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Abstract

Rates of convergence of limit theorems are established for a class of random
processes called here quasi-additive smooth Euclidean functionals. Examples
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ing problem, and a variant of the minimum spanning tree problem with power
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1 Introduction

In Beardwood et al. [1], the authors prove that for any bounded i.i.d. random
variables {X; : 1 <1i < oo} with values in R%, d > 2, the length of the shortest tour
through {Xy,..., X, } is asymptotic to Sgn{?=1/? with probability one (the same
being true in expectation). This theoretical result has become widely recognized to
be at the heart of the probabilistic evaluation of the performance of heuristic algo-
rithms for vehicle routing problems. In fact it is used as the main argument in the
probabilistic analysis of partitionning algorithms for the TSP by Karp [6]. Because
of these algorithmic applications, results like that of Beardwood et al. have gained
considerable practical interest. An important contribution on the subject is con-
tained in Steele [11] in which the author uses the theory of independent subadditive
processes to obtain strong limit laws for a class of problems in geometrical prob-
ability which exhibit nonlinear growth. Examples include the traveling salesman
problem, the Steiner and rectilinear Steiner tree problem, and the minimum weight
matching problem. Other problems, such as the minimum spanning tree problem,
the minimum 1-tree problem, and some probabilistic versions of the traveling sales-
man problem and minimum spanning tree problem, have been subsequently treated
in different papers (see respectively Steele [12], Goemans and Bertsimas [3], and
Jaillet [5]). For most of these problems, the results concern the almost sure conver-
gence of a sequence of normalized random variables, say L, /n%, to a constant c, as
well as the convergence of the normalized means.

Questions about rates of convergence have been raised many times. There are
in fact two issues concerning information on the rate of convergence:

1. What is the asymptotic size of L, — EL, ?

2. What can be said about the rate of convergence of the normalized means
EL,/n*toc?

For the traveling salesman problem in the plane (d = 2), Rhee and Talagrand [9]
(see also [8]) prove that, if the points are uniformly and independently distributed
over the unit square, then there is a constant k such that ||L, — EL,||, < k,/p for
each p.

On the other hand, to the best of our knowledge, the second issue has never
received a full answer. For the traveling salesman problem in the plane, if one follows
the usual subadditivity argument for L, (see, for example [1, 11]), it is relatively
easy to deduce that ELy > (4/n — ¢ for a positive constant ¢, where N has a
Poisson distribution with parameter n (N is the number of points corresponding to
a Poisson process of intensity n times the Lebesgue measure over [0,1]?). Also it
was shown in Karp [6] that ELy < 8y/n + 12.

Our goal is not only to extend this type of result for a general class of random
processes in R%, d > 2, but also to show that results can be given for the initial
random process itself (and not only its Poisson approximation). The material is



presented in a general setting, much in the spirit of the paper by Steele [11]. The
advantage of this level of generality is that it allows immediate applications to most
of the known limit theorems for combinatorial optimization problems.

Section 2 is concerned with the main result of this paper. We first define what we
call quasi-additive smooth Euclidean functionals and then show how the properties
of these functionals imply limit theorems in expectation together with rates of con-
vergence. Section 3 is mainly concerned with applications. We treat in details the
case of the traveling salesman problem, the Steiner tree problem, the minimum span-
ning tree problem, and the minimum weight matching problem. We then extend
the result of Section 2 in order to solve a problem proposed in Steele [12] concerning
rates of convergence for the minimum spanning tree problems with power weighted
edges.

2 Rates of Convergence for Quasi-Additive Smooth Eu-
clidean Functionals

Let {z; : 1 < i < 0o} be an arbitrary infinite sequence of points in R%, d > 2, and
let (™ = {z1,29,...,2,} be the first n points of z. Let L denote a non-negative
real valued function of the finite subsets of R? such that L(()) = 0 and L({y}) =0
for any single set {y} of R?.

Definitions:

1. L is said to be Fuclidean if L(C;r(”)) = CL(;r(”)) for all positive real (, and if
Lz + s) = L(z) for all s € R%.

2. L is said to be (74, £4)-quasi-additive if there exist two constants Cy > 0 and
Dy > 0 and two constants y4 > 0 and &; > 0 with dvg + & < d — 1, such that
for all positive integer m and any sequence z in [0,#]%, ¢ > 0, one has

md

L(z™) = 3" L™ 0 Qi)| < Catm®! + Dyt m® (2.1)

=1

whenever {@Q; : 1 < i < m?} is a partition of the d-cube [0,]? into cubes with
edges parallel to the axle and of length ¢/m.

