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Abstract

Probabilistic combinatorial optimization problems are generalized versions
of deterministic combinatorial optimization problems with explicit inclusion of
probabilistic elements in the problem definitions. Based on the probabilistic
traveling salesman problem (PTSP) and on the probabilistic minimum span-
ning tree problem (PMSTP), the objective of this paper is to give a rigorous
treatment of the probabilistic analysis of these problems in the plane. More
specifically we present general finite-size bounds and limit theorems for the
objective functions of the PTSP and PMSTP. We also discuss the practical
implications of these results and indicate some open problems.
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1 Introduction

During the last decade combinatorial optimization has undoubtedly been one of
the fastest growing and most exciting areas in the field of discrete mathematics.
Needless to say, the related scientific literature has been expanding at a very rapid
pace. An example of particular relevance to this paper is the excellent review volume
on the traveling salesman problem (TSP) [10].

This paper is concerned with a specific family of combinatorial optimization
problems whose common characteristic is the explicit inclusion of probabilistic ele-
ments in the problem definitions, as will be explained in Section 2. For this reason we
shall refer to them as probabilistic combinatorial optimization problems (PCOPs).
The analysis of these problems was initiated in [5] with the traveling salesman prob-
lem (see also [7]) and since then has been extended to the vehicle routing problem
in [8], the shortest path problem in [6], the spanning tree problem and the traveling
salesman facility location problem in [2]. There are several motivations for investi-
gating the effect of including probabilistic elements in combinatorial optimization
problems: among them two are particularly important. The first one is the desire to
formulate and analyze models which are more appropriate for real-world problems
where randomness is present. There are many important and interesting appli-
cations of PCOPs, especially in the context of strategic planning, communication
systems, job scheduling, etc. For a detailed description of such problems the reader
is refered to [2, 5, 7, 8]. The second motivation is an attempt to analyze the robust-
ness (with respect to optimality) of optimal solutions for deterministic problems,
when the instances for which these problems have been solved, are modified.

One can also introduce the study of PCOPs in the general framework of a priori
optimization versus re-optimization strategy (see [3]). In many applications, one
finds that, after solving a given instance of a combinatorial optimization problem,
it becomes necessary to solve repeatedly many other instances of the same problem.
These other instances are usually just variations of the instance solved originally.
The most obvious approach in dealing with such cases is to attempt to solve opti-
mally every potential instance of the original problem. Throughout the paper, we
call this approach the re-optimization strategy. Rather than re-optimizing every
potential instance, a different strategy would be to find an a priori solution to the
original problem and then update this a priori solution to answer each particular
instance/variation. The PCOPs correspond to such an alternative strategy.

Based on the probabilistic traveling salesman problem (PTSP) and on the prob-
abilistic minimum spanning tree problem (PMSTP), the objective of this paper is to
give a rigorous treatment of the probabilistic analysis of these problems in the plane.
More specifically we present general finite-size bounds and limit theorems for the
objective functions of the PTSP and PMSTP. In addition to their own theoretical
interests, the importance of these results comes from their algorithmic applications.
In order to justify this affirmation, let us review the case of the traveling salesman
problem. In [1] it has been shown that, for any infinite sequence of bounded inde-



pendent and identically distributed random variables (X;); with values in R2, the
length of the shortest tour through (Xq,. .., X,,) is asymptotic to f¢sp\/n with prob-
ability one. This theoretical result has become widely recognized to be at the heart
of the probabilistic evaluation of the performance of heuristic algorithms for vehicle
routing problems. In fact it was used as the main argument in the probabilistic
analysis of partitionning algorithms for the TSP in [9]. In [16] it was mentioned
that, in order to rigorize the result contained in [9], complete convergence was nec-
essary instead of the almost sure convergence of [1]; the complete convergence for
the TSP functional was then proved in [14].

After giving the necessary definitions and notations in Section 2, we briefly sum-
marize the PTSP results of [5] in Section 3. The main interest of the section is to
give in details the (unpublished) proof of the asymptotic convergence for the PTSP,
using a general result of [13] about subadditive functionals. Section 4 is the prin-
cipal section of the paper and contains a full discussion of the PMSTP results. In
Subsection 4.1, we first compare the PMSTP with its deterministic special case, the
MSTP. We then evaluate, in Subsection 4.2, the variations of the PMSTP functional
due to two perturbations: first, a change in the probability of presence of a point,
and second, a deletion of a point. Based on these two preliminary subsections, we
derive, in Subsection 4.3, upper and lower bounds for finite size PMSTP in the
square [0,1]2. We then present, in Subsection 4.4 the analysis of the asymptotic
behavior of the PMSTP under the assumption of independent and uniformly dis-
tributed points in the square [0,1]%2. The fact that the PMSTP functional is not
monotone makes it necessary to develop specific techniques in order to obtain such
a result. Finally, in Section 5, we derive, for comparison with the PTSP and the
PMSTP, the asymptotic behavior of the alternative strategy of re-optimizing the
problems. This section rigorizes a result about the PTSP contained in [5] and shows
that complete convergence of the TSP and MSTP functionals are necessary in order
to derive the asymptotic analysis of the re-optimization strategy. In the last section,
we study generalizations and we list some important open problems.

