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Abstract

We consider a dynamic pricing problem for re-
peated contextual second-price auctions with mul-
tiple strategic buyers who aim to maximize their
long-term time discounted utility. The seller
has limited information on buyers’ overall de-
mand curves which depends on a non-parametric
market-noise distribution, and buyers may poten-
tially submit corrupted bids (relative to true val-
uations) to manipulate the seller’s pricing policy
for more favorable reserve prices in the future.
We focus on designing the seller’s learning policy
to set contextual reserve prices where the seller’s
goal is to minimize regret compared to the rev-
enue of a benchmark clairvoyant policy that has
full information of buyers’ demand. We propose
a policy with a phased-structure that incorporates
randomized “isolation" periods, during which a
buyer is randomly chosen to solely participate in
the auction. We show that this design allows the
seller to control the number of periods in which
buyers significantly corrupt their bids. We then
prove that our policy enjoys a T -period regret
of Õ(

√
T ) facing strategic buyers. Finally, we

conduct numerical simulations to compare our
proposed algorithm to standard pricing policies.
Our numerical results show that our algorithm
outperforms these policies under various buyer
bidding behavior.

1 INTRODUCTION

We study the problem of designing pricing policies for
highly heterogeneous items against strategic agents. The
motivation comes from the availability of massive amount
of real-time data in online platforms and in particular, online
advertising markets, where the seller has access to detailed
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information about item features/contexts. In such environ-
ments, designing optimal policies involves learning buyers’
demand (which is a mapping from item features and offered
prices to the likelihood of the item being sold) under lim-
ited understanding of buyers’ behavior. Our key goal is to
develop effective and robust dynamic pricing polices that
facilitate such a complex learning process for very general
non-parametric contextual demand curves facing strategic
buyers.

Formally, we study the setting wherein any period t over
a finite time horizon T , the seller sells one item to buy-
ers via running a second price auction with a reserve price.
The item is characterized by a d-dimensional context vector
xt, public to the seller and buyers. We consider an inter-
dependent contextual valuation model in which a buyer’s
valuation for the item is the sum of common and private com-
ponents. The common component determines the expected
willingness-to-pay of buyers and is the inner product of the
feature vector and a fixed “mean vector" β that is homoge-
neous across buyers; the private component, which captures
buyers’ idiosyncratic preferences, is independently sampled
from an unknown non-parametric noise distribution F . We
note that such a linear valuation model is very common in
the literature of dynamic pricing; e.g. see Golrezaei et al.
(2018); Javanmard and Nazerzadeh (2016); Kanoria and
Nazerzadeh (2017) and Javanmard (2017).

Under this interdependent contextual valuation model, we
study a strategic setting where buyers intend to maximize
long-term discounted utility and may consequently submit
corrupted, i.e., untruthful, bids. The motivation of this
strategic setting comes from the repeated buyer-seller inter-
actions when the seller does not possess full information on
buyers’ demand and aims to learn it using buyers’ submitted
bids. In a single-shot second price auction, where there is no
repeated interactions between the seller and buyers, bidding
truthfully is a buyer’s weakly dominant action. However,
this is no longer the case in our repeated second price auc-
tion setting: repeated auctions may incentivize the buyers
to submit corrupted bids, rather than their true valuations,
in order to manipulate seller’s future reserve prices; e.g. by
underbidding, buyers may trick the seller to lower future
reserve prices.

In this work, we would like to design a reserve price pol-
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icy for the seller who does not know the mean vector
β and the noise distribution F . The policy dynamically
learns/optimizes contextual reserve prices while being ro-
bust to corrupted data (bids), submitted by strategic buyers.
In particular, our objective is to minimize our policy’s re-
gret computed against a clairvoyant benchmark policy that
knows both β and F . Designing low-regret policies in our
setting involves overcoming the following challenges: (i)
The demand curve is constantly shifting due to the change
in contexts over time. (ii) The shape of the demand curve is
unknown due to the lack of information on the market noise
distribution F which may not enjoy a parametric functional
form. Furthermore, we do not impose the Monotone Hazard
Rate (MHR)1 assumption on F . While the MHR assump-
tion is common in the related literature and can significantly
simplify reserve price optimization (see e.g. Remark 1), it
has been shown to fail in practice (see Celis et al. (2014);
Golrezaei et al. (2017)). (iii) As stated earlier, in our strate-
gic setting, buyers may take advantage of the seller’s lack
of knowledge about buyers’ demand and submit corrupted
bids to manipulate future reserve prices.

Main contribution. We develop a policy called Non-
Parametric Contextual Policy against Strategic Buyers
(NPAC-S) that enables the seller to efficiently learn the
optimal contextual reserve prices while being robust against
buyers’ corrupted bids. Our policy design incorporates two
simple yet effective features, namely a phased structure and
random isolation. First, NPAC-S partitions the entire hori-
zon into consecutive phases, and then estimates the mean
vector and the distributions of the second-highest and high-
est valuations only using data from the previous phase. This
reduces the buyers’ manipulating power on future reserve
prices as past corrupted bids prior to the previous phase will
not affect future pricing decisions. Second, the NPAC-S
policy incorporates randomized isolation periods, that is, in
each period with some probability the seller chooses a partic-
ular buyer at random and let her be the single participant of
the auction during this period. In these isolation periods, the
isolated buyer faces no competition from other buyers, and
hence may incur large utility loss if a significantly corrupted
bid is submitted.2

For our main theoretical results, we show that in virtue of
our isolation periods in our design of NPAC-S, the number
of past periods with large corruptions is O(log(t)) for any
period t via leveraging the fact that buyers aim to maxi-
mize their long-term discounted utility. Furthermore, we

1Distribution F is MHR if f(z)
1−F (z)

is non-decreasing in z,
where f is the corresponding pdf.

2In the isolation periods, when the valuation of the isolated
buyer is greater than the reserve price, significantly underbidding
may cause the item to not be allocated; when the valuation of the
isolated buyer is lower than the reserve price, overbidding results
in the buyer paying much higher prices (relative to valuation) to
achieve the item. In either case, the isolated buyer will incur a
significant utility loss compared to truthful bidding.

present novel high probability bounds for our estimation
errors in β and F which are estimated by ordinary least
squares and empirical distributions, respectively, with the
presence of corrupted bids. Finally, in Theorem 1, we show
that the NPAC-S policy achieves a regret of Õ(d

√
T ) for

general non-parametric distributions F against a clairvoyant
benchmark policy.

Related literature. Here we discuss related works that
study dynamic pricing against strategic buyers with stochas-
tic valuations, 3 and refer readers to Appendix A for broader
related works.

Both Amin et al. (2013, 2014) study a dynamic pricing
problem in a posted price auction against a single strate-
gic buyer. Amin et al. (2013) addresses the non-contextual
stochastic valuation setting, where as Amin et al. (2014)
studies a linear contextual valuation model, but with no
market noise disturbance. Amin et al. (2014) proposes an
algorithm that achieves Õ(T 2/3) regret in contrast with our
regret of Õ(

√
T ) using the NPAC-S policy. We point out

that this is because the seller in their setting only observes
the outcome of the auction (i.e. bandit feedback), while in
our setting we assume that seller can examine all submit-
ted bids. Our setting is more complex compared to Amin
et al. (2013, 2014) as we handle the contextual pricing prob-
lem against multiple strategic buyers, and also deals with
the issue of learning a non-parametric distribution function
in the presence of strategic buyer behavior. Kanoria and
Nazerzadeh (2017) consider a contextual buyer valuation
model similar to ours (but with the MHR assumption on the
market noise distribution) and proposes a pricing algorithm
that sets personalized reserve prices for individual buyers.
They argue that the design of their algorithm induces an
equilibrium where buyers always bid truthfully, and then
further assume buyers act according to this equilibrium. Our
work distinguishes itself from two aspects. First, setting per-
sonalized reserve prices in Kanoria and Nazerzadeh (2017)
rely crucially on the MHR assumption, and in this paper we
relax this assumption such that our methodology works for
a larger class of market noise distributions. Second, we con-
sider more general buyers who do not necessarily play any
equilibrium and are forward looking. Golrezaei et al. (2018)
study a similar interdependent contextual valuation model
to ours, but with heterogeneous mean vector β across agents.
Our work distinguishes itself from Golrezaei et al. (2018) in
two major ways. First, they focus on optimizing contextual

3The general theme of learning in the presence of strategic
agents or corrupted information has also been studied in other ap-
plications; see, for example, Chen and Keskin (2018); Birge et al.
(2018); Feng et al. (2019). There are also related works that study
adversarial buyer valuations. For example, Drutsa (2019) studies
the seller’s pricing problem for repeated second-price auctions fac-
ing multiple strategic buyers with private valuations fixed overtime.
In addition, buyers in this work also seek to maximize cumulative
discounted utility. The paper proposes an algorithm that achieves
O(log log(T )) regret for worst-case (adversarial) valuations.
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reserve w.r.t. the worst-case distribution among a known
class of MHR market noise distributions. In contrast, our
work relaxes this constraint and does not require the seller
to have any prior knowledge on the possibly non-parametric
distribution. Second, in their setting, the seller only utilizes
the outcome of the auctions to learn buyer demand and re-
sults in a regret of Õ(T 2/3).4 In our work, we exploit the
information of all submitted bids by taking advantage of the
fact that buyers’ utility-maximizing behaviour constrains
their degree of corruption on bids. This eventually allows
us to achieve an improved regret of Õ(

√
T ). Nevertheless,

our proposed algorithm cannot not handle heterogeneous
β’s, and hence this will be an interesting future research
direction. Drutsa (2020) studies the posted price selling
problem against a strategic agent with a non-linear (stochas-
tic) contextual valuation model that satisfies some Lipschitz
condition with no additive noise.

We summarize some key differences in the settings/results
of the aforementioned works in Table 1.

2 PRELIMINARIES

Notation. For a ∈ N+, denote [a] = {1, 2, . . . , a}. For
two vectors x, y ∈ Rd, denote ⟨x, y⟩ as their inner product.
Finally, I{·} is the indicator function: I{A} = 1 if event A
occurs and 0 otherwise.

We consider a seller who runs repeated second price auctions
over a horizon with length T that is unknown to the seller.
In each auction t ∈ [T ], an item is sold to N buyers, where
the item is characterized by a d-dimensional feature vector
xt ∈ X ⊂ {x ∈ Rd : ∥x∥∞ ≤ xmax} where 0 < xmax <
∞. We assume that xt is independently drawn from some
distribution D unknown to the seller. We define Σ as the
covariance matrix of distribution D.6 We assume that Σ is
positive definite and unknown to the seller, and define the
smallest eigenvalue of Σ to be λ0 > 0.

Buyer valuation model. We focus on an interdependent
valuation model where the valuation of buyer i ∈ [N ] at
time t ∈ [T ]is given by vi,t = ⟨β, xt⟩ + ϵi,t. Here, β is
called the mean vector and is fixed over time and unknown
to the seller, while ϵi,t is idiosyncratic market noise sampled
independently over time and across buyers from some time-
invariant distribution F with probability density function f ,
both unknown to the seller. Furthermore, F has bounded
support (−ϵmax, ϵmax), in which its probability density

4A recent work Deng et al. (2019) builds on the result of Gol-
rezaei et al. (2018) by considering a stronger benchmark that
knows future buyer valuation distributions (noise distribution and
all the future contextual information). They design robust pric-
ing schemes whose regret is O(T 5/6) against the aforementioned
benchmark, confirming the generalizability of pricing schemes in
Golrezaei et al. (2018).

6The covariance matrix of a distribution P on Rd is defined as
Ex∼P [xx

⊤]− µµ⊤, where µ = Ex∼P [x].

function is bounded by cf := supz∈[−ϵmax,ϵmax] f(z) ≥
infz∈[−ϵmax,ϵmax] f(z) > 0. The support boundary ϵmax is
not necessarily known to the seller. We assume there exist
vmax > 0 so that vi,t ∈ [0, vmax] for all i ∈ [N ], t ∈ [T ].

We highlight that our setting does not enforce distribution F
to be parametric nor to satisfy the MHR assumption. This
is because via analyzing real auction data sets, it has been
shown that the MHR assumption does not necessarily hold
in online advertising markets Celis et al. (2014); Golrezaei
et al. (2017).

Repeated contextual second price auctions with reserve.
The contextual second price auction with reserve is de-
scribed as followed for N ≥ 2 buyers: In any period
t ≥ 1, a context vector xt ∼ D is revealed to the seller
and buyers. The seller then computes reserve price rt,
while simultaneously each buyer i ∈ [N ] forms individ-
ual valuations vi,t and submits a bid bi,t to the seller.
Let i⋆ = argmaxi∈[N ] bi,t be the buyer who submitted
the highest bid.7 If bi⋆,t ≥ rt, the item is allocated to
buyer i⋆ and he is charged the maximum between the re-
serve price and second highest bid, i.e. buyer i⋆ pays
pi⋆,t = max{rt,maxi ̸=i⋆ bi,t}. For any other buyer i ̸= i⋆,
the payment pi,t = 0. In the case where bi⋆,t < rt, the item
is not allocated and all payments are zero.

Here, the seller’s reserve price rt can only
depend on xt and the history set Ht−1 :=
{(r1, {bi,1}i∈[N ], x1), . . . , (rt−1, {bi,t−1}i∈[N ], xt−1)}
which includes all information available to the seller up to
period t− 1.

Buyers’ bidding behavior. In the setting where buyers are
strategic, we assume that in any period t, each buyer i ∈ [N ]
aims at maximizing his long-term discounted utility Ui,t:

Ui,t :=

T∑
τ=t

ητE [vi,τwi,τ − pi,τ ] , (1)

where η ∈ (0, 1) is the discount factor, wi,t ∈ {0, 1} indi-
cates whether buyer i wins the item; the expectation is taken
with respect to the randomness due to the noise distribu-
tion F , the context distribution D, buyers’ bidding behavior,
and the seller’s pricing policy. We point out that this dis-
counted utility model illustrates the fact that buyers are less
patient than the seller, and is a common framework in many
dynamic pricing literature; see Amin et al. (2013, 2014);
Golrezaei et al. (2018), and Liu et al. (2018). The moti-
vation lies in many applications in online advertisement
markets wherein the user traffic is usually very uncertain
and as a result, advertisers (buyers) would not like to miss
out an opportunity of showing their ads to targeted users.
An alternative interpretation for the above discounted utility
model is that each buyer has probability η of leaving the

7No ties will occur since we assume that no valuations and bids
are the same.
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Table 1: Summary of settings and results for seller algorithms that sell against strategic agents with stochastic valuations.
Note that the Discount util. column indicates whether the algorithm deals with buyers who discount their long-term
utilities. Note that HO-SERPKanoria and Nazerzadeh (2021) and SCORP Golrezaei et al. (2018) set personalized reserve
prices for each buyer, whereas NPAC-S sets a single reserve for all buyers. PELS in Drutsa (2020) learns a non-linear
contextual valuation model and hence yields larger regret. Among all algorithms, only SCORP Golrezaei et al. (2018)
handles heterogeneous β across buyers.

Algorithm # buyers Context Noise/value dist. Discount util. Regret

Phased Amin et al. (2013) 1 False Lipschitz True Sublinear5

LEAP Amin et al. (2014) 1 True No additive noise True O(T 2/3)
PELS Drutsa (2020) 1 True No additive noise True O(T d/(d+1))

HO-SERP Kanoria and Nazerzadeh (2021) ≥ 2 True MHR False O(
√
T )

SCORP Golrezaei et al. (2018) ≥ 2 True MHR True O(T 2/3)

NPAC-S (this work) ≥ 2 True Non-parametric True O(
√
T )

repeated auctions, and thereby the expected cumulative util-
ity of each bidder is exactly Eq. (1). It is worth noting that
Amin et al. (2013) showed, in the case of a single buyer, it
is not possible to obtain a no-regret policy when η = 1, that
is, when the buyer is as patient as the seller.