3. L is said to be é4-smooth if there exist a constant By > 0 and a constant
64 > 0 such that

[EL(X0H)) — BL(X )| < By/n (2.2)

whenever {X; : 1 < i < oo} are independent and uniformly distributed in
[0, 1)7.



The main result of this paper is the following theorem:

Theorem 1 Suppose L is a (74, {a)-quasi-additive, 64-smooth Fuclidean functional
on R, If{X;:1 < i< o} are independent and uniformly distributed in [0, 1]%,
then there is a non-negative finite constant $4(L) and a positive constant Ky such
that

[ELOX ) DI = 3y(1)] < Kafno, (2.3)
where
ad:{ min{(d — 1)/d, 65— 1/d +1/2} if dya+ & <d -1, (2.4)
min{(d —1)/d — y4,64 — 1/d+1/2} ifdyg+ & =d—1.
Proof:

Let © denote a Poisson point process in R? with constant intensity equal to 1. For
any bounded Borel set A C R?, 7(A) denotes the random set of points in A (almost
surely a finite set of points). Then let A(¢) = L(7([0,#]%)) and ¢(t) = EL(([0, t]%)).
The theorem is a consequence of the following two lemmas:

1. Lemma 1 Suppose L is a (74, &q)-quasi-additive, §;-smooth Euclidean func-
tional on R®. Then there is a non-negative finite constant Ba(L) such that

Cyqt ifdyg+ €3 <d—1,

‘¢(t) - ﬁd(L)td‘ < { Cdt 1+ Ddtl-}—d'yd Zf d')/d + gd —d-1. (25)

2. Lemma 2 Suppose L is a 6;-smooth Fuclidean functional on R?. Then we

have
[6(n!/?) = M TEL(X™)| < AyBa/n, (2.6)
where vg = 65 — 1/d — 1/2, and
where
((nf(n = 1))%2/(1 = 60) +1) /V2r if0 <8< 1,
Ag = .
(16a) +2)! (1/v27 + (182 + 1)/V/R) +1/V27  otherwise.
(2.7)
Indeed from Lemma 1 and from Lemma 2 we get
‘nl/dEL(X(”)) —nBy(L)| <
Cyn'/* + AyBy/n ifdyg+ €5 <d—1 (2.8)
Cdnl/d + an’m-}'l/d + AdBd/nyd ifdyg+ &g =d-1, '
from which Theorem 1 follows easily.
n

It remains to prove the two lemmas.



Proof of Lemma 1:
By definition of a Poisson point process, N = |7([0,]%)| has a Poisson distribution
with parameter #. From the (74, £;)-quasi-additivity of L,

md
A(t) =D L(x(Qy))| < Catm®™! + Dgt N'amte, (2.9)
=1
which implies that
md
‘¢(t) — Y EL(7(Q)))| < Catm™ " + DAE[N"]md, (2.10)
i=1

Now since L is a Euclidean functional EL(7(Q;)) = ¢(f/m), and since 74 < 1
E[N7] < E[N]" = t¥, Hence, we have

[6(1) = mo(t/m)| < Catm®=" 4 D"+ rumbe, (2.11)

Setting ¢ = mu and dividing by (mu)? yields

p(mu)  P(u) Cq Dq
(mu)? Toud | T ogd1 + ma—1—dva—E€qyd—1—dvg (2.12)
Since, by definition, d — 1 — dyq — &4 > 0, (2.12) yields for all m = 1,2,...
p(mu) _ d(u) = Cq Dy
(mu)? ST T e (2.13)
which implies also that
¢(m)
< (1 D . 2.14
(m)d_¢()+0d+ 4 < 00 (2.14)

Now, let us show that ¢(¢) is a continuous function in ¢. By definition of a Poisson
point process and by scaling property (L is an Euclidean functional) we have:

tdk

o(t) = i EL(XOP(N = k) =1 i EL(X(k))e_td?.

