduce the generic design problem of interest, and present three
different service policies. We then describe various mixed integer programming formulations.
In Section 3, we present and test heuristic algorithms. In Section 4 we analyze the resulting

networks. Finally, in Section 5 we provide concluding remarks.

2 Description and Formulation of the Problems

We consider the operation of a single airline with a fixed share of the market. The generic

network design problem is stated as follows:

Given a fixed origin-destination flow demand matrix, the capacity and mileage
cost of different types of aircraft, design a network and a routing policy which

satisfy the demand and minimize the total transportation cost.

Policy Classification: The following three service policies are considered.

One-Stop: Under this policy, the airline provides two possible services for each

route it serves: i) non-stop flight and ii) one-stop connecting flight.

Two-Stop: Similar to the one-stop case, except that the airline now provides

an additional service: iii) two-stop connecting flight.

All-Stop: Under this policy, no restriction is imposed on the number of con-

necting stops.

The two-stop case is the most common type of policy practiced in the U.S.
airline industry today. The all-stop case has various important applications in
telecommunication, air cargo delivery, and other logistical systems. It also serves

as a benchmark (lower bound on the optimal value) for the other two policies.

Input for the models:



Network: Let N be the set of all cities. Let d;; = dj; be the air distance

between city ¢ and city j.

Demand: Let f;; be the flow, i.e. the number of passengers who desire to fly

from city 4 to city j per day. We will generally assume that f;; = fj;.

Supply: Let K be the set of different types of aircraft to chose from. For each
aircraft of type k € K, let ¢, be the cost per mile, and by be the capacity.

2.1 Formulation of the One-Stop Model

Let z;; be the fraction of the flow f;; from i to j served by a one-stop connecting flight
through city [, and let yf] be the number of aircraft of type k used on the arc from city 7 to

city 7. The model can be formulated as follows:

(Omne-Stop) minz Z dijckyfj
i#j keK
st fij+ O {fatiji+ fizu; — figmai} < > beyly forallisj (1)
t#i,j keK

Y myj <1 foralli#j (2)

t#1,5
zij >0 foralli#t#j (3)
yfj >0 and integer for all i # j, k € K. (4)

The objective function represents the total transportation costs. Constraints (1) are
capacity constraints saying that the total fractional flow on arc (i,7) cannot exceed the
aircraft total capacity assigned to that arc. Constraints (2) ensure that 1 —37,; ; i;, the
fraction of the flow f;; from i to j served by a direct flight, is non-negative.

The following three points are not taken into account in this simplified model: (i) No
fixed cost for purchasing/leasing aircraft, (ii) No limit on the total number of available
aircraft, and (iii) No explicit periodic airline operations. The first two points can easily
be incorporated into our formulation. An explicit consideration of the third one would
require a significant modification of the model. Instead, we implicitly address this issue by
assuming a symmetric OD demand matrix, an assumption commonly made in practice by
most airlines while assessing their network strategies.

In conclusion we believe that the above model captures the essence of our purpose, i.e.

to see if economy of scale would lead to a network structure with “hubs”, and if not, to



see what alternative structure(s) it leads too. The model also integrates network design,

aircraft choices, and routing policies.

2.2 Formulation of the Two-Stop Model

The formulation of this model is a simple extension of the previous one. In addition to the
previous variables, let z;;; be the fraction of the flow f;; from 7 to j served by a two-stop

connecting flight through cities [ and . We then have:

(Two-Stop) minz Z dijckyzl“j
i£j kEK
st fig+ > {fumie + frjmg — fijwi} + Y {fijTug
t#£4,5 Lit#1,5

+fumijn + fusig — fijza} < Y beyl; for all i # j
keK

Z Zitj + Z Ty < 1 for all i # j
t#1,j 14,5
zig; >0 foralli £t #j
Tig; >0 foralli#j#I#1

yzlcj >0 and integer for all 7 # j, k € K.

2.3 Formulation of the All-Stop Model

By letting S;; be the set of all paths from city 7 to city j, and by defining new variables
zp for each path P € §;;, we could extend the previous formulation. However, since a
path may involve up to n cities, this would not be practical (exponential number of real
variables).

A more reasonable formulation is to consider a multicommodity network flow model.
Let D be the set of all origin-destination pairs, and for each d € D, let O(d), D(d) and fq4
be the origin node, the destination node, and the demand, respectively.