Furthermore, we assume buyers corrupt their true valuations
in an additive manner:

∀i ∈ [N ], t ∈ [T ] bi,t = vi,t − ai,t where |ai,t| ≤ amax .

Here, ai,t is called the degree of corruption, and we refer to
the buyer behavior of submitting a bid bi,t ̸= vi,t (i.e., ai,t ̸=
0) as “corrupted bidding”. Note that when ai,t > 0, the
buyer shades her bid, and when ai,t < 0, the buyer overbids.
Essentially, a buyer i’s strategic behavior is equivalent to
deciding on a non-zero value of ai,t. In this work, we
impose no restrictions on the degree of corruption ai,t for a
buyer i in period t other than it is bounded. 8

3 BENCHMARK AND SELLER’S
REGRET

The seller’s revenue in period t ∈ [T ] is the sum of total
payments from all buyers, and the expected revenue given
context xt ∈ X and reserve price rt is

revt(rt) := E
[ ∑
i∈[N ]

pi,t

∣∣∣ xt, rt

]
,

where pi,t = max{b−t , rt}I{bi,t ≥ max{b+t , rt}} .
(2)

Here, b−t and b+t are the second-highest and highest bids in
period t, respectively; the expectation is taken with respect
to the noise distribution in period t and any randomness
in the reserve price rt as well as bid values submitted by
buyers in period t (as buyers’ bidding strategies may be
randomized).

8A bound for the degree of corruption is natural as buyers
always submit non negative bids and all bids are bounded by vmax.

The seller’s objective is to maximize his expected revenue
over a fixed time horizon T through optimizing contextual
reserve prices rt for any t ∈ [T ]. To evaluate any seller
pricing policy, we compare its total revenue against that of
a benchmark policy run by a clairvoyant seller who knows
the mean vector β and the non-parametric noise distribution
F . This clairvoyant seller’s benchmark policy sets the “opti-
mal” contextual reserve price in each period to obtain the
maximum achievable revenue maxr revt(r) in each period,
and hence facing such a seller there will be no incentive
for buyers’ to corrupt their bids. To provide a more formal
definition for the revenue of the clairvoyant seller as well as
“optimality” in contextual reserve prices, we rely on the fol-
lowing proposition that characterizes the seller’s conditional
expected revenue when buyers bid truthfully.

Proposition 1 (Seller’s Revenue with Truthful Buyers).
Consider the case of N ≥ 2 buyers who bid their true
valuations, i.e., vi,t = bi,t for any i ∈ [N ] and t ∈ [T ].
Conditioned on the reserve price rt and the current con-
text xt ∈ X , the seller’s single period expected revenue in
Equation (2) is∫ ∞

−∞
zdF−(z) + ⟨β, xt⟩+

∫ rt

0

F−(z − ⟨β, xt⟩)dz

− rt
(
F+(rt − ⟨β, xt⟩)

)
,

(3)

where for any z ∈ R, F−(z) := NFN−1(z) − (N −
1)FN (z) and F+(z) := FN (z).

The proof for this proposition is detailed in Appendix B. In
Proposition 1, F+(·) and F−(·) are the cumulative distribu-
tion functions of ϵ+t := v+t −⟨β, xt⟩ and ϵ−t := v−t −⟨β, xt⟩
respectively, where v+t and v−t are the highest and second
highest valuations in period t ∈ [T ].

In light of Proposition 1, we define the benchmark policy of
the clairvoyant seller as followed,

Definition 1 (Benchmark Policy). The benchmark policy
knows the mean vector β and noise distribution F , and sets
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the reserve price for a context vector x ∈ X as

r⋆(x)

= argmax
y≥0

∫ y

0

F−(z − ⟨β, x⟩)dz − y
(
F+(y − ⟨β, x⟩)

)
.

(4)

Therefore, the benchmark reserve price in period t, denoted
by r⋆t , is r⋆(xt), and the corresponding optimal revenue,
denoted by REV⋆

t , is equal to∫ ∞

−∞
zdF−(z) + ⟨β, xt⟩+

∫ r⋆(xt)

0

F−(z − ⟨β, xt⟩)dz

− r⋆(xt)
(
F+(r⋆(xt)− ⟨β, xt⟩)

)
.

Remark 1. When distribution F satisfies the MHR assump-
tion, the objective function of the optimization problem in
Equation (4) is unimodal in the decision variable y, and
according to Golrezaei et al. (2018), r⋆(x) can be simplified
as follows: r⋆(x) = argmaxy≥0 y(1− F (y − ⟨β, x⟩)). In
words, the MHR assumption decouples the reserve price op-
timization problem for multiple agents to the much simpler
monopolistic pricing for each individual agent.

We observe this benchmark provides an optimal mapping
from the feature vector xt to reserve price r⋆(xt), which
remains unchanged over time as the mean vector β and noise
distribution F are time-invariant. This echoes our earlier
point that pricing is challenging in our contextual setting
since we would need to approximate or learn the optimal
mapping r⋆(·), whereas in non-contextual environments it
is sufficient to learn a single optimal reserve price value.

We now proceed to define the regret of a policy π (possibly
random) when the regret is measured against the benchmark
policy. Suppose that in any period t, policy π selects reserve
price rπt . Then, the regret of policy π in period t and its
cumulative T -period regret are defined as:

Regretπ(T ) =
∑
t∈[T ]

E [REV⋆
t − revt(r

π
t )] , (5)

where the optimal revenue REV⋆
t is given in Definition 1,

and the expectation is taken with respect to the context
distribution D as well as the possible randomness in the
actual reserve price rπt . Our goal is to design a policy that
obtains a low regret for any β, F , and context distribution
D.

4 THE NPAC-S POLICY

In this section, we first propose a policy called Non-
Parametric Contextual Policy against Strategic Buyers
(NPAC-S) to maximize seller’s expected revenue in our
strategic setting. Then, we provide insights into how our

design in NPAC-S makes the policy robust to buyer strategic
behavior, and in turn allows the policy to learn the mean
vector β and noise distribution F efficiently. Finally, we
present theoretical regret guarantees for NPAC-S against the
clairvoyant benchmark described in Definition 1 that sets
the optimal contextual reserve price defined in Equation (4).

The NPAC-S policy. The detailed NPAC-S policy is shown
in Algorithm 1, and consists of three main components. (i)
Phased Structure: NPAC-S partitions T into consecutive
phases, where each phase ℓ ≥ 1, denoted as Eℓ, has length
T 1−2−ℓ

. This implies |E1| =
√
T and |Eℓ|/

√
|Eℓ−1| =√

T . Here, we can establish that the total number of phases
can be upper bounded by ⌈log2(log2(T ))⌉ + 1. (ii) Esti-
mation for β, F− and F+: At the end of each phase,
NPAC-S uses the submitted bids from the pervious phase
and employs Ordinary Least Squares (OLS) and empirical
distributions to estimate the mean vector β as well as F ,
respectively. (iii) Random isolation: NPAC-S incorporates
random isolation periods in which a single buyer is chosen
at random, and the item is auctioned to this isolated buyer
(i.e. the seller only considers the bid of the isolated buyer
and ignores bid from other buyers).9 Note that when a buyer
i is isolated, the buyer wins the item if and only if his bid
is greater than the reserve price, and pays the reserve price
if he wins. Here, the seller’s pricing policy is announced to
all buyers (at t = 0) so that buyers examine the policy and
have the freedom to adopt any bidding strategy to maximize
their long term discounted utility.

Remark 2. Here, we comment on how one can solve the
reserve price optimization problem in Equation (7). The
key observation is that for any period t, F̂ℓ(·) is a step
function with jumps at points in the finite set Cℓ := {bi,τ −
⟨β̂ℓ, xτ ⟩}i∈[N ],τ∈Eℓ−1

. This implies that in order to solve
for rt in Equation (7), it suffices to conduct a grid search
for ∀y ∈ Cℓ. More specifically, we let {z(0), z(1), . . . z(M)}
be the ordered list (in increasing order) of all elements in
Cℓ∪{0}, where z(0) := 0 and M := |Cℓ| (here, we assumed
that 0 /∈ Cℓ without loss of generality). Hence, rt is equal to

arg max
m∈[M ]

m∑
j=1

F̂−
ℓ (z(j) − ⟨β̂ℓ, xt⟩) · (z(j) − z(j−1))

− z(m)F̂+
ℓ (z(m) − ⟨β̂ℓ, xt⟩) .

This shows that the complexity to solve Equation (7) is
O(M2). More detailed discussions and efficient algorithms
regarding related problems can be found in Mohri and Med-
ina (2016).

9The seller discloses her commitment to the random isolation
protocol to all buyers at t = 0, and it is not necessary for the seller
to reveal, during an isolation period, which buyer is being isolated.

aFor a matrix A, A† represents its pseudo inverse, so if A is
invertible, we have A† = A−1. In Lemma 4 of Appendix C, we
show that with high probability

∑
τ xτx

⊤
τ is positive definite, and

hence invertible.
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Algorithm 1: Non-Parametric Contextual Policy against
Strategic Buyers (NPAC-S)

1: Initialize β̂1 = 0, and F̂−
1 (z) = F̂+

1 (z) = 0 for ∀z ∈ R.
2: for phase ℓ ≥ 1 do
3: for t ∈ Eℓ do
4: Isolation: With probability 1/|Eℓ|, choose one buyer

uniformly at random and offer price

rut ∼ Uniform(0, vmax) . (6)

5: No Isolation: With probability 1− 1/|Eℓ|, set reserve
price for all buyers as

r̂t = arg max
y∈[0,vmax]

∫ y

0

F̂−
ℓ (z − ⟨β̂ℓ, xt⟩)dz

− y · F̂+
ℓ (y − ⟨β̂ℓ, xt⟩) .

(7)

6: Observe all bids {bi,t}i∈[N ]

7: end for
8: Update estimate of the mean vector β: a

β̂ℓ+1 = (
∑
τ∈Eℓ

xτx
⊤
τ )

† · (
∑
τ∈Eℓ

xτ b̄τ ) , (8)

where b̄τ = 1
N

∑
i∈[N ] bi,τ .

9: Update the estimate of F+ and F−:

F̂−
ℓ+1(z) = NF̂N−1

ℓ+1 (z)− (N − 1)F̂N
ℓ+1(z)

F̂+
ℓ+1(z) = F̂N

ℓ+1(z) .
(9)

where F̂ℓ+1(z) is defined as

F̂ℓ+1(z) =
1

N |Eℓ|
∑
τ∈Eℓ

∑
i∈[N ]

I(bi,τ − ⟨β̂ℓ+1, xτ ⟩ ≤ z),

(10)

10: end for

Motivation for design of NPAC-S. Here we provide some
insights into the design of the NPAC-S policy, particularly
the phased structure and the incorporation of random isola-
tion periods.

Due to the phased structure of the algorithm, our estimates
for β, F−, and F+ only depend on the bids and contex-
tual features in the previous phase. Thus, corrupted bids
submitted by buyers in past periods will have no impact on
future estimates as well as pricing decisions. One can think
of this as erasing all memory prior to the previous phase
and restarting the algorithm, which can potentially reduce
buyers’ manipulating power on our estimates and reserve
prices.

We now discuss the impact of having isolation periods. As
all buyers are aware of the randomized isolation protocol,
the presence of isolation periods restricts buyers from sig-
nificantly corrupting their bids too often as by doing so they
may suffer a substantial utility loss when they are isolated.

To illustrate this point with an example, compare the follow-
ing scenarios: (i) if there are no isolation periods, a buyer
having the lowest valuation among all buyers may submit a
bid by adding large corruption, but still ending up not being
the second highest or highest bidder. Assuming that other
buyers bid truthfully, such a scenario will not lead to any
changes in utility of any buyer, but introduces a large outlier
to the set of data points used in our estimations. In words,
when no isolation occurs, buyers may be able to distort the
seller’s learning process without facing unfavorable con-
sequences; (ii) during an isolation period when a buyer is
isolated, corrupting her bid may perhaps result in significant
utility loss, e.g., losing the item by underbidding when her
true valuation is greater than the reserve price, or winning
the item by overbidding when her true valuation is less than
the reserve price. Therefore, randomized isolation incen-
tivizes utility-maximizing buyers to reduce the frequency of
corrupting their bids. Mathematically, we characterize this
statement in the following Lemma 1.

Lemma 1 (Bounding number of significantly corrupted
bids). For i ∈ [N ] and phase ℓ ≥ 1 define

Si,ℓ :=

{
t ∈ Eℓ : |ai,t| ≥

1

|Eℓ|

}
Lℓ := log

(
v2maxN |Eℓ|4 − 1

)
/log(1/η) ,

(11)

where Si,ℓ is the set of all periods in phase Eℓ during
which buyer i significantly corrupts his bids. Then, we
have P (|Si,ℓ| > Lℓ) ≤ 1/|Eℓ|.

The proof of this lemma is shown in Appendix C.1.

Bounding the regret of NPAC-S. Here, we first present the
regret of NPAC-S. Then we introduce several key results
that are crucial to proving the regret bound of NPAC-S and
also comment on how they resolve challenges that arise due
to buyers’ strategic behavior.

Theorem 1 (Regret of NPAC-S Policy). Suppose that
the length of the horizon T ≥ max{

( 8x2
max

λ2
0

)4
, 9}

where λ2
0 is the minimum eigenvalue of covari-

ance matrix Σ. Then, in the strategic setting, the
T-period regret of the NPAC-S policy is in the order of

O
(
cf
√
dN3 log(T ) · log (log(T ))

(√
T +

√
N3 log(T )T

1
4

log(1/η)

))
,

where regret is computed against the benchmark policy in
Definition 1 that knows the mean vector β and noise dis-
tribution F . Here, recall cf = supz∈[−ϵmax,ϵmax] f(z) > 0
where f is the the pdf of F .

Remark 3. The proof of this theorem is presented in Ap-
pendix C. In the regret of NPAC-S, the factor 1/log(1/η)
serves as a worse case guarantee for the amount of cor-
ruption that buyers’ can apply to their bids throughout the
entire horizon T . As buyers get less patient, i.e., as η de-
creases, buyers are less willing to forgo current utility in
the current period. Thus, in the presence of randomized
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isolation periods, impatient buyers are less likely to signifi-
cantly corrupt bids, which translates into lower regret. The
log(log(T )) factor corresponds to the information loss due
to the policy’s phased structure, which “restarts” the algo-
rithm at the beginning of each of O (log(log(T ))) phases
and relies only on the information of the previous phase.

The regret of NPAC-S can be decomposed into two parts:
(i) the estimation errors in β, F− and F+, which result
in the posted reserve price rt deviating from the optimal
reserve price r⋆t , and hence incur a revenue loss compared
to the clairvoyant benchmark; and (ii) the revenue loss due
to allocation mismatch in the auction outcome because of
buyers’ strategic bidding behaviour. Here, allocation mis-
match refers to the phenomenon where a bidder would have
won (lost) the auctioned item had she bid truthfully, but
instead lost (won) the item as she submitted a corrupted bid
in reality.

We first comment on several challenges with respect to
bounding the estimation errors in β, F− and F+. First, the
OLS estimator and empirical distributions to estimate the
mean vector and distributions F− and F+, respectively are
extremely vulnerable to corrupted data (outliers), and hence
standard high probability bounds are invalid for our setting.
Additionally, there exists a complication in terms of bound-
ing the estimation errors in F− and F+ because estimation
errors for β will further propagate into the estimation er-
rors in F and consequently impacting the estimates for F−

and F+. To illustrate this point, consider the ideal scenario
where all bids are truthful (i.e. vi,t = bi,t for all i ∈ [N ] and
t ∈ [T ]). Even in this scenario, the terms vi,τ − ⟨β̂ℓ, xτ ⟩
in the expressions for F̂ℓ(·) are not realizations of ϵi,τ due
to estimation errors in the mean vector β̂ℓ. Hence, the es-
timate F̂ℓ(·) evaluated at any point z ∈ R is biased, i.e.
E[F̂ℓ(z−⟨β̂ℓ, xt⟩)] ̸= F (z−⟨β̂ℓ+1, xt⟩). Furthermore, the
estimates F̂+

ℓ (·) and F̂−
ℓ (·) are evaluated at points which

may be random variables since β̂ℓ is a random variable that
depends on the history of the previous phase.