2 Definitions and Notations

We consider sets of points in Euclidean space R?, assuming distances between points
to be the ordinary Euclidean distance, hereafter written d. For a given finite set of
points, the traveling salesman problem (TSP) consists of finding a tour through the
points of minimum total length and the minimum spanning tree problem (MSTP)
consists of finding a spanning tree of minimum total length. We define the following
general probabilistic version of these two problems:

The Probabilistic Traveling Salesman Problem (PTSP):

Consider a problem of routing through a set V' of n points. On any given instance
of the problem, only a random subset of points (chosen according to a probability
law defined on the power set 2V of V') has to be visited. We wish to find a priori a



tour through all n points. On any given instance, the subset of points present will
then be visited in the same order as they appear in the a priori tour. The problem
of finding such a tour of minimum expected length under this skipping strategy is
defined as a Probabilistic Traveling Salesman Problem.
The Probabilistic Minimum Spanning Tree Problem (PMSTP):
Given a set V' of n points, only a random subset of points (chosen according to
a probability law defined on the power set 2V of V') is present on any particular
instance of the problem. We wish to find a priori a spanning tree through all the
points so that, for any subsequent random subset of points, the tree is retraced
deleting the points that are not present (with their adjacent edges), provided the
deletion does not disconnect the tree (note that, with this strategy, there can be
points which will not be present but still kept in the tree; the “disconnecting” quality
of a point is a global property and depends upon the presence or non-presence of
other points. This is in contrast with the PTSP in which the “disconnecting” quality
of a point is a local property). The problem of finding an a priori spanning tree of
minimum expected length is the Probabilistic Minimum Spanning Tree Problem.
In this paper, we will concentrate on the special case for which each point has a
probability p of being present, independently of the others. The detailed notations
and assumptions are the following: (z;); = (21,%2,...) represents an arbitrary
infinite sequence of points in R?; z(") = (z1,22,...,%,) are the first n points of
(z;)i. If the positions of the points are random, the sequence will be denoted by
upper-case letters, i.e., (X;); = (X1, X2,...). Associated with (z;); is an infinite
sequence (Y;); of i.i.d. Bernouilli random variables with parameter p such that
point z; is present if and only if ¥; = 1. The different functionals of interest are:

Lisp(z(™): the length of an optimal TSP tour through z("),

Lmstp(x(”)) the length of an optimal MSTP tree through z("),
15“7)(:6(”)): the expected length, in the PTSP sense, of an optimal

PTSP tour through z("),

Elmste (g (n)): the expected length, in the PMSTP sense, of an optimal

PMSTP tree through z("),

Op“p( (n )) the expected length computed under the strategy of re-opti-

mizing the tour for each instance of the problem through z("),

Ongtp(m(”)): the expected length computed under the strategy of re-

optimizing the tree for each instance of the problem through z(™.

When the positions of the points are random the previous quantities are all random
variables and their expectations (with respect to the position of the points) are
noted E[.].



3 Probabilistic Traveling Salesman Problems

3.1 Background

The following result (given here for comparison with the TSP) gives the objective
function of the PTSP and can be found in [5, 7] :

Fact 3.1 The expected length of any tour t = (acg(l), To(2)s - s To(n)s mg(l)) through
.r(n) is given by p2 E:’L;g ?:1(1 - p)rd(‘ra(i)a ‘ra((i—l—rmodn)—}—l))'

In the next result, we consider a sequence of points in [0,¢]? and give upper and
lower bounds on the expected length of an optimal PTSP tour through the first n
points of the sequence. The proofs of these bounds can be found in [5] and are not
reproduced here (the upper bounds are obtained via special tour-constructions, the
arguments being very much similar to the ones developed in details for the PMSTP
in Section 4.3). The bounds will be useful in the asymptotic analysis of Section 3.2.

Lemma 3.1 (i) Let (z;); be an arbitrary sequence of points in [0,t]* and p be the
probability of existence of each point, then:

Elron(s) < { (V2(np —2) + 13/4)t if np > 2.5, 3.1)

(np/2+ 3)t otherwise.

(ii) Let (X;); be a sequence of points independently and uniformly distributed over
[0,%]? and p be the probability of existence of each point, then:

ptsp( y-(n (V@/3)(np = 3) + 11/12++/2)t if np > 3.75,
BLE (X( ))] : { (np/3 + 2/]; +V2)t otheprwz'se. (3.2)

Under the same conditions we have:
E[EE(XM)] > ((5/8)pv/n(1 — /(1 — p)" ). (3.3)

3.2 Asymptotic Analysis

The objective of this asymptotic analysis is to obtain a strong limit law for the

PTSP.

Theorem 3.1 Let (X;); be an infinite sequence of points independently and uni-
formly distributed over [0,1]? and p be the probability of existence of each point.
Then there exists a positive constant c¢(p) such that:

lim ElgtSP(X(n))

A = = ¢(p) (a.s.). (3.4)



Proof:

We will use a general result about subadditive functionals obtained in [13]. Before
stating this result, let us give some definitions. By a functional ® we mean a real-
valued function of the finite subsets of R?. We say that (a) @ is euclidean if it
is linear and invariant under translation; (b) ® is monotone if ®(y U A) > ®(A)
for any y in R? and finite subsets A of R?; (¢) @ is bounded if var[®(X ()] < oo
whenever the points of X (™ are independent and uniformly distributed in [0,1]%
(d) @ is subadditive if whenever (Q;)1<j<m2 is a partition of the square [0,#]? into
squares with edges parallel to the axle and of length t/m, and whenever (z;); is an
arbitrary sequence of points in R?, then there exists a positive constant B such that
oz N[0,1?) < E?fl ®(z" NQ;)+ Btm. In [13], the author proves the following
result:

Theorem (Steele): Let & be a subadditive, euclidean, monotone and bounded
functional. If (X;); is a sequence of points independently and uniformly distributed
over [0,1]%, then there exists a constant o such that ®(X ™) /\/n goes to @ almost
surely when n goes to infinity.

