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Shortage of bikes and docks is a common issue in bike sharing systems. To tackle this problem, operators

use a fleet of vehicles to redistribute bikes across the network. We propose a model that captures success-

ful user trips in the system, and a new mixed integer programming formulation that solves the dynamic

redistribution problem by producing routes and pick-up/drop-off decisions for the vehicles. In order to scale

to large instances, we develop a decomposition method based on proper station grouping, accompanied by

an optimization with partial information approach, where relevant information for each group (routing and

redistribution options) is modeled using piecewise linear concave functions and explicitly included in the

model. We test our methods on both synthetic and real-world data, and show that our algorithms can scale

to large real-world systems, with short running times that allow for real-time information to be taken into

account. Furthermore, since accurate estimation of user demand is essential for efficient redistribution, we

also develop data-driven and optimization-based approaches to consider lost and shifted demand. Our meth-

ods are general and not tied to the specific application domain; for instance, the optimization with partial

information can be applied to any pick-up and delivery vehicle routing problem.
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1. Introduction

Early precursors of vehicle sharing systems started emerging more than half a century ago, pre-

senting limited success at first, but slow growth, which led to the worldwide phenomenon that is

observed in the present years. Millions of people have acknowledged the benefits of these systems

1



2 Mellou and Jaillet: Dynamic Resource Redistribution and Demand Estimation

and shown their support by substituting a smaller or larger part of their everyday commute with

some form of ridesharing. The most common types of vehicles that are met worldwide are cars and

bicycles, with recent advances in technology, such as electric vehicles, being gradually incorporated

as well.

The idea behind vehicle sharing systems is simple; commuters are offered the benefit of a short-

period vehicle rental in order to perform one-way or round trips. Vehicles can be picked-up and

returned at specific locations, which are spread across the cities in order to increase the range of

service. The charge depends on the duration of the trip, as well as the type of membership selected

by the user. Operators usually offer monthly and annual memberships, which are ideal for regular

users, as well as daily or short-period memberships designed to facilitate visitors and casual users.

The main purpose of this research is to provide the operator of a vehicle sharing system with

an approach to manage major operations that are required for the smooth functioning of the

system, by utilizing historic and real-time data. In this work, we assume that the system is already

functional, in the sense that we do not consider strategic decisions that need to be made while the

system is being constructed. These include the locations and capacity of stations, the number of

vehicles, etc., and thorough planning is required in order to ensure that the system specifications

are adequate to cover most of the customer demand.

After a system launches, the operator faces many daily challenges in order to keep the service

at a high level and meet the expectations of the users. Let us now focus on the particular case

of the bike sharing systems, which will allow us to provide more details about specific operations.

In a typical bike sharing system, users can pick up a bike from any station with available bikes

and return it to any station with an empty dock. However, large flows of riders from residential

to industrial and commercial areas in the morning and opposite flows in the evening, as well as

many one-way trips, can render the system highly unbalanced in many instances during the day.

In particular, very often there are phenomena of starvation, when customers wish to pick up a

bike from a station that is empty, and congestion, when customers want to return their bikes to a

station with no empty docks.
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In order to deal with this problem, companies deploy a fleet of trucks which perform the rebal-

ancing of the network: they pick up bicycles from stations with a surplus of bikes and drop them

off at stations that currently require them. Efficient rebalancing is of crucial importance to the

operating company. If a customer repeatedly fails to find a bike or is not able to drop it off at

their desired destination, they will eventually seek alternative modes of transportation, leading to

significant losses for the company and endangering the viability of the system.

The goal of this work is to generate a complete plan of actions for the operating crew that will

cover all daily rebalancing operations. An important factor for the success of this project is the

plethora of data that is regularly gathered by the operators. Historic data, such as past trips and

system statistics, will be used to accurately estimate the user demand, which can in turn be used to

generate strategies that optimize the system’s performance. At the same time, real-time tracking

of all components of the system allows to dynamically readjust daily plans, based on the currently

realized scenarios.

The motivation and significance of this research might be obvious from the view of the operator.

However, the impact of a viable vehicle sharing system is much greater than that. If users can rely

on such a system covering their transportation needs, vehicle ownership statistics will be reduced,

decreasing the consumption of valuable natural resources that a vehicle manufacturing requires.

Car sharing can solve problems that big cities often face, such as lack of parking spaces. In addition,

a transition to using bike sharing systems can contribute significantly to dealing with the problem

of congestion, and, at the same time, reduce harmful gas emissions in the atmosphere. A success in

the operation of the existing vehicle sharing systems will likely motivate more and more cities to

adopt similar transport behaviors, turning them from energy consumers and pollution generators

into more eco-friendly transportation networks.

From a theoretical perspective, this topic raises many interesting research questions. The high

dimensionality of the system - large number of stations, time intervals of interest, options of routing

- renders it intractable for real-life instances. The answer to this type of questions is relevant to
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many systems, whose operation requires matching demand and supply, especially in the context

of a dynamic environment. This might refer to resources that need to travel to various locations

in order to serve customers requests, as well as many flexible transportation systems that have

currently emerged or been planned for the near future.

The contributions of this work can be summarized along three main axes:

1. We present new models for estimating the actual user demand of bike sharing systems. These

include both the lost demand due to lack of bikes and docks at the stations, as well as the shifted

demand which is the result of users walking to nearby stations in order to find available resources

when none are available at their current location. Both of these aspects are very often not considered

in bike sharing literature, but their effect on the rebalancing efficacy is crucial since redistribution

plans heavily depend on reliable estimation of the demand.

2. We propose a linear programming model that captures the bike flows that result from all

trips that are performed by users throughout the network. This model can be used instead of trip

simulations to evaluate the efficiency of the system. It does not depend on the exact arrival order

of the users, which is often difficult to estimate, as simulation scenarios might, but instead on the

total number of users per time period. Moreover, the fact that this is a linear program makes it

possible to be used as a component of more complex models, thus incorporating user flows with

other problem aspects.

3. We introduce a new mixed integer programming formulation to solve the dynamic rebal-

ancing problem. We suggest decomposition techniques based on appropriate station grouping and

incorporation of partial information for each group to the global rebalancing model. This achieves

smaller model sizes that still contain enough information for each station group, and we manage

to produce rebalancing plans that scale to real-world instances of actual bike sharing systems. The

core ideas of our approach can be extended to dockless bike-sharing (or scooter-sharing) systems

by proper space discretization, as well as be applied to the solution of any pick-up and delivery

vehicle routing problem.
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In the sections that follow, we start by presenting an overview of the literature on bike shar-

ing systems and existing rebalancing approaches. Then, in Section 3, we introduce a model that

accounts for lost and shifted demand given historic data of past trips. Section 4 focuses on modeling

the user trips across the network, and Section 5 studies the rebalancing of the system. Computa-

tional experiments follow in Section 6 to evaluate the efficacy of the methods.

2. Related Work

Research in the area of Bike Sharing Systems (BSS) is relatively recent. DeMaio (2009) presents

a comprehensive history of BSS, and Shaheen et al. (2010) discuss their evolution around the

world, their business models, as well as their social and environmental effects. For a review of

BSS, readers can also refer to Fishman (2015), which includes aspects such as growth, usage, and

impact. Lin and Yang (2011), Martinez et al. (2012) and Nair and Miller-Hooks (2014) focus on BSS

design, identifying the number of stations that are required and their optimal locations across the

city, while Freund et al. (2017) modify already operational systems by reallocating their docks to

increase their efficiency. The sections that follow focus on the specific themes of the BSS literature

that are closer to our work.

Performance Analysis and Decision Support. This first stream of research is peripheral to

our work and mainly focuses on providing insights that help decision making in BSS. Shaheen et al.

(2011) conduct a survey to better understand the early adoption of BSS and users’ travel behavior.

Raviv et al. (2013) model the user behavior in the face of lack of resources and they introduce a

user dissatisfaction measure to evaluate station performance. Tao and Pender (2017) conduct an

analysis on various performance measures for bike distribution across the system, while Vogel and

Mattfeld (2010) study the effect of various levels of redistribution efforts on user satisfaction.

User Demand. Accurate demand modeling is essential for the efficiency of the redistribution

process. Shu et al. (2013) model the number of customers traveling between each pair of stations

at each time period as a Poisson process. A similar approach is employed by Nair and Miller-

Hooks (2011), after they observe that in the dataset of a Singapore car-sharing system they use,
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both the number of vehicles leaving a station and arriving at a station at each time period can

be accurately modeled with Poisson distributions. Vogel et al. (2011) cluster stations with similar

behavior throughout the day and use data from realized trips aggregated per hour to generate

typical customer demand. Finally, Borgnat et al. (2011) and Singhvi et al. (2015) take into account

various parameters, such as information about the weather, special events in the area, taxi usage,

to forecast the number of rentals across the system.

Our work differs from many of these approaches in that we do not focus on modeling demand

based on observed trips or predicting future demand. Instead, we wish to reveal the actual under-

lying user demand of the system by taking into account trips that were not accomplished because

of resource shortages. Lack of resources leads to customers leaving the system or walking to nearby

stations. Considering only the completed trips leads to a misrepresentation of the actual demand,

since this user behavior can affect the resources that are required at each station. O’Mahony and

Shmoys (2015) consider only the first of these two aspects (users that left the system) and obtain an

estimation for this lost demand by examining the usual behavior of the stations. In our approach,

we incorporate an extra dimension, the daily demand trends of each station, and show that this

leads to decreased estimation error in all instances that we examined. Finally, we provide a method

to estimate the shifted demand of the system, and obtain in the end the actual user demand for

each station. This shifted demand is also considered in the recent work by Goh et al. (2019). The

authors propose a rank-based choice model to reveal the primary user demand of the system, which

differs from our work as we follow a linear programming approach to estimate the probability of

walking between stations.

Redistribution without Routing. A different stream of research focuses on the redistribution

procedure. Some studies aim to propose the desired configuration of the system at each time period

based on the anticipated demand and identify the number of vehicles that need to be carried from

one station to the other in order to achieve it. Nair and Miller-Hooks (2011) present a MIP that

involves joint chance constraints to determine the least cost redistribution that will meet most
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of the upcoming demand in the application of car-sharing systems. Shu et al. (2013) formulate

a linear program to estimate the performance of the system and the benefits of redistribution.

Both of these approaches assume that redeployment of vehicles between any two stations is always

possible, which might not be the case in an actual vehicle sharing system. Moreover, since they

do not take into account the exact routing of the carriers, they do not provide a detailed plan for

the execution of the redistribution. This contrasts with our approach which produces a complete

routing and redistribution plan.