Let 2& be be the fraction of the flow f; routed through arc (i,j). The formulation

J
becomes:

(All-Stop) min Z Z dijckyfj
itj kK



£, ifi=0(d)

s.t. Z z% — 2 z;-ii =4 —fq ifi=D(d) for alls (5)
i# it 0 otherwise
Z zldj < Z bkyl’-“j for all 7 # j (6)
deD k€K
z >0 foralli#j, de D (7)
yfj >0 and integer for all i # j, k € K. (8)

Constraints (5) correspond to the usual flow conservation, and constraints (6) model the
arc capacity.
Remarks:

1. This formulation is very close to the network loading problem introduced by Mir-
chandani (1989), see also Magnanti, Mirchandani and Vachani, 1993, 1995.

2. This arc-based formulation is obviously more compact, but the model does not
give explicit (path) routing policies for the demand (i.e z's). Instead the z's need to be

“reconstructed” from the z's (e.g. see Ahuja, Magnanti and Orlin, 1993).

2.4 Transformation of the All-Stop Model into a One-Stop Model

In Song, 1995, a transformation of the all-stop model into a variation of the one-stop model

is presented. It is as follows:

1. Let k* be the most efficient type of aircraft, i.e. minimizing cy /b.
2. Choose m large so that mby« > >;; fij-
3. Add mby- to each fi;, getting new OD demand fi; = mbys + fij.

4. Solve the one-stop model under the new OD demand and with the additional
constraints:

yfj* >m for all i # j.

5. Let {ﬁfj*, (@fj) k+k+ } be an optimal solution to this new one-stop model, then

N

{95 — m, (§5)k2k+} is an optimal solution to the original all-stop model.

The formal proof is lengthy and technical, and out of context here, see Song, 1995 for details.
Rather, let us give some intuition behind the transformation. First, it is relatively easy to
show that the five steps above hold if applied to the all-stop model (i.e., replacing in the five
steps ‘one-stop’ by ‘all-stop’). Second, for this transformed all-stop model, the added flows



and triangle inequalities allow “swapping arguments” that transform any optimal solution
into one that never uses more than one connecting stops, i.e., a solution to the transformed
one-stop model.

With this transformation, the all-stop model becomes no harder than the transformed
one-stop model. On the other hand all models discussed here are strongly NP-hard (Song,
1995). Several exact solution procedures have been proposed to solve these models (Song,
1995), including a special procedure based on Benders decomposition and valid inequalities.
Even though the most sophisticated of these exact methods significantly improve over clas-
sical Branch and Bound techniques, the size of the solvable problems remains very modest
(less than 10 cities at best!). This is consistent with results on the network loading problems
reported elsewhere (Magnanti, Mirchandani and Vachani, 1993, 1995, Mirchandani, 1989).

These problems are extremely difficult to solve to optimality, even for very small instances.

3 Heuristic Procedures

From now on, due to space limit considerations, we are going to restrict ourselves to prob-
lems with either one type of aircraft (one-fleet option) or two types of aircraft (two-fleet
option). We first consider in detail the solution procedure for the all-stop model with the
one-fleet option, and then consider its modifications for the two-fleet option, and then for
the one-stop and two-stop models. In a last subsection we present computational testing

for all the heuristics.

3.1 All-Stop Model With One-Fleet Option

From Section 2.4, we know that we can consider this equivalent transformed one-stop for-

mulation:

(MIP) min Zdijcyij
i#]
st fij+ Y {fuwije + frjouj — fijma} <byy foralli #j
t#1,]

d xy; <1 foralli#j
t#i,j
zit; >0 foralli#t#j

yi; > m and integer for all i # j.



The heuristic is a mathematical programming-based procedure using valid inequalities and

local improvements. It consists of three major steps:

(1) finding an initial network structure (y's feasible solution),
(2) improving it by local rules to a near optimal structure,

(3) obtaining routing flows (i.e., the z’s solution).

The second step is the most involved and consists of many different types of local improve-

ments. Let us describe each step in more detail.