(2.15)

From the 64-smoothness of L, it is easy to see (take é; = 0) that there exists a
constant by(d) such that

EL(X®) < by(d)E. (2.16)
This implies that
% S R x ) 2.17
o0 3 BLX) 7 (2.17)
=0



is uniformly convergent for all real ¢, hence is a continuous function in ¢, as well as

¢.
From (2.13) and the continuity of ¢, let us show that there exists a constant
B4(L) > 0 such that

Ba(L) = lim_¢(u)/u’. (2.18)

Let B4(L) = liminf,_ ., ¢(u)/u®. From the non-negativity of the functional and
from (2.14) we have 0 < 84(L) < co. From the continuity of ¢ and the definition
of a lim inf, one can find, for any ¢ > 0, an interval [ug, u1], u; > ug, such that, for
all u € [ug, u1],

o(u)/ut + Cqfud™' + Dg/u=1=D4 < By(L) + e. (2.19)
From (2.13) this implies that, for ¢ € UX_, [mug, muy], we have
SO < Bal1) + & (2.20)

But, by choosing mg = ug/(u1 — ug), the intervals [mug, mu] are overlapping for
m > myg, and so (2.20) implies that

Vi > moug, ¢(1)/(1)* < Ba(L) + ¢. (2.21)

This implies that lim sup,_ ., #(t)/t? < 84(L) + ¢, and this terminates the proof of
(2.18).
Finally by having m — oc in (2.12) we get

Cy/u®? ifdyg+&<d—1
P YR d Vd d )
Bu(1) = o(w)/ | < { Cofu™™" + Dyfuls if dyg+ €9 =d — 1. (2:22)
Multiplying by u? leads to (2.5).
[

Proof of Lemma 2:
We have already seen that since |7([0,]%)| has a Poisson distribution with parameter
t* and since L is a Euclidean functional we have by scaling property

o0 . B tdk
$(t) =13 EL(X*)e de (2.23)
k=0 '
So,
o0 B " B tdk
|6() —tBL(X )| <37 [BLXD) - BL(X )| e fd?. (2.24)
k=0 '
From the §4-smoothness of L, we have, for all 1 <1 < 7,
4 » ol (j—9)
[BL(XD) - EL(XY)| < By > s Bagia (2.25)



where Goi)
.. def J— 1
A 0g) = ————. 2.26
(17.77 d) E]u;i 1/u5d ( )
By replacing (2.25) in (2.24), by setting ¢ = n'/?, and by having f(k) def e~"nk k!
for k > 0, we get

1dy . 1/d (n) 1/d n)y f k|f( )
= ' Bgip(n), (2.27)
where
, _ n)y g (k) o (k—mn)f(k)
Y(n) = (EL()( 0)/Ba+ Z k - 6d) ) + k:ZnH Ak 60)
C () + Pa(n). (2.28)
From the fact that
kf(k)=nf(k—1)forall k> 1, (2.29)
and from the fact that, for K > n + 1,
A
Aok t) 2 s e (2.30)

we have

L Ak 6)
< i n(f(k—nlél f(k))
k=n+1
_ ) ! (2.31)

nbd = \/Irnba—1/2’
where we have used, for the last inequality, the following rather sharp form of
Stirling’s formula proved in [10]:

(n/e)"V2rn < (n)e)"V2rnet/ 12+ < pt < (n/e)"v/2rnel/ (127, (2.32)

The evaluation of 1;(n) is more complicated and the best bounds are obtained by
considering two cases.

Case 1: 0 < 64 < 1.

First, from (2.25), we have

EL(xX") < g,-n= 1) (2.33)



Also, for this case, we have, for all n > 1,

§L</n_ld_x:w (2.34)
S T Jo ate (1-da)
so that

A(1,n,64) > (1 = 8z)(n — 1)%. (2.35)
Hence, using (2.29) and the fact that f(k) < f(n) for £ < n, we have

alw) = L)) 5+ I
k=1 21

(=10 nf©) | nfn-1)

A(lanaéd) A(lanaéd) A(n - 17”7661)

n—2 1 1
+ 2 (k) <A(k,n,5d) Ak 1%%))

k=1
nf(n—1) 1 1
An—Tney T/ <A(1,n,6d) " A(n - 1,n,6d))
nfn) _  nj(w)
A(L,n,80) = (1— 8g)(n — 1)
(n/(n—1))%
S RN =TE (2.36)

IN

IN

Case 2: 6; > 1.
For this case we will use the following bound on A(k,n,d84) (1 <k <n-—1):