In light of such challenges in bounding estimation errors,
as one of our main contributions, the following Lemma 2
provides good estimation error guarantees for β, F− and F+

in the presence of corrupted bids and the aforementioned
error propagation phenomena.

Lemma 2 (Bounding estimation errors in β, F− and
F+). For any phase Eℓ, with probability at least 1 −
Θ(1/|Eℓ|), the following events hold: (i) ∥β̂ℓ+1 − β∥1 =

O( 1√
|Eℓ|

+ log(|Eℓ|)
log(1/η)|Eℓ| ); (ii) for any z ∈ R, |F̂−

ℓ+1(z) −

F−(z)| = O( N2√
|Eℓ|

+ N2 log(|Eℓ|)
log(1/η)|Eℓ| ) and |F̂+

ℓ+1(z) −

F+(z)| = O
(

N√
|Eℓ|

+ N log(|Eℓ|)
log(1/η)|Eℓ|

)
. Here, recall the dis-

count factor η ∈ (0, 1).

We refer readers to Lemma 4 and Lemma 5 in Appendix C.3

for more detailed statements on our high probability bounds
regarding estimation errors in β, F− and F+.

In addition to inaccurate estimates for β, F− and F+, the
allocation mismatch phenomenon due to strategic bidding
also contributes to the regret of NPAC-S. For example, sup-
pose that the highest valuation is greater than the reserve
price. In that case, if buyers were truthful, the item would be
allocated and the seller would gain positive revenue. Now,
if buyers shade their bids, the auctioned item may not get
allocated, resulting in zero revenue for the seller. In the
following Lemma 3, we show that the number of alloca-
tion mismatch periods for each buyer is bounded with high
probability.

Lemma 3 (Bounding allocation mismatch periods). Define
the following two sets of time periods:

Bs
i,ℓ = {t ∈ Eℓ : vi,t ≥ Dt , bi,t ≤ Dt} and

Bo
i,ℓ = {t ∈ Eℓ : vi,t ≤ Dt , bi,t ≥ Dt}

where Dt = max{b+−i,t, r̂t} .
(12)

Here, b+−i,t is the highest among all bids excluding that
submitted by buyer i, and r̂t is the reserve price of-
fered to all buyers if no isolation occurs (defined in
Equation (7)). Then, for Bi,ℓ := Bs

i,ℓ ∪ Bo
i,ℓ, we

have P (|Bi,ℓ| ≤ 2Lℓ + 4cf + 8 log(|Eℓ|)) ≥ 1 −
4/|Eℓ|, and Lℓ is defined in Equation (11). Here, the
probability is taken with respect to the randomness in
{(xτ , ϵi,τ , ai,τ )}τ∈Eℓ,i∈[N ].

Note that Bs
i,ℓ represents the set of all periods in phase ℓ

during which buyer i should have won the item if she bid
truthfully, but in reality lost due to shading her bid (i.e.
allocation mismatch due to shading), while similarly Bo

i,ℓ

is the periods of allocation mismatch due to overbidding.
Therefore, Bi,ℓ := Bs

i,ℓ∪Bo
i,ℓ can be interpreted as the set of

all periods in phase ℓ when an allocation mismatch occurs
for buyer i. The detailed proof is provided in Appendix C.2.

NPAC-S against Truthful Buyers. Here, we make a
remark that in a hypothetical world where buyers are truth-
ful (i.e. vi,t = bi,t or equivalently the degree of corruption
ai,t = 0 for all i ∈ [N ], t ∈ [T ]), our proposed NPAC-S pol-
icy achieves a regret of O(cf

√
dN3T log(T ) · log log(T ))

compared to the clairvoyant benchmark policy in Definition
1. Intuitively, this is easy to see because the set of all periods
in phase Eℓ during which a buyer i significantly corrupts
his bids, namely Si,ℓ defined in Lemma 1, will be empty.
As a result, there will be no allocation mismatch periods,
and the 1/ log(1/η) terms in the estimation errors in β, F−,
F+ will vanish (see Lemma 2). The proof for the regret
bounds of NPAC-S against truthful buyers would thus be a
simplification to the proof of Theorem 1, and hence will be
omitted.
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5 NUMERICAL STUDY

Here, we present numerical simulations to compare the
performance of NPAC-S with several baseline seller poli-
cies. In particular, consider the following baseline poli-
cies: (i) NAIVE which always sets a 0 reserve price; (ii)
CONTHEDGE which runs an independent version of the
HEDGE algorithm for every distinct context vector (see an
introduction of HEDGE for the adversarial multi-arm ban-
dit problem in Auer et al. (1995)). The “arms” of HEDGE
correspond to potential reserve price options. Note that
HEDGE is a special case of the well-known EXP3 algo-
rithm which is a simple off-the-shelf algorithm that not only
has good theoretical guarantees, but has also been applied
(or its variations/generalizations have been adopted) in many
areas in online advertising (see e.g. Zimmert and Seldin
(2019); Balseiro and Gur (2019); Han et al. (2020)). (iii)
HO-SERP, which sets personalized reserve prices for each
buyer using “rolling window” estimates of β and F w.r.t
other buyers’ submitted bids (see Kanoria and Nazerzadeh
(2021)). Here we consider HO-SERP as a baseline because
among all seller algorithms in related works that study pric-
ing in a contextual, stochastic, and strategic buyer setting
similar to ours (see Table 1), HO-SERP achieves nearly the
best theoretical performance. Note HO-SERP requires the
noise distribution to be MHR.

To model buyers’ strategic behavior, instead of restricting
buyers to bid according to a specific strategy to maximizes
long-term discounted utility, we instead mimic the outcome
of some general class of such strategies (parameterized by η)
via randomly selecting periods over the entire horizon and
have buyers significantly corrupt bids in these periods. We
will refer to these randomly selected periods as corruption
periods. When this randomization procedure is repeated
over many trials, we believe the average bidding outcome
would serve as a relatively accurate approximation to the out-
comes of a general class of strategies for utility-discounting
buyers. Furthermore, inspired by Lemma 1 which suggests
that the number of periods when a buyer significantly cor-
rupts her bid is bounded, we let the selected number of
corruption periods be Lℓ defined in Equation (11) . Note
that Lℓ is increasing in η and represents the fact that more
patient buyers (i.e. larger η) value long term utility more
and hence would be willing to corrupt bids more frequently
with the aim of achieving higher future utility.

Out detailed experimental setup is as followed. We consider
a horizon of length T = 5, 000, N = 2 buyers, context vec-
tors of dimension d = 4, vmax = 10 and vmin = 0. For each
η ∈ {0.2, 0.4, 0.6, 0.8}, repeat the following procedure for
n = 50 trials, each including T periods:

For each phase Eℓ (ℓ ≥ 1), 10 sample Lℓ corruption periods

10For fixed T , since length of phase ℓ ≥ 1 is T 1−2−ℓ

, in our
case when T = 5, 000 we have 4 phases whose phase lengths

uniformly at random. Then, regarding buyer’s valuations,
we generate β ∈ [0, 1]d, where each entry is sampled in-
dependently according to a uniform distribution on [0,1],
i.e., U(0, 1). We further normalize β with the sum of all
entries so that ∥β∥2 = 1. We then generate 10 distinct
contexts vectors X = {Xj}j∈[10], where each entry for
any distinct context vector is sampled independently from
U
(
vmax

3 , 2vmax

3

)
. Then, for every period t ∈ [T ], sample xt

uniformly at random from X , and sample ϵi,t for all i ∈ [N ]
independently from U

(
−vmax

3 , vmax

3

)
. Note that our con-

struction guarantees vi,t = ⟨β, xt⟩ + ϵi,t ∈ [vmin, vmax],
and the noise distribution is uniform which satisfies the
MHR assumption (so the application of the HO-SERP is
valid). If t is a corruption period, we let buyers submit a bid
of value 0 to model the behavior of significant bid-shading;
otherwise, we let buyers bid their true valuations.11

For comprehensiveness, we also consider the truthful setting
by repeating the above valuation generation procedure for
another n = 50 trials and have buyers always submit their
true valuations. Finally, for each of the aforementioned tri-
als, we run the NPAC-S as well as other baseline algorithms
independently and simply record the realized revenue of
each algorithm across all repeated auctions.

We report the average per-period revenue loss compared to
the benchmark policy (Definition 1) for each algorithm in
Figure 1.

We observe that our proposed NPAC-S algorithm not only
outperforms CONTHEDGE in all settings consistently by a
3% ∼ 4% and NAIVE in the truthful setting by 6% ∼ 7%,
NPAC-S also generally yields more stable outcomes as mea-
sured by the standard deviation of per-period revenue loss
across n trials. Compared to HO-SERP, NPAC-S slightly
outperforms HO-SERP in the truthful setting and for η =
0.2, 0.4, 0.6. Nevertheless, we point out that our experimen-
tal setting inherently favors HO-SERP since performance
guarantees of this algorithm relies on the noise distribution
being MHR, which is the case for our uniform noise. More-
over, the comparison with HO-SERP also demonstrates the
advantages of NPAC-S from a practical viewpoint, since
NPAC-S, unlike HO-SERP, sets a single reserve price for
all buyers and still matches or improves upon the perfor-
mance of HO-SERP.

are 70, 594, 1724, 2612, respectively, where the last phase is trun-
cated.

11We remark that our numerical experiments focus on buyers’
bid-shading behavior. This is mainly because empirical studies
found that shading is prevalent in repeated auctions on modern on-
line advertising platforms and theoretical works have demonstrated
various versions of bid-shading strategies can help buyers achieve
near-optimal performances in a variety of practical settings, such
as buyers being constrained by a limited budget or target return on
investment (see e.g. Zeithammer (2007); Golrezaei et al. (2021b);
Balseiro and Gur (2019)).
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Figure 1: Performance comparison with baselines. This
figure displays the average per-period revenue loss com-
pared to the benchmark policy (Definition 1). Each box plot
corresponds to n = 50 trials. NAIVE is only run for the
truthful setting because buyers will have no incentive to bid
untruthfully when there is no reserve price. CONTHEDGE
is run with“arms” {0, 0.5, 1, . . . 10}, where each arm corre-
sponds to a reserve price option.
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Appendices for

Incentive-aware Contextual Pricing with Non-parametric Market Noise

Our Appendix is organized as followed. In Appendix A, we include an extended literature review that discusses broader
related works. Appendix B includes the all proofs of the results in Section 3. Appendix C is dedicated to Section 4. In
particular, Appendix C proves Theorem 1 which shows a regret bound for the NPAC-S policy against strategic buyers.

A EXTENDED LITERATURE REVIEW

There has been a large body of literature that considers the problem of non-contextual dynamic pricing with non-strategic
buyers. Kleinberg and Leighton (2003) studies repeated non-contextual posted price auctions with a single buyer whose
valuations are fixed, drawn from a fixed but unknown distribution, and chosen by an adversary who is oblivious to the
seller’s algorithm. den Boer and Zwart (2013); Besbes and Zeevi (2009); Broder and Rusmevichientong (2012) study
non-contextual dynamic pricing with demand uncertainty, where they estimate unknown model parameters using estimation
techniques such as maximum likelihood. Golrezaei et al. (2021a) considers a seller repeatedly pricing against a buyer who is
subject to budget and return-on-investment (ROI) constraints. Cesa-Bianchi et al. (2015) considers the dynamic pricing
problem in non-contextual repeated second-price auctions with multiple buyers whose bids are drawn from some unknown
and possibly non-parametric distribution. In addition, they also consider bandit feedback where the seller only observes
realized revenues instead of all submitted bids. In their non-contextual setup, the seller’s revenue-maximizing price is fixed
throughout the entire time horizon, and the key is to approximate this optimal price by estimating the valuation distribution.
In our setting, however, the optimal reserve prices are context-dependent, which means the seller is required to estimate (i)
the distributional form of valuations and (ii) buyers’ willingness-to-pay that varies in each period according to different
contexts.

Another line of research studies the problem of contextual dynamic pricing with non-strategic buyer behavior. Cohen et al.
(2016); Lobel et al. (2018); Leme and Schneider (2018) propose learning algorithms based on binary search methods when
the context vector is chosen adversarially in each round. Chen and Gallego (2018) consider the problem where a learner
observes contextual features and optimizes an objective by experimenting with a fixed set of decisions. Their tree-based
non-parametric learning policy is designed to handle very general objectives and not specifically tailored to pricing problems.
Thus, in pricing problems, its performance deteriorates as the dimension of the feature vector increases. Javanmard and
Nazerzadeh (2016) also considered a contextual pricing problem with an unknown but parametric noise distribution, and
uses a maximum likelihood estimator to jointly estimate the mean vector and distributions parameters. Finally, there
is a recent line of work that considers contextual dynamic pricing with non-strategic buyers and non-parametric market
noise. Shah et al. (2019) studied a dynamic posted price problem where the relationship between the expectation of the
logarithm of buyer valuation and the contextual features is linear, while the market noise distribution is non-parametric. This
logarithmic form of the valuation model allows them to separate the noise term from the context, which makes it possible to
independently estimate the noise distribution and expected buyer valuation. In our setting, however, the context is embedded
within the noise distribution, and our estimation errors in the mean vector β will propagate into the estimation error in the
noise distribution, making the learning task more difficult, compared to that in Shah et al. (2019). On the other hand, Luo
et al. (2021); Fan et al. (2022); Xu and Wang (2022) all study a repeated posted price problem with context and additive
non-parametric noise similar to the buyer valuation model studied in this paper. In addition, these works consider censored
feedback where the seller only observes the binary purchasing decision in each period. Our work distinguishes itself by
considering a multi-buyer setting with strategic behavior.

Finally, our work is also related to the recent literature within the domain of mechanism design and online learning that
adopt methodologies from differential privacy to deal with strategic agents; see, for example, McSherry and Talwar (2007);
Mahdian et al. (2017); Liu et al. (2018).

B APPENDIX FOR SECTION 3: PROOF OF PROPOSITION 1

Let Qt(·) be the distributions of a buyer’s valuation when we condition on the feature vector xt. Further, let Q−
t (·) be

the distribution of v−t , which is the second highest valuation at time t. Then, we have Qt(z) = F (z − ⟨β, xt⟩) and
Q−

t (z) = F−(z − ⟨β, xt⟩). When N ≥ 2 and all buyers bid truthfully, according to Equations (2) , the seller’s expected
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revenue conditioned on xt by setting reserve price rt is:

revt(rt) = E
[
max{rt, v−t }I{v+t ≥ rt} | xt, rt

]
= E

[
rtI{v+t ≥ rt ≥ v−t }+ v−t I{v+t ≥ v−t ≥ rt} | xt, rt

]
,

(13)

where v+t is the highest valuation at time t. The first term within the expectation, conditioned on xt and rt, is

E
[
rtI{v+t ≥ rt ≥ v−t } | xt, rt

]
= rtN [Qt(rt)]

N−1
[1−Qt(rt)] , (14)

where we used the fact that rt is independent of v+t and v−t since the seller sets reserve price rt based on only the past history
Ht−1 = {(r1, v1, x1), (r2, v2, x2), . . . , (rt−1, vt−1, xt−1)}, and both v+t and v−t , conditioned on xt, are independent of the
past. The second term within the expectation of Equation (13) is

E
[
v−t I{v+t ≥ v−t ≥ rt} | xt, rt

]
= E

[
v−t I{v−t ≥ rt} | xt, rt

]
= E

[
(v−t − rt)I{v−t ≥ rt} | xt, rt

]
+ rtE

[
I{v−t ≥ rt} | xt, rt

]
=

∫ ∞

0

P
(
v−t − rt ≥ z

)
dz + rt

[
1−Q−

t (rt)
]

=

∫ ∞

rt

[
1−Q−

t (z)
]
dz + rt

[
1−Q−

t (rt)
]

= E
[
v−t | xt, rt

]
−
∫ rt

0

[
1−Q−

t (z)
]
dz + rt

[
1−Q−

t (rt)
]

= E
[
v−t | xt

]
+

∫ rt

0

Q−
t (z)dz − rtQ

−
t (rt) . (15)

Note that the integration starts from 0 because all valuations are considered to be positive. Since F−(z̃) := NFN−1(z̃)−
(N − 1)FN (z̃) for any z̃ ∈ R, we have

Q−
t (rt) = N [Qt(rt)]

N−1
[1−Qt(rt)] + [Qt(rt)]

N
. (16)

Hence, combining Equations (13), (14), (15), and (16), we have

revt(rt) = E
[
v−t | xt

]
+

∫ rt

0

Q−
t (z)dz − rt [Qt(rt)]

N

= E
[
v−t | xt

]
+

∫ rt

0

F−(z − ⟨β, xt⟩)dz − rt
[
F+(rt − ⟨β, xt⟩)

]
=

∫ ∞

−∞
zdF−(z) + ⟨β, xt⟩+

∫ rt

0

F−(z − ⟨β, xt⟩)dz − rt
[
F+(rt − ⟨β, xt⟩)

]
.