3.1.1 Step 1: Initial Feasible Solution

The LP relaxation of (MIP) provides a poor quality lower bound, and the LP solution,
when rounded up to the nearest feasible integer solution, a poor starting solution. This is
consistent with other capacitated network design problems (see e.g. Magnanti, Mirchandani
and Vachani, 1995). We then add the following valid inequalities to (MIP), hereafter called

one-demand cuts:

> v 2 [)_fij/b] foralli€ N,
J#i j#i
Let {y;;} be the corresponding solution to the new LP relaxation. The starting initial

feasible integer solution for (MIP) is then defined as g;; = [y;;].

3.1.2 Step 2a: Accommodating Paths

Step 2a attempts to decrease the number of aircraft on arcs, by shifting some of their flow
to currently over-capacitated arcs. It uses the following idea.

Let r;; be the “residual capacity” and ¢;; be the fraction flow on arc (7, j) corresponding
to the initial solution, i.e., rij = yij — y;;, and t;; = 1 —ri;. For a given OD pair ij, the set
of paths {(¢,%,7)}x is called accomodating if >, min{ry, ,ry ;} > ti;. For such a set, we
can redirect the fraction flow ¢;; from the arc (7, j) to the set of paths {(¢, ¢k, j) }x and thus
remove an aircraft from arc (i, j).

Step 2a searches for sets of accomodating paths in the following order: It scans once
every arc (7,7) such that g;; > 0 in non-increasing order of d;;. For each arc, the procedure
adds each path {(%,t,7)}x to a set in non-increasing order of min{r;, ,r, ;} until either the

set becomes accomodating, or there are no more such path to add.



3.1.3 Step 2b: Arc Interchanges

Step 2b attempts to move an aircraft from a long arc to a short one. It uses the following
idea.

Suppose that for a set of three nodes 4, k,j we have r;; > 0, r > 0. If d;; > di; and
tij +rir < 1, then, by redirecting the fraction flow ¢;; from the arc (, ) to the path (i, &, j),
we achieve an improvement of d;; — dj;, by setting 9;; := ¥ij — 1, Upj := U; + 1.

Step 2b scans every arc (i,j) such that r;; > 0 in non-increasing order of d;;. It then
considers each node k in non-decreasing order of dj; until the above conditions hold or all

nodes k have been considered.

3.1.4 Step 2c: Accommodating Paths, Bis

Same as step 2a, except that four-node paths are now considered.

3.1.5 Step 2d: Removing Arcs

This last local improvement stage uses a systematic approach for further reduction in the
number of aircraft. Linear programming problems are solved in order to re-direct flows and
maximize residual capacity on each arc. If the resulting residual on any arc (4, j) is rj; > 1,
we set y;; := ¥;; — 1. We then “remove” the arc from further consideration. We consider
two succesive implementations of these ideas.

First, we solve the following linear programming model in order to maximize the total

sum of weighted residuals for all arcs. We set a weight w;; = 0 if ;; = m, d;; otherwise.

(LP1) max ) wisTi)
i#£]
s.t. bgij — {fT” + Z (f_ita:ijt + ﬁjmt,’j — fij:zritj) } > bT’ij for all 7 # j
1#4,j

Z zitj <1 foralli#j
t1,]
:(;ithO fOI’&]]’i;ﬁt;ﬁj

Tij > 0 foralls 75 _]

Given the current solution %;;, the z-feasible region is defined by the same constraints as
in (MIP). Hence the problem feasibility is maintained. Upon obtaining the solution, we

“remove” all arcs with r;; > 1. If any arc is being removed and the solution is improved,

10



we reset the weights of the objective function and repeat this step until no improvement is
achieved.

In the second implementation, the same linear programming model is solved, except
that instead of maximizing the sum of residuals, we concentrate on one arc (7, ) at a time

such that r;; > 0 and y;; > m. The objective function becomes max 7;;.

3.1.6 Step 3: Final Network Structure and Routing Flows

A final y-solution, {g;;}, has now been constructed for (MIP). The final step constructs the
y-solution and z-solution for the all-stop model.