Ak,n,bq) > % = k%4, (2.37)
We then have
EL(X™) < Bdﬁ < By(n—1). (2.38)
If we let hy = |04] and eq = 84 — hq, we then have
n pkhatl
da(n) = BLXO)F(0)/ Byt w5 Y (n — Rk~ (/) e
n = Ethg+1
< (n=1)f0)+ 0% Y (n = k)k~ha (k/n)'2te " 2 - (2.39)

k=1

Since (k/n)17%¢ < 1 for k < n, and since k=1 < kl(hy + 2)!/(k + hg + 1)! for
k > 1, equation (2.39) leads to

n—1 nkthat?2
P(n) < (n—=1)f(0)+ n_‘sd(hd +2)! (Z e‘”m)

k=1



s n—1 fnkthat+l
~ (b, 4 2)! —n ST
n " (ha )(;e (k+hd+1)!)
n—}—hd-}—l 'Ilhd+2
= (n—-1 “a(p 4o |en e M
(= DF0) + n74(ha + )(e ntha) € (hd+1)!)

s n—1 npktha+l
+ n7b(hy + 2)! ((hd+1) e—ni)
kz::l (k4 hg +1)!

< (n=1)f(0) = (hg+ 2)nf(0) + n =% (kg + 2)! (nf(n + hg) + ha + 1)
!
< G () -

with the use of Stirling formula for the last inequality.
Now the proof of Lemma 2 is obtained from (2.27), (2.28), (2.31), (2.36), and (2.40).

3 Applications

3.1 The Traveling Salesman Problem

The traveling salesman problem (TSP) consists of finding a tour of minimum total
length. Let Ltsp(a;(”)) be the length of the shortest tour through z("). Note that
this functional is monotone. The main result for this problem is:

Corollary 3.1 If{X;:1 < i < oo} are independent and uniformly distributed in
[0, 1], then there is a constant Bs,(d) and a constant kys,(d) such that

(B Loy (X ) /=D = 31, (d)] < hysy(d) /10D, (3.1)

From Theorem 1, this corollary will be proved if one can show that Ly, is a ((d —
2)/(d—1),1/(d - 1))-quasi-additive, 1/d-smooth Euclidean functional on R?. This
assertion is a consequence of the following three lemmas.

Lemma 3.1 For all positive integers m and any sequence z in [0,1]?, t > 0, there
is a constant c¢1(d) such that one has

md
Lesp(2() <37 Ligy (2 0 Qi) + er(d)tm?, (3.2)
=1

whenever {Q; : 1 < i < m?} is a partition of the d-cube [0,]? into cubes with edges
parallel to the azle and of length t/m.



Proof:

The argument, now classical, has its origin in [1] and has been used subsequently in
many papers. The proof of Lemma 3.1 is a consequence of the following well-known
fact:

Fact 3.1 There is a constant ¢y such that for any ™ in [0,1]?,
Ligp(2() < cgtnt?=1/4, (3.3)
(the best value of cq has been successively derived in [13], [2], and [7].)

In order to prove Lemma 3.1, consider now the following tour construction through
2 in [0,1]% first construct optlmal TSP tours through z(*) N Q; for 1 < i < m?
Then, in each cube Q; where (") N Q; is not empty, choose one point as a represen-
tative and finally construct a TSP tour through the set S of all representatives (at
most m? points). The combination of the small TSP subtours together with this
TSP tour gives a spanning walk through z(") of length,

ZLtsp Qi) + Lisp(S5)- (3.4)

One can then delete some arcs and transform this spanning walk into a tour of
smaller length so that we get

Ltsp ZLtsp ) + Ltsp(s) (35)
Finally, from Fact 3.1 we have

Lespl) < cat(m®) =/, (3.6)

which, replaced in (3.5), leads to (3.1) (with ¢;(d) = ¢4).

Lemma 3.2 For all positive integers m and any sequence x in [0,1]%, t > 0, one
has

md
3 Lisp(2 0 Qi) < Lygp(2'™) + eo(d)tm® + eg(d)tn!?=2D/d=Dp1/(d=1) = (3 7)

whenever {Q; : 1 < i < m?) is a partition of the d-cube [0,1]? into cubes with edges
parallel to the azle and of length t/m.

Proof:
Here again, the argument is classical and has its origin in [1, Lemma 2].

10



Let T* be an optimal TSP tour through z(™ and let us suppose that z(") N Q;
is not empty. Let T = 1" N Q; and let T3; for 1 < j < p; (i < |£C N Qi]) be the
connected components of 77 which contain at least an element of 2(") Let y14; and
y2:; be the two endpoints of T;; which intersect the boundary of ¢);. Finally let n;;
be the number of these endpoints contained in each face Fj, 1 < k < 2d.

Let /; be the total length of all these connected components. We then have:

md

Lisp(z™) > 315 (3.8)

i=1

Now, from [1, Lemma 2], we know that we can construct a tour through (M NQ;
by using the connected components 7;; together with part of a double circuit going
through the 2u; endpoints.