It is not difficult to verify that the functional ElgtsP(X(”)) is euclidean, monotone
and bounded. The most demanding is to show that it is subadditive and this will
be the purpose of the remaining part of this proof.

Suppose that the infinite sequence (z;); is contained in [0,¢]* and consider the
following tour through the sequence x( ") in [0,1]?: first construct the optimal PTSP
tours through 2™ NQ,; for 1 < i< m?2. Then , in each square Q; where ("™ N Q; is
not empty, choose one point as a representatlve and consider it as always present;
finally construct a TSP tour through the set S of all representatives (at most m?
points). The combination of the small PTSP subtours together with this TSP tour
gives a spanning walk through (™).

By the fact that the representatives are always present, this spanning walk has
an expected length (in the PTSP sense) given by:

where zbg“p(m(”) N @;) denotes the new expected length (computed under the as-
sumption that the representative is always present) of the PTSP tour initially con-
structed in @;, and where L,,(.5) is the length of the TSP tour through the set of
representatives 5.

One can then delete some arcs and transform this spanning walk into a tour of
smaller expected length. The expected length of this tour decreases if one turns
back each representative into a normal point (i.e., a point that is present with a
probability p); thus we obtain a tour through 2" of expected length bounded from
above by (3.5) and from below by EIF'*!(x z(). TFinally from (3.1) applied with
p = 1, we have Ly,(5) < btm for an appropriate constant b. All this together



implies that:

EIP(a Z prtsp(2(m) 0 Q) + btm. (3.6)
=1

Now, for all 1 < i < m?, we have:
Y™ 0 Qi) < EIP(a™) n Q) + 2(v2t/m)(1 - p), (3.7)

since the difference between the two types of expected length arises only when the
point playing the representative is not present (with probability 1—p), this difference
being then no more than twice the diagonal of the small square. Finally from (3.6)
and (3.7) we get:

BEIEP(g Z B (2" 0 Q) + (2v2(1 — p) + b)tm, (3.8)

which shows that the PTSP functional is subadditive.

"
From (3.1), we know that ElgtSp(X(”))/\/ﬁ is uniformly bounded by a constant (de-
pending only on p), so Theorem 3.1 and Lebesgue’s dominated convergence theorem
imply the following result.

Corollary 3.1 Under the conditions of Theorem 3.1 we have:

L E[ER(X )]
N

(3.9)

Remark:

Theorem 3.1 proves the existence of a constant without giving details on its value; in
fact, for all similar asymptotic results, the respective limiting constants are unknown
and only bounds have been established. OQur problem is no exception and one can
use (3.2) and (3.3) to get:

5p/8 < e(p) < \/4p/3. (3.10)

4 Probabilistic Minimum Spanning Tree Problems

4.1 Relationships between the PMSTP and the MSTP

The objective function of a feasible solution to the PMSTP is given by the following
result.

Property 4.1 Let (z;); be an arbitrary sequence of points and p be the probability
of existence of each point. The expected length (in the PMSTP sense) of any tree
T through ™), defined by the set of its edges Ar, is given by

Elr =Y Br(e)d(e), (4.1)

EEAT



where

Br(e)= Y (1= (1 =)L - (1 p)"r)a(e),

GEAT

with d(e) the length of edge e, and Vr(e) the subset of points contained in one of
the two subtrees obtained from T by removing the edge e.

Proof:

Let e be an edge of T'. For any instance of the problem, e will be present if and
only if there is at least one point present in Vz(e) and if there is at least one point
present in (") \ Vp(e).

The next result gives bounds on the weight 7(e) of any edge e of a tree T'.

Property 4.2 Let (z;); be an arbitrary sequence of points and p be the probability
of existence of each point. For any edge e of a tree T through (™ we have

p(1=(1=p)"™") < Br(e) < (1 - (1-p)"/21)2 (4.2)

Proof:
This follows from the fact that for p €]0, 1] the function f(z)= (1 - (1 —p)")(1 —
(1 — p)"~*) is monotone increasing on [0,n/2] (note also that gr(e) = 0if p = 0,
and fr(e)=1ifp=1).

]

The principal result of this section gives the following relationships between the
objective functions of the PMSTP and MSTP.

Lemma 4.1 Let (z;); be an arbitrary sequence of points and p be the probability of
existence of each point, then

P(L=(1=p)" ") Lmstp(z™) < EETP(21) < (1= (1=p)" ) Lyt (2). (4.3)

Proof:
Let Lt be the length of any tree through z("). From Property 4.1 and Property 4.2

we have
p(1—(1=p)" YLy < Elp < (1—(1—p)"/?1)2 Ly, (4.4)

Let T be an optimal PMSTP tree. From (4.4) we have
EEm v (zt)) = Elps > p(1— (1= p)"~") Ly,

and since, by definition, Lmstp(:v(”)) < L=, we obtain the lower bound of (4.3).
Let T** be an optimal MSTP tree. From (4.4) we have

Elpes < (1= (1= )" Lpee = (1= (1= p)"21)2 L1 (),

and since, by definition, Elgm“p(:c(”)) < El7«s, we obtain the upper bound (4.3).
[



4.2 Analysis of Two Perturbations on Trees

In the following result, we bound the variation occuring in the objective function of
a tree when one of the leaves is chosen to be always present.