By setting ¢;; = 4;; —m and f;; = ﬁj — mb, we find a feasible z-solution, i.e such that:

(Routing) (9)
fa  ifi=0(d)
Doz => "2 =8 —f; ifi=D(d) for alli (10)
i#i i# 0 otherwise
D zf <biy  for all i # j (11)
deD
2 >0 foralliz jandalldeD. (12)

Finally from the arc flow z-solution we reconstruct the path flow z-solution using techniques
described in Ahuja, Magnanti and Orlin, 1993.
3.2 All-Stop Model With Two-Fleet Option

Let the two types of aircraft be such that by > be, ¢1 > ¢9, and ¢1/b1 < ca/by (type 1 is a

larger aircraft with a larger operating cost per mile, but more efficient than type 2). (MIP)

becomes:
(MIP2) min Y dij(cryi; + cayiy)
1#]
F.. Foime. . R S 1 2 ; ;
s.t. f’L] + Z{fztl'zyt + ft]$tlj - fzgl'ztj} < blyi_j + b2yij for all i # j

teEN

d my; <1 foralli#j
t#i,]
zit; >0 foralli#t#j

11



yilj > m and integer for all i # j

yfj > 0 and integer for all ¢ # j.

Any optimal solution of the linear programming relaxation will give y% = 0 for all (i, 7).
Based on this property, we design the heuristic so that a higher priority is given to type 1
aircraft.

Our approach consists of two stages: First we design the network as if only type 1
aircraft were available, applying the heuristic described in 3.1. Next we consider type 2
aircraft and try to find for each arc the best combination of the two aircraft types. For
this last stage, an enumeration method is found to be efficient because of the relative small

number of aircraft given by the solution.

3.3 Omne-Stop Model

The one-stop formulation with one type of aircraft becomes:

min Z dijcyij (13)
i#]
st fig+ Y {fuzije + frjmug — fijeis} < by foralli#j (14)
t#i,j

> wij <1 foralli#j (15)

1#1,5
Litg > 0 for alls ;é t 75] (16)
¥i; > 0 and integer for all ¢ # j. (a7)

The heuristic is a modification of the all-stop algorithm presented in 3.1 so that one-stop

requirements are maintained. In the following, we briefly describe these modifications.

3.3.1 Initial Feasible Solution

Nothing needs to be changed here. However our computational testing indicates that one is
better off by not adding the one-demand cuts before the LP relaxation. We have a restricted
feasible space for local improvements due to the one-stop restrictions, and adding these cuts

may lead to a local optima from which it is harder to escape.

12



3.3.2 Local Improvements

We call an arc (i, j) assigned if it carries flow other than from f;;. A fraction flow from an
assigned arc may not be redistributed (interchanged) to other arcs, since it could violate
the one-stop restriction. Thus, we only redirect a fraction flow through an accommodating
path if it is from an arc that (1) has not been assigned; or (2) such that its portion of direct
flow is larger than the fraction flow. In the latter case we can redistribute the portion of
the direct flow instead of its fraction flow.

In the all-stop case, we design the heuristic so that it searches four-node paths for further
reduction. We cannot do that here.

In the last stage of removing arcs, the procedure used in the all-stop case still applies
with minor modifications.

Finally, the modifications to the previous algorithm for the two-fleet case parallel what

we have seen for the all-stop case, and are thus not repeated here.

3.4 Two-Stop Model

Our heuristic is constructed similarily to the all-stop heuristic. Let us present the main

differences.

3.4.1 Initial Feasible Solution

The initial feasible solution is the heuristic solution to the one-stop model.

3.4.2 Local Improvements

Local improvements go through the same steps as in 3.1 with the following modifications.
With the two-stop option, channeling demand flow through a four-node path is now possible.

Also , in a one-stop solution, there exists a large number of three-node paths through
which fraction flows are redistributed. If there exists a three-node accommodating path
with respect to an assigned arc with ¢;; > 0, then it would be feasible to redistribute the
fraction flow ¢;; through the accommodating path under the two-stop policy. The portion
of the flow being carried on arc (7, j) is now going through a four-node path, and the other
portion would simply go through a three-node path.

Finally, for the “removing arcs” step (see Section 3.1.5), the corresponding linear pro-

gramming problems can be very large (the number of real variables is O(n*)), and for some

13



of the larger instances, we use column reduction by looking only at a subset of possible “arc
reductions”.
Again, the modifications of the previous algorithm for the two-fleet case parallel what

we have seen for the all-stop case.

3.5 Numerical Testing of the Heuristics
3.5.1 Construction of the test problems

Our approaches are first tested on the CAB data (see for example O’Kelly, 1987). This
data set originates from the Civil Aeronautics Board and consists of 25 cities with their
flow volumes and co-ordinates.