Static Redistribution. Another set of studies tackles the problem of static rebalancing with

routing, where the goal is to find the optimal routing of the carriers that will achieve a desired

configuration, considering no customer demand during the redistribution. This is the case of systems

where redistribution is performed only at the end of each day, in order to prepare the system for

the demand of the following day.

Schuijbroek et al. (2017) provide a MIP formulation for the problem, as well as a cluster-first

route-second heuristic to reduce its running time. Raviv et al. (2014) wish to minimize user dis-

satisfaction in conjunction with the cost of repositioning. They introduce multiple formulations

and techniques, such as arc deletion when alternative paths of same cost exist, which allow them

to solve the problem in reasonable time even for larger instances. Rainer-Harbach et al. (2013)

propose a variable neighborhood search approach to generate candidate routes for the carriers,

while Di Gaspero et al. (2013) present a hybrid method that combines constrained programming

with ant colony optimization. Chemla et al. (2013) propose an integer programming formulation

and they use a branch-and-cut algorithm to solve its relaxation and tabu search to obtain an upper

bound on the optimal solution of the problem. A tabu search approach is also proposed by Ho and

Szeto (2014) in order to solve the static rebalancing problem and obtain good quality solutions in

short running times. Dell’Amico et al. (2014) suggest multiple formulations for the problem and a

branch-and-cut solving approach, while Forma et al. (2015) present a 3-step heuristic to obtain a

static repositioning plan for the system.
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The research described in this section differs from our approach on the assumption that the

system is not being used by customers while the rebalancing takes places. In our work, we consider

the system being in full operation during the redistribution procedures, and this complicates the

problem further since user movements keep changing the state of the system and this needs to be

taken into account.

Dynamic Redistribution. In the dynamic problem, redistribution is performed multiple times

during the day and demand is not neglected when rebalancing takes place. Ghosh et al. (2017)

propose a MIP formulation for the problem, which they solve by using Lagrangian Dual Decompo-

sition combined with an abstraction approach in the case of large instances. Contardo et al. (2012)

focus on the peak hours of the day. They formulate the problem and use two decomposition meth-

ods, Dantzig-Wolfe and Benders decomposition, to obtain lower and upper bounds for medium

and large instances. O’Mahony and Shmoys (2015) study the rebalancing problem both for the

(static) overnight version as well as during the rush hour. They propose a matching approach that

matches stations that need bikes with stations that need docks in order to transfer the resources

between them. Caggiani and Ottomanelli (2013) also provide an optimization model to reduce the

redistribution costs which they test on small system instances.

Our work also tackles the dynamic rebalancing of the network. However, our goal is to provide

solutions that can scale to large real-world systems in running times that are fast enough to allow

real-time information to be taken into account. In our experiments, we take this type of information

into account every thirty minutes of the planning horizon, but this can take place in much shorter

time intervals (especially during rush hours) so as the most up-to-date state of the system is always

considered.

3. Demand Estimation

While BSS operators record a variety of data about the system such as outages and past trips data,

an important component remains missing; lost user demand. This demand occurs whenever a user

is unable to complete a desired trip due to either the absence of bikes at the origin station, or the
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absence of docks at the destination, and they decide to leave the system without using it. This

behavior may cause inadequate planning on the system operator’s part, since this user intention is

never recorded, hence leading to instances of underestimating the actual demand.

Another natural consequence of encountering empty and full stations is the shift of demand

towards nearby locations. Overlooking this event results in overestimating the number of unserved

customers, since some of them have actually been satisfied from other locations. Moreover, this

phenomenon causes an artificial demand increase for stations at the receiving end of this shift. This

will manifest in a greater need of resources, misleading the rebalancing operations. Therefore, we

now focus on identifying the extent of this lost and relocated demand, in order to determine the

actual demand of the system.

3.1. Observed Demand

The observed demand consists of all trips that are completed in a system. For each pair of stations

(i, j) and time periods (t, t′), let dt,t
′

i,j denote the number of users picking up a bike from station

i at time t and returning it to station j at time t′. The observed demand is known to the BSS

operators, since the successful trips are recorded in the system data. Using this information, we

can also calculate the observed outgoing (resp. incoming) demand from station i at time t, which is

defined as the total number of users who left (resp. arrived at) station i at time t, dtout,i =
∑

j,t′ d
t,t′

i,j

(resp. dtin,i =
∑

j,t′ d
t′,t
j,i ).

3.2. Lost Demand

Lost demand refers to the users who failed to perform a trip due to lack of bikes at their origin

station or lack of docks at their desired destination. For each pair of stations (i, j) and periods

(t, t′), we use ldt,t
′

i,j for the number of users that failed to go from station i at time t to station

j at t′ due to lack of resources at i or at j. The lost outgoing demand ldtout,i and lost incoming

demand ldtin,i are defined similarly to the previous section, but using the lost demand instead of

the observed one.
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In the following analysis, we focus on the lost outgoing demand, but the same methods can be

applied for the estimation of the lost incoming demand. Consider a station i which is empty from

time ts to time te on a particular day. Naturally, there is no observed outgoing demand during that

time. However, there is no way to discover with certainty whether this is because there are no users

wanting to depart from that station or whether the lack of bikes prohibits any users to do so. It

turns out that the usual behavior of the station that time of the day (average station behavior) as

well as the behavior around the interval when bikes are available (daily demand trends) can offer

some intuition.

3.2.1. Average Station Behavior. The usual station behavior can be used as an indicator

of the number of users that wish to depart from the station. This is based on the assumption that

days do not differ much from one another, as well as the fact that a station is not empty every day

at the same time. For the outage interval [ts, te] of station i, consider the average observed demand

at [ts, te] at i on the days where i is not empty during [ts, te]. Let that average demand be denoted

by AVG ldts,teout,i, alternatively referred to as the average station behavior.

3.2.2. Daily Demand Trends. Another aspect to be considered is the daily trend of the

demand. There are days that are slower, for example due to weather conditions, and others that are

busier. By examining the user behavior right before and after the interval, we can get an estimate

of the interpolated demand during the outage.

Definition 1. We define the outgoing demand rate rout,i(t1, t2) as the average number of users

per minute that want to depart from station i during the interval [t1, t2].

rout,i(t1, t2) =
1

t2− t1
·

t2∑
t=t1

dtout,i (1)

We then proceed to provide an estimate for the demand rate rout,i(ts, te) for the outage interval

[ts, te], by using the demand rate the hour right before and after this interval. In particular:

rout,i(ts, te) =
1

2
[rout,i(ts− 60, ts) + rout,i(te, te + 60)] (2)
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Figure 1 Duration of outage events. Most of the intervals of empty and full stations are short, lasting less than

thirty minutes.

Assuming that there is no outage during the intervals [ts − 60, ts] and [te, te + 60], this can be

calculated using (1). The opposite case is addressed later in this section. Then, an estimate of the

lost demand based on the trends TREND ldts,teout,i for the outage interval [ts, te] can be obtained as:

TREND ldts,teout,i = rout,i(ts, te) · (te− ts) (3)

Outage duration. One assumption of this approach is that demand does not change drastically

in a very short amount of time. Therefore, a well-founded concern is whether it can work well when

the outage intervals are long, for example lasting a few hours. Computational experiments based

on real data reveal that this is not an issue since the vast majority of outages last less than thirty

minutes, as is illustrated in Figure 1, while many of the longer lasting outages take place during

the night, where demand is already negligible. Note here that empty station intervals during low

operation periods such as nighttime are not considered indicators of lost demand and are not taken

into account.

Artificial outage endings. Consider a user returning their bike at an empty station that is

very soon picked up by another customer. This action will cause the outage interval to be split in

two parts, when essentially it is the same event. Thus, before estimating the lost demand, we merge

outage intervals that are a few minutes apart. Any recorded users between the initial intervals are

then deducted from the estimated lost demand of the merged interval.
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Lack of information around the outage. We discussed how the outage demand rate can be

calculated based on the demand rates of the hours preceding and following the event. In case that

we do not have information about the complete hour due to another outage, we can compute the

demand rate based on a shorter time interval or look slightly further in the future or past, where

information becomes available.

3.2.3. Lost Demand Estimation. The lost demand estimate is calculated as a convex com-

bination of the estimates obtained by the average station behavior and the daily demand trends.

ldtout,i = λ · AVG ldtout,i + (1−λ) · TREND ldtout,i (4)

A data-driven approach is followed in order to select the value of λ that minimizes the MSE

of the estimated demand. More details and results are presented in the Section 6 as part of the

computational experiments.

The main characteristic of this approach is that we take into account both the average demand

of the station as well as the specific demand trends of the day that encountered the outage. Since

not all days are the same, by using information from the particular day, as well as focusing on the

time periods that are closer to the outage interval, we can better estimate the system behavior

during the outage, as is also illustrated in experiments on real-world datasets in Section 6.

This method implicitly considers various factors that influence biking. For instance, estimated

lost demand in rainy days will probably be lower, since the traffic volume is generally reduced

during these days. On the other hand, for outages that emerge in the middle of a rush hour, if the

preceding observed demand is large, this will be captured in the estimation of the lost demand as

well. Having calculated the number of unserved customers for each outage event, we assume that

their arrival times are uniform over the outage interval and generate the lost demand trips.
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3.3. Shifted Demand

The next step is to identify the extent of relocated demand in the system resulting from station

outages. Let Et denote the set of stations i that are empty at time t. For each station i, we define

its l-neighborhood Ni,l as the set of stations whose distance from i is at most l:

Ni,l = {j|distance(i, j)≤ l}, (5)

and its active l-neighborhood at time t as the subset of Ni,l that have the resources to serve relocated

demand from station i at time t (i.e. are not empty in the case of outgoing demand):

N t
i,l = {j|j ∈Ni,l, j /∈Et} (6)

Shifting probability. We introduce a model for the probability of a user shifting to a different

location. We assume that there is some limit lmax on the distance that users are willing to walk.

So, if there is no station with available bikes close enough, users just leave the system without

using it. In case such a station exists, users select to walk with probability p. More specifically, for

station i and time t, the probability of shifting is given by:

P t
i (user shifts) =


0 if N t

i,lmax
= ∅

p otherwise

(7)

Shifting coefficients. If |N t
i,lmax

|> 1, the user has more than one alternative stations to walk

to. In that case, they select each station with probability decreasing with respect to its distance. In

particular, out of the customers that have selected to walk from station i at time t, the probability

of them going to station j is given by:

qtij = P t
i (goes to j|user shifts) =

1

Zt
i · distance(i, j)

, ∀i, t, j ∈N t
i,lmax

(8)

where Zt
i =

∑
j∈Nt

i,lmax
1/distance(i, j) is a scaling factor, so that the coefficients sum to 1.