But it is easy to see that a tour through the endpoints can be obtained from
a combinaison of subtours through points contained in Fjz, 1 < k < 2d (each of
dimension d — 1), together with a tour connecting at most 2d points (one repre-
sentative for each face containing endpoints). So from Fact 3.1 this tour through
(™ N Q; has a length bounded from above by

I + 2 (i c_r(t/m)n{i=D/E=1 4 cd(t/m)(Qd)(d_l)/d> . (3.9)

k=1

This implies that

md
ZLtsp(w(n) N Qz)
md 2d
< Zz + 2¢4_1(t/m) ZE =D 4 2(2d) D detmd1 ) (3.10)
=1 k=1

which , together with (3.8) and the fact that the function 2(=2)/(¢=1) is concave,
gives

md
Z Ltsp(m(n) N Qz)
=1

< Lisp(2) 4 2¢41 (t/m)(2dm™) (20 /2dm@)=D/E=1) 4 9(24) =1/ d¢ =1
= Lygp(2™) 4 4@V an(d=2/ =01/ @=1) 4 o(9)d=1/de =1 (3.11)

Finally, Lemma 3.2 follows from (3.11) by taking ¢y(d) = 2(2d)(4=D/d¢;, and e3(d) =
4d" 4=V ey_y.

11



Lemma 3.3 If {X; : 1 < i < o} are independent and uniformly distributed in
[0,1]%, then there is a constant by such that

ELioy(X ™) < ELjy (X)) < ELyy (X ™) 4 by/n!/? (3.12)
Proof:
The first inequality is obvious since Ly, is monotone. Now let [,,; denote the
distance of X, 1 from the nearest of Xy,..., X,,. It is then easy to see that
Lisp(X D) < Ly (X)) 4 20,44, (3.13)

which implies that
ELiop(XUF) < BLigp (X)) 4+ 2,1 [Efpa[laa]), (3.14)

where F, 1 is the expectation over X, 11, and F]; is the conditional expectation
over X ("+1) given X, ;.

Let C, denote a d-dimensional hypersphere of radius r centered at X,,41 and V,
be the volume of C, N[0, 1]%. We then have

Epqllnt] = /0 P(l,p1 > 7| Xpqr)dr

/00(1 V) dr. (3.15)

Since (1 — z)" is a non-increasing non-negative function of z for 0 < z < 1, and
since there exists a constant a such that V, > ar?, (3.15) leads to:

o—1/d
Exalhw] < [ (-arfydr
0
I(1/d)I(n+ 1)
da/iT(n + 14 1/d)
L(1/d) /4
< /, (3.16)

The last inequality follows from the fact that a, = I'(n 4+ 1)n'/¢/T(n + 1+ 1/d) is
such that lim, ., a, = 1 and a,41/a, > 1.

]
Remarks when d = 2:
The best constant in Fact 3.1 is ¢(2) = v/2 (see [2]), so that Lemma 3.1 gives
m2
Lisp(z) <37 Ligp (2™ 0 Qy) + vV2im. (3.17)
=1
Also, from [6, Theorem 3] one can deduce that
Lisp(2 0 Qi) < I; 4 (3/2)(4t/m). (3.18)

12



Hence, Lemma 3.2 gives
m2
=1

From (3.17) and (3.19), and defining ¢5,(t) by ELys,(7([0,2]%)) (see Section 2) one
has from Lemma 1

|¢t5p(\/ﬁ)/n - ﬁtsp| S 6/\/5 (320)

Note that this improves the partial result obtained in [6, Theorem 7], which, trans-
lated in our notation, says that

Prsp(V)/n < Brsp + 12/v/n. (3.21)

Finally when d = 2, one can take @ = 1/2 in (3.16) so that Lemma 3.3 gives

I

B Ly (X ) EL;, (X ™) +21(1/2)/(2(1/2)"/*01/?)