C APPENDIX FOR SECTION 4: PROOF OF THEOREM 1

We first introduce some definitions that we will extensively rely on throughout our proof of Theorem 1. We start off with the
“good” events ξℓ+1, ξ−ℓ+1 and ξ+ℓ+1 for ℓ ≥ 1 in which the estimates of β, F− and F+ are accurate:

ξℓ+1 =

{
∥β̂ℓ+1 − β∥1 ≤ δℓ

xmax

}
(17)

where δℓ :=

√
2d log(|Eℓ|)ϵmaxx

2
max

λ2
0

√
N |Eℓ|

+

√
d (NLℓamax + 1)x2

max

|Eℓ|λ2
0

, (18)

ξ−ℓ+1 =

{∣∣∣F̂−
ℓ+1(z)− F−(z)

∣∣∣ ≤ 2N2

(
γℓ + cfδℓ +

cf +NLℓ

|Eℓ|

)}
, (19)

ξ+ℓ+1 =

{∣∣∣F̂+
ℓ+1(z)− F+(z)

∣∣∣ ≤ N

(
γℓ + cfδℓ +

cf +NLℓ

|Eℓ|

)}
, (20)
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where amax is the maximum possible corruption, γℓ =
√

log(|Eℓ|)/
√
2N |Eℓ|, λ2

0 is the minimum eigenvalue of covariance
matrix Σ, and cf = supz∈[−ϵmax,ϵmax] f(z) ≥ infz∈[−ϵmax,ϵmax] f(z) > 0. Furthermore,

Lℓ =
log
(
v2maxN |Eℓ|4 − 1

)
log(1/η)

= O
(
log(|Eℓ|)
log(1/η)

)
,

where |Eℓ| = T 1−2−ℓ

is the length of the ℓth phase.

We also define the event that the number of periods in phase Eℓ during which buyer i submits significantly corrupted bids is
bounded by Lℓ:

Gi,ℓ := {|Si,ℓ| ≤ Lℓ} . (21)

Here, Si,ℓ =
{
t ∈ Eℓ : |ai,t| ≥ 1

|Eℓ|

}
is the set of all periods in phase Eℓ during which buyer i extensively corrupts her

bids.

We are now equipped to show Theorem 1 according to the following steps:

(i) Decompose the single period regret into R(1)
t and R(2)

t , where R(1)
t bounds the expected revenue loss due to the

discrepancy between the actual reserve price rt and the optimal reserve price r⋆t and R(2)
t , which bounds the expected

revenue loss due to allocation mismatches. Note that R(1)
t is a result of the estimation inaccuracies in β, F− and F+.

(ii) Bound R(1)
t using Lemmas 1, 4, 5, and 6.

(iii) Bound R(2)
t using Lemmas 1 and 3.

(iv) Sum up R(1)
t and R(2)

t to bound the cumulative expected regret over a phase Eℓ and the entire horizon T .

(i) Decomposing single period regret into R(1)
t and R(2)

t : According to the NPAC-S policy detailed in Algorithm 1, the
expected revenue in period t is given by

revt(rt) = E

max{b−t , r̂t}I{b+t > r̂t}I{no isolation in t}+
∑
i∈[N ]

rut I{bi,t > rut }I{i is isolated} | xt, rt

 , (22)

where the expectation is taken with respect to {(xτ , ϵi,τ , ai,τ )}τ∈[t],i∈[N ] and r̂t, r
u
t are defined in Equations (6) and (7)

respectively. Hence, the regret is given by

Regrett = E [REV⋆
t − revt(rt)]

= E
[
max{v−t , r⋆t }I{v+t > r⋆t } − revt(rt)

]
=
(
E
[
max{v−t , r⋆t }I{v+t > r⋆t }

]
− E

[
max{v−t , r̂t}I{v+t > r̂t}I{no isolation in t}

])
+
(
E
[
max{v−t , r̂t}I{v+t > r̂t}I{no isolation in t} − revt(rt)

])
:= R(1)

t +R(2)
t , (23)

where the expectation is taken with respect the context xt ∼ D and the randomness in rt; r⋆t is the optimal reserve price
(defined in Equation (4)) if the seller has full knowledge of F and β; and we defined:

R(1)
t := E

[
max{v−t , r⋆t }I{v+t > r⋆t }

]
− E

[
max{v−t , r̂t}I{v+t > r̂t}I{no isolation in t}

]
R(2)

t := E
[
max{v−t , r̂t}I{v+t > r̂t}I{no isolation in t} − revt(rt)

]
(24)
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(ii) Bounding R(1)
t : We start by upper bounding R(1)

t for a period t ∈ Eℓ+1 where ℓ ≥ 1.

R(1)
t = E

[
max{v−t , r⋆t }I{v+t > r⋆t }

]
− E

[
max{v−t , r̂t}I{v+t > r̂t}I{no isolation in t}

]
= E

[(
max{v−t , r⋆t }I{v+t > r⋆t } −max{v−t , r̂t}I{v+t > r̂t}

)
I{no isolation in t}

]
+ E

[
max{v−t , r⋆t }I{v+t > r⋆t } (1− I{no isolation in t})

]
= E

[
max{v−t , r⋆t }I{v+t > r⋆t } −max{v−t , r̂t}I{v+t > r̂t}

](
1− 1

|Eℓ|

)
+ E

[
max{v−t , r⋆t }I{v+t > r⋆t }

]
· 1

|Eℓ|

≤ E
[
max{v−t , r⋆t }I{v+t > r⋆t } −max{v−t , r̂t}I{v+t > r̂t}

]
+

vmax

|Eℓ|
, (25)

where the third equality is because an isolation event is independent of any other event, and the final inequality follows from
a simple observation that max{v−t , r⋆t }I{v+t > r⋆t } ≤ vmax.

For simplicity, we define

R̃(1)
t := E

[
max{v−t , r⋆t }I{v+t > r⋆t } −max{v−t , r̂t}I{v+t > r̂t}

∣∣∣ xt, r̂t

]
,

so Equation (25) yields

R(1)
t ≤ E

[
R̃(1)

t

]
+

vmax

|Eℓ|
, (26)

where the expectation is taken with respect to the context xt and reserve price r̂t. Notice that max{v−t , r⋆t }I{v+t >
r⋆t } −max{v−t , r̂t}I{v+t > r̂t} is exactly the revenue difference revt(r

⋆
t )− revt(rt) had the seller set reserve prices r⋆t or

rt when all buyers bid truthfully. Hence, by applying Proposition 1 we obtain

R̃(1)
t =

∫ r⋆t

0

F−(z − ⟨β, xt⟩)dz − r⋆t
[
F+(r⋆t − ⟨β, xt⟩)

]
−
∫ r̂t

0

F−(z − ⟨β, xt⟩)dz + r̂t
[
F+(r̂t − ⟨β, xt⟩)

]
.

Note that we can apply Proposition 1 because r̂t is the reserve price set according to the NPAC-S policy when no isolation
occurs, and only depends on the current context xt and the past Ht−1 = {(r1, b1, x1), (r2, b2, x2), . . . , (rt−1, bt−1, xt−1)}.

By defining yt := ⟨β, xt⟩, ŷt := ⟨β̂ℓ, xt⟩ and

ρt(r, y, F
(1), F (2)) :=

∫ r

0

F (2)(z − y)dz − r
[
F (1)(r − y)

]
, (27)

we can rewrite R̃(1)
t as the following:

R̃(1)
t = E

[
max{v−t , r⋆t }I{v+t > r⋆t } −max{v−t , r̂t}I{v+t > r̂t}

∣∣∣ xt, r̂t

]
= ρt(r

⋆
t , yt, F

−, F+)− ρt(r̂t, yt, F
−, F+)

= ρt(r
⋆
t , yt, F

−, F+)− ρt(r
⋆
t , ŷt, F

−, F+)

+ ρt(r
⋆
t , ŷt, F

−, F+)− ρt(r
⋆
t , ŷt, F̂

−
ℓ+1, F̂

+
ℓ+1)

+ ρt(r
⋆
t , ŷt, F̂

−
ℓ+1, F̂

+
ℓ+1)− ρt(r̂t, ŷt, F̂

−
ℓ+1, F̂

+
ℓ+1)

+ ρt(r̂t, ŷt, F̂
−
ℓ+1, F̂

+
ℓ+1)− ρt(r̂t, ŷt, F

−, F+)

+ ρt(r̂t, ŷt, F
−, F+)− ρt(r̂t, yt, F

−, F+) .

(28)

We now invoke Lemma 6, where we show that when events ξℓ+1, ξ−ℓ+1 and ξ+ℓ+1 (see definition in Equation (17),(18), (19)
and (20) ) happen for some phase ℓ ≥ 1, we have for r ∈ {r⋆t , r̂t},

(i) |ρt(r, yt, F−, F+)− ρt(r, ŷt, F
−, F+)| ≤ 3rcfN

2δℓ a.s.
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(ii)
∣∣∣ρt(r, ŷt, F−, F+)− ρt(r, ŷt, F̂

−
ℓ+1, F̂

+
ℓ+1)

∣∣∣ ≤ 3rN2
(
γℓ + cfδℓ +

cf+Lℓ

|Eℓ|

)
a.s.

Note that the first inequality bounds the impact of errors β and the second bounds the impact of errors in the distributions.
Applying these bounds in (28), we get

R̃(1)
t · I

{
ξℓ+1 ∩ ξ−ℓ+1 ∩ ξ+ℓ+1

}
≤ 3(r⋆t + r̂t)cfN

2δℓ

+ 3(r⋆t + r̂t)N
2

(
γℓ + cfδℓ +

cf + Lℓ

|Eℓ|

)
+ ρt(r

⋆
t , ŷt, F̂

−
ℓ+1, F̂

+
ℓ+1)− ρt(r̂t, ŷt, F̂

−
ℓ+1, F̂

+
ℓ+1) . (29)

We recall that the seller’s pricing decision r̂t when no isolation occurs is defined in Equation (7), and realize that in
fact r̂t = argmaxr∈(0,vmax] ρt(r, ŷt, F̂

−
ℓ+1, F̂

+
ℓ+1). So, by the optimality of r̂t and r⋆t ≤ vmax, we obtain the fact that

ρt(r
⋆
t , ŷt, F̂

−
ℓ+1, F̂

+
ℓ+1)− ρt(r̂t, ŷt, F̂

−
ℓ+1, F̂

+
ℓ+1) ≤ 0. Using this inequality in (29), we get

R̃(1)
t · I

{
ξℓ+1 ∩ ξ−ℓ+1 ∩ ξ+ℓ+1

}
≤ 6vmaxcfN

2δℓ + 6vmaxN
2

(
γℓ + cfδℓ +

cf + Lℓ

|Eℓ|

)
= 12vmaxcfN

2δℓ + 6vmaxN
2

(√
log(|Eℓ|)√
2N |Eℓ|

+
cf + Lℓ

|Eℓ|

)

= 12vmaxcfN
2δℓ +

6vmax

√
N3 log(|Eℓ|)√
2Eℓ

+
6vmaxN

2(cf + Lℓ)

|Eℓ|
, (30)

where we used the fact that r⋆t , r̂t ≤ vmax in the inequality. Note that Lℓ = log
(
v2maxN |Eℓ|4 − 1

)
/log( 1η ) =

O (log(T )/ log(1/η)), since we recall that |Eℓ| = T 1−2−ℓ

.

To complete the bound for R(1)
t in period t ∈ Eℓ+1, we continue to bound Equation (26):

R(1)
t ≤ E

[
R̃(1)

t

]
+

vmax

|Eℓ|

= E
[
R̃(1)

t · I
{
ξℓ+1 ∩ ξ−ℓ+1 ∩ ξ+ℓ+1

}]
+ E

[
R̃(1)

t · I
{
ξcℓ+1 ∪

(
ξ−ℓ+1

)c ∪ (ξ+ℓ+1

)c}]
+

vmax

|Eℓ|

≤ E
[
R̃(1)

t · I
{
ξℓ+1 ∩ ξ−ℓ+1 ∩ ξ+ℓ+1

}]
+ vmaxP

(
ξcℓ+1 ∪

(
ξ−ℓ+1

)c ∪ (ξ+ℓ+1

)c)
+

vmax

|Eℓ|

≤ 12vmaxcfN
2δℓ +

6vmax

√
N3 log(|Eℓ|)√
2Eℓ

+
vmax

(
6N2(cf + Lℓ) + 9N + 15d+ 9

)
|Eℓ|

, (31)

where the second inequality follows from a simple observation that R̃(1)
t ≤ vmax almost surely, and the third inequality uses

Equation (30) and Lemma 7, which shows P
(
ξcℓ+1 ∪

(
ξ−ℓ+1

)c ∪ (ξ+ℓ+1

)c) ≤ (9N + 15d+ 8)/|Eℓ|,

(iii) Bounding R(2)
t : So far, we have bounded R(1)

t for t ∈ Eℓ+1 (ℓ ≥ 1), and will move on to bound R(2)
t defined in

Equation (23) for t ∈ Eℓ for any ℓ ≥ 1 . We define

b+−i,t = max
j ̸=i

bj,t and v+−i,t = max
j ̸=i

vj,t , (32)

which represent the highest bid excluding that of buyer i, and the highest valuation excluding that of buyer i, respectively.
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We then have

R(2)
t = E

[
max{v−t , r̂t}I{v+t > r̂t}I{no isolation in t} − revt(rt)

]
≤ E

[
max{v−t , r̂t}I{v+t > r̂t}I{no isolation in t}

]
− E

[
max{b−t , rt}I{b+t > r̂t}I{no isolation in t}

]
=
(
E
[
max{v−t , r̂t}I{v+t > r̂t}

]
− E

[
max{b−t , r̂t}I{b+t > r̂t}

])
·
(
1− 1

|Eℓ|

)
< E

[
max{v−t , r̂t}I{v+t > r̂t}

]
− E

[
max{b−t , r̂t}I{b+t > r̂t}

]
=

∑
i∈[N ]

E
[
max{v−t , r̂t}I{vi,t > max{v+−i,t, r̂t}} −max{b−t , r̂t}I{bi,t > max{b+−i,tr̂t}}

]
=
∑
i∈[N ]

E
[
max{v−t , r̂t}I{max{v+−i,t, r̂t} < vi,t < max{b+−i,tr̂t}}

]
−
∑
i∈[N ]

E
[
max{v−t , r̂t}I{max{b+−i,tr̂t} < vi,t < max{v+−i,t, r̂t}}

]
+
∑
i∈[N ]

E
[
max{v−t , r̂t}I{vi,t > max{b+−i,tr̂t}} −max{b−t , r̂t}I{bi,t > max{b+−i,tr̂t}}

]
≤

∑
i∈[N ]

E
[
max{v−t , r̂t}I{max{v+−i,t, r̂t} < vi,t < max{b+−i,tr̂t}}

]
+
∑
i∈[N ]

E
[
max{v−t , r̂t}I{vi,t > max{b+−i,tr̂t}} −max{b−t , r̂t}I{bi,t > max{b+−i,tr̂t}}

]
≤

∑
i∈[N ]

vmaxE
[
I{max{v+−i,t, r̂t} < vi,t < max{b+−i,tr̂t}}

]
+
∑
i∈[N ]

E
[
max{v−t , r̂t}I{vi,t > max{b+−i,tr̂t}} −max{b−t , r̂t}I{bi,t > max{b+−i,tr̂t}}

]
, (33)

where the first inequality follows from Equation (22); the third inequality is due to the fact that∑
i∈[N ] E

[
max{v−t , r̂t}I{max{b+−i,tr̂t} < vi,t < max{v+−i,t, r̂t}}

]
≥ 0; and the last inequality holds because

max{v−t , r̂t} ≤ vmax. To continue the bound for Equation (33), we use the definition of Bi,ℓ := Bs
i,ℓ ∪ Bo

i,ℓ in Lemma 3,
where

Bs
i,ℓ =

{
t ∈ Eℓ : I

{
vi,t > {b+−i,t, r̂t}

}
= 1 , I

{
bi,t > {b+−i,t, r̂t}

}
= 0
}

Bo
i,ℓ =

{
t ∈ Eℓ : I

{
vi,t > {b+−i,t, r̂t}

}
= 0 , I

{
bi,t > {b+−i,t, r̂t}

}
= 1
}
.