Shifting distance multiplier. In this model, we assume that users can walk to any station

with available resources in the lmax radius. However, when some of the candidate stations are really
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far compared to the others, a rational user will not consider them when selecting a station to walk

to. In order to include this behavior in the model, assume the closest non-empty station to station

i at time t is at distance rtmin,i. A user will then walk only to stations up to distance α ·rtmin,i, where

α≥ 1 is a parameter of the model called shifting distance multiplier. If α= 1, a user can only go

to their closest available station, while if α=∞ a user can go to any station of the network within

the allowed walking limit lmax. The integration of the shifting distance multiplier to the model

we described so far requires simply the replacement of lmax with min(lmax, α · rtmin,i) in N t
i,lmax

in

equations (7) and (8).

In this model, users only walk to stations that currently have resources available. This assumes

that users have a prior knowledge of the state of each station, which is true in most real-world

systems since they offer real-time tracking of the stations that can inform users of the availability

of bikes at each one of them.

In order to compute the value of p, we formulate the linear program Shifted Demand (SD). For

each station i that is not empty at time t and has demand dtout,i > 0, we introduce a variable xt
i

representing the actual outgoing demand that was originally intended for that station, i.e. is not

the result of customer movements from nearby empty stations. We also define for each station the

average value of xt
i over the same time of all remaining days where i is not empty, denoted by x̄i(t).

The model formulation follows.

(SD) : min
∑
i,t

|xt
i− x̄i(t)| (9)

s.t. dtout,i = xt
i +

∑
j:i∈Nt

j,lmax

p · qtji · ldtout,j ∀i, t : dtout,i > 0 (10)

x̄i(t) = avg(xt
i) ∀i, t (11)

0≤ p≤ 1 (12)

According to constraint (10), the observed demand dtout,i at each station consists of the demand

xt
i that was actually intended for that station combined with part of the demand for the nearby
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empty stations. The latter is the lost demand for these empty stations, which is denoted as ldtout,j

for station j, and can be computed according to the previous Section 3.2. Out of this lost demand,

the probability of users going to station i is given by the probability p of people choosing to walk

(instead of abandoning the system), multiplied by the probability qtji that they select the specific

station i to walk to.

Constraint (11) connects x̄i(t) and xt
i, but for simplicity of notation not all details are presented

in the model: Each time t is a timestamp, consisting of a day and a time period, and x̄i(t) is the

average of xt
i that refer to the same time period over all days for which station i is not empty.

The objective function takes x̄i(t) as a reference for each station i and time t, and considers the

absolute differences of each xt
i with the corresponding x̄i(t). The goal is to minimize the sum of

these absolute differences.

Solving (SD) provides a value for p which is the estimated probability that people walked to

nearby stations. We now need to readjust the demand of the stations that received this relocated

demand, since it was originally directed to other locations. For each station i with an observed

demand dtout,i, the actual demand is given by max(xt
i,0).

The fact that dtout,i includes some of the users for other stations may have influenced the demand

trends and the average behavior based on which the lost demand was calculated in Section 3.2.

Since dtout,i might be larger than the actual demand for that station, this might lead to a slight

overestimation of the lost demand. For that reason, one might consider running another iteration of

lost demand estimation, as described in Section 3.2, considering now the actual demand max(xt
i,0),

for each station i and time t.

4. Modeling User Trips

Before presenting our approach for the rebalancing optimization of the network, we propose a linear

program which we use in order to model the user trips that are realized throughout the system.

We assume that users perform a trip only if there is an available bike at their origin station and

a dock at their destination; otherwise they do not wait but leave the system instead. We do not
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Table 1 Notation used in the formulation of the model (UT).

Symbol Interpretation
dtij Demand for bikes from node i to node j at time period t
f t
ij Bikes that are moved by customers from node i to node j at time period t
bti Number of bikes at station i at the beginning of time period t
Ci Bike capacity of each station i
B Total number of bikes in the system

allow demand shifting (people walking to nearby stations) in this model since we wish to use it to

evaluate the efficiency of our methods and the goal is to eliminate the need for demand shifting

through appropriate placement of resources.

Furthermore, we assume that each trip is completed within a single time period, which we define

to be thirty minutes long. This assumption is not far from reality as 86.77% of trips in a five-month

past trips dataset (May to September 2017 for Capital Bikeshare, Washington DC) that we tested

indeed had duration less than thirty minutes. The model can still be generalized to longer trips by

changing appropriately the indexing of the variables and constraints, which we will not attempt

here for the benefit of simplicity of notation. Finally, we assume that each bike and dock is used by

at most one customer per time period. A relaxation of this assumption is discussed in Appendix

A.

The model notation is provided in Table 1 and the formulation follows.

(UT) : maximize SUCCESSFUL TRIPS(f) (13)

subject to f t
ij ≤ dtij ∀i, j, t (14)∑
j

f t
ij ≤AVAILABLE BIKES(i, t) ∀i, t (15)

∑
j

f t
ji ≤AVAILABLE DOCKS(i, t) ∀i, t (16)

bt+1
i = bti +

∑
j

f t
ji−

∑
j

f t
ij ∀i, t (17)

bti ≤Ci ∀i, t (18)

f t
ij ≤

dtij∑
k d

t
ik

bti ∀i, j, t (19)

∑
i

b0i ≤B (20)
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f t
ij, b

t
i ∈R+, ∀i, j, t (21)

According to (14), for each edge and time period the flow of bikes is bounded by the user demand.

(15) and (16) require that a trip is only realized if there are available bikes at the origin station

and available docks at the destination. Constraint (17) is a flow conservation constraint and (18)

a capacity constraint for the bikes of each station. Constraint (19) is a proportionality constraint;

since we do not consider the exact arrival order of users within the same time period, this fairness

constraint ensures that the number of bikes traveling to each destination is proportional to the

corresponding demand (idea based on Ghosh et al. (2017)). In (20) the number of bikes is bounded

by the total bikes in the system B (this can be replaced with equality if all bikes must be used,

otherwise the solution provides the optimal number of bikes in the system). Finally, if an initial

configuration of the system is provided, this is taken into account by setting appropriately the

values of b0i . In the opposite case, the optimal values of b0i are calculated by solving the above LP.

Notice that this is a relaxed version of the problem, i.e. the variables are real numbers and not

integers. This is further discussed at the end of the section.

4.1. Available Bikes and Docks

If we assume that each bike and dock can be used only once per time period, then the available

bikes for each period are the ones currently present at the station, and similarly for the docks.

AVAILABLE BIKES(i, t) = bti ∀i, t (22)

AVAILABLE DOCKS(i, t) =Ci− bti ∀i, t (23)

This is what will be used for the computational experiments and the remaining sections of this

paper, but since this approach might be considered conservative, we present a way we can relax

this assumption by considering the expected number of arrivals until a station becomes empty or

full in Appendix A.
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4.2. Objective Function

If we maximize the number of successful trips, while respecting constraints (14)-(21), we get a good

representation of the trips that were performed in the system. This is the case because each time

a user is looking for a bike or a dock and they find one available, then they are going to use it.

So, in reality, the number of successful trips is the largest number of trips that can be performed

given demand and availability constraints, as well as the first come first served rule.

As a result, one natural option for the objective function is SUCCESSFUL TRIPS(f) =
∑

t,i,j f
t
ij.

However, that would not provide the desired result, since it does not ensure that the arrival order

is being respected. There are cases where the system may prevent users that arrive earlier from

taking a bike if that can be later used in a better way (by serving more trips), as illustrated by the

following example.

Example 1. Assume for simplicity that we have a BSS with three stations, one bike initially

located at station 1, and three periods of demand with d112 = 1, d213 = 1 , and d332 = 1 (recall dtij

denotes how many people want to go from i to j at time t). In an actual system with such demand,

the first customer would take the available bike, and customers 2 and 3 would not use the system as

there are no bikes at their origin (see Figure 2). However, the objective of maximizing the number

of people served leads to a solution where user 1 does not take the available bike, but it is instead

used by customers 2 and 3 (see Figure 3). This way, two users travel successfully, but that does

not agree with the first come first served rule.

In order to impose the rule of first come first served, we need to “prioritize” customers. This

prioritization can be achieved by setting weights for each customer, which must be selected appro-

priately, to ensure that solutions like the one in the example will not be optimal for the model.

Proposition 1. The objective function SUCCESSFUL TRIPS(f) =
∑

t,i,j 3T−tf t
ij, where T is the

number of time periods, enforces the first come first served (FCFS) principle for the users.

Proof of Proposition 1. Let the objective function be of the form SUCCESSFUL TRIPS(f) =∑
t,i,j w

T−tf t
ij, where the weights w need to be selected. Consider there are enough bikes to cover
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Period 3

Figure 2 Case I: When the first come first served

principle is satisfied, user 1 takes the

available bike, while users 2 and 3 do

not, leading to one successful trip. (Nor-

mal edges are used for successful trips and

dashed edges for the unsuccessful ones.)

1

1 bike

2

0 bikes

3

0 bikes

Period 1

1

0 bikes

2

0 bikes

3

1 bike

Period 2

1

0 bikes

2

1 bike

3
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Period 3

Figure 3 Case II: Results of the model without the

first come first served principle. In order

to maximize the total successful trips, the

solution of the model withholds the bike

from user 1, in order to satisfy users 2 and

3.

the demand at station i at time t. Then, a bike may not be used only if it offers greater payoff by

remaining at the same place and being used in later time periods. Similarly, due to the intercon-

nected nature of the resources (bikes and docks), the dock that remained empty at another station

j due to the bike not getting there, can be then used to satisfy future incoming demand.

Let Vuse denote the value that is added to the system if the bike is used at time period t and

Vstay the value in case it remains at station i during period t. Recall that each bike can be used

only once per time period. Vstay obtains its highest value if the specific bike at i as well as the dock

at j are used by customers during all subsequent periods t′, with t < t′ ≤ T . Since each bike and

dock can be used once per time period, each successful use corresponds to a flow of one unit, so:

Vstay ≤
T∑

t′=t+1

wT−t′ +
T∑

t′=t+1

wT−t′ = 2
T∑

t′=t+1

wT−t′ = 2
wT−t− 1

w− 1
(24)

Vuse is at least as much as the value gained by the user that rents the bike at time t. Of course,

it can be higher if the bike is used by other people in the following time periods.