= ELi(X™) + V21 //n, (3.22)

so, for the TSP in the plane, we finally have from (3.20), (3.22), Lemma 1, and
Lemma 2, the following version of Corollary 3.1:

6/v/n+V2r ((2(n/(n—1))"* + 1)/V2r) [V
7/vVn+2/vVn — 1. (3.23)

IN

‘ELtsp(X(n))/\/_ - ﬁtsp

3.2 The Steiner Tree Problem

The Steiner tree problem (STP) consists of finding a connected graph containing
given points which has the least total sum of edge lengths among all such graphs. Let
Lstp(20")) be the length of a Steiner tree on (™). This functional is also monotone.
The main result for this problem is:

Corollary 3.2 If {X;: 1 < i < oo} are independent and uniformly distributed in
[0, 1], then there is a constant B4,(d) and a constant kg,(d) such that

(B Lty (X 00/l 018 — B ()] < Rggy(d) /701, (3.24)

From Theorem 1, this corollary will be proved if one can show that Lg, is a
((d = 2)/(d = 1),1/(d — 1))-quasi-additive, 1/d-smooth Euclidean functional on
R?. This assertion is a consequence of the fact that the functional Ly follows
three lemmas similar to Lemma 3.1, 3.2, and 3.3. In fact, from the fact that
Lstp(;r(”)) < Ltsp(;r(”)), Lemma 3.1 and Lemma 3.2, as such, are still valid for
the STP; also Lemma 3.3 is still valid for the STP (with a constant b; divided by
two).

13



Remarks when d = 2:
In the case of the STP it is easy to see that (3.18) can be replaced by

Lap(2 0 Qi) < i + 4t/m, (3.25)
so for the STP in the plane, we have the following version of Corollary 3.2:

af i+ Jr/2 (@) (n - D))+ 1))v2r) /a
4.5//n+1/vVn —1. (3.26)

‘ELstp(X(n))/\/ﬁ - ﬁstp ‘

IN

3.3 The Minimum Spanning Tree Problem

The minimum spanning tree problem (MSTP) consists of finding a spanning tree
of minimum total length. Let Lmstp(m(n)) be the length of a shortest spanning tree
on z(™. This functional is not monotone. The main result for this problem is:

p

Corollary 3.3 If {X;:1 < i < o} are independent and uniformly distributed in
[0,1]%, then there is a constant Bmstp(d) and a constant ky,s;,(d) such that

B st (X ) =0/ — B ()] < Kt () /20D, (3.27)

From Theorem 1, this corollary will be proved if one can show that L, ., is a
((d—2)/(d—1),1/(d— 1))-quasi-additive, 1/d-smooth Euclidean functional on R.
This assertion is a consequence of the fact that the functional L, follows three
lemmas similar to Lemma 3.1, 3.2, and 3.3. For the counterpart of Lemma 3.1
the proof can be applied without change; for the counterpart of Lemma 3.2 this is
also the case, since, although the MSTP functional is not monotone, the length of
the tree construction in each cube @; (using the endpoints) is still an upper bound
to the length of a optimal spanning tree on z(") N Q; (the reason being that the
boundary of @; is convex). Finally the counterpart of Lemma 3.3 has to be modified
somewhat and can be expressed as follows.

Lemma 3.4 If {X; : 1 < i < o} are independent and uniformly distributed in
[0,1]%, then there is two constants ag and by such that

ELp (X)) = ag/nt? < BLpgy (X)) < BLpgy (X)) + bg/n/ (3.28)

Proof:
Upper bound:
Let /,,41 denote the distance of X,4q from the nearest of Xq,...,X,. It is then
easy to see that
Lmstp(X(n+1)) S Lmstp(X(n)) ‘I’ ln—}—la (329)
which implies that
ELmstp(X(n+1)) S ELmstp()((n)) + En-}-l[E'rcL—}—l[ln-}-l]]v (330)

14



where F, 11 is the expectation over X, 41, and Fj, is the conditional expectation
over X (+1) given X,,11. One can then proceed as in the proof of Lemma 3.3.
Lower bound:
The proof uses an argument contained in [12, Lemma 2.3] for completing a tree
with a missing point. It goes as follows: let T" be an optimal spanning tree through
2"*t1) and let y be an element of V(n+1) (V(n + 1) is the set of neighbors of 2,41
in the graph determined by 7') such that d(z,41,y) is minimal. We get a connected
graph spanning z(™ by taking the edges of T, deleting all the edges incident to
Zp41, and adding the edges which join y to the other neighbors of z,41.