Here, Bs
i,ℓ represents the periods during which buyer i could have won the auction had she bid truthfully but in reality

lost since she shaded her bid (allocation mismatch due to shading), while Bo
i,ℓ represents the periods when buyer i would

have lost the auction had she bid truthfully, but instead won the item due to overbidding (allocation mismatch due to
overbidding). Hence, for any period t ∈ Eℓ/Bi,ℓ =

{
t ∈ Eℓ : I

{
vi,t > {b+−i,t, r̂t}

}
= I

{
bi,t > {b+−i,t, r̂t}

}}
(which

means in period t ∈ Eℓ/Bi,ℓ the outcome for buyer i would not have changed even if she bid truthfully), we have



Negin Golrezaei, Patrick Jaillet, Jason Cheuk Nam Liang

I{vi,t > max{b+−i,t, r̂t}} = I{bi,t > max{b+−i,t, r̂t}}. Therefore, defining Bℓ := ∪i∈[N ]Bi,ℓ, we have

R(2)
t I{t ∈ Eℓ/Bℓ}

≤
∑
i∈[N ]

vmaxE
[
I{max{v+−i,t, r̂t} < vi,t < max{b+−i,tr̂t}}

]
+
∑
i∈[N ]

E
[
max{v−t , r̂t}I{vi,t > max{b+−i,tr̂t}} −max{b−t , r̂t}I{bi,t > max{b+−i,tr̂t}}

]
I{t ∈ Eℓ/Bℓ}

=
∑
i∈[N ]

vmaxE
[
I{max{v+−i,t, r̂t} < vi,t < max{b+−i,tr̂t}}

]
+
∑
i∈[N ]

E
[(
max{v−t , r̂t} −max{b−t , r̂t}

)
I{bi,t > max{b+−i,t, r̂t}}

]
≤

∑
i∈[N ]

vmaxE
[
I{max{v+−i,t, r̂t} < vi,t < max{b+−i,t, r̂t}}

]
+ E

[
max{v−t , r̂t} −max{b−t , r̂t}

]
≤

∑
i∈[N ]

vmaxE
[
I{max{v+−i,t, r̂t} < vi,t < max{b+−i,t, r̂t}}

]
+ E

[(
v−t − b−t

)+]
.

The first inequality follows from Equation (33); the first equality follows from the fact that t ∈ Eℓ/Bℓ; the second inequality
holds because

∑
i∈[N ] I{bi,t > max{b+−i,tr̂t}} ≤

∑
i∈[N ] I{bi,t > b+−i,t}} = 1; the third inequality applies the fact that

max{a, c} −max{b, c} ≤ (a− b)+ for any a, b, c ∈ R. Denoting i⋆ := argmaxi∈[N ] vi,t, we have∑
i∈[N ]

vmaxE
[
I{max{v+−i,t, r̂t} < vi,t < max{b+−i,t, r̂t}}

]
= vmaxE

[
I{max{v+−i⋆,t, r̂t} < vi⋆,t < max{b+−i⋆,t, r̂t}}

]
since I{max{v+−i,t, r̂t} < vi,t} = 0 if i ̸= i⋆. Therefore

R(2)
t I{t ∈ Eℓ/Bℓ} ≤ vmaxE

[
I{max{v+−i⋆,t, r̂t} < vi⋆,t < max{b+−i⋆,t, r̂t}}

]
+ E

[(
v−t − b−t

)+]
, (34)

To bound the first term in Equation (34), we again evoke the inequality max{a, c} − max{b, c} = (a − b)+ for any
a, b, c ∈ R and get max{b+−i⋆,t, r̂t} −max{v+−i⋆,t, r̂t} ≤

(
b+−i⋆,t − v+−i⋆,t

)+
. Hence,

E
[
I{max{v+−i⋆,t, r̂t} < vi⋆,t < max{b+−i⋆,t, r̂t}}

]
≤ E

[
I{max{b+−i⋆,t, r̂t} −

(
b+−i⋆,t − v+−i⋆,t

)+
< vi⋆,t < max{b+−i⋆,t, r̂t}}

]
= E

[
E
[
I{max{b+−i⋆,t, r̂t} −

(
b+−i⋆,t − v+−i,t

)+
< vi⋆,t < max{b+−i⋆,t, r̂t}}

∣∣∣ b+−i⋆,t, v
+
−i⋆,t

]]
= E

[∫ max{b+−i⋆,t
,r̂t}−⟨β,xt⟩

max{b+−i⋆,t
,r̂t}−(b+−i⋆,t

−v+
−i⋆,t)

+−⟨β,xt⟩
f(z)dz

]
≤ cfE

[(
b+−i⋆,t − v+−i⋆,t

)+]
. (35)

Now, set j ∈ [N ] such that b+−i⋆,t = bj,t (j ̸= i⋆), i.e. j is the highest bidder among all buyers excluding i⋆. Then
b+−i⋆,t − v+−i⋆,t = bj,t − v+−i⋆,t ≤ bj,t − vj,t = −aj,t, where the inequality follows from the fact that v+−i⋆,t is the highest
valuation among all buyers excluding i⋆ (which includes j as j ̸= i⋆). Therefore, continuing the bound in Equation (35), we
have

E
[
I{max{v+−i⋆,t, r̂t} < vi⋆,t < max{b+−i⋆,t, r̂t}}

]
≤ cf (−aj,t)

+ ≤ cf
∑
i∈[N ]

(−ai,t)
+ . (36)

To bound the second term in Equation (34), namely E
[(
v−t − b−t

)+]
, without loss of generality assume v1,t ≥ v2,t ≥

· · · ≥ vN,t. Hence v−t = v2,t. If b2,t ≤ b−t , we have v−t − b−t ≤ v2,t − b2,t = a2,t. Otherwise if b2,t > b−t , then buyer 2
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submitted the highest bid, so bi,t ≤ b−t for any i ̸= 2 and thus, v−t − b−t ≤ v1,t − b−t ≤ v1,t − b1,t = a1,t. Hence,

E
[(
v−t − b−t

)+] ≤ max
j∈[N ]

(aj,t)
+ ≤

∑
j∈[N ]

(aj,t)
+ . (37)

Finally, combining Equations (34), (36), and (37), we have for any t ∈ Eℓ and ℓ ≥ 1

R(2)
t I{t ∈ Eℓ/Bℓ} ≤ vmaxcf

∑
i∈[N ]

(−ai,t)
+ +

∑
i∈[N ]

(ai,t)
+ ≤ (vmaxcf + 1)

∑
i∈[N ]

|ai,t| (38)

iv. Bounding Cumulative Regret: We now bound the cumulative expected regret in a phase Eℓ+1 (ℓ ≥ 1) via first bounding∑
t∈Eℓ+1

R(1)
t and

∑
t∈Eℓ+1

R(2)
t respectively.

∑
t∈Eℓ+1

R(1)
t

≤
∑

t∈Eℓ+1

(
12vmaxcfN

2δℓ +
6vmax

√
N3 log(|Eℓ|)√
2Eℓ

+
vmax

(
6N2(cf + Lℓ) + 9N + 15d+ 9

)
|Eℓ|

)

= |Eℓ+1|

(
12vmaxcfN

2δℓ +
6vmax

√
N3 log(|Eℓ|)√
2Eℓ

+
vmax

(
6N2(cf + Lℓ) + 9N + 15d+ 9

)
|Eℓ|

)

= |Eℓ+1| ·
3vmax

√
2N3 log(|Eℓ|)√
|Eℓ|

(
4cf ϵmaxx

2
max

√
d

λ2
0

+ 1

)

+
|Eℓ+1|
|Eℓ|

(
12vmaxcfN

2
√
d (NLℓamax + 1)x2

max

λ2
0

+ vmax

(
6N2(cf + Lℓ) + 9N + 15d+ 9

))
≤ c11cf

√
dTN3 log(|Eℓ|) + c22cf

√
dN3LℓT

1
4

≤ c1cf
√

dN3 log(|Eℓ|)

(
√
T +

√
N3 log(|Eℓ|)T

1
4

log (1/η)

)
, (39)

for some absolute constants c11, c
2
1, c1 > 0. The first inequality follows from Equation (31). In the second equality, we then

used the definition of δℓ =
√

2d log(|Eℓ|)ϵmaxx
2
max

λ2
0

√
N |Eℓ|

+
√
d(NLℓamax+1)x2

max

|Eℓ|λ2
0

, defined in Equation (18). In the second inequality,

we relied on the construction of the length of phases in Algorithm 1, i.e. |Eℓ| = T 1−2−ℓ

so that |Eℓ+1|/
√

|Eℓ| =
√
T and

|Eℓ+1|/|Eℓ| = T 2−(ℓ+1) ≤ T
1
4 . The last inequality follows from the fact that Lℓ = log

(
v2maxN |Eℓ|4 − 1

)
/log( 1η ).

On the other hand, to bound
∑

t∈Eℓ+1
R(2)

t , we again utilize the definition of Bi,ℓ := Bs
i,ℓ ∪ Bo

i,ℓ and Bℓ := ∪i∈[N ]Bi,ℓ

where Bs
i,ℓ and Bo

i,ℓ are defined in Equation (12) of Lemma 3. Denote Kℓ+1 := 2Lℓ+1 + 4cf + 8 log(|Eℓ+1|). Then, we
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have

∑
t∈Eℓ+1

R(2)
t = E

 ∑
t∈Bℓ+1

R(2)
t

+ E

 ∑
t∈Eℓ+1/Bℓ+1

R(2)
t


≤ vmaxE [|Bℓ+1| · I{|Bℓ+1| ≤ NKℓ+1] + vmaxE [|Bℓ+1| · I{|Bℓ+1| > NKℓ+1}]

+ (vmaxcf + 1)E

 ∑
t∈Eℓ+1/Bℓ+1

∑
i∈[N ]

|ai,t|


≤ vmaxNKℓ+1 + vmax|Eℓ+1| · P (|Bℓ+1| > NKℓ+1) + (vmaxcf + 1)E

 ∑
t∈Eℓ+1/Bℓ+1

∑
i∈[N ]

|ai,t|


≤ vmaxNKℓ+1 + 4vmaxN + (vmaxcf + 1)E

 ∑
t∈Eℓ+1/Bℓ+1

∑
i∈[N ]

|ai,t|


≤ vmaxN(Kℓ+1 + 4) + (vmaxcf + 1)E

 ∑
t∈Eℓ+1

∑
i∈[N ]

|ai,t|

 , (40)

where the first inequality follows from Equation (38) and uses the fact that R(2)
t ≤ vmax; the second inequality is

because |Bℓ+1| ≤ |Eℓ+1|; the third inequality applies Lemma 3 which shows P (|Bi,ℓ+1| > Kℓ+1) ≤ 4/|Eℓ+1|, and

hence P (|Bℓ+1| ≤ NKℓ+1) ≥ P
(
∩i∈[N ] {|Bi,ℓ+1| ≤ Kℓ+1}

)
≥ 1 − 4N/|Eℓ+1|. To bound E

[∑
t∈Eℓ+1

∑
i∈[N ] |ai,t|

]
,

we recall Sℓ+1 := ∪i∈[N ]Si,ℓ+1 where Si,ℓ+1 is defined in Equation (11), and consider the following

E

 ∑
t∈Eℓ+1

∑
i∈[N ]

|ai,t|

 ≤ E

 ∑
t∈Sℓ+1

∑
i∈[N ]

|ai,t|

+ E

 ∑
t∈Eℓ+1/Sℓ+1

∑
i∈[N ]

1

|Eℓ+1|


≤ NamaxE [|Sℓ+1|] +N

= NamaxE [|Sℓ+1| · (I{|Sℓ+1| ≤ NLℓ+1}+ I{|Sℓ+1| > NLℓ+1})] +N

≤ Namax (NLℓ+1 + |Eℓ+1| · P (|Sℓ+1| > NLℓ+1)) +N

≤ N2amax (Lℓ+1 + 1) +N , (41)

where the first inequality holds because |ai,t| ≤ 1/|Eℓ+1| for all t ∈ Eℓ+1/Sℓ+1 and the fourth inequal-
ity follows from Lemma 1 that shows P (|Si,ℓ+1| > Lℓ+1) ≤ 1/|Eℓ+1|, which implies P (|Sℓ+1| ≤ NLℓ+1) ≥
P
(
∩i∈[N ] {|Si,ℓ+1| ≤ Lℓ+1}

)
≥ 1−N/|Eℓ+1|.

Hence, Equations (40) and (41) show that
∑

t∈Eℓ+1
R(2)

t is upper bounded as∑
t∈Eℓ+1

R(2)
t ≤ vmaxN(Kℓ + 4) + (vmaxcf + 1)

(
N2amax (Lℓ+1 + 1) +N

)
≤ c2cfN

2 · log(|Eℓ+1|)
log (1/η)

, (42)

for some absolute constant c2 > 0. Combining this with the upper bound

c1cf
√
dN3 log(|Eℓ|)

(
√
T +

√
N3 log(|Eℓ|)T

1
4

log (1/η)

)

shown in Equation (39), the expected cumulative regret in phase Eℓ+1 is

∑
t∈Eℓ+1

Regrett ≤ c3cf
√
dN3 log(T )

(
√
T +

√
N3 log(T )T

1
4

log (1/η)

)
,
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for some absolute constant c3 > 0. Finally, since the total number of phases is upper bounded by ⌈log log(T )⌉+ 1, the
cumulative expected regret over the entire horizon T is

Regret(T ) ≤ vmax|E1|+
⌈log log(T )⌉∑

ℓ=2

c3cf
√
dN3 log(T )

(
√
T +

√
N3 log(T )T

1
4

log (1/η)

)

= O

(
cf
√
dN3 log(T ) · log (log(T ))

(
√
T +

√
N3 log(T )T

1
4

log (1/η)

))
.