Vuse ≥wT−t (25)

It is easy to see that for w≥ 3, we have:

Vuse ≥wT−t > 2
wT−t− 1

w− 1
≥ Vstay (26)
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Vstay <Vuse implies that FCFS is satisfied, since an available bike not being taken by a user cannot

be part of the optimal solution. We thus select w= 3 for solver numerical accuracy purposes. �

4.3. Discussion

The optimal solution of (UT) is not necessarily integral, due to proportionality constraints (19).

However, this is not an issue as our goal is to use this model as a measure of the performance of

the system. A different approach is to perform a simulation of user trips. For that, an arrival order

of the customers needs to be specified, in order to determine which ones are served in case of lack

of resources.

In our method, we take into account only the number of users that arrive at each station during

each time period - for example each half hour - and no specific order within the period is required.

The proportionality constraint (19) then attempts to balance the various demand scenarios that

arise from different arrival orders, by upper-bounding the number of trips to each destination. The

advantage of this approach is that it does not depend on the exact arrival order, which is generally

harder to estimate than just the number of users per period. We can think of the solution we get

as the result of running multiple simulations on different demand scenarios within each period,

and taking an average of their performance. Moreover, even if a similar proportionality approach

is incorporated as part of a simulation procedure, the fact that this is a linear programming model

expands its capabilities, as it can be also incorporated as part of more complicated models that

combine user flows with other problem aspects.

One valid concern is the numerical issues that might arise when solvers are used to get a solution

for the model. If there are many time periods per day, the objective function might obtain very

large values as the objective weights grow exponentially with the number of periods. This issue is

easy to tackle by solving the model in more than one stages. For example, we can solve it for the

first half of the time periods, set the final system configuration as the initial state of the second

run, and then solve the model separately for the second half of the periods. More stages can be

used as well if required, in order to achieve a desired numerical accuracy. A solution for the model



Mellou and Jaillet: Dynamic Resource Redistribution and Demand Estimation 21

can be obtained very fast, so introducing more than one stages does not significantly change the

total time that is required.

5. System Rebalancing

5.1. Preliminaries

Redistribution operations are planned based on the current configuration of the system, as well as

the future needs. In this section, we provide a brief description of the main aspects that influence

rebalancing decisions.

Unserved Customers. We first consider the unserved demand if no rebalancing is performed

at the system. This will give an indication about the stations that have the greatest need for

bikes or docks. Given the current configuration of the system, and the demand that is expected

for the remainder of the day, we use the linear program (UT) of Section 4 to find which users

successfully completed their trip. Then, for each station, we calculate the number of extra bikes or

docks that are required to address the unserved outgoing demand UNSERVED DEMAND(out, i, t)

and incoming demand UNSERVED DEMAND(in, i, t) for each station i and time period t.

Unused Resources. Since the rebalancing takes place simultaneously with the user movements,

it should not interfere with their actions. In particular, bikes and docks that are used by customers

cannot participate in the rebalancing during the same time period. So, for each station i and time

t, we compute the number of unused bikes UNUSED BIKES(i, t) and docks UNUSED DOCKS(i, t)

that are available for redistributing.

Rebalancing Needs. At this point, we have calculated the amount of customers that failed

to take a trip, as well as the number of resources that are unused at their current location, and,

thus, can be transferred elsewhere. We are now ready to make suggestions to the trucks regarding

the number of bikes they need to pick up or drop off at each station they may visit. In par-

ticular, if we are currently planning the rebalancing to take place during period t, we can look

at the unserved demand at time t + 1, that is UNSERVED DEMAND(out, i, t + 1) for bikes and

UNSERVED DEMAND(in, i, t+ 1) for docks, which guide the rebalancing targets for the truck. At
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the same time, we look at the available bikes that can be picked up/dropped off at each station

(UNUSED BIKES and UNUSED DOCKS for times t and t+ 1), so that the rebalancing operation is

actually feasible. One drawback of this method is that it is very myopic: it only considers the follow-

ing time period. So, instead, we actually consider the unserved demand and the unused resources

further in the future (for example for the upcoming five or ten time periods) and determine the

value of current resource needs BIKES NEEDED(i, t) and DOCKS NEEDED(i, t) for each station.

5.2. Scalability

In actual systems, the large number of stations often requires multiple vehicles working simul-

taneously to serve various parts of the network. This extends the redistribution capacity of the

operator, but also creates coordination needs that increase the complexity of the problem, mak-

ing it computationally intractable. Moreover, when redistribution is planned for the whole day in

advance, a large number of time periods creates extra challenges for the operator. We will now

discuss some methods to address these issues.

5.2.1. Geographic Segmentation. One common approach towards tackling the multi-

vehicle scenario is to partition the area of service into regions with exactly one vehicle assigned to

them. This is beneficial for drivers, as they can get familiar with the area more quickly, and thus

they can become more efficient. It also ensures that the vehicles are adequately spread out to cover

the rebalancing needs of most parts of the system.

The main challenge consists of identifying regions that achieve geographical proximity of stations

and equally balanced work-load for assigned vehicles. The method that will be used is a variation

of the k-median algorithm with a local search heuristic. There have been similar studies in the

literature both from a theoretical viewpoint, as well as applied in the area of facility location

problems. More on this topic can be found in Kanungo et al. (2014) and Arya et al. (2014).

Let k denote the number of available trucks, which also determines the number of station clusters

that we wish to create. S is the set of all stations, Sl the stations of cluster l, C the set of centers

of the clusters, and cl the station-center of cluster l. At any point, each station is assigned to the

cluster with the closest center. The general outline of the algorithm is the following.
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1. Initialization: Select k stations at random out of S that will serve as the initial centers C for

the k clusters.

2. While the termination criteria have not been met, iterate:

• Randomly pick one center cl ∈C and remove it from set of centers: C←C \ {cl}.

• Calculate the clustering cost when cl is replaced by any station s∈ S \C.

• Let s∗ ∈ S \C be the station that minimizes the above cost.

• Update the set of centers as C ∪{s∗}.

Clustering Cost. For each cluster, we consider the work-load of its assigned truck. This is a

combination of the expected number of redistributed resources, as well as the distances that it

needs to traverse. We use wi for the expected number of bikes that are required to be picked up

or dropped off for station i, and distij for the distance between stations i and j. Then, we define

the work load of each cluster l as:

WORK LOAD(l) =
∑
i∈Sl

wi +α
∑
i,j

distij
|Sl|

(27)

Ideally, all clusters should have the same work load, since we want to ensure that the work is

well distributed among the trucks. In order to achieve that, we can consider the maximum work

load over all clusters, and aim to minimize it, reducing in that way the work of the busiest truck.

The cost of clustering is in that case:

CLUSTERING COST = max
l

WORK LOAD(l) (28)

Termination. At any point, the cost of the clustering solution is equal to the largest work-load

among the vehicles. If this cost can be decreased by swapping a cluster center with some other

station, then this replacement takes place during the iteration step of the algorithm. The cost

is nonincreasing during the execution of the algorithm, and since it cannot improve indefinitely,

a convergence to a local minimum is guaranteed given an adequate number of iterations. The

algorithm terminates either when there has been no improvement for a set number of iterations or

when a time limit, if any, has been reached. Since the execution time is very short, it can potentially

be run multiple times will different random initializations and keep the best solution among them.
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Figure 4 Geographic decomposition of sta-

tions into areas. A separate vehi-

cle is assigned to each area.

Figure 5 Decomposition statistics: resources to be redis-

tributed, average distance, number of stations and

total work-load per cluster with α= 10.

5.2.2. Rolling Time Horizon. If redistribution decisions need to be taken for the entire day,

a large number of time periods leads to an exponential number of different scenarios. Optimizing

over such a large solution space is intractable, so we propose to focus on actions for the imminent

future. This choice is also reinforced by the fact that in real systems future user demand is not fully

known in advance. So, planning far in the future is not always worthwhile, since the configuration

of the system at that time may be very different from the one currently expected.

As a result, we use a rolling time horizon. Each time we look at the current state of the system

and plan the rebalancing for the upcoming time periods. When the realization of the actual demand

occurs for these periods, we consider the new state of the system, and roll the rebalancing window

to solve for the next periods. Despite focusing on a few periods for the rebalancing, we still consider

the demand ahead. In that way, all the information we possess about future demand is taken into

account when relocating the resources.
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5.3. Formulation

In this section, we introduce the Dynamic Rebalancing (DR) model. The decision variables include

variables for the routing of the truck: binary variables xij expressing whether the truck visits station

j right after station i, truck arrival times ti at each station i, station visit duration duri, as well as

bikes bTi in truck upon arrival of the truck at station i. Moreover, the number of bikes to be picked

up and dropped off from station i correspond to decision variables PUi and DOi respectively. We

further specify the picked up bikes by categorizing them as PU+
i for bikes that add immediate

value to the rebalancing as they vacate docks for customers to use, and PU o
i for bikes that it is not

necessary to be picked up from i, but they are in order to later be dropped off at other stations

that need them. We consider the latter pick-up to be of neutral value to the rebalancing since the

station where the pick-up takes place does not have an immediate gain from it. Similarly, we have

DO+
i and DOo

i for the drop-offs with positive and neutral value respectively.

We wish to maximize the positive value actions, while allowing the neutral type ones to take place

where needed. Weights γ and δ in the objective are small constants in order to jointly minimize

traveling time and redundant redistribution, M is a large constant, τ0 is the initial time of the

rebalancing period that the truck is available, ζ0 is the initial bike load of the truck, τaction is the

time that is required for each bike pick-up and drop-off, τstation the overhead time per station visit

(for parking, etc.), and τperiod the length of the rebalancing period. We introduce a dummy node

for the truck, denoted with index 0, S is the set of indices that corresponds to the station nodes

and S0 = S ∪{0} the set that also includes the dummy node.