We also provide a new data set which we now describe. Among the largest (in popula-
tion) 100 U.S. cities, we have selected a total of 39 cities. These cities have been chosen in
such a way that all major geographical areas of U.S. are covered. The distances between
cities correspond to air distance (see Fitzpatrick and Modlin, 1986,). Intercity passenger
travel demand are estimated based on the following simple gravity model:

fij = a (pip;)°?, (18)
where p; is the population of city ¢ and «a a given constant. The actual population figures

are obtained from the 1994 census. The data are summarized in Table 1.

Table 1 is about here

Based on the same set of 39 cities, we have tested the heuristics on six different demand
levels by changing the parameter « in the gravity model. In Table 2 we give the lowest and
highest possible flow for each of the six levels. In all cases, lowest demand flow is between

Columbia and Des Moines, and the highest between New York City and Los Angeles.

Table 2 is about here

With respect to the fleet characteristics, we have chosen aircraft with b; = 180 and ¢; = 1
for the one-fleet option. For the two-fleet option, we have added aircraft with b, = 100 and

co = 0.65 (note that ¢1/b1 < ca/b2).
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3.5.2 Computational Results

We present a summary of our test results in Table 3 for all seven problems (CAB and the
six flow levels for the 39-city problem).

The policy column refers to the three connecting flight policies that we have considered
in this paper. The lower bound column corresponds to the values of the linear programming
relaxations. The next two columns give the cost values of our solutions under a one-fleet
and two-fleet option, respectively. The next columns provide the gap between the heuristic
solutions and the linear programming lower bound (heuristic/lower bound - 1). The CPU1
and CPU2 columns represent the CPU time (in seconds on a SPARCstation 10) under the
one-fleet and two-fleet option, respectively.

Connecting Policy Impacts: For each of the seven problems the gap between the
heuristic solution and the LP lower bound decreases as we go from the one-stop, two-stop
to all-stop policies. It is more difficult to coordinate flow under the one-stop and, to a lesser
extent, two-stop restrictions. Also for each of the seven problems, the two-stop policy is the
most time consuming, the one-stop policy being the fastest for the problems CAB, 1, and
2, and the all-stop policy being the fastest for the other problems.

Flow Level Impacts: The heuristics work well for high demand volumes, i.e., problems
3, 4, 5, and 6, (they all are within 7% from optimality in the worst case and the average
gap is 3.3%). However they do not seem to perform uniformly well under the lower volume
scenarios. The all-stop policy remains very good, with a worst gap of 12.8% (for problem 1).
On the other hand, the one-stop policy can lead to a significant degradation, e.g problem 1
under the one-fleet option has a gap of about 103%. However for problems with low demand
the LP lower bound might not be tight at all. For example, the gap of the initial feasible
solution for this problem was more than 500%.

To stress the importance of the level of the demand on the quality of our heuristics, note
that if we further increase the demand level to obtain a lowest flow of 45 (instead of 20 in
Problem 6), we obtain gaps of less than 0.5% under all options. As for the CAB data, if we
consider annual flow instead of daily ones, the gaps would be reduced to less than 0.05%
under all policies! Finally, as the demand density increases, the stop limitations become
less restrictive and the solution differences between the three policies become negligible.

Fleet Option Impacts: The two fleet option yields better solutions than the single
fleet, as expected. However, the gap improvement is minimal, with an average cost reduction

of 2.3%, (of 1% if we discard problem 1 with a cost reduction of 28%). We have tested various
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relative ratios of ¢/b and obtained the same results. A possible reason, and the one we tend
to endorse in this paper, is that the consolidation of flow (by swapping and/or redirecting
flow) obtained by our procedures leave little room for further improvements by a multi-fleet
option. The addition of a second type of fleet does better for the one-stop and two-stop
policies, especially at the lower end of the demand density, but the advantage diminishes

as the demand rate increases.

Table 3 is about here

4 Analysis of Network Structure

4.1 Solution Analysis

Due to space limitation, results are presented in detail for the two-stop model under the
one-fleet option, both for the CAB data and the 39-city data under flow level 1 (1-39 data).

Results from the other test sets are only summarized.