Lemma 4.2 Let (z;); be an arbitrary sequence of points in a bounded set A, and
p be the probability of existence of each point. For any tree T through (™, choose
from 2" a leaf, say z;, and consider it as always present, and let E;lp be the new
expected length. Then we have

Blr < By < Elp + §(A)(1— (1= p)" " )*(1 - p)/p, (4.5)
where 6( A) denotes the diameter of the set A.

Proof:

Without lost of generality, suppose that for any edge e of the tree T', Vr(e) (see
Property 4.1) is chosen to be the subset of points that does not contain z;. We then
have

Bir= ¥ (1- (1= (o). (4.6
From (4.1) and (4.6) we then h;i:T
Elp—Blr = Y (1= (1= )71 = pr¥rClage)
< (iA—T (1=p)"") > (1 =p)VrOl(e)
< (A1 - (1~ p)ze‘?; XAI (1= p)rlVrl, (4.7)

Let us now prove that, for any tree T with a leaf that is always present, we have

S (1 =p V@l < (1 - (1= p) (1 = p)/p, (4.8)

BEAT

where, as before, Vr(e) is chosen to be the subset of points that does not contain
the leaf. Let us prove it by induction. For n = 2, (4.8) is true. Let suppose it to be
true up ton = k—1, and consider a tree T through z®)_ and suppose z; (1<i<k)
is a leaf that is always present. Suppose z; is another leaf of 7" and let 7’ be the
tree obtained from 7" by removing z; and its adjacent edge, say e;. Now, for any
edge e of T', if z; € Vr(e) then |Vpi(e)| = |Vr(e)| — 1, else |Vpi(e)| = |Vr(e)|. This
implies that

E (1—p)e=Vr@l = (1 — pyk=IVr(e)l 4 E (1= p)k-Vr©l

e€Ap €EATI

= (1-p* 4 3 (1—pt e
e€Aqs



I

(1=p)f '+ 3 (1= p)ft=IVrl
c€Ap

(1L=p) (1= (1 =p)" )= p)/p

(1= (1 =p)* (1= p)/p.

One then concludes from (4.7) and (4.8).

In the second result of this section, we bound the change of the objective function
of an optimal PMST occuring when one point is dropped from 2,

Lemma 4.3 Let (z;); be an arbitrary sequence of points in R? and p be the prob-

ability of existence of each point; let acl(»n) = (T1,. 0y Bi1, Tig1,- .-, Tp), then we
have
Elgmstp(xgn)) < Elngtp(-r(n)) + Z ﬁT*(;ri’xj)d(;ri7;rj), (49)
z;ENT* (i)

where N«(i) is the set of neighbors of x; in an optimal PMSTP tree T* through
2()
z\"),

Proof:
Let T* be an optimal PMSTP tree through z(") and let y be an element of N7«(i)
such that d(z;,y) is minimal. Let N7.(7) denote N7+(7) \ {y}. We get a connected

graph spanning .r,gn) by taking the edges of T*, deleting all the edges incident to
x;, and adding the edges which join y to the other neighbors of z;. Let T; be this
connected graph. It has an expected length Elr, such that

EEm(al) < Bl = Y Bre)d(e). (4.10)
eEATl.

Let us compare Elr, with Elgmﬂp(a@(”)) = Y ceap. Bre(e)d(e). We have
Ely,= Y. prle)d(e) + > pr.(e)d(e), (4.11)
e€AT,NADx e€AT,\(AT,NATx)

and
Emete(pmy = ST fra(e)d(e) + > Bre(e)d(e).  (4.12)

eEATz. NAT* GEAT*\(ATinAT*)

Now for all e € A7, N Ap=+, choose Vr+(e) and V7,(e) to be the subsets that contain
y, so that |Vr,(e)| = |Vr+(e)| — 1. We then have

pr.(e) — )V = (1 = pyrt-IVrel)
— p)Vr @11 — (1 = pyr-lVer (11

— p)Vr 1 — (1 — pyr=IVrelelly

VAN
—_—~ o~~~

=

*

1

D~~~

T = = =

(4.13)

10



which, together with (4.10), (4.11) and (4.12), implies that

EpmtrM) < By 1S (g, ap)d(y, o)
zJEN'T*(i)
— Y Bre(wi,xj)d(zi, 2g) = Bre(zi,y)d(zi, y). (4.14)

&, €NEL (i)

By triangle inequality we have d(y,z;) < d(y,z;) + d(z;,2;) and by definition of y
we have, for all z; € Np«(¢), d(y, z;) < d(z;,z;). We then have for all z; € Np«(7)

dy,z;) < 2d(z;,z;). (4.15)

Also for all z; € Np.(t) , choose Vr«(z;,z;) and Vr,(y,z;) to be the subsets that
contain y, so that |Vz,(y,z;)| = |Vr+(z;,2;)| — 1. We then have

Br.(y,z;) = (1—(1— p)|VTi(i‘/7IJ)|)(1 -(1- p)n—l—lVTi (w«’])l)
_ (1 . (1 . p)|VT*(xi,z])|—1)(1 . (1 _ p)n—1—|VT*(xi,zJ)|+1)
< (1= (1= p)Vreleomdy1 — (1 = p)yr=Vre@iwily
= fr«(zi,z;). (4.16)
From (4.14), (4.15), and (4.16) we finally get

Elgmstp(mgn))SElgmstp(x(n))Jr Z Br(zi,z;)d(zs, 25), (4.17)
2, €N} ()

which implies (4.9).