(DR) : max
∑
i∈S

PU+
i +

∑
i∈S

DO+
i − γ

∑
i∈S0,j∈S

distijxij − δ
∑
i∈S

(PUi +DOi) (29)

s.t.
∑
j∈S0

xij = 1 ∀i∈ S0 (30)

∑
j∈S0

xji = 1 ∀i∈ S0 (31)

tj ≥ ti + duri + distij ·xij −M · (1−xij) ∀i, j ∈ S, i 6= j (32)
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ti ≥ dist0i ·x0i + τ0 ∀i∈ S (33)

ti ≤ τperiod ∀i∈ S (34)

duri ≥ τstation · (1−xii) + τaction ·PUi + τaction ·DOi ∀i∈ S (35)

bTj ≥ bTi +PUi−DOi−M · (1−xij) ∀i, j ∈ S, i 6= j (36)

bTj ≤ bTi +PUi−DOi +M · (1−xij) ∀i, j ∈ S, i 6= j (37)

bTi ≥ ζ0 ·x0i ∀i∈ S (38)

bTi ≤CT − (CT − ζ0) ·x0i ∀i∈ S (39)

bTi ≤CT ∀i∈ S (40)

bTi +PUi−DOi ≤CT ∀i∈ S (41)

bTi +PUi−DOi ≥ 0 ∀i∈ S (42)

PUi ≤UNUSED BIKES(i) ∀i∈ S (43)

PU+
i ≤DOCKS NEEDED(i) ∀i∈ S (44)

PUi = PU+
i +PU o

i ∀i∈ S (45)

PUi ≤M · (1−xii) ∀i∈ S (46)

DOi ≤UNUSED DOCKS(i) ∀i∈ S (47)

DO+
i ≤ BIKES NEEDED(i) ∀i∈ S (48)

DOi =DO+
i +DOo

i ∀i∈ S (49)

DOi ≤M · (1−xii) ∀i∈ S (50)

xij ∈ {0,1} ∀i, j ∈ S0 (51)

ti, duri, b
T
i , PUi, PU

+
i , PU

o
i ,DOi,DO

+
i ,DO

o
i ∈R+ ∀i∈ S (52)

Constraints (30) and (31) specify the truck routing. We impose that each node is visited exactly

once, including the dummy node that corresponds to the truck. Nodes that are not visited by

the truck correspond to self-loops in the solution. This idea is inspired by Yang et al. (2004).
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Constraints (33) [for the first visit] and (32) [for subsequent visits] describe the arrival times of

the truck at the stations which must be within the allowed horizon (34), and (35) allows for the

necessary amount of time per station visit. (36) and (37) update the bikes in the truck after each

visit, and (38) and (39) enforce that the truck contains its initial load of bikes at the beginning of

its first visit. Constraints (40) ensure that the bikes in the truck do not exceed the truck capacity,

while (41) and (42) are used to enforce load limits after the last truck visit. Due to (43) and (47),

bikes are rebalanced only if they (or the docks) are unused at that moment to not interfere with

customer flows. Each pick-up and drop-off can either be of positive or neutral value (45), (49), and

they are nonzero only if the truck actually visits the station (46), (50). Finally, the positive value

resources are bounded by the needed bikes and docks per station (44), (48). We can also add the

following two constraints to obtain a tighter formulation:∑
i∈S0,j∈S

distijxij +
∑
i∈S

duri ≤ τperiod (53)

∑
i∈S

τaction ·PUi +
∑
i∈S

τaction ·DOi ≤ τperiod (54)

Further details for model (DR) are provided in Appendix B.3.

5.3.1. Planning over Multiple Rebalancing Periods. Note that in (DR) we are planning

over a single rebalancing period of length τperiod. In Appendix C, we show how Dynamic Rebal-

ancing model (DR) can be generalized to Multiperiod Dynamic Rebalancing (MDR) to generate

rebalancing plans considering jointly more than one rebalancing periods. The main ideas consist

of introducing the constraints of (DR) for each rebalancing period, with additional constraints to

ensure feasible transition of the truck from one period to the next, as well as overall feasible bike

pick-ups and drop-offs if a station is visited at more than one period. The results of this approach

are compared with the single-period rebalancing in the Computational Experiments Section 6.

5.4. Optimization with Station Groups

For each cluster, neighboring stations can sometimes be handled together by consecutive truck

visits. The goal of this section is to group stations that are very close to each other, in order to

further reduce the size of the network.
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5.4.1. Leader Stations. We introduce a binary variable xi for each station i and aim to allow

only stations with xi = 1 to potentially be visited by a truck. We name these stations leader stations.

The goal is to minimize the number of leader stations, minimizing in that way the visit candidates

of the truck. At the same time, we need to ensure that each station has at least one leader nearby,

in other words, for each station the truck can visit and rebalance bikes in its neighborhood. Let

SR denote the stations that currently need rebalancing, and Nil the l-neighborhood of i, where

distance l is a parameter of the model. The formulation follows.

min
∑
i

xi (55)

s.t.
∑
j∈Nil

xj ≥ 1 ∀i (56)

xi ≥ xj ∀i∈ SR, j /∈ SR, j ∈Nil (57)

xi ∈ {0,1} ∀i (58)

This is a variation of the set covering problem: According to constraint (56) each station must be

covered by/be in the neighborhood of at least one leader (the station itself could be that leader).

Constraint (57) gives priority to stations that need rebalancing: If it is possible to select a leader

between a station that needs rebalancing and one that does not, then the one that faces the problem

will be prioritized. As a result, a station that does not currently require rebalancing can become a

leader station only if none of its neighbors are in need of rebalancing.

After the leaders have been selected, each station is assigned to its closest leader, creating in

that way mini-groups of stations, each of which is represented by its leader. The capacity and the

rebalancing needs of the leader are then given by the total capacity and rebalancing needs of the

stations in its mini-group. The advantage of this approach is that it allows to consider only a small

subset of stations, facilitating in that way the optimization. At the same time, it does not ignore

the remaining stations, since the problems of all stations are taken into account.
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5.4.2. Rebalancing Only Leader Stations. Having identified a set of leader stations, a

natural next step is to solve (DR) using only the leader stations. In this case, each leader station will

have the total capacity, unused resources and rebalancing needs of its mini-group. An important

drawback of this suggestion is that it implies that a visit to the leader station would momentarily

solve the problem for many of the stations of its mini-group as well. This ignores the traveling time

that is required to move from one station to the other, which might be close, but their distance

is still not negligible. In the next section, we develop a method that can take information of each

group into account in the model.

5.5. Optimization with Partial Group Information

Let us now propose an approach which will be demonstrated by considering one of the mini-groups

as an example. First, we simplify our problem by assuming temporarily that all pairs of stations

of the group require the same traveling time τtravel. We can make this assumption, because all

stations are close to each other, so their traveling times do not differ significantly. An important

observation is that the work performed within a mini-group depends clearly on the time the truck

spends in that mini-group. A short period of time might only be enough to visit the leader station,

while longer visit durations allow serving more of the stations of the group. We will express now

the performance of the truck as a function of the time spent inside the mini-group, with the help

of a greedy routing algorithm.

5.5.1. Greedy Routing Algorithm. Consider first only the stations that require bikes to

be picked up, i.e. they need extra empty docks to satisfy their incoming demand. The truck is

currently at the leader station of the group. Aiming to maximize the number of picked-up bikes,

the truck starts by picking up bikes, if any, from the leader station. Then, since all traveling times

between stations are assumed to be the same and equal to τtravel, the truck will greedily maximize

its performance if it visits the station with the largest number of bikes to be picked up: by “paying”

the price of τtravel to reach a station, it gets the greatest possible “reward”, i.e. largest amount of

bikes.
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Example 2. Consider the mini-group in Figure 6 which consists of five stations and let station 3

be the selected leader. Assume the truck is currently at station 3, there are no constraints on its

capacity, the traveling time between any pair of stations is τtravel = 3 minutes, the overhead time for

each station visit (parking, etc.) is τstation = 2 minutes, and picking up each bike requires τaction = 1

minute. Following the greedy routing algorithm described before, we get a solution where 5 bikes

are picked-up from station 3, then 4 from station 5, and finally 3 from station 1.

1

-3
2

+2

3

-5

4 +35-4

Figure 6 A mini-group of stations. The number by each station indicates the number of bikes that should be

picked-up (negative sign) or dropped-off (positive sign).

Proposition 2. For a given rebalancing period length T , the greedy routing algorithm within a

group of stations is optimal if we ignore the vehicle’s load and capacity, the integrality of resources

and assume equal traveling times between any two stations of the group.

Proof of Proposition 2. In this case, the routing among a group of stations can be reduced to

the fractional knapsack problem. The length of the rebalancing period T can be thought of as the

capacity of the knapsack. Each station i is an item with “value” equal to the resources ri (bikes

or docks) that can be rebalanced and “weight” equal to the time required to travel to the station

and perform the rebalancing τtravel + τstation + ri · τaction. The goal is to maximize the redistributed

resources in the period length T . Hence, given that we allow fractional rebalancing of resources,

the greedy algorithm selects the stations in decreasing order of value over weight, so the solution

is optimal. �
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In the above, we have assumed that the value (amount of redistributed resources) is being

obtained equally distributed over the total time for traveling and picking up or dropping off the

bikes. In reality, no value is acquired during the traveling time among stations, but this is a

simplifying assumption that allows us to model redistributed resources as piecewise linear concave

functions of rebalancing time, as will be demonstrated in the following section.

5.5.2. Group Modeling Using Piecewise Linear Functions.

Proposition 3. The amount of redistributed resources in the greedy algorithm can be modeled as

a piecewise linear concave function of the time the vehicle spends in the group of stations.

Proof of Proposition 3. The greedy algorithm selects the stations in order of decreasing ratio

ri
τi

of redistributed resources ri over required time τi = τtravel + τstation + ri · τaction. Since the ratio

ηi =
ri
τi

is decreasing in the selections of the algorithm, so are the slopes of ri as a function of τi if

we approximate them using functions ri(τi) = ηiτi. Hence, the amount of redistributed resources is

a concave piecewise linear function of the time the vehicle spends in the group. �

Example 3. Using again the example of Figure 6, we have three stations that need bikes to picked-

up, so the piecewise linear function that corresponds to the pick-ups will consist of three pieces

(for stations 3, 5 and 1 respectively). The truck is already at station 3 and we need to pick up

r3 = 5 bikes, so the visit will last τ3 = r3 · τaction = 5 minutes. For station 5, r5 = 4 bikes need to

be picked up and the time required is τ5 = τtravel + τstation + r5 · τaction = 9. Finally, for station 1

and the pick-up of r1 = 3 bikes: τ1 = τtravel + τstation + r1 · τaction = 8. As a result, the truck will

visit station 3 for t∈ [0,5], station 5 for t∈ [5,14] and station 1 for t∈ [14,22]. The corresponding

line slopes are given by
ri
τi

, which in this case are
5

5
= 1 for station 3,

4

9
= 0.444 for station 5, and

3

8
= 0.375 for station 1, which are decreasing and the function is concave, as it is also illustrated

in Figure 7.