4.2 Criteria for the Analysis

In the following analysis, a city will be considered a potential hub candidate if the network
structure and resulting flow pattern indicate that it plays a connecting role in a “significant”

manner. In order to make this term more precise, we have considered different measures:

Plane: The number of aircraft flying out of a city.

ExtraPlane: The difference between Plane and the minimum number that

would be needed for satisfying the demand of that city only.
OriPassgr: The total number of passengers originating from a city.
ExtraPassgr: The number of passengers using a city as a connecting stop.

PropDirPassgr: The proportion of total passengers originating from a city

and traveling directly (no connecting stop) to their final destinations.

Clearly ExtraPlane and ExtraPassgr are the most natural candidates related to the notion
of a “connecting” city. The other measures are related to the size of the cities and are

included for testing purposes.
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It is important to stress that the notion of a hub as implicitly “defined” above differs
significantly from the classical notion as used in the literature on the p-hub median problem
and uncapacitated hub location problem. In this paper, hubs, or connecting cities, may arise
as a natural consequence of the network structure and flows. In the classical literature, hubs
correspond to cities with explicit and exclusive a priori economies of scale. Thus any cities
with extra passengers, or extra planes, would necessarily be hubs.

Finally when comparing results, one should not forget that our models allow service

policies with non-stop service.

4.2.1 CAB, Two-Stop Model, One-Fleet Option

From Table 4, three cities (Baltimore, Cincinnati, and Memphis) dominate the others with
respect to both ExtraPlane and ExtraPassengr. These cities are not among the cities with
large originating demand (see OriPassgr), but are relatively centrally located. On the other
hand “big” cities like Los Angeles and New York (high OriPassgr) have some of the smallest
values for ExtraPlane and ExtraPassenger. Finally PropDirPassgr doesn’t seem to be a clear

measure for defining hubs either(see Baltimore).

Table 4 is about here

Most remarks remain valid for the 5 other combination of connecting policy and fleet option

tested on the CAB data. Table 5 summarizes the list of corresponding hub candidates.

Table 5 is about here

Although the set of potential hubs slightly varies, cities like Cincinnatti and Memphis are
consistently at the top of the list.

It is interesting to compare our results on the CAB data with those obtained on the
p-hub median problems. Table 6 gives some results obtained by Skorin-Karov, Skorin-Karov
and O’Kelly (1995). Clearly, contrary to our main results, the p-hub median problems seem
to favor big cities such as New York and Los Angeles. Cities like New York and Los Angeles
were also obtained on a different set of data by Aykin (1995b), with a model closer to ours

(two-stops, direct flights allowed), but still with a classical notion of hubs.
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Table 6 is about here

4.2.2 1-39, Two-Stop Model, One-Fleet Option

The main remarks made on the networks obtained on the CAB data remain valid for the 39-
city problem. As indicated in Table 7, three cities (Columbus, Kansas City, and St.Louis)
come out as strong hub candidates. The criterion OriPassgr is again clearly imperfect as
a hub measure (see e.g. cities 19-Los Angeles and 26-New York). Again, the geographic

position of a city plays an overwhelming role.

Table 7 is about here

Let us summarize the results for the other tests on the 39-city problems:

Hub locations, if any, remain in the central regions.

As the demand level becomes higher, the network structures converge to the same topol-
ogy, irrespective of the connecting policy.

As the demand density increase, the proportion of passengers traveling without con-
necting flights increases as well.

In comparison to the all-stop results, the one-stop policy assigns more aircraft to each
city on average. Also ExtraPassgr entries become smaller, while PropDirPassgr become
larger. All these changes are due to the one-stop restriction, since it is more difficult to

combine and coordinate passengers to take advantage of economies of scale.

5 Concluding Remarks

In this paper, we have proposed a new set of formulations for the problem of designing a
capacitated airline networks. We have proposed heuristics and tested them on two data
sets. The quality of the procedures have been shown to be excellent for problems in which
the entries of the origin-destination demand matrix are large enough (say f;; > 20).

With respect to the networks obtained by our procedures, our conclusions and obser-

vations are based on the analysis of heuristic solutions (as opposed to optimal ones), and
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thus must be interpreted as such. With this caveat, our main findings can be summarized
as follows:

Given a fixed origin-destination demand matrix, an efficient design suggests the presence
of strong connecting cities, which we can call hubs. However, the network structure is far
from looking like a pure hub-and-spoke system (based on single or multiple allocation).