Let Ty,+1 be this connected graph; it has a length [(7},41) such that

Lmstp($(n)) S Z(Tn—}—l) (331)
Now, by construction, we have

(Tost) < Lonstp(2®0) 4 Y d(yaz) = Y d(eapnizy)  (3.32)
JEV(n+1) JEV(n+1)

By the triangle inequality and the definition of y, we have
d(y,z;) < 2d(zp41,2;). (3.33)
From (3.31), (3.32), and (3.33) we get

Lustp() € Ly (@) 4 3 dzg, ). (3.3)
JEV(n+1)

Note that it is a classical result that
V(n+1)] < Ny, (3.35)

where Ny is the number of spherical caps with angle 60° which are needed to cover
the unit sphere in R?. Also we know that (it is the counterpart of Fact 3.1) there
is a constant ¢/ such that

ELpstp(X ") < efnl=0/2, (3.36)

Now, by symmetry on the X;’s (since {X; : 1 < ¢ < oo} are independent and
uniformly distributed in [0, l]d), the edges adjacent to X,,41 can assume any ranks
(i.e., can be the largest or the smallest of the edges of a minimal spanning tree on
X(”+1)), and then they are on average bounded by cg/nl/d
from (3.35) and (3.36)

. Hence we finally have

E[ Y d(X,41,X;)] < Nycy/n'/?, (3.37)
JEV(n+1)
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Remarks when d = 2:
In the case of the MSTP (similar to the STP) it is easy to see that (3.18) can be
replaced by

Lystp(2™ 0Q;) < I; + 4t/m. (3.38)

Also the best constant in (3.36) is ¢, = 1 (by an argument similar to the one
contained in [2]), and Ny = 6. Hence for the MSTP in the plane, we have the
following version of Corollary 3.3:

B Lonstn X )V = By < 4/VR+6 ((2(n/(n = 1)+ 1)/v2r) [V
(44 6/V2m)/v/i + (12/Vam)Vn =1
< 6.4/vn+4.8/vn—1. (3.39)

3.4 The Minimum Weighted Matching Problem

The minimum weighted matching problem (MWMP) consists of finding a matching
of minimum total length. Let memp(ac(”)) be the length of a shortest matching on
z(™ . This functional is not monotone. The main result for this problem is:

Corollary 3.4 If {X;: 1 < i < oo} are independent and uniformly distributed in
[0,1]¢, then there is a constant Brmwmp(d) and a constant ky,ymp(d) such that

‘Ememp(X(”))/n(d‘l)/d _ ﬁmu}mp(d‘)‘ < kmwmp(d)/n(l/d(d_l))A(l/Z_l/d). (3.40)

From Theorem 1, this corollary will be proved if one can show that L,,.my is a
((d - 2)/(d — 1),1/(d — 1))-quasi-additive, 0-smooth Euclidean functional on R
This assertion is a consequence of the fact that the functional L, follows three
lemmas similar to Lemma 3.1, 3.2, and 3.3. From the fact that

Lo (@) < (1/2) L™, (3.41)

the counterpart of Lemma 3.1 can be proved without almost a change (here, the
representative of 2(") N Q; is taken to be the point that is possibly left out from a
shortest matching of (M n Q). For the proof of the counterpart of Lemma 3.2, we
can apply the same techniques as in Section 3.1. Finally the counterpart of Lemma
3.3 has to be modified and can be expressed as follows.

Lemma 3.5 If {X; : 1 < i < o} are independent and uniformly distributed in
[0,1]%, then there is a constant by such that

ELpwmp(X ™) = by < ELpump(X ") < EL (X ™) + by (3.42)

Proof:
Let [0y be the expected value of the distance between two points independently
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and uniformly distributed in [0,1]%. Then it easy to see that if n is even, we have
the following loose bound

ELmuwmp(X ™) = Loy < ELpump(X ") < ELpump (X ™), (3.43)

and if n is odd

ELmwmp(X ") < ELpwmp(X D) < By (X)) 4 1y (3.44)

Remarks:

When d > 3 the rate of convergence for the MWMP is comparable to the other
problems. But, when d = 2 the bound given in Corollary 3.4 is not very useful and
this comes from a very loose result in Lemma 3.5. For the rate of convergence of
the Poisson point process in the plane we have the following results:

From (3.41), the counterpart of Lemma 3.1 gives

m2

Lonwmp(™) <37 Lipymp(2 0 Q1) + 1/1/2tm. (3.45)

=1
Also, for the same reason, the counterpart of Lemma 3.2 gives

m2

3" Linwmp(2™ 0 Q2) € Linwmp(2™) + 3tm. (3.46)

=1

From (3.45) and (3.46) and using the notation of Section 2 (i.e., @mump(t) =
ELmwmp(7([0,1]%))) one finally has

|¢m7~UmP(\/ﬁ)/n - ﬁmwmp| S 3/\/5 (3.47)

3.5 The Case of Power Weighted Edges

In [12], the author studies the asymptotics of generalizations of the minimum span-
ning tree problem in which the distance between points are some fixed power of the
Euclidean distance. The purpose of this section is to give an answer to a question
concerning the rate of convergence of the expectation of the functional.