In the previous example, the focus was placed only on bike pick-ups. However, it should be

obvious that the same results hold for bike drop-offs.
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Figure 7 Redistributed resources as a function of time. With blue color the piecewise linear concave functions.

With red the results taking into account that during traveling the number of resources remains constant

(function parallel to x axis during traveling).

Corollary 1. The amount of redistributed resources over time for each group can be formulated

using linear constraints. If ap and bp denote the slope and intercept vector (with elements ap,l and

bp,l for each line segment l) that correspond to the piecewise linear concave function for the pick-

ups, and respectively ad and bd for the drop-offs, and, finally, durPUi is the duration of the visit

in group i where the truck is picking up bikes and durDOi is the duration of the visit where the

truck is dropping off bikes, then the number of bikes PUi that can be picked up and DOi that can

be dropped off are the largest numbers that satisfy:

PUi ≤min
l

(αi
p,l · durPUi +βi

p,l) ∀i (59)

DOi ≤min
l

(αi
d,l · durDOi +βi

d,l) ∀i (60)

5.5.3. Global Rebalancing. Having expressed the amount of redistributed resources for each

group with respect to the duration of its visit, we can now introduce the rebalancing optimization

using partial group information. The basis of the optimization is still model (DR) as described

in Section 5.3, which is now applied only to the leader stations. The main difference is that we

introduce for each group constraints (59) and (60) to model (DR), so it now performs dynamic

rebalancing with partial information and is therefore denoted by (DRPI). Appendix B.1 presents

in more details the changes in (DR) that lead to (DRPI).
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The solution of (DRPI) produces a routing for each truck which specifies the order with which

groups need to be visited. Moreover, it provides the number of bikes that need to be picked up and

dropped off for each group, as well as an estimation of the time it will require. Note that picking

up and dropping off the planned number of bikes is important, as these bikes might be accounted

for in the resources needed for subsequent truck visits. Regarding the time that the actions per

group actually require, there is slightly more flexibility: we have the possibility of delaying a group

visit by a few minutes or performing it ahead of time. The next section concludes this method by

describing how the exact routing within each group is obtained.

5.5.4. Final Retrieval of Within Group Routing. For the rebalancing within each group,

the total number of bikes to be picked up and dropped off is provided by the solution of (DRPI)

and now the exact routing needs to be retrieved. At this point, we remove the assumption that

all pairs of stations in a group have the same distance, and consider their real distances. For the

retrieval of the routing, one might use an adaptation of the greedy routing algorithm since the

distances within each group are small and the routing is not very demanding in terms of time. The

greedy routing algorithm selects the next station to be visited based on the largest ratio of bikes to

be moved over the required time. This selection criterion can still be followed, but the load and the

capacity of the truck need to be taken into account: if a truck is full, it cannot pick up more bikes,

and similarly for dropping off when it is empty. Moreover, the total number of bikes to be picked

up and dropped off per group is determined by the solution of (DRPI). Therefore, we adapt the

selection step by considering the ratio of bikes moved over time but only for the number of bikes

that is allowed based on the current load, the total capacity limits of the truck, and the (DRPI)

solution. In case the final schedule includes visits that exceed the rebalancing period duration, we

remove all visits with arrival time after the period end.

6. Computational Experiments

The results of this section are based on real-world data for Capital Bikeshare, Washington DC,

for the time period May to September 2017. For each past trip, we have details about its origin,
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its destination, as well as its starting and ending times. We also have information about station

outages, i.e. the starting and ending time, as well as the station where it was observed, and its

status - full or empty. Finally, the design details of the system are also known: the location and the

capacity for each station, and the total number of bikes in the system. The data for past trips and

system information (Capital Bikeshare (2017)), as well as the data for outages history (Capital

Bikeshare Tracker (2017)) are publicly available.

6.1. Demand Estimation

6.1.1. Lost Demand. In order to evaluate the methods suggested in Section 3.2, we identify

all periods for which each station is not empty, and for each such period we assume that the

demand is unknown and estimate it as the convex combination of the demand obtained by the

average station behavior and the daily trends.

ldtout,i = λ · AVG ldtout,i + (1−λ) · TREND ldtout,i (61)

Since the station is not actually empty at that time, we know the exact demand that was observed.

So we can compare our estimation results with the observed demand of the day using the mean

square error (MSE) as the evaluation metric.

Computation of parameter λ. The optimal value of the parameter λ that minimizes the

MSE can be computed in closed form. Note that dtout,i appears instead of ldtout,i below, since in this

setting only stations with known demand participate.

λ=

∑
i,t(d

t
out,i− TREND ldtout,i) · ( AVG ldtout,i− TREND ldtout,i)∑

i,t( AVG ldtout,i− TREND ldtout,i)
2

(62)

The optimal value of λ is calculated using half of the dataset as the training set, and then the

MSE with the selected λ is evaluated on the remaining dataset. We ran 100 experiments with

different random splits for the training and the testing set, and the values are consistent. The

average optimal λ is 75.56% with a standard deviation of 1.45%.

The average MSE results on the testing sets across all experiments are presented in Table 2. In

this table, weekends and vacations are excluded and only the 80% busiest days have been considered
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Table 2 Out-of-sample demand estimation MSE during rush hours and for the whole

day.

Time Minimum trips Average behavior Average & Trends
Morning rush hour 20 2.081 2.049
(7:30am-9:30am) 50 2.994 2.939

100 5.278 5.155
Evening rush hour 20 4.273 4.101
(5pm-7pm) 50 7.190 6.875

100 13.797 13.118
All day 20 2.272 2.215
(6am-11pm) 50 3.695 3.581

100 7.566 7.219

The minimum trips column shows the least number of daily trips for a station to be considered,
which allows to evaluate separately the results for the busiest stations of the system. The combination
of the average demand and the daily trends outperforms considering just the average which is a
common approach.

to avoid very slow days and outliers where external factors may lower bike usage, so as to have

more accurate comparisons with O’Mahony (2015), who remove days with rain and snow from their

estimation based on average station behavior. We show the results for the whole day as well as for

the morning and the evening rush hour. Similarly, we present separately results for busy stations

(the ones that have a minimum of 100 or 50 trips per day). In all instances, using a combination of

the average station behavior and the daily trends outperforms taking simply the average demand.

Having evaluated the methods on intervals where the demand is known, we will now illustrate

some of the results on lost demand estimation. The data has already been preprocessed to identify

intervals of lost demand, and the size of this lost demand is being estimated according to Section

3.2. In the following Figures 8 and 9, we present the results on the lost demand for each of the five

months, May to September 2017, and compare it with the corresponding observed demand for the

same period.

Figure 10 shows how the lost demand is distributed in the duration of the day. We can observe

that there are two peaks both in the lost outgoing and the lost incoming demand. Assuming the

morning rush hour is from 7:30am to 9:30am and the evening from 5pm to 7pm, we can see that

these peaks emerge towards the end and after each rush hour of the day. This is not an unexpected

behavior, since the large masses of customers that move during the rush hours often leave big parts

of the network unbalanced, and many outages may follow raising the amount of lost demand.
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Figure 8 Daily average observed (blue) and esti-

mated lost (red) outgoing demand from

May to September 2017. The numbers in

the bars show the percentage of the lost

demand with respect to the corresponding

observed one.

Figure 9 Daily average observed (blue) and esti-

mated lost (red) outgoing demand from

May to September 2017 considering only

the weekdays. The numbers in the bars

again show the percentage of the lost

demand with respect to the observed one.

Figure 10 Estimated lost demand in the duration of a day. This is the average daily lost demand over the period

May-September 2017. The two peaks visible in both incoming and outgoing lost demand correspond

to the morning and evening rush hours.
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6.1.2. Shifted Demand. Having calculated the lost demand, both the observed and the lost

demand are aggregated in periods of thirty minutes, and we use the model of Section 3.3 to calculate

the probability p with which users choose to walk if there is a station with available bikes nearby.

The maximum distance lmax that people are willing to walk is a parameter of the model. We will

now experiment with various values of lmax and show how that influences the value of p. We assume

that if people have more than one station they can walk to in the lmax-radius, then the probability

of going to each station is inversely proportional to its distance, as explained in Section 3.3, making

it more likely to visit closer stations than further ones. We also experiment with various values for

the shifting distance multipliers α. The results are illustrated in Figure 11.

Figure 11 Probability of walking p as the allowed walking radius lmax and the shifting distance multiplier α vary.

In order to evaluate the results of the model, we want to check its consistency across the network.

So, we randomly split the set of 485 stations into two separate groups A and B of approximately

the same size. The model first runs on the stations of group A and provides a walking probability

value pA, and then runs on group B and calculates the value of pB. Every time we run the model

on a set of stations, the shifted demand that originates from stations of the other group is still

taken into account. The reason for this is that at the end it was served by the stations under

consideration, so it consists part of their observed demand. The difference of the values across the

two groups is then given by |pA− pB|.
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Table 3 Consistency results for

various parameter values.

lmax \ α 1 1.2 1.5
400m 0.0228 0.0272 0.0319
500m 0.0181 0.0235 0.0249
600m 0.0165 0.0204 0.0236

These values for the mean absolute differ-
ence dp were obtained for 100 iterations and
various values of maximum radius lmax and
multiplier α.

Since a unique split is not sufficient to evaluate the performance of the model, we run 100

iterations, each with a different random split of the stations into the two groups. Let Ait and Bit

denote the two groups that were obtained during iteration it. We then use pitA (resp. pitB) for the

value of the probability of walking that was obtained by running the model on group Ait (resp.

Bit). We can now compute dp, which is the average absolute difference of the values pitA and pitB

across the iterations. For a number of I iterations, we have:

dp=
1

I

I∑
it=1

|pitA− pitB| (63)

Table 3 summarizes the results for 400m, 500m and 600m of maximum walking distance lmax,

and values 1, 1.2 and 1.5 for shifting distance multiplier α. All combinations for lmax and α that

we tested lead to a small average difference between the p values of the station groups. Since the

number of iterations is large, this suggests that in the average case the p values of the groups do

not differ significantly. Similar values of p indicate that this method is consistent throughout the

network.