Given a set of cities and their relative positions, hub candidates depend more on their
geographical position than on their own demand level. So it is quite likely that some cities
will remain good hub candidates in a wide range of demand levels.

With a relatively high level of demand flows, the difference between the three policies
is insignificant. Omne-stop policy could be as good as the two-stop policy. In practice, the
one-stop policy is more service oriented and would be preferred, enabling the airline to gain
higher market shares.

Finally the two-fleet option doesn’t add a great advantage to an already efficient design
(an average 1% cost reduction has been observed across problems). Also the cost reductions
with a second fleet decrease as the demand level increases (from 14% in Problem 1 to 0.12%
in Problem 6). Considering the additional operating costs, the adoption of a multiple fleet
option really becomes questionable.
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Table 1: Sample Cities and Their Populations

Index City Population | Index City Population
1 Albuquerque 480577 21 Lousville 952622
2 Atlanta 2833511 22 Memphis 981747
3 Austin 781572 23 Miami 3192582
4 Buffalo 1189288 24 Milwaukee 1607183
5 Baltimore 2382172 25 New Orleans 1238816
6 Boston 4171643 26 New York 18087251
7 Chicago 8065633 27 Oklahoma City 958839
8 Cincinnati 1744124 28 Philadelphia, 2122101
9 Cleveland 2759824 29 Phoenix 5899345
10 Columbia 453331 30 Portland 1477895
11 Columbus 1377419 31 Richmond 865640
12 Dallas 3885415 32 Salt Lake City 1072227
13 Denver 1848319 33 San Antonio 1302099
14 Des Moines 392928 34 San Diego 2498016
15 Detroit 4665236 35 San Francisco 6253311
16 Houston 3711043 36 Seattle 2559164
17 Indianapolis 1249822 37 St Louis 2444099
18 Kansas City 1566280 38 St Paul 2464124
19 L.A. 14531529 39 Washington D.C. | 3923574
20 Las Vegas 741459

Table 2: Minimum and Maximu

m Demand
Problem Index | Minimum | Maximum

1 2 76

2 5 192
3 8 307
4 12 384
5 15 576
6 20 768
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Table 3: Computational Test of the Heuristics

Pb | Policy Lower 1-fleet 2-fleet Gap | Gap | CPU1l | CPU2
size bound(lb) | soll sol2 soll | sol2 | seconds | seconds

CAB | one 111401.8 | 138136 | 131084.8 | 0.239 | 0.177 | 55.23 97.17
25 two 111401.8 | 124419 | 122429.6 | 0.117 | 0.099 | 492.78 | 483.86
all 112348.3 | 118583 | 118386.6 | 0.055 | 0.0564 | 341.49 | 494.89

1 one 52076.9 | 105703 | 82015.0 | 1.030 | 0.575 | 245.6 1358.8
39 two 52076.9 64943 | 63271.2 | 0.247 | 0.215 | 14419 | 4324.6
all 52313.6 59038 | 58827.0 | 0.128 | 0.124 | 747.8 808.51

2 one 133464.6 | 151451 | 148110.7 | 0.135 | 0.110 | 770.3 1063.9
39 two 133464.6 | 147782 | 145012.2 | 0.107 | 0.086 | 1835.2 | 3054.9
all 133592.1 | 143044 | 142671.2 | 0.071 | 0.068 | 1045.4 | 1101.8

3 one 215028.7 | 230650 | 225536.6 | 0.073 | 0.049 | 1464.1 | 1551.8
39 two 215028.7 | 226115 | 225353.0 | 0.051 | 0.048 | 5492.3 | 6743.2
all 215385.5 | 226022 | 225073.0 | 0.049 | 0.045 | 1132.8 1294.9

4 one 269162.2 | 283242 | 279593.8 | 0.052 | 0.039 | 1650.4 | 2035.3
39 two 269162.2 | 279772 | 279162.7 | 0.039 | 0.037 | 2169.6 | 3521.4
all 269272.6 | 279366 | 278618.3 | 0.037 | 0.034 | 1154.2 | 1288.5

5 one 404950.1 | 415614 | 413407.0 | 0.026 | 0.021 | 3934.4 | 4234.1
39 two 404950.1 | 414634 | 413325.7 | 0.024 | 0.021 | 5853.9 | 6489.6
all 405156.5 | 412403 | 411919.4 | 0.018 | 0.017 | 1346.7 1465.6