4.3 Bounds For Finite Size Problems

In this section we consider sequences of points in [0, 1]? and derive upper and lower
bounds on the expected length of an optimal PMSTP tree through the first n points
of the sequence.

Lemma 4.4 Let (z;); be an arbitrary sequence of points in [0,1]? and p be the
probability of existence of each point, then:

mtp 3 (n) (1= =p" 2w =2+7/4) ifn>3,
Elg tp(aﬁ )< { (I1-(1-p) [n/21)2(n/4 +2) otherwise. (4.18)
Proof:

From Lemma 4.1 we have

Em?(2t) < (1= (1= p)"21)2 Ly (). (4.19)

11



Let Lgltp(m(”)) be the length of an optimal MSTP tree through z(") when the
distance between points is the [; metric (i.e., rectangular metric). We obviously
have

Lonsip(a™) < L0), (20, (4.20)

mstp
(1)

Now the important fact is that L,,5,, is a monotone functional. Suppose the square
[0,1]? is described by 0 < h < 1 (horizontal axis) and 0 < v < 1 (vertical axis). Let
the n points of (™ have co-ordinates (h1,v1),. .., (hn,v,). Divide the square into
2¢q rows of equal width (¢ being a positive integer to be chosen later); the square
is then composed of 2¢ + 1 horizontal lines and 2 vertical lines. The intersections
of the horizontal lines with the vertical lines give 4¢ + 2 points that we add to the
set 2("). We construct a tree spanning 2" and 3¢ + 2 of these intersection points
consisting of (i) the ¢ + 1 horizontal lines 0 < h < 1,v =0,1/¢,2/q,...,1; (ii) the
n vertical links connecting each point of z(") to the nearest such line, and (iii) the
vertical line h = 0,0 < » < 1. The length of this tree is

h=q+1+) di+1, (4.21)

=1

where d; is the length of the vertical link from z; to its nearest horizontal line.

We construct a similar spanning tree through 2" and 3¢ — 1 intersection points. It
consists of (i) the ¢ horizontal lines 0 < h < 1,v = 1/2¢,3/2q,...,(2¢ — 1)/2q; (ii)
the n vertical links connecting each point of (") to the nearest such line, and (iii)
the vertical line h = 0,1/2¢g < v < (2g — 1)/2q. The length of this tree is

L=q+> di+1-1/q, (4.22)
=1

where d is the length of the vertical link from z; to its nearest horizontal line.

From the definition of Lgitp, and from its monotony, we have Lgltp(x(”)) <!y, and
AR

mstp(:v(n)) < l,. Hence we have

Lgltp(x(n)) < (ly+13)/2. (4.23)
Since d; 4+ d; = 1/2¢ for all i € [1..n], we get from (4.20), (4.21), (4.22), and (4.23)
Ly (#)) < (204 14 1/24 +2 — 1/q)/2 = 24+ (n - 2)/20 4 3)/2. (4.24)

Finally, by chosing the best integer ¢ in (4.24), we get, together with (4.19), the
bounds of Lemma 4.4.

"
If we make additional assumptions on the position of the points we can also derive
lower bound as shown in the next lemma.

12



Lemma 4.5 Let (X;); be a sequence of points independently and uniformly dis-
tributed over [0,1]% and p be the probability of existence of each point, then:

Bt (x0)] > PR 1)1 - (1= py), (4.25)

Proof:
From Lemma 4.1 we have

BEE™(X )] > p(1 = (1 = p)" ) E[L ety X ). (4.26)
Now let us show that

E[Lyusip(X™)] 2 (n = 1)/(2v/n). (4.27)

Let D; denote the distance of X; from the nearest of Xq,..., X;—1, X541,..., X,. It

is then obvious that )
e

Lmstp(X(n)) Z E Div
=1

which implies that
n—1

E[Lsty(X ")) > 3 EJES D, (4.28)
=1
where F; is the expectation over X;, and Ef is the conditional expectation over
{X1,..., X} given X;.
Let C, denote a circle of radius r centered at X; and V, be the surface of C, N
[0,1]%. We then have

ES[D)] = /0 P(D; > r|Xi)dr

= /00(1 — V)" dr. (4.29)

Since (1 — z)"~! is a non-increasing non-negative function of z for 0 < z < 1, and
since V, < min{nr?, 1}, equation (4.29) leads to:

17
Pl > _ 2\n—1 4, _ / —1/2 n—1 g,
£ > /0 (1= my iy = g — ) e

1
= 2ﬁB(1/2,n) =TI(n)/2I'(n +1/2). (4.30)
Let a, = I'(n)n'/2/T(n +1/2). From Stirling formula we have lim,,_, a, = 1, and,
since @, /any1 = (14 1/20)(1 4+ 1/n)~"/% > 1, we have from (4.30)

EfID;] > n~11%)2. (4.31)

Together with (4.28), this shows the validity of (4.27). The final result then follows
from (4.26) and (4.27).
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4.4 Asymptotic Analysis

The objective of this analysis is to obtain the limiting behavior of E[Elngtp(X(”))].