Having evaluated the consistency of the model, at this point we need to make a selection regarding

the value of lmax and α that will be used to calculate the shifted demand. We cannot base our

selection solely on the objective value of (SD), since large values for lmax are not representative of

the human behavior in the real world: someone would rarely walk one kilometer in order to find an

available bike. For this reason, we decided to use lmax = 500m, which is a reasonable choice for a

walking distance. Similarly, we selected α= 1.5, which assumes people might go to other stations

besides their closest one as long as they are not very far from it. Indeed, often the closest station
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might be on the opposite direction of the desired destination, so someone might decide to walk

slightly further but simultaneously cover part of the distance towards their final destination. These

values for lmax and α correspond to a walking probability p= 43.59%.

6.2. System Rebalancing

In this section, we present results of the proposed system rebalancing methods using both synthetic

and real-world datasets. Varying the structure on synthetic data can offer good intuition on factors

that influence algorithms’ performance. On the other hand, using real-world datasets allows us to

evaluate the methods in an actual bike sharing system. For the implementations, we use Julia,

a high-performance language for numerical computing (Bezanson et al. (2017)), and JuMP, a

modeling language for mathematical optimization (Dunning et al. (2016)).

6.2.1. Experiments on Synthetic Data. All experiments are run on grid-structured

instances of two types (see Figures 12 and 13). In both types, each group of stations occupies a

single cell of the grid, but Type I instances consist of a sparser grid with larger distance among

groups, while Type II instances are denser. We vary the sizes of the grid, the number of stations

per group, and the rebalancing requirement levels. In these experiments, we consider a single rebal-

ancing period, since it is sufficient to demonstrate the differences among the various methods. We

report the results and compare three methods: using the MIP formulation (DR) directly on the

set of stations (denoted as “S”), grouping using only the leaders’ information in (DR) (denoted as

“G/L”), and grouping with partial information using (DRPI) (denoted as “G/PI”).

Figure 12 Type I: Sparse grid 3 × 3. Each grey

region corresponds to a group of stations.

Figure 13 Type II: Dense grid 5 × 5. Each grey

region corresponds to a group of stations.
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Table 4 Served users in the scenario of homogeneous rebalancing needs.

Grid size Stations per group Grid type S [5 min] (Opt. Gap) S [20 min] (Opt.Gap) G/L G/PI
4× 4 5 I (sparse) 80 (43.4%) 85 (32.6%) 86.31 81.80
4× 4 5 II (dense) 90 (28.7%) 95 (21.3%) 91.86 92.37
4× 4 10 I (sparse) 86.09 (46.7%) 95 (31.5%) 100 98.27
4× 4 10 II (dense) 82.86 (56%) 100 (25.1%) 101.16 101.45
5× 5 5 I (sparse) 0 − 80 (52%) 87.08 89.11
5× 5 5 II (dense) 57.03 (117%) 92.37 (31.6%) 93.17 92.61
5× 5 10 I (sparse) 89.45 (48.1%) 91.22 (41.8%) 95 100
5× 5 10 II (dense) 85 (55.7%) 95 (36%) 97.69 95.97

Each station requires the same number of bikes to be picked up or dropped off. Three methods are compared: using the (DR) formulation
directly on the set of stations (denoted as “S”), grouping using only the leaders’ information in (DR) (denoted as “G/L”), and grouping
with partial information with (DRPI) (denoted as “G/PI”). G/PI and G/L get within seconds solutions that are better or comparable to
solutions that S obtains after 20 minutes.

We consider instances with grid sizes 4×4 and 5×5, and each station group has 5 or 10 stations.

Regarding the rebalancing needs, we consider one scenario where all stations need the same amount

of bikes to be picked up or dropped off (homogeneous needs), and a scenario where each group has

two dominant stations with much larger needs than the rest (heterogeneous needs). In both cases,

each station is being labelled independently as pick-up station or drop-off station with probability

one half.

Parameter Selection. In the experiments that follow, all stations have capacity 20 and are

initially half filled, the rebalancing period length is 100, and the truck has a capacity of 25 bikes.

Each side of the grid cells is 1000 meters, and in Type I (sparse) instances the vertical and horizontal

distance between cells is 1000 meters, while in Type II (dense) 200 meters. We assume the overhead

time for each station visit (for parking, etc.) is τstation = 1 minute, the time for each bike pick-up or

drop-off is τaction = τpickup = τdropoff = 0.5 minute, and the average traveling time between stations

of the same group is τtravel = 1 minute since they are close by. In the scenario with homogeneous

rebalancing needs, each station needs five bikes to be picked up or dropped off, and in the one with

heterogeneous needs, two stations of each group need ten bikes to be picked up or dropped off and

the rest just one. In the case where the MIP is applied directly on the stations without grouping

(S), we report the results (including the optimality gap) after 5 minutes and 20 minutes of running

time, in order to compare the tradeoff of the solution quality and the required time with the results

of our methods.
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Table 5 Served users in the scenario of heterogeneous rebalancing needs.

Grid size Stations per group Grid type S [5 min] (Opt. Gap) S [20 min] (Opt. Gap) G/L G/PI
4× 4 5 I (sparse) 86 (41.2%) 87 (34.4%) 78 94.45
4× 4 5 II (dense) 106.63 (18.3%) 108 (15.2%) 86.81 105.22
4× 4 10 I (sparse) 79 (71.5%) 84 (57.8%) 65 80.67
4× 4 10 II (dense) 0 − 91 (45.7%) 65 110.27
5× 5 5 I (sparse) 0 − 86 (49.4%) 85.18 101.26
5× 5 5 II (dense) 0 − 107.17 (26.6%) 80 112.68
5× 5 10 I (sparse) 0 − 0 − 71.71 100.4
5× 5 10 II (dense) 10 (1301%) 10 (1295%) 72.72 108.89

Each group has two stations with much larger rebalancing needs than the rest. Three methods are compared: using the (DR) formulation
directly on the set of stations (denoted as “S”), grouping using only the leaders’ information in (DR) (denoted as “G/L”), and grouping
with partial information with (DRPI) (denoted as “G/PI”). Incorporating partial group information leads to G/PI significantly outperforming
G/L and getting better solutions than S within seconds of running time.

Results. Tables 4 and 5 present the number of bikes that was redistributed successfully (or

equivalently the number of additional served users) in each method within the rebalancing period

length. We observe that grouping can in general achieve comparable or better solutions in faster

running times; in particular, G/PI provides within seconds solutions that are better or comparable

to solutions obtained after 20 minutes of running the MIP in S. The difference in performance

becomes more significant as instances become larger, and manifests in a larger degree in Type I

(sparse) instances. In these instances, the groups of stations are not adjacent, but there is some

distance among them, and the traveling times among groups are larger. This seems to complicate

the solution for the MIP in S, which at times needed more than five or twenty minutes to find a

feasible solution, while G/PI had already found a good quality solution within seconds.

Comparison between grouping where only leader information is taken into account (G/L) and

grouping with partial group information (G/PI) shows that solutions are comparable when all

stations have equal rebalancing needs. On the other hand, the difference is significant when there

are stations with much larger needs (dominant stations) than the rest. G/L cannot differentiate

between this and the previous case; since within group routing and time per visit are not taken

into account, only the aggregate number of bikes needed influences the MIP results. However, in

G/PI, the piecewise linear functions that model the redistribution operations within each group

guide the MIP solution to visit mostly the dominant stations. The reason is that the value of these

visits (bikes redistributed over required time) is larger than visiting the remaining stations, where
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the travel time is not worth the amount of bikes to be picked up or dropped off in most groups.

Overall, the extra information provided in G/PI produces solutions that outperform G/L, and also

compare favorably with MIP results without grouping (S) while requiring significantly less running

time.

6.2.2. Experiments on Real-World Data. In this section, we will use the past trips dataset

provided by Capital Bikeshare, Washington DC, to evaluate our proposed methods. In the sections

that follow, we compare multiple aspects that influence rebalancing, and more detailed results can

be found in Appendix D. Unless noted otherwise, we consider the rebalancing that takes place each

day until noon, which includes the preparation for the morning rush hour, the rush hour itself, as

well as the reorganization that is required when it is over as a result of the increased user traffic.

Parameter Selection. In the following experiments, each rebalancing period has length of 30

minutes, the overhead time for each station visit is τstation = 1 minute and the time for each bike

pick-up or drop-off is τaction = τpickup = τdropoff = 0.5 minute. In the leader selection, we set the

maximum distance between stations of the same neighborhood to be 1000 meters, and the travel

time between stations of the same group to be τtravel = 1.14 minutes, as this is the average value

we obtained experimentally. In order to determine the rebalancing needs and the unused resources

of each station, which then guide the actions of the trucks, we consider the user demand from

the current period and up to five periods in the future, as described in Section 5.1. For these

experiments there are 8 trucks, each of capacity 25 bikes, the stations start the day half full, and

the MIP solver time limit for (DR) and (DRPI) is 1 minute per cluster and per time period.

Method Comparisons. Similarly to the synthetic instances, let us begin with comparing the

three different methods: using (DR) on the set of stations without grouping (denoted as “S”), using

(DR) to the set of leaders without incorporating partial information (denoted as “G/L”), and using

(DRPI) which considers the set of leaders with partial information (denoted as “G/PI”). Results

for the rebalancing gain for the three methods are presented in Figure 14, and more detailed results

are available in Appendix D.
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The rebalancing gain refers to the additional number of users that the system can serve compared

to the scenario where no rebalancing takes place. We observe that in all instances G/L and G/PI

outperform S, and, with a few exceptions, G/PI outperforms G/L. In particular, G/L achieves an

6.78% increase of the rebalancing gain compared to S (averaged over all instances), and G/PI an

11.36% increase in average. Moreover, despite obtaining better results, G/L and G/PI require 5 to

8 times less total running time compared to S.

Figure 14 Rebalancing gain for the (DR) formula-

tion applied directly on the set of sta-

tions (denoted as “S”), (DR) applied on

the group leaders (denoted as “G/L”),

and (DRPI) on group leaders with partial

information (denoted as “G/PI”), over 10

instances. G/PI obtains the largest rebal-

ancing gain among the three methods.

Figure 15 Rebalancing gain for G/PI when the

planning horizon consists of a single

rebalancing period (RP = 1) and (DRPI)

is applied, or two (RP = 2) rebalancing

periods, in which case its multi-period

version (MDRPI) is used. The multi-

period planning horizon leads to a small

improvement of the average gain.