6 one 540561.0 | 551669 | 550352.3 | 0.020 | 0.018 | 7299.2 | 7746.5
39 two 540561.0 | 551669 | 550352.3 | 0.020 | 0.018 | 8567.1 | 9502.4
all 540769.8 | 548749 | 547991.0 | 0.014 | 0.013 | 1261.9 | 1387.9
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Table 4: CAB, Two-Stop Policy, One-Fleet Option

City Plane | ExtraPlane | OriPassgr | ExtraPassgr | PropDirPassgr
ATLANTA 7 3 652 304 31.29
BALTIMORE 11 8 380 800 31.84
BOSTON 8 0 1404 18 65.17
CHICAGO 14 1 2337 91 61.92
CINCINNATI 13 11 352 994 68.75
CLEVELAND 4 686 377 55.25
DALLAS-FW 3 705 277 42.27
DENVER 1 556 172 30.58
DETROIT 12 6 989 586 62.79
HOUSTON 3 549 356 37.70
KANSAS CITY 4 452 404 55.97
LOS ANGELES 10 0 1699 50 57.68
MEMPHIS 12 10 258 951 63.95
MIAMI 0 1284 78 49.30
MINNEAPOLIS 1 573 164 43.46
NEW ORLEANS 8 5 418 511 35.65
NEW YORK 22 0 3953 3 82.29
PHILADELPHIA 6 1 823 128 33.05
PHOENIX 7 5 335 462 67.76
PITTSBURGH 9 5 655 482 46.41
ST. LOUIS 5 1 666 117 31.68
SAN FRANCISCO 7 0 1173 43 48.08
SEATTLE 6 3 436 322 35.32
TAMPA 5 2 425 237 25.65
WASHINGTON 9 1 1326 147 59.95
Table 5: CAB, Strong Hub Candidates
Policy 1-fleet 2-fleet

one Cincinnati, Memphis Cincinnati, Memphis

two Baltimore, Cincinnati, Memphis | Baltimore, Cincinnati, Memphis

all Cincinnati, Denver, St. Louis Cincinnati, Memphis, Phoenix

Table 6: CAB, p-Hub Solutions in Skorin-Kapov et al.

| Allocation | Alpha |

Three Hubs Solution

single 0.4 Chicago, Los Angeles, Philadelphia
0.6 Baltimore, Chicago, Los Angeles
0.8 Baltimore, Chicago, Los Angeles

multiple 0.4 Chicago, Los Angeles, New York
0.6 Chicago, Los Angeles, New York
0.8 Chicago, Los Angeles, New York
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Table 7: 39-1-City, Two-Stop Policy, One-Fleet Option

City | Plane | ExtraPlane | OriPassgr | ExtraPassgr | PropDirPassgr
1 5 3 181 359 7.73
2 6 3 453 314 18.98
3 7 5 233 511 17.6
4 3 1 292 124 7.19
5 3 0 417 62 12.23
6 4 0 556 82 9.35
7 5 0 766 67 11.62
8 3 1 354 93 7.06
9 10 7 449 675 30.29

10 8 7 175 632 18.29
11 13 11 313 1014 35.78
12 4 1 532 94 6.95

13 3 0 368 86 4.35

14 1 0 160 0 1.88

15 7 3 586 337 27.82
16 5 2 522 189 10.34
17 7 5 299 481 18.06
18 14 12 334 1083 41.32
19 7 1 1013 124 20.63
20 8 6 225 608 24.00
21 8 6 261 590 21.46
22 9 7 264 678 23.86
23 3 0 486 27 4.12

24 4 2 339 191 10.03
25 3 1 298 121 7.05

26 9 2 1122 249 24.42
27 8 6 262 589 16.79
28 3 0 391 74 11.25
29 5 1 653 123 15.93
30 2 0 325 17 4.31

31 4 2 243 238 12.76
32 5 3 274 313 12.41
33 2 0 305 25 2.95

34 5 2 426 237 18.54
35 5 1 675 113 14.37
36 3 0 431 54 4.87

37 14 11 424 1048 32.31
38 3 0 426 57 5.4

39 1 535 93 12.71
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