In order to treat this problem it is useful to generalize Theorem 1 to include the
case of what we call quasi-Fuclidean functionals. Let us suppose that the power of
the Fuclidean distance is 0 < w < d. The new definitions are then:

1. L is said to be w-quasi-Euclidean if L(¢z") = ¢¥L(z™) for all positive real
¢, and if L(z(" 4 5) = L(z(") for all s € R?.
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2. L is said to be (w,74,&4)-quasi-additive if there exist two constants Cy > 0
and Dy > 0 and two constants 74 > 0 and &; > 0 with dyy + £; < d — w, such
that for all positive integer m and any sequence z in [0,#]¢, ¢ > 0, one has

ma

L(a™) =37 L(=™ N Qi) < Cat*m?™ + Dygt*n™4m* (3.48)

=1

whenever {@Q; : 1 < i < m?} is a partition of the d-cube [0,]? into cubes with
edges parallel to the axle and of length ¢/m.

3. L is said to be é4-smooth if there exist a constant By > 0 and a constant
64 > 0 such that

[EL(X )~ BL(X )| < By/n (3.49)

whenever {X; : 1 < i < oo} are independent and uniformly distributed in
[0, 1]°.

We then have the following result.

Theorem 2 Suppose L is a (w,74,&q)-quasi-additive, §;-smooth Fuclidean func-
tional on R, If {X; : 1 < i < oo} are independent and uniformly distributed in
[0,1]¢, then there is a non-negative finite constant ﬁc(lw)(L) and a positive constant

K (d) such that

[EL(x )=l = g8)(1)] < Ko (d)/no, (3.50)
where
o — min{(d —w)/d,b;+ 1/2 —w/d} ifdyg + & < d—w, (3.51)
©7) min{(d-w)/d— 74,80+ 1/2—w/d} ifdyi+E=d—w. '

The proof of this result is obtained exactly as for Theorem 1 and therefore is not
repeated here. We can use Theorem 2 for the minimal spanning tree with power

(z(") be the length of a

shortest spanning tree on z(") with power weighted edges w.

weighted edges and get the following result. Let L)

mstp

Corollary 3.5 If {X;: 1 < i < o} are independent and uniformly distributed in
[0,1]¢, then there is a constant ﬁ(w) (d) and a constant k() (d) such that

mstp mstp
[ELG), (X0 =t — gl (d)] < kG (d) /ml/ 0=/, (3.59)

From Theorem 2, this corollary will be proved if one can show that Lgfs)tp is a
(w,(d=1—-w)/(d—-1),w/(d - 1))-quasi-additive, w/d-smooth, w-quasi-Euclidean
functional on R?. Following the same argument as in Corollary 3.3 the proof of this

assertion is a consequence of the following fact,
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Fact 3.2 There is a constant c,(d) such that for any =™ in [0,1]¢,

L(W)

mstp

(X)) < ey (d)nlt=)/d, (3.53)
which has been proven in [12].

Remarks:
For the MSTP with power weighted edges in the plane, we have the following
version of Corollary 3.5:

[EL, (X)) mE=/2 = gl )] < (4412(2V2 +1)/V2r) [nler )2
< 22.4/nD/2, (3.54)

4 Final Remarks

The result presented in this paper leaves room for further investigations. For exam-
ple, we have not been able to show that the bound of Theorem 1 is asymptotically

best in the sense that |EL(X(”))/n(d_1)/d — ﬁd(L)‘ = Q(1/n*). We have neverthe-
less given, for practical purposes, the best possible constant K involved in the rate
1/nd, but, in general, the difficult question of finding a non trivial lower bound on
‘EL(X(”))/n(d_l)/d — ﬁd(L)‘ remains opened.

In Jaillet [5], we present general finite-size bounds and limit theorems for prob-
abilistic versions of the traveling salesman problem and of the minimum spanning
tree problem. For these problems information about rates of convergence seems
more difficult to get, mainly because of the lack of smoothness of the functional.
On the other hand the minimum 1-tree problem (and other problems such as rout-
ing and facility location) are certainly amenable to the techniques developed in this
paper.

Finally, a persistently open question related to the issues of rates of convergence
is the possible existence of central limit theorems for the combinatorial optimization
problems listed in this paper.
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