C.1 Proof of Lemma 1

According to the definitions of the cumulative discounted utility defined in Equation (1) and the NPAC-S policy in Algorithm
1, buyer i’s utility for submitting a bid b ∈ [0, vmax] in period t ∈ [T ] conditioning on vi,t, b

+
−i,t, rt is given by

ui,t(b) =


(
vi,t −max{rt, b+−i,t}

)
I{b > max{rt, b+−i,t}} no isolation

(vi,t − rt) I{b > rt} i is isolated
0 j ̸= i is isolated

, (43)

where b+−i,t is the highest bid excluding that of buyer i, and the reserve price rt = r̂tI{no isolation in t} + rut (1 −
I{no isolation in t}) (r̂t and rut are defined in Equations (6) and (7) of the NPAC-S policy respectively). Note that ui,t(b)
is a random variable that depends on the xt, {ϵi,t}i∈[N ], b

+
−i,t and rt. The undiscounted utility loss u−

i,t for buyer i if he
submits a bid bi,t compared to bidding truthfully is u−

i,t = ui,t(vi,t)− ui,t(bi,t).

Now, when any buyer j ̸= i is isolated, the utility for buyer i is always 0 regardless of what he submits, so there is no
utility loss due to bidding behaviour. We now consider the scenarios when no isolation occurs and when buyer i is isolated,
respectively, using the definition of utility in Equation (1).

No isolation occurs: The undiscounted utility loss for bidding untruthfully is

u−
i,tI{no isolation in t} = (ui,t(vi,t)− ui,t(bi,t)) I{no isolation in t}

=
(
vi,t −max{rt, b+−i,t}

)
I{vi,t > max{rt, b+−i,t}}

−
(
vi,t −max{rt, b+−i,t}

)
I{bi,t > max{rt, b+−i,t}}

=
∣∣vi,t −max{rt, b+−i,t}

∣∣ I{vi,t > max{rt, b+−i,t} > bi,t}
+
∣∣vi,t −max{rt, b+−i,t}

∣∣ I{vi,t < max{rt, b+−i,t} < bi,t}
≥ 0 . (44)

Isolating buyer i: The undiscounted utility for submitting any bid b ∈ R for any given rt is (vi,t − rt) I{b > rt}.
Hence,

u−
i,tI{i is isolated} = (ui,t(vi,t)− ui,t(bi,t)) I{i is isolated}

= (vi,t − rt) I{vi,t > rt} − (vi,t − rt) I{bi,t > rt}
= (vi,t − rt) I{vi,t > rt > bi,t}+ (−vi,t + rt) I{vi,t < rt < bi,t} . (45)

The NPAC-S policy offers a price rt drawn from Uniform(0, vmax) to the isolated buyer i with probability 1/|Eℓ|, where i
is chosen uniformly among all buyers. So, the expected utility loss u−

i,t for a buyer i ∈ [N ] conditioned on the fact that the
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buyer lies by an amount of ai,t is

E[u−
i,t | ai,t]

= E[u−
i,tI{i is isolated}+ u−

i,tI{no isolation in t} | ai,t]
≥ E[u−

i,tI{i is isolated} | ai,t]

=
1

N |Eℓ|
E [(vi,t − rt) I{vi,t > rt > bt}+ (−vi,t + rt) I{bt < rt < vi,t} | ai,t]

=
1

vmaxN |Eℓ|
E

[
E

[∫ vi,t

vi,t−ai,t

(vi,t − r)dr +

∫ vi,t+ai,t

vi,t

(−vi,t + r)dr
∣∣∣ ai,t, vi,t] ∣∣∣ ai,t]

=
(ai,t)

2

vmaxN |Eℓ|
. (46)

The first inequality follows from u−
i,tI{i is isolated} ≥ 0 as demonstrated in Equation (44). Now we lower bound the total

expected utility loss in phase Eℓ. First, by Equations (44) and (45), we know that u−
i,t ≥ 0 for ∀i, t. Therefore, denoting

sℓ+1 as the first period of phase Eℓ+1, for any z̃ > 0 we have

E

[∑
t∈Eℓ

ηtu−
i,t

]
≥ E

 ∑
t∈Si,ℓ

ηtu−
i,t


≥ E

 ∑
t∈Si,ℓ

ηtu−
i,tI{|Si,ℓ| ≥ z̃}


= E

E
 ∑
t∈Si,ℓ

ηtu−
i,t

∣∣∣ {ai,t}t∈Eℓ

 I{|Si,ℓ| ≥ z̃}


≥ E

 ∑
t∈Si,ℓ

ηt

vmaxN |Eℓ|3
· I{|Si,ℓ| ≥ z̃}


≥ E

 sℓ+1−1∑
t=sℓ+1−|Si,ℓ|

ηt

vmaxN |Eℓ|3
· I{|Si,ℓ| ≥ z̃}


≥ E

 sℓ+1−1∑
t=sℓ+1−z̃

ηt

vmaxN |Eℓ|3
· I{|Si,ℓ| ≥ z̃}


=

ηsℓ+1
(
1− η−z̃

)
(1− η)vmaxN |Eℓ|3

P (|Si,ℓ| ≥ z̃) , (47)

where the first equality holds because |Si,ℓ| =
∑

t∈Eℓ
I{ai,t > 1/Eℓ} is a function of {ai,t}t∈Eℓ

; the third inequality
follows from Equation (46) and ai,t ≥ 1/|Eℓ| for any t ∈ Si,ℓ; and the fourth inequality is because η ∈ (0, 1).

Furthermore, corrupting a bid at time t ∈ Eℓ will only impact the prices offered by the seller in future phases, i.e., phase
ℓ + 1, ℓ + 2, . . . , so the utility gain due to lying in phase ℓ, denoted as U+

i,ℓ is upper bounded by vmax

∑
t≥sℓ+1

ηt =

vmaxη
sℓ+1/(1− η). Since the buyer is utility maximizing, the net utility gain due to lying in phase ℓ should be greater than

0, otherwise the buyer can choose to always bid 0 in phase ℓ which is equivalent to not participating in the auctions. Hence,

E

[
U+
i,ℓ −

∑
t∈Eℓ

ηtu−
i,t

]
≥ 0 .

Combining this with U+
i,ℓ ≤ vmaxη

sℓ+1/(1− η) and the lower bound for E
[∑

t∈Eℓ
u−
i,t

]
shown in Equation (47), we have

vmaxη
sℓ+1

1− η
≥

ηsℓ+1
(
1− η−z̃

)
(1− η)vmaxN |Eℓ|3

P (|Si,ℓ| ≥ z̃) ,
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which holds for any z̃ > 0. Taking z̃ = log
(
v2maxN |Eℓ|4 − 1

)
/ log(1/η) and by rearranging terms, the inequality above

yields

P

(
|Si,ℓ| ≥

log
(
v2maxN |Eℓ|4 − 1

)
log( 1η )

)
≤ 1

|Eℓ|
.

C.2 Proof of Lemma 3

Defining Hi,t := {(b+−i,τ , r̂τ , xτ )}τ∈[t], we have

E
[
I{t ∈ (Eℓ/Si,ℓ) ∩ Bs

i,ℓ} | Hi,t

]
= P

(
t ∈ (Eℓ/Si,ℓ) ∩ Bs

i,ℓ | Hi,t

)
= P

(
vi,t ≥ max{b+−i,t, r̂t} , bi,t < max{b+−i,t, r̂t} , ai,t ∈ (0, 1/|Eℓ|) | Hi,t

)
= P

(
max{b+−i,t, r̂t} − ⟨xt, β⟩ ≤ ϵi,t ≤ max{b+−i,t, r̂t} − ⟨xt, β⟩+ ai,t , ai,t ∈ (0, 1/|Eℓ|) | Hi,t

)
≤ P

(
max{b+−i,t, r̂t} − ⟨xt, β⟩ ≤ ϵi,t ≤ max{b+−i,t, r̂t} − ⟨xt, β⟩+ 1/|Eℓ| | Hi,t

)
= E

[∫ max{b+−i,t,r̂t}−⟨xt,β⟩+1/|Eℓ|

max{b+−i,t,r̂t}−⟨xt,β⟩
f(z)dz

∣∣∣Hi,t

]
≤ cf

|Eℓ|
. (48)

The last inequality uses the fact that cf = supz̃∈[−ϵmax,ϵmax] f(z̃).

Define ζt = I{t ∈ (Eℓ/Si,ℓ) ∩ Bs
i,ℓ} and ϕt = E

[
I{t ∈ (Eℓ/Si,ℓ) ∩ Bs

i,ℓ} | Hi,t

]
. Then E[ζt | Hi,t] = ϕt, which

implies E[ζt − ϕt |
∑

τ<t ζτ ,
∑

τ<t ϕτ ] = E
[
E [ζt − ϕt | Hi,t] |

∑
τ<t ζτ ,

∑
τ<t ϕτ

]
= 0. Hence, in the context of the

multiplicative Azuma inequality described in Lemma 11, by setting z1,t = ζt, z2,t = ϕt, γ̃ = 1/2 and A = 2 log(|Eℓ|) we
have |z1,t − z2,t| ≤ 1

P

(
1

2

∑
t∈Eℓ

ζt ≥
∑
t∈Eℓ

ϕt + 2 log(|Eℓ|)

)
≤ exp (− log(|Eℓ|)) . (49)

Now, according to Equation (48), we have ϕt ≤ cf/|Eℓ|, so
∑

t∈Eℓ
ϕt ≤ cf . Moreover, |(Eℓ/Si,ℓ) ∩ Bs

i,ℓ| =
∑

t∈Eℓ
ζt.

Hence, following Equation (49), we have

P
(
|(Eℓ/Si,ℓ) ∩ Bs

i,ℓ| ≥ 2cf + 4 log(|Eℓ|)
)

≤ P

(
1

2

∑
t∈Eℓ

ζt ≥
∑
t∈Eℓ

ϕt + 2 log(|Eℓ|)

)

≤ exp (− log(|Eℓ|)) =
1

|Eℓ|
. (50)

When the event Gi,t = {|Si,ℓ| ≤ Lℓ} occurs, where Lℓ = log
(
v2maxN |Eℓ|4 − 1

)
/log(1/η), we have |Bs

i,ℓ| ≤ |Si,ℓ| +
|(Eℓ/Si,ℓ) ∩ Bs

i,ℓ| ≤ Lℓ + |(Eℓ/Si,ℓ) ∩ Bs
i,ℓ|. Therefore when event Gi,t occurs,

P
(
|Bs

i,ℓ| ≤ Lℓ + 2cf + 4 log(|Eℓ|)
)

≥ P
({

|Bs
i,ℓ| ≤ Lℓ + 2cf + 4 log(|Eℓ|)

} ⋂
Gi,t

)
≥ P

({
|(Eℓ/Si,ℓ) ∩ Bs

i,ℓ| ≤ 2cf + 4 log(|Eℓ|)
} ⋂

Gi,t

)
≥ 1− P

(
|(Eℓ/Si,ℓ) ∩ Bs

i,ℓ| ≥ 2cf + 4 log(|Eℓ|)
)
− P

(
Gc
i,t

)
≥ 1− 2

|Eℓ|
.

The second inequality follows from |Bs
i,ℓ| ≤ Lℓ + |(Eℓ/Si,ℓ) ∩ Bs

i,ℓ| when the event Gi,t occurs; the third inequality applies
the union bound, and the final inequality follows from Equation (50) and Lemma 1.

Similarly, we can show the same probability upper bound for |Bo
i,ℓ|. Finally, using the fact that Bi,ℓ = Bs

i,ℓ ∪ Bo
i,ℓ and

applying a union bound would yield the desired expression.
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C.3 Other Lemmas for proving Theorem 1

Lemma 4 (Bounding Estimation Errors in β). For any phase Eℓ and γ > 0, we have

P
(
∥β̂ℓ+1 − β∥1 ≤ γ +

d (NLℓamax + 1)xmax

|Eℓ|λ2
0

)
≥ 1− 2d exp

(
− Nγ2λ4

0|Eℓ|
2ϵmax

2x2
maxd

)
− d exp

(
−|Eℓ|λ2

0

8x2
max

)
− N

|Eℓ|
,

where λ2
0 is the minimum eigenvalue of the covariance matrix Σ, β̂ℓ+1 is defined in Equation (8), and Lℓ =

log
(
v2maxN |Eℓ|4 − 1

)
/log(1/η). Furthermore, setting γ =

√
2d log(|Eℓ|)ϵmaxxmax

λ2
0

√
N |Eℓ|

and denoting δℓ = γ · xmax +

d(NLℓamax+1)x2
max

|Eℓ|λ2
0

, we have

P
(
∥β̂ℓ+1 − β∥1 ≤ δℓ

xmax

)
≥ 1− 2d+N

|Eℓ|
− d exp

(
−|Eℓ|λ2

0

8x2
max

)
.

Proof. Proof of Lemma 4.

The proof of Lemma 4 is inspired by Lemma EC.7.2 in Bastani and Bayati (2015), but here we made substantial modifications
to resolve the issues that arise when estimating β in the presence of corrupted bids submitted by buyers.

First, recall that the smallest eigenvalue λ2
0 of the covariance matrix Σ of x ∼ D is greater than 0. Since the second moment

matrix E[xtx
⊤
t ] = Σ + E[x]E[x]⊤, we know that the smallest eigenvalue of E[xtx

⊤
t ] is at least λ2

0 > 0. We denote the

design matrix of all the features in phase Eℓ as X ∈ R|Eℓ|×d, and ϵ̄τ =
∑

i∈[N] ϵi,τ

N for ∀τ ∈ Eℓ.

We first consider the case where the smallest eigenvalue of the second moment matrix λmin

(
X⊤X/|Eℓ|

)
≥ λ2

0/2, which
implies that (X⊤X)−1 exists and (X⊤X)−1 = (X⊤X)†. By the definition bi,t = vi,t − ai,t, and the definition of b̄τ for
any τ ∈ [T ] in Equation (8) we have

β̂ℓ+1 =
(
X⊤X

)−1
X⊤

b̄1
...
b̄t

 =
(
X⊤X

)−1
X⊤


∑

i∈[N] vi,1−ai,1

N
...∑

i∈[N] vi,t−ai,t

N



= β +
(
X⊤X

)−1
X⊤


∑

i∈[N] ϵi,1−ai,1

N
...∑

i∈[N] ϵi,t−ai,t

N


= β +

(
X⊤X

)−1
X⊤ (Ē −A

)
, (51)

where Ē is the column vector consisting of all ϵ̄τ :=
∑

i∈[N] ϵi,τ

N , and A is the column vector consisting of all āτ :=∑
i∈[N] ai,τ

N for ∀τ ∈ [t]. Therefore,

∥β̂ℓ+1 − β∥2 = ∥
(
X⊤X

)−1
X⊤ (Ē −A

)
∥2

≤ 1

|Eℓ|λ2
0

(
∥X⊤Ē∥2 + ∥X⊤A∥2

)
. (52)

Denote Xj as the jth column of X , i.e. the jth row of X⊤ for j = 1, 2 . . . d, we now bound ∥X⊤Ē∥2 and ∥X⊤A∥2
separately. First, since ∥X⊤Ē∥22 =

∑
j∈[d]

∣∣Ē⊤Xj
∣∣2, for any γ > 0,⋂

j∈[d]

{∣∣Ē⊤Xj
∣∣ ≤ |Eℓ|λ2

0γ√
d

}
⊆
{

1

|Eℓ|λ2
0

· ∥X⊤Ē∥2 ≤ γ

}
. (53)

We observe that Ē⊤Xj =
∑

τ∈Eℓ

∑
i∈[N] ϵi,τXτj

N , where all ϵi,τXτj are 0-mean and ϵmaxxmax-subgaussion random variables.
Therefore by Hoeffding’s inequality, for any γ̃ > 0

P
(∣∣N Ē⊤Xj

∣∣ ≤ γ̃
)
≥ 1− 2 exp

(
− γ̃2

2ϵmax
2x2

max|Eℓ|N

)
. (54)
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Replacing γ̃ with N |Eℓ|λ2
0γ/

√
d and using Equation (53) yields:

P
({

1

|Eℓ|λ2
0

· ∥X⊤Ē∥2 ≤ γ

})
≥ P

 ⋂
j∈[d]

{∣∣Ē⊤Xj
∣∣ ≤ |Eℓ|λ2

0γ√
d

}
≥ 1−

∑
j∈[d]

P
(∣∣Ē⊤Xj

∣∣ > |Eℓ|λ2
0γ√
d

)

≥ 1− 2d exp

(
− Nγ2λ4

0|Eℓ|
2ϵmax

2x2
maxd

)
, (55)

where the first inequality follows from Equation (53), the second inequality applies the union bound, and the last inequality
follows from Equation (54).