Theorem 4.1 Let (X;); be an infinite sequence of points independently and uni-
formly distributed over [0,1]? and p be the probability of existence of each point.
Then there exists a positive constant d(p) such that:

pmstp( x (n)
dim HEL ﬁ()‘ I _ i) (4.32)

Note:

The proof of this result cannot be based on the asymptotics of subadditive func-
tionals as derived in [13], because the PMSTP functional is not monotone. Also
it cannot be based directly on the method developed by [1] for the TSP, since the
PMSTP functional, in addition to being not monotone, does not seem to verify sev-
eral properties on which the method of [1] is directly based. For example it would
require that, for any finite collection of squares );, 1 < j <'s, we have

> Ermstr(z(M) 0 Q;) < BTz 0 (UI,Q;)) + O(1), (4.33)
7=1

and we have not been able to show it for the PMSTP. Nevertheless, having been
inspired by ideas contained in [1] and [15], we will prove this theorem with the
help of the following two lemmas, consequences of results stated in our previous
subsections.

Lemma 4.6 Let (z;); be an arbitrary sequence of points in R% and p be the proba-
bility of existence of each point; let (A;)1<i<s be a partition of a given bounded set
A, then we have:

s s—1
=1 =1

+((1 - p)/p)ié(Ai), (4.34)

where §(5) denotes the diameter of a set S.

Proof:

The proof is similar to the demonstration of the subadditivity property of the PTSP
functional developed in Section 3.2. Consider the following tree through the se-
quence z(™ N A: first construct the optimal PMSTP tree through z(™ n A; for
1 < i <s. Then, in each subset A; where (™) N A; is not empty, choose one leaf as
a representative, say y;, and consider it as always present; finally construct a tree
through the set S of all representatives (at most s points) by simply connecting y;

14



to ;41 for 1 <12 < s — 1. The combination of the small PMSTP subtrees together
with the tree connecting the representatives gives a spanning tree through (") n A,

By the fact that the representatives are always present this spanning tree has
an expected length (in the PMSTP sense) bounded from above by:

s s—1

Z ¢£m5tp($(n) N A;) + Z 0(A; U Ai4r), (4.35)

where 25 ( g (")NA;) denotes the new expected length of the PMSTP tree (initially
constructed in A;).
The expected length of this tree decreases if one turns back each representative

into a normal point; thus we obtain a tree through (™ N A of expected length
bounded from above by (4.35) and from below by Elgm“p(.r(”) N A). Hence we
have:

s s—1

EEm(@™ 0 A) <3l (@ 0 A) £ 304U Aig). (4.36)

Now, from Lemma 4.2 one can deduce that, for all 1 <1 < s, we have:
PEmet (2 0 Ay) < BIERP(a™) 0 A + (1 - p)/p)6(A). (4.37)

Finally from (4.36) and (4.37) we get the desired result.

Remark:

When A is the set [0,¢]%, and when (A;);<;<,,> is a partition of the square [0, ¢]?
into squares with edges parallel to the axle and of length ¢/m (labeled from top left
to bottom in a serpentine way), we have

m?—=1

5™ 8(AiU i) + (1 - p)/p) 26 ) < m*(VBt/m + (1~ p)/p)V21/m),

=1

which implies that there exists a positive constant B(p) = v/5+ ((1 —p)/p)V/2 such
that

Ermstr (M n [0,1)? ZEzpmsfp ") 0 Ag) + B(p)tm. (4.38)
Equation (4.38) simply says that the PMSTP functional is subadditive in the sense
of [13] (see also the proof of Theorem 3.1).

Lemma 4.7 Let (X;); be a sequence of points independently and uniformly dis-
tributed over [0,1]? and p be the probability of existence of each point, then, for
n>1,

(n — 1)?E[EE™'( X "=D)] < n?B[EE™P(X ()], (4.39)

15



Proof:
By summing inequality (4.9) over 1 < ¢ < n we get

ZElngtp(xz(n)) < nElngtp(*r(n)) + Z Z ﬁT*(%’a m]-)d(m,i7 $j)7
=1

=1 I‘JENT* (2)
which implies that
nE[EE™ (X V)] < (n + 2)E[EE™P(X (). (4.40)

Multiplying both sides of (4.40) by (n — 2 + 1/n), we obtain the desired result.

n
Proof of Theorem 4.1: The asymptotics of E[Elngtp(X(”))] can now be obtained
by a technique of Poisson smoothing followed by a Tauberian argument.
Poisson smoothing:
Let 7 be a Poisson point process on R? with constant intensity equal to 1. For any
bounded Borel set A, EI?™*(x(A)) will denote the expected length in the PMSTP
sense of an optimal PMSTP tree through the finite set of points 7(A). Now let
¢(t) = E[EE™P(7([0,1]%))]. By taking expectation in (4.38) we can deduce that if
(A;)1<i<m? is a partition of the square [0,#]? into squares with edges parallel to the
axle and of length ¢/m, then there exists a positive constant B(p) such that

B(t) < m?¢(t/m) + B(p)tm. (4.41)

From (4.41) and the continuity of ¢, let us show that there exists a constant d(p) > 0
such that

B(t) ~ d(p)t* as t — oc. (4.42)
Setting ¢ = mu and dividing by (mu)? in (4.41) yields
d(mu)/(mu)? < ¢(u)/u* + B(p)/u. (4.43)

Now let d(p) = liminf,— ¢(u)/u? > 0. From the continuity of ¢ and the definition
of a lim inf, one can find, for any ¢ > 0, an interval [ug, ] such that

¢(u)/u* + B(p)/u < d(p) +

for all w € [ug,u1]. From (4.43) this implies that, for all integer m, we have for
u € [ug, u1]

p(mu)/(mu)® < d(p) +¢. (4.44)
If welet B={tec R:¢(t)/t* <d(p)+ec}, then from (4.44) we have
Ure_, [mug, muy] C B. (4.45)

Moreover, by choosing mg = ug/(u1 — ug), the intervals [mug, mu;] are overlapping
for m > myg, and so (4.45) implies that

[m0u07 OO[C B7 (446)
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which implies that lim sup,_.., ¢(u)/u? < d(p)+ ¢, and this terminates the proof of
(4.42).
Tauberian argument:
By the definition of ¢(¢) and by scaling property we have
—t2 t2n

=1 Z on s , (4.47)

where ¢,, = E[Elngtp(X(”))]. Setting ¢ = y/u in (4.47) and using (4.42), we have

lim o) _ = lim u —1/2 Zp —uun = d(p). (4.48)

n=

We are now going to use a classical Tauberian theorem due to Schmidt [12] (see

[4]):
Theorem (Schmidt): If we have

lim Zane 'x =s, (4.49)
r—00 n!

then

im a, = s
n—oo

if and only if

lim liminf  min  {a, —a,} > 0. (4.50)
e—0tT n—o0 n§m§n+s\/ﬁ

In order to use this theorem, first let us show that
lim Z I
U—00 e \/ﬁ

Let o(u) = Y 02 o(@n/v/n)e”“u"/n!. From Lemma 4.4 we know that there exists a
constant, say C, such that

n,”n — d(p). (4.51)

@n < Cy/n. (4.52)
Hence, we have for 0 < e < 1
[u(1-e) @ —Uym @ e Uy
@(u) = Z ] + E _n ]
n=0 n: n=|u(l—¢g)|+1 \/_ -
[u(1—e)] e~ Uy 00 —u,n

(4.53)

< C Z )Y g,
n=0

From the behavior of the probability in the tail of a Poisson distribution the first
term in (4.53) goes to zero when u goes to infinity, so that (4.48) and (4.53) give

lim sup @(u) < (1 —¢)~'/2d(p). (4.54)

U— 00
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Also we have

[u(14e)] o o=ty 12 lu(14¢)] e~ Uy™
> = > B —
I ot R
B 00 ) ) e~ Uy
= (Lu(1‘|‘5)J) 1/2 Zﬁon TL' - Z Pn n' ]
| n=0 ' n=|u(l4e)|+1 '
> (| N R S R 3 e u” .
> (lu(l+¢))) 7;)% ~ Cun:p%+s)J | (455)

where we have used in the last inequality the fact that ¢, < Cy/n < Cn. Here
again, from the behavior of the probability in the tail of a Poisson distribution the
second term in (4.55) goes to zero when u goes to infinity, so that (4.48) and (4.55)
give

lim inf @(u) > (14 ¢)7"/?d(p). (4.56)

Equations (4.54) and (4.56) finally prove (4.51).
In order to conclude it remains to prove that ¢, //n verifies the condition (4.50).
From Lemma 4.7 we have m2¢p,, > n%yp, for all m > n. Hence we have

P/ VT = on [0 2 onfV((n)m)? — 1), (4.57)

Also from Lemma 4.5 we know that there exists a positive constant C’ such that
on/y/n > C'. So finally we have forn < m <n+ey/n

Om/VM = on /0 > Cl((l + 5/\/5)_5/2 - 1), (4.58)

which shows the validity of (4.50) for ¢,,/+/n.

"
The constant d(p) is unknown and the only bounds available are given by the
following lemma:

Lemma 4.8 We have for all p in [0,1]:

p/2 < d(p) < Brstp, (4.59)
where By, ey is the “MSTP-constant”.

Proof:

The lower bound follows from Lemma 4.5 and the upper bound from Lemma 4.1 and
the fact that E[Lmstp(X(”))]/\/ﬁ goes to a constant [, when n goes to infinity
(see for example [15]).
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5 Analysis of the Re-Optimization Strategies

We are interested, in this section, in the behaviors of OgtsP(X(”)) and Ongtp(X(”))

when n goes to infinity. We have the following theorem:

Theorem 5.1 Let (X;); be an infinite sequence of points independently and uni-
formly distributed over [0,1]? and p be the probability of existence of each point.
Then we have:

. 257

(Opmstp X(n) /
Jim % = Bumstp/P (a.5.), (5.61)

where By, and (3,,stp are respectively the “TSP-constant” and the “MSTP-constant”.

Proof:

Let us first prove (5.60). We will suppose that the sequences (X;); and (Y;); (see
Section 2) are defined on their canonical probability space, here denoted respectively
(21, A1,Py) and (29, A2, P2). If Li;,(A) denotes the length of an optimal TSP
tour through the finite set of points A, let (L,), be a sequence of random variables

defined on (£21,.A1,P1) by:

= Brsp /P (a.5.), (5.60)

and

Let (I,), and (M,,), be sequences of random variables defined on (3,43, P3) by:

I, = {j:1<j<mnandY;=1},
M, = Z?:l 1{}/]:1}.

By definition, the objective function of the re-optimization strategy is

VneN,{

Optsp(X (1)) = /Q Liap( X35 € 1,)dPy. (5.62)
2
From [14] we know that there exists a positive constant [, such that

Ve > 0,> Pi(|Ln/vn — Brsy| > €) < +0x, (5.63)

(this is a complete convergence and it implies that lim, .o L, /v/n = Bisp (P1-a.5.)).
Also from the strong law of large numbers we have

lim M, /n =p (Ps-a.s.). (5.64)

Now the important fact is that for any fixed wy € {25 and for any n, the ran-
dom variables L,(X;;1 < j < My(wy)) and Lysy( X35 € In(ws)) have the same
distribution. From (5.63) and (5.64) we then have

lim Lop(Xj57 € I,)/vVn = Bisp/P (P1 ® Pa-ass.). (5.65)

n—od
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Finally, from Lemma 3.1 applied with p = 1, we know that L:.,(X;;7 € I,,)/\/n
is uniformly bounded by a constant. It is then easy to conclude from (5.65) and
Lebesgue’s dominated convergence theorem.