In the following, we show a high probability bound for ∥X⊤A∥22 by using the fact that |ai,t| ≤ 1/|Eℓ| for any t ∈ Eℓ/Si,ℓ,
where Si,ℓ = {t ∈ Eℓ : |ai,t| > 1/|Eℓ|}, and Si,ℓ ≤ Lℓ with high probability.

Recall the event Gi,ℓ = {|Si,ℓ| ≤ Lℓ}, and in Lemma 1 we showed that P
(
Gc
i,ℓ

)
= P (|Si,ℓ| > Lℓ) ≤ 1

|Eℓ| . We now bound

∥X⊤A∥2 under the occurrence of Gi,ℓ for all i.

∥X⊤A∥22 =
∑
j∈[d]

∣∣A⊤Xj
∣∣2 =

∑
j∈[d]

(∑
τ∈Eℓ

∑
i∈[N ] ai,τXτj

N

)2

≤
∑
j∈[d]

(∑
τ∈Eℓ

∑
i∈[N ] |ai,τ |xmax

N

)2

. (56)

For periods in Sℓ := ∪i∈[N ]Si,ℓ, we have,∑
τ∈Sℓ

∑
i∈[N ] |ai,τ |xmax

N
≤

∑
τ∈Sℓ

amaxxmax ≤ NLℓamaxxmax , (57)

where the last inequality holds because events Gi,ℓ occurs for all i. On the other hand, recall that |ai,t| ≥ 1/|Eℓ| for any i
and t ∈ Si,ℓ. Hence, |ai,t| ≤ 1/|Eℓ| for periods in Eℓ/Sℓ,∑

τ∈Eℓ/Sℓ

∑
i∈[N ] |ai,τ |xmax

N
≤

∑
τ∈Eℓ/Sℓ

xmax

|Eℓ|
≤

∑
τ∈Eℓ

xmax

|Eℓ|
= xmax . (58)

Combining Equations (56), (57), and (58), we have

∥X⊤A∥2 ≤

√√√√d

(∑
τ∈[t]

∑
i∈[N ] |ai,τ |xmax

N

)2

≤
√
d (NLℓamax + 1)xmax . (59)

Now it only remains to show λmin

(
X⊤X/|Eℓ|

)
≥ λ2

0/2 with high probability, which can be achieved by applying
Lemma 10. In the context of this lemma, we consider the sequence of random matrices {xτx

⊤
τ /|Eℓ|}τ∈[Eℓ], and

note that X⊤X/|Eℓ| =
∑

τ∈Eℓ
(xτx

⊤
τ /|Eℓ|). We first upper bound the maximum eigenvalue of xτx

⊤
τ /|Eℓ|, namely

λmax

(
xτx

⊤
τ /|Eℓ|

)
for any τ ∈ Eℓ by

λmax

(
xτx

⊤
τ

|Eℓ|

)
= max

∥z∥2=1
z⊤

xτx
⊤
τ

|Eℓ|
z ≤ 1

|Eℓ|
max

∥z∥2=1
(x⊤z)2 ≤ x2

max

|Eℓ|
.

This allows us to apply the matrix Chernoff bound in Lemma 10 (setting γ̄ = 1/2 in the lemma) and get

P
(
λmin

(
X⊤X

|Eℓ|

)
≥ λ2

0

2

)
≥ P

(
λmin

(
X⊤X

|Eℓ|

)
≥ 1

2
λmin

(
E
[
X⊤X

|Eℓ|

]))
≥ 1− d exp

(
−|Eℓ|λ2

0

8x2
max

)
, (60)
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where the first inequality follows from the fact that λmin

(
E[X⊤X/|Eℓ|]

)
≥ λ2

0.

Putting everything together, we get

P

(
∥β̂ℓ+1 − β∥1 ≤ γ +

√
d (NLℓamax + 1)xmax

|Eℓ|λ2
0

)

≥ P

(
∥β̂ℓ+1 − β∥2 ≤ γ +

√
d (NLℓamax + 1)xmax

|Eℓ|λ2
0

)

≥ P

({
1

|Eℓ|λ2
0

(
∥X⊤Ē∥2 + ∥X⊤A∥2

)
≤ γ +

√
d (NLℓamax + 1)xmax

|Eℓ|λ2
0

}⋂{
λmin

(
X⊤X

|Eℓ|

)
≥ λ2

0

2

})

≥ P

{ 1

|Eℓ|λ2
0

∥X⊤Ē∥2 ≤ γ

} ⋂  ⋂
i∈[N ]

Gi,ℓ

 ⋂ {
λmin

(
X⊤X

|Eℓ|

)
≥ λ2

0

2

}
≥ 1− P

({
1

|Eℓ|λ2
0

∥X⊤Ē∥2 > γ

})
−
∑
i∈[N ]

P
(
Gc
i,ℓ

)
− P

({
λmin

(
X⊤X

|Eℓ|

)
≤ λ2

0

2

})

≥ 1− 2d exp

(
− Nγ2λ4

0|Eℓ|
2ϵmax

2x2
maxd

)
− N

|Eℓ|
− d exp

(
−|Eℓ|λ2

0

8x2
max

)
.

The first inequality follows from the fact that ∥z∥1 ≤ ∥z∥2 for any vector z; the second inequality follows from Equation
(52); the third inequality follows from Equation (59) when the event ∩i∈[N ]Gi,ℓ occurs; the fourth inequality applies a simple
union bound; and the final inequality follows from Equations (55), (60) and Lemma 1.

Lemma 5 (Bounding Estimation Error in F− and F+). Define σ̃t to be the sigma algebra generated by all
{xτ , ai,τ , ϵi,τ}i∈[N ],τ∈[t]. Then, for any σ̃t-measurable random variable z and γ > 0, we have

P
(∣∣∣F̂−

ℓ+1(z)− F−(z)
∣∣∣ ≤ 2N2zℓ

)
≥ 1− 4 exp

(
−2N |Eℓ|γ2

)
− 4(d+N)

|Eℓ|
− 2d exp

(
−|Eℓ|λ2

0

8x2
max

)
P
(∣∣∣F̂+

ℓ+1(z)− F+(z)
∣∣∣ ≤ Nzℓ

)
≥ 1− 4 exp

(
−2N |Eℓ|γ2

)
− 4(d+N)

|Eℓ|
− 2d exp

(
−|Eℓ|λ2

0

8x2
max

)
,

where zℓ := γ + cfδℓ + (cf + Lℓ)/|Eℓ|, cf = supz̃∈[−ϵmax,ϵmax] f(z̃), δℓ is defined in Equation (18), and Lℓ =

log
(
v2maxN |Eℓ|4 − 1

)
/log(1/η).

Proof. Proof of Lemma 5. We first bound the error in the estimate of F , namely
∣∣∣F̂ℓ+1(z)− F (z)

∣∣∣. Then, we use the

relationship F−(z) = NFN−1(z)− (N−1)FN (z) and F+(z) = FN (z), as well as the definition of F̂−
ℓ+1(z) and F̂+

ℓ+1(z)
in Equation (9) to show the desired probability bounds.

We first upper and lower bound F̂−
ℓ+1(z) for any z ∈ R. Recall the event Si,ℓ = {t ∈ Eℓ : |ai,t| ≥ 1/|Eℓ|} and in Lemma 1

we showed that P (|Si,ℓ| > Lℓ) ≤ 1/|Eℓ|. Hence, for any i ∈ [N ], we have |ai,t| ≤ 1/|Eℓ| for all periods τ ∈ Eℓ/Si,ℓ, so∑
τ∈Eℓ

I
{
bi,τ − ⟨β̂ℓ+1, xτ ⟩ ≤ z

}

=

 ∑
τ∈Eℓ/Si,ℓ

I
{
bi,τ − ⟨β̂ℓ+1, xτ ⟩ ≤ z

}
+
∑

τ∈Si,ℓ

I
{
vi,τ − ⟨β̂ℓ+1, xτ ⟩ ≤ z

}
+

 ∑
τ∈Si,ℓ

I
{
bi,τ − ⟨β̂ℓ+1, xτ ⟩ ≤ z

}
−
∑

τ∈Si,ℓ

I
{
vi,τ − ⟨β̂ℓ+1, xτ ⟩ ≤ z

} . (61)

Consider the sum in first the parenthesis of Equation (61) and note that bi,τ = vi,τ − ai,τ = ⟨β, xτ ⟩+ ϵi,τ − ai,τ . Since
|ai,τ | ≤ 1/|Eℓ| for any i ∈ [N ] and τ ∈ Eℓ/Si,ℓ,

⟨β, xτ ⟩+ ϵi,τ − 1

|Eℓ|
≤ bi,τ ≤ ⟨β, xτ ⟩+ ϵi,τ +

1

|Eℓ|
, ∀τ ∈ Eℓ/Si,ℓ . (62)
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Now, assume that the event ξℓ+1 =
{
∥β̂ℓ+1 − β∥1 ≤ δℓ/xmax

}
holds. Therefore, we can upper bound the sum in first the

parenthesis of Equation (61) as

∑
τ∈Eℓ/Si,ℓ

I
{
bi,τ − ⟨β̂ℓ+1, xτ ⟩ ≤ z

}
+
∑

τ∈Si,ℓ

I
{
vi,τ − ⟨β̂ℓ+1, xτ ⟩ ≤ z

}
≤

∑
τ∈Eℓ/Si,ℓ

I
{
ϵi,τ ≤ z + ⟨β̂ℓ+1 − β, xτ ⟩+

1

|Eℓ|

}
+
∑

τ∈Si,ℓ

I
{
ϵi,τ ≤ z + ⟨β̂ℓ+1 − β, xτ ⟩+

1

|Eℓ|

}

=
∑
τ∈Eℓ

I
{
ϵi,τ ≤ z + ⟨β̂ℓ+1 − β, xτ ⟩+

1

|Eℓ|

}
≤

∑
τ∈Eℓ

I
{
ϵi,τ ≤ z + δℓ +

1

|Eℓ|

}
, (63)

where the first equality follows from vi,τ = ⟨β, xτ ⟩+ ϵi,τ and bi,τ = vi,τ − ai,τ ; the first inequality follows Equation (62);

and the final inequality is due to the occurrence of the event ξℓ+1 =
{
∥β̂ℓ+1 − β∥1 ≤ δℓ/xmax

}
. Similarly, we can also

lower bound the sum in the first parenthesis of Equation (61):

∑
τ∈Eℓ/Si,ℓ

I
{
bi,τ − ⟨β̂ℓ+1, xτ ⟩ ≤ z

}
+
∑

τ∈Si,ℓ

I
{
bi,τ − ⟨β̂ℓ+1, xτ ⟩ ≤ z

}
≥

∑
τ∈Eℓ

I
{
ϵi,τ ≤ z − δℓ −

1

|Eℓ|

}
. (64)

Furthermore, assuming events Gi,ℓ = {|Si,ℓ| ≤ Lℓ} hold for all i ∈ [N ], we can simply upper bound and lower bound the
expression in the second parenthesis of Equation (61):

−Lℓ ≤
∑

τ∈Si,ℓ

I
{
bi,τ − ⟨β̂ℓ+1, xτ ⟩ ≤ z

}
−
∑

τ∈Si,ℓ

I
{
vi,τ − ⟨β̂ℓ+1, xτ ⟩ ≤ z

}
≤ Lℓ . (65)

Combining Equations (61), (63), (64), (65), and using the definition

F̂ℓ+1(z) =
1

N |Eℓ|
∑
i∈[N ]

∑
τ∈Eℓ

I
{
bi,τ − ⟨β̂ℓ+1, xτ ⟩ ≤ z

}
,

under the occurrence of events ξℓ+1, and Gi,ℓ for all i ∈ [N ], we have

1

N |Eℓ|
∑
i∈[N ]

∑
τ∈Eℓ

I
{
ϵi,τ ≤ z − δℓ −

1

|Eℓ|

}
− Lℓ

|Eℓ|
≤ F̂ℓ+1(z) and

F̂ℓ+1(z) ≤ 1

N |Eℓ|
∑
i∈[N ]

∑
τ∈Eℓ

I
{
ϵi,τ ≤ z + δℓ +

1

|Eℓ|

}
+

Lℓ

|Eℓ|
. (66)
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Now, for any γ > 0,

P
(
F

(
z − δℓ −

1

|Eℓ|

)
− F̂ℓ+1(z) ≤ γ +

Lℓ

|Eℓ|

)

≥ P

{F (z − δℓ −
1

|Eℓ|

)
− F̂ℓ+1(z) ≤ γ +

Lℓ

|Eℓ|

} ⋂
ξℓ+1

⋂  ⋂
i∈[N ]

Gi,ℓ


≥ P

F

(
z − δℓ −

1

|Eℓ|

)
− 1

N |Eℓ|
∑
i∈[N ]

∑
τ∈Eℓ

I
{
ϵi,τ ≤ z − δℓ −

1

|Eℓ|

}
≤ γ

 ⋂
ξℓ+1

⋂  ⋂
i∈[N ]

Gi,ℓ


≥ P

sup
z̃∈R

∣∣∣∣∣∣F (z̃)− 1

N |Eℓ|
∑
i∈[N ]

∑
τ∈Eℓ

I {ϵi,τ ≤ z̃}

∣∣∣∣∣∣ ≤ γ

 ⋂
ξℓ+1

⋂  ⋂
i∈[N ]

Gi,ℓ


≥ 1− P

sup
z̃∈R

∣∣∣∣∣∣F (z̃)− 1

N |Eℓ|
∑
i∈[N ]

∑
τ∈Eℓ

I {ϵi,τ ≤ z̃}

∣∣∣∣∣∣ > γ


− P

(
ξcℓ+1

)
−
∑
i∈[N ]

P
(
Gc
i,ℓ

)
≥ 1− 2 exp

(
−2N |Eℓ|γ2

)
−
(
2d+N

|Eℓ|
+ d exp

(
−|Eℓ|λ2

0

8x2
max

))
− N

|Eℓ|

= 1− 2 exp
(
−2N |Eℓ|γ2

)
− 2(d+N)

|Eℓ|
− d exp

(
−|Eℓ|λ2

0

8x2
max

)
, (67)

where the second inequality follows from Equation (66), the fourth inequality uses the union bound, and the final inequality
follows from the DKW inequality (Theorem 9), Lemma 4, and Lemma 1. We note that we can apply the DKW inequality
because {ϵi,τ}τ∈Eℓ,i∈[N ] are N |Eℓ| i.i.d. realizations of noise variables. According to the Lipschitz property of F shown in
Lemma 8, |F (z − δℓ − 1/|Eℓ|)− F (z)| ≤ cf (δℓ + 1/|Eℓ|) for ∀z ∈ R. Hence, combining this with Equation (67), yields

P
(
F (z)− F̂ℓ+1(z) ≤ γ + cf

(
δℓ +

1

|Eℓ|

)
+

Lℓ

|Eℓ|

)
≥ P

(
F

(
z − δℓ −

1

|Eℓ|

)
− F̂ℓ+1(z) ≤ γ +

Lℓ

|Eℓ|

)
≥ 1− 2 exp

(
−2N |Eℓ|γ2

)
− 2(d+N)

|Eℓ|
− d exp

(
−|Eℓ|λ2

0

8x2
max

)
. (68)