In order to prove (5.61), the argument is identical if one shows that there is complete
convergence for the MSTP functional (i.e., if one can get a result similar to (5.63)).
In order to do that we will use the following result , proved in [15],

E[L ()
i ElEnen (X))
and a martingale inequality argument due to [11]. Let ¥; be the o-algebra generated

by (X&)k<;i and let h; = Lmstp(X(”)) — Lmstp(Xi(n)), where XZ»(n) =(X1,..., X1,
Xit1,---,Xn). Then

= ﬁmstp\/ﬁv (566)

di C E[Lnstp(X)51] = E[Lpnstp(XM)|Si4] = E[h|S] — E[hi|Si—1].  (5.67)

Moreover we have Lmstp(X(”)) — E[Lmstp(X(”))] =Y., d;. Now, since (d;)i<y, is a
martingale difference sequence, we can use the following martingale inequality (due
to Azuma, see [11])

P(IS di| > 1) < 2exp(—2/(2 3 [|12.)), (5.68)
=1 =1
in order to get bounds on

P(|Lmstp(X(n)) - E[Lmstp(X(n))” > t)‘

It remains to control the numbers ||d;||s. In order to do that, let us prove the
following lemma:

Lemma 5.1 There exists a numerical constant K such that one has:

|h;] < K fori<mn, and (5.69)
Eh|X)] < K/vVn—ifori<n-1. (5.70)

Proof of Lemma 5.1:

In order to construct a tree through X ("), one can complete a tree through XZ»(n) by

adding an edge from X; to one of the point of XZ»(n). We then have Lmstp(X(”)) <

Lmstp(Xi(n)) + /2 and this takes care of the first inequalities (take K > v/2). Now
let I; denote the distance of X; from the nearest of X;y1,..., X,,. We then have

Lmstp(X(n)) S Lmstp(XZ'(n)) + lz (571)
Also we have

E[li|X] = EF[L], (5.72)
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where Ef is the conditional expectation given X;.
Let C, denote a disc of radius r centered at X; and V, be the volume of C, N[0, 1]2.
We then have

Bl = /0 P(l; > r|X;)dr,

/00(1 — V)" idr. (5.73)

Since (1 — 2)"~* is a non-increasing non-negative function of z for 0 < z < 1, and
since V, > min{r%/2,1}, (5.73) leads to:

Eilli]

IN

V2 :
/0 (1= r2/2)" idr
= T(1/2)T(n—i+1)/V20(n —i+3/2)
= fr/20(n i+ 1)/T(n — i +3/2). (5.74)
Let a, = I'(n —i+ 1)(n — )"/2/T(n — i + 3/2). From Stirling formula we have

limy, oo @y = 1, and, since a, /appy = (1+1/2(n—i4+1))(1=1/(n—i+1))/2 < 1,
we have from (5.74)

Efl] < fr/2/(n — )72 < V2 (n — i) /2. (5.75)

Lemma 5.1 is thus valid with K = /2.

]
End of proof of (5.61):
From (5.67) we have
[dilloo < LRl + (B[R Xi]lo0 < 2[E[R] ][ oo (5.76)

Equation (5.76) together with Lemma 5.1 implies that ||d;||ec < 2K/v/n —1 for
i <n—1and ||d,|le <2K. Replacing these bounds into equation (5.68) we finally
get

P(|Lnsip(X ™) = B[Lpsep(X™)]| > ey/n) < 2exp(—e2n/(K*Inn)),  (5.77)

where K* is a constant. Finally the complete convergence of the MSTP follows
from (5.77), (5.66) and a “2¢” argument.

6 Concluding remarks

In addition to the importance of the asymptotic results as described in the intro-
duction, let us mention that Theorems 3.1 and 5.1 provide interesting practical
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by-products: (c(p) — Bispy/P)/1 (vespectively (d(p) — Bmstp/P)y/1) Tepresents an
approximation of the penalty one has to pay when n potential customers have to be
served and when the route (respectively tree) is not re-optimized for each instance of
the problem. This estimate of the penalty is asymptotically exact with probability
one for the PTSP, and in expectation for the PMSTP.

The results presented in this paper can be generalized in several directions.
First, all our asymptotic results remain valid if the points are independently and
uniformly distributed over [0,%]%, the constants being simply multiplied by #. This
remains true, for Theorem 5.1, if the points are distributed in a bounded support of
Lebesgue measure t2. Also Theorem 5.1 remains true for a non-uniform distribution
of points, and can be strengthened to complete convergence.

However, some generalizations do not seem to be easy, and here is a list of the
most important open problems related to the PTSP and the PMSTP:

1. the almost sure convergence of the PMSTP, and its complete convergence,
2. the complete convergence of the PTSP,
3. the non uniform extension for the PTSP and the PMSTP.

Finally let us also mention the problem of rates of convergence for the previous limit
theorems. Some preliminary results have been obtained for the traveling salesman
problem, the minimum spanning tree problem, and the minimum matching problem
and will be report in a subsequent paper. For the probabilistic version of these
problems the analysis seems much more difficult.
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