Similarly, |F (z + δℓ + 1/|Eℓ|)− F (z)| ≤ cf (δℓ + 1/|Eℓ|) for ∀z ∈ R, so we can show

P
(
F̂ℓ+1(z)− F (z) ≤ γ + cf

(
δℓ +

1

|Eℓ|

)
+

Lℓ

|Eℓ|

)
≥ P

(
F̂ℓ+1(z)− F

(
z + δℓ +

1

|Eℓ|

)
≤ γ +

Lℓ

|Eℓ|

)
≥ 1− 2 exp

(
−2N |Eℓ|γ2

)
− 2(d+N)

|Eℓ|
− d exp

(
−|Eℓ|λ2

0

8x2
max

)
. (69)

Combining Equations (68) and (69) using a union bound yields

P
(∣∣∣F̂ℓ+1(z)− F (z)

∣∣∣ ≤ γ + cfδℓ +
cf + Lℓ

|Eℓ|

)
≥ 1− 4 exp

(
−2N |Eℓ|γ2

)
− 4(d+N)

|Eℓ|
− 2d exp

(
−|Eℓ|λ2

0

8x2
max

)
. (70)

Finally, we now bound |F̂−
t (z)−F−(z)| and |F̂+

t (z)−F+(z)| using the fact that F−(z) = NFN−1(z)− (N − 1)FN (z)
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and F+(z) = FN (z).

|F̂−
ℓ+1(z)− F−(z)| =

∣∣∣NF̂N−1
ℓ+1 (z)− (N − 1)F̂N

ℓ+1(z)−
(
NFN−1(z)− (N − 1)FN (z)

)∣∣∣
≤ N

∣∣∣F̂N−1
ℓ+1 (z)− FN−1(z)

∣∣∣+ (N − 1)
∣∣∣F̂N

ℓ+1(z)− FN (z)
∣∣∣

= N

∣∣∣∣∣(F̂ℓ+1(z)− F (z)
)(N−1∑

n=1

(
F̂ℓ+1(z)

)n−1

(F (z))
N−1−n

)∣∣∣∣∣
+ (N − 1)

∣∣∣∣∣(F̂ℓ+1(z)− F (z)
)( N∑

n=1

(
F̂ℓ+1(z)

)n−1

(F (z))
N−n

)∣∣∣∣∣
≤ N(N − 1)

∣∣∣F̂ℓ+1(z)− F (z)
∣∣∣+ (N − 1)N

∣∣∣F̂ℓ+1(z)− F (z)
∣∣∣

< 2N2
∣∣∣F̂ℓ+1(z)− F (z)

∣∣∣ . (71)

The second equality uses am − bm = (a− b)
(∑m

n=1 a
n−1bm−n

)
for any integer m ≥ 2. The second inequality follows

from F̂ℓ+1(z), F (z) ∈ [0, 1] for ∀z ∈ R. Combining Equations (70) and (71), we get

P
(∣∣∣F̂−

ℓ+1(z)− F−(z)
∣∣∣ ≤ 2N2

(
γ + cfδℓ +

cf + Lℓ

|Eℓ|

))
≥ 1− 4 exp

(
−2N |Eℓ|γ2

)
− 4(d+N)

|Eℓ|
− 2d exp

(
−|Eℓ|λ2

0

8x2
max

)
.

The probability bound for
∣∣∣F̂−

ℓ+1(z)− F−(z)
∣∣∣ can be shown in a similar fashion by noting that similar to Equation (71) we

can show |F̂+
ℓ+1(z)− F+(z)| < N

∣∣∣F̂ℓ+1(z)− F (z)
∣∣∣.

Lemma 6 (Bounding the Impact of Estimation Errors on Revenue). We assume that the events
ξℓ+1 =

{
∥β̂ℓ+1 − β∥1 ≤ δℓ

xmax

}
, ξ−ℓ+1 =

{∣∣∣F̂−
ℓ+1(z)− F−(z)

∣∣∣ ≤ 2N2
(
γℓ + cfδℓ +

cf+Lℓ

|Eℓ|

)}
and

ξ+ℓ+1 =
{∣∣∣F̂+

ℓ+1(z)− F+(z)
∣∣∣ ≤ N

(
γℓ + cfδℓ +

cf+Lℓ

|Eℓ|

)}
occur for some phase ℓ ≥ 1, where z ∈ R,

γℓ =
√
log(|Eℓ|)/

√
2N |Eℓ|, and δℓ is defined in Equation (18). Hence for any r ∈ {r⋆t , rt} where t ∈ Eℓ+1

we have the following:

(i) |ρt(r, yt, F−, F+)− ρt(r, ŷt, F
−, F+)| ≤ 3rcfN

2δℓ a.s.

(ii)
∣∣∣ρt(r, ŷt, F−, F+)− ρt(r, ŷt, F̂

−
ℓ+1, F̂

+
ℓ+1)

∣∣∣ ≤ 3rN2
(
γℓ + cfδℓ +

cf+Lℓ

|Eℓ|

)
a.s.

where yt = ⟨β, xt⟩, ŷt = ⟨β̂ℓ+1, xt⟩, β̂ℓ+1, F̂
−
ℓ+1, F̂

+
ℓ+1 are defined in Equations (8) and (9). The function ρt is defined in

Equation (27).

Proof. Proof of Lemma 6. Part (i) We consider the following:∣∣ρt(r, yt, F−, F+)− ρt(r, ŷt, F
−, F+)

∣∣
=

∣∣∣∣∫ r

0

[
F−(z − yt)− F−(z − ŷt)

]
dz − r

[
F+(r − yt)− F+(r − ŷt)

]∣∣∣∣
≤
∫ r

0

∣∣F−(z − yt)− F−(z − ŷt)
∣∣ dz + r

∣∣F+(r − yt)− F+(r − ŷt)
∣∣

≤
∫ r

0

2cfN
2|yt − ŷt|dz + rcfN |yt − ŷt|

≤
∫ r

0

2cfN
2
(
∥β̂ℓ+1 − β∥1xmax

)
dz + rcfN∥β̂ℓ+1 − β∥1xmax

≤ 3rcfN
2δℓ .
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The first equality follows from definition of ρt in Equation (27), and the second inequality applies the Lipschitz property
of F− and F+ using Lemma 8. The third inequality follows from Cauchy’s inequality: |yt − ŷt| = |⟨β̂ℓ+1 − β, xt⟩| ≤
∥β̂ℓ+1 − β∥1xmax, and the last inequality follows from the occurrence of ξℓ+1 and N ≥ 1.

Part (ii) Similar to part (i), we have∣∣∣ρt(r, ŷt, F−, F+)− ρt(r, ŷt, F̂
−
ℓ+1, F̂

+
ℓ+1)

∣∣∣
=

∣∣∣∣∫ r

0

[
F−(z − ŷt)− F̂−

ℓ+1(z − ŷt)
]
dz − r

[
F+(r − ŷt)− F̂+

ℓ+1(r − ŷt)
]∣∣∣∣

≤
∫ r

0

∣∣∣F−(z − ŷt)− F̂−
ℓ+1(z − ŷt)

∣∣∣ dz + r
∣∣∣F+(r − ŷt)− F̂+

ℓ+1(r − ŷt)
∣∣∣

≤ 3rN2

(
γℓ + cfδℓ +

cf + Lℓ

|Eℓ|

)
,

where the last inequality follows from the occurrence of events ξ−ℓ+1 and ξ+ℓ+1 and N ≥ 1.

Lemma 7 (Bounding probabilities). The probability that not all events ξℓ+1, ξ−ℓ+1 and ξ+ℓ+1 occur for some phase ℓ ≥ 1 is
bounded as

P
(
ξcℓ+1 ∪

(
ξ−ℓ+1

)c ∪ (ξ+ℓ+1

)c) ≤ 9N + 15d+ 8

|Eℓ|
,

where the events ξℓ+1, ξ−ℓ+1 and ξ+ℓ+1 are defined in Equations (17), (19), and (20) respectively.

Proof. Proof of Lemma 7.

We first bound the probability of ξcℓ+1, and then proceed to bound the the probability of
(
ξ−ℓ+1

)c
and

(
ξ+ℓ+1

)c
.

Recall that ξℓ+1 =
{
∥β̂ℓ+1 − β∥1 ≤ δℓ

xmax

}
. Then,

P
(
ξcℓ+1

)
≤ 2d+N

|Eℓ|
+ d exp

(
−|Eℓ|λ2

0

8x2
max

)
≤ 2d+N

|Eℓ|
+ d exp

(
− log(|Eℓ|)T

1
4λ2

0

8x2
max

)

≤ N + 3d

|Eℓ|
, (72)

where the first inequality follows from Lemma 4 by taking γ =
√
2d log(|Eℓ|)ϵmaxxmax/

(
λ2
0

√
N |Eℓ|

)
; the second

inequality uses the fact that |Eℓ| ≥ |E1| =
√
T , T ≥ max

{(
8x2

max

λ2
0

)4
, 9

}
, which implies |Eℓ| ≥ log(|Eℓ|)

√
|Eℓ| ≥

T
1
4 log(|Eℓ|). Note that here we used the fact that

√
x ≥ log(x) for all x ≥ 9.

We now bound the probability of
(
ξ−ℓ+1

)c
:

P
((
ξ−ℓ+1

)c) ≤ 4 exp

−2N |Eℓ| ·

(√
log(|Eℓ|)√
2N |Eℓ|

)2
+

4(d+N)

|Eℓ|
+ 2d exp

(
−|Eℓ|λ2

0

8x2
max

)

≤ 2(2N + 3d+ 2)

|Eℓ|
, (73)

where the first inequality follows from Lemma 5 by taking γ = γℓ =
√
log(|Eℓ|)/

√
2N |Eℓ|, and the last inequality again

uses the fact that |Eℓ| ≥ log(|Eℓ|)
√
|Eℓ| ≥ T

1
4 log(|Eℓ|) when T ≥ max

{(
8x2

max

λ2
0

)4
, 9

}
.
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Similarly, we can bound the probability of
(
ξ+ℓ+1

)c
:

P
((
ξ+ℓ+1

)c) ≤ 2(2N + 3d+ 2)

|Eℓ|
, (74)

Finally, combining Equations (72), (73) and (74), we have

P
(
ξcℓ+1 ∪

(
ξ−ℓ+1

)c ∪ (ξ+ℓ+1

)c) ≤ P
(
ξcℓ+1

)
+ P

((
ξ−ℓ+1

)c)
+ P

((
ξ+ℓ+1

)c) ≤ 9N + 15d+ 8

|Eℓ|
.

Lemma 8 (Lipschitz Property for F , F− and F+). The following hold for any z1, z2 ∈ R:

(i) |F (z1)− F (z2)| ≤ cf |z1 − z2|.

(ii) |F−(z1)− F−(z2)| ≤ 2cfN
2|z1 − z2|.

(iii) |F+(z1)− F+(z2)| ≤ cfN |z1 − z2|.

Here, 0 < cf = supz∈[−ϵmax,ϵmax] f(z).

Proof. Proof of Lemma 8. Without loss of generality, we assume z1 < z2. Note that F (z) = 0 for ∀z ∈ (−∞,−ϵmax], and
F (z) = 1 for ∀z ∈ [ϵmax,∞).

Part (i) We consider the following cases:

1. Case 1: (z1 < z2 ≤ −ϵmax or ϵmax ≤ z1 < z2): |F (z2)− F (z1)| = 0 ≤ cf |z2 − z1|.

2. Case 2: (−ϵmax < z1 < z2 < ϵmax): By the mean value theorem, |F (z2)− F (z1)| = f(z̃)|z2 − z1| < cf |z2 − z1|,
where z̃ ∈ (z1, z2).

3. Case 3: (z1 ≤ −ϵmax < z2 < ϵmax): We have |z2−(−ϵmax)| = z2−(−ϵmax) ≤ z2−z1 and F (z1) = F (−ϵmax) = 0.
Hence |F (z2)− F (z1)| = |F (z2)− F (−ϵmax)| = f(z̃)|z2 − (−ϵmax)| ≤ cf |z2 − z1|, where z̃ ∈ (−ϵmax, z2) by the
mean value theorem.

4. Case 4: (−ϵmax < z1 < ϵmax ≤ z2): We have |ϵmax − z1| = ϵmax − z1 ≤ z2 − z1 and F (z2) = F (ϵmax) = 1 .
Hence |F (z2)− F (z1)| = |F (ϵmax)− F (z1)| = f(z̃)|ϵmax − z1| ≤ cf |z2 − z1|, where z̃ ∈ (z1, ϵmax) by the mean
value theorem.

Part (ii) & (iii) We recall that F−(z) = NFN−1(z)− (N − 1)FN (z) and F+(z) = FN (z), so

|F−(z2)− F−(z1)|
=
∣∣NFN−1(z2)− (N − 1)FN (z2)−

(
NFN−1(z1)− (N − 1)FN (z1)

)∣∣
≤ N

∣∣FN−1(z2)− FN−1(z1)
∣∣+ (N − 1)

∣∣FN (z2)− FN (z1)
∣∣

= N

∣∣∣∣∣(F (z2)− F (z1))

(
N−1∑
n=1

(F (z2))
n−1

(F (z1))
N−1−n

)∣∣∣∣∣
+ (N − 1)

∣∣∣∣∣(F (z2)− F (z1))

(
N∑

n=1

(F (z2))
n−1

(F (z1))
N−n

)∣∣∣∣∣
≤ N(N − 1) |F (z2)− F (z1)|+ (N − 1)N |F (z2)− F (z1)|
< 2N2cf |z2 − z1| .

The second equality uses am − bm = (a − b)
(∑m

n=1 a
n−1bm−n

)
for any a, b ∈ R and integer m ≥ 2. The second

inequality follows from F (z) ∈ [0, 1] for ∀z ∈ R. The final inequality follows from the Lipschitz property of F shown in
part (i). Following the same arguments, we can also show that |F+(z2)− F+(z1)| ≤ cfN |z2 − z1|.
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D SUPPLEMENTARY LEMMAS

Lemma 9 (Dvoretzky-Kiefer-Wolfowitz Inequality (Dvoretzky et al. (1956))). Let Z1, Z2, . . . Zn be i.i.d. random variables
with cumulative distribution function F , and denote the associated empirical distribution function as

F̂ (z) =
1

n

n∑
i=1

I{Zi ≤ z} , z ∈ R . (75)

Then, for any γ̄ > 0,

P
(
sup
z∈R

∣∣∣F̂ (z)− F (z)
∣∣∣ ≤ γ̄

)
≥ 1− 2 exp

(
−2nγ̄2

)
. (76)

Lemma 10 (Matrix Chernoff Bound (Tropp et al. (2015))). Consider a finite sequence of independent, random matrices
{Zk ∈ Rd}k∈[K]. Assume that 0 ≤ λmin(Zk) and λmax(Zk) ≤ B for any k. Denote Y =

∑
k∈[K] Zk, µmin = λmin(E[Y ]),

and µmax = λmax(E[Y ]). Then for ∀γ̄ ∈ (0, 1),

P (λmin(Y ) ≤ γ̄µmin) ≤ d exp

(
− (1− γ̄)2µmin

2B

)
.

Lemma 11 (Multiplicative Azuma Inequality(Koufogiannakis and Young (2014))). Let Z1 =
∑

τ∈[T̃ ] z1,τ and Z2 =∑
τ∈[T̃ ] z2,τ be sums of non-negative random variables, where T̃ is a random stopping time with a finite expectation, and,

for all τ ∈ [T̃ ], |z1,τ − z2,τ | ≤ 1 and E
[
(z1,τ − z2,τ )

∣∣ ∑
s<τ z1,s,

∑
s<τ z2,s

]
≤ 0. Let γ̃ ∈ [0, 1] and A ∈ R. Then,

P ((1− γ̃)Z1 ≥ Z2 +A) ≤ exp (−γ̃A)
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