Varying the Rebalancing Planning Horizon. As explained in Section 5.3.1, we can gen-

eralize (DR) and (DRPI) into multiperiod versions (MDR) and (MDRPI), where we jointly plan

over more than one rebalancing periods. Figure 15 illustrates the results of (DRPI), where we
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consider a single rebalancing period (RP = 1), and (MDRPI) that considers two rebalancing peri-

ods (RP = 2). Introducing a second rebalancing period in the action planning leads to a further

improvement of 1.78% compared to G/PI with RP = 1, which brings the average improvement

over S (from Figure 14) to 13.36%.

Benefits of Neutral Value Rebalancing Actions. In both models (DR) and (DRPI), we

allow for rebalancing actions of neutral value PU o
i and DOo

i , where essentially we can pick up and

drop off bikes from stations that do not currently need rebalancing in order to better serve other

stations that need the resources. We now evaluate the effect of these neutral value rebalancing

actions, by comparing the rebalancing gain with the case where neutral value actions are not

allowed. In this scenario, trucks can only transfer bikes between stations with imminent rebalancing

needs, and this is achieved by enforcing PU o
i = 0 and DOo

i = 0, ∀i∈ S in the model. The results are

presented in Figure 16. Prohibiting neutral value rebalancing actions leads to an average decrease

of 55.3% of the rebalancing gain compared with G/PI with RP = 1. The main reason is that at

each cluster at any time the number of bikes that need to be picked up might differ significantly

from the number of bikes that need to be dropped off. As a result, auxiliary visits to neighboring

stations that do not currently need rebalancing help the truck acquire the necessary resources to

satisfy more rebalancing needs.

Comparison with Static Rebalancing. We conclude the experimental analysis by also con-

sidering the case of static rebalancing, where redistribution operations take place overnight to

prepare the stations for the demand of the following day. In order to determine the initial state

of the stations at the beginning of the day, we use our model for user trips (UT) from Section 4.

Without specifying the initial state for each station, (UT) provides the initial number of bikes that

optimizes the objective function. We can think of this as the ideal static rebalancing that delays

the most the time when the first rebalancing need appears. We do not consider the specifics of

how this static rebalancing is performed, but wish to evaluate the extent to which our dynamic

rebalancing can improve further the service level of the system. Since static rebalancing benefits
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Figure 16 Rebalancing gain for G/PI (model

(DRPI)) compared to (DRPI) without

neutral value rebalancing actions. For-

bidding neutral value rebalancing actions

leads to a significant decrease of the rebal-

ancing gain.

Figure 17 Rebalancing gain for ideal initial state of

stations without and with dynamic rebal-

ancing. Dynamic rebalancing improves

significantly the rebalancing gain, even

when the stations start the day with their

ideal bike inventory.

the morning periods (by setting each station to its ideal state) significantly more than the evening

ones, in order to properly evaluate its effects, we need to consider the rebalancing gain throughout

the whole day for the experiments that follow. The results are presented in Figure 17, which shows

the rebalancing gain (over the case with no rebalancing and initially half-full stations) when there

is only static rebalancing, and when dynamic rebalancing is performed as well. Performing dynamic

rebalancing increases the rebalancing gain by 42.88% in average over all instances.

7. Conclusion

In this work, we focus on demand estimation and dynamic redistribution with an application in

bike sharing systems. First, we proposed a data-driven method for the estimation of lost user

demand and showed it achieved lower errors with experiments on data from Capital Bikeshare, the

bike-sharing system of Washington DC. We addressed the issue of demand relocation to neighbor-

ing stations (shifted demand) caused by lack of resources, and developed a linear programming
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formulation to estimate the probability with which people choose to walk to nearby stations. Com-

putational experiments validate this approach by showing its consistency across the network, as

well as demonstrate the effects that the selected parameter values have on the walking probability.

Since dynamic redistribution takes place simultaneously with user trips, we proposed a linear

programming formulation that captures the user trips that are performed successfully in the system.

With a novel mixed integer programming formulation and the development of a decomposition

and optimization algorithm with partial group information, we were able to solve large real-world

instances of the dynamic rebalancing problem in running times that were fast enough to allow

real-time information to be taken into account. Evaluation of this approach on both synthetic and

real-world data revealed the benefits of this method as well as the value of incorporating partial

group information, especially when the stations have heterogeneous rebalancing needs.

Our proposed algorithm is not specific to bike sharing systems and can be generalized to other

application domains. More specifically, the optimization with partial group information can be

applied to the solution of any pick-up and delivery vehicle routing problem. Furthermore, its

fast running times extent its applicability to online versions of these problems as well: with our

method, online requests and real-time information can be easily taken into account with quick

re-optimization of relevant aspects of the current plans. Evaluating the benefits of incorporating

partial group information in more general pick-up and delivery applications is of particular interest

and the focus of our future work in this area.
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Appendix A: Modeling User Trips

A.1. Extension to Multiple Resource Uses per Time Period

Model (UT) in Section 4 with AVAILABLE BIKES(i, t) = bti and AVAILABLE DOCKS(i, t) =Ci− bti,

assumes that each bike and dock can be used only once per time period. This assumption runs

throughout this paper including our computational experiments, but since this approach might be

considered conservative, we present a way we can relax this by considering the expected number

of arrivals until a station becomes empty or full.

Consider the number of bikes at a station i during period t. Initially, it is equal to bti. For each

customer arrival, this number increases by one if the customer is returning a bike, and decreases

by one if the customer is borrowing a bike. Given that we have dtin,i customers that want to return

a bike, and dtout,i that want to take one, we can define the probabilities pt,i+1 and pt,i−1 for a customer

returning and taking a bike respectively.

pt,i+1 =
dtin,i

dtin,i + dtout,i
(64)

pt,i−1 =
dtout,i

dtin,i + dtout,i
(65)

These two probabilities that sum to 1 for each i and t define a random walk. Each customer

arrival is assumed to be an independent random variable that is equal to +1 (increases the bikes

by 1) with probability pt,i+1 and equal to −1 (decreases them by 1) with probability pt,i−1. We can

now use known results from the theory of random walks to estimate when the station will run out

of bikes or docks for the first time.

Let Et,i
0 be the expected number of customers for the station i to become empty during period

t, and Et,i
C the expected number of customers for the station to become full (reach full capacity

Ci). Then, we have:

Et,i
0 =


+∞ if pt,i−1 ≤ p

t,i
+1

bti
pt,i−1− p

t,i
+1

if pt,i−1 > p
t,i
+1

(66)

and, similarly:

Et,i
C =


+∞ if pt,i+1 ≤ p

t,i
−1

Ci− bti
pt,i+1− p

t,i
−1

if pt,i+1 > p
t,i
−1

(67)

By replacing pt,i+1 and pt,i−1 these can equivalently be written as follows.

Et,i
0 =


+∞ if dtout,i ≤ dtin,i
bti ·

dtin,i + dtout,i
dtout,i− dtin,i

if dtout,i >d
t
in,i

(68)



Mellou and Jaillet: Dynamic Resource Redistribution and Demand Estimation 51

and, similarly:

Et,i
C =


+∞ if dtin,i ≤ dtout,i
(Ci− bti) ·

dtin,i + dtout,i
dtin,i− dtout,i

if dtin,i >d
t
out,i

(69)

Et,i
0 and Et,i

C are the expected number of customers that can be served, before a lack of

resources emerges. From these, the pt,i+1 fraction of them will be incoming and the rest outgoing.

AVAILABLE BIKES and AVAILABLE DOCKS represent the number of outgoing and incoming users

that can be served, so they can be easily computed as follows.

AVAILABLE BIKES(i, t) = pt,i−1 ·E
t,i
0 =


+∞ if dtout,i ≤ dtin,i
bti ·

dtout,i
dtout,i− dtin,i

if dtout,i >d
t
in,i

(70)

AVAILABLE DOCKS(i, t) = pt,i+1 ·E
t,i
C =


+∞ if dtin,i ≤ dtout,i
(Ci− bti) ·

dtin,i
dtin,i− dtout,i

if dtin,i >d
t
out,i

(71)

Notice that the above expressions are still linear and, thus, can be incorporated in the linear

model (UT) that models the user flows. However, the objective function selected in the Section 4

is no more adequate to satisfy the FCFS principle, since it assumes that each bike and dock is used

once per period. Hence, a larger weight needs to be selected that takes into account how many

times each bike and dock might be used per time period.

Appendix B: Omitted Details for Models (DR) and (DRPI)

B.1. Obtaining (DRPI) from (DR)

In this section, we present the changes that are required to obtain (DRPI) from (DR). We first

rewrite constraint (35) of (DR), which is repeated here for convenience:

duri ≥ τstation · (1−xii) + τaction ·PUi + τaction ·DOi ∀i∈ S (72)

by using auxiliary variables durPU+
i , durPU o

i , durDO+
i , durDOo

i ∈ R+, ∀i, which denote the

duration of the visit at i spent picking up bikes with positive rebalancing values and neutral

rebalancing values, and similarly dropping off bikes with positive and neutral rebalancing values.

The above constraint can then be written equivalently as:

duri ≥ τstation · (1−xii) + durPU+
i + durPU o

i + durDO+
i + durDOo

i ∀i∈ S (73)

durPU+
i = τaction ·PU+

i ∀i∈ S (74)

durPU o
i = τaction ·PU o

i ∀i∈ S (75)

durDO+
i = τaction ·DO+

i ∀i∈ S (76)

durDOo
i = τaction ·DOo

i ∀i∈ S (77)
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Now, we are ready to introduce partial information for the actions of each group, using the

results of Corollary 1. We keep constraints (73), but replace (74)-(77) with (78)-(81).

PU+
i ≤min

l
(α+,i

p,l · durPU+
i +β+,i

p,l ) ∀i∈ S (78)

PU o
i ≤min

l
(αo,i

p,l · durPU o
i +βo,i

p,l) ∀i∈ S (79)

DO+
i ≤min

l
(α+,i

d,l · durDO+
i +β+,i

d,l ) ∀i∈ S (80)

DOo
i ≤min

l
(αo,i

d,l · durDOo
i +βo,i

d,l) ∀i∈ S (81)

In the following section, we describe how we can obtain the coefficients α and β that are used

in (78)-(81).

B.2. Additional Details for Coefficients α and β for (DRPI)

As illustrated in constraints (78)-(81), for each group i, we need four sets of coefficients: (α+,i
p,l , β

+,i
p,l )

for PU+
i , (αo,i

p,l, β
o,i
p,l) for PU o

i , (α+,i
d,l , β

+,i
d,l ) for DO+

i , and (αo,i
d,l, β

o,i
d,l) for DOo

i . Sections 5.5.1 and

5.5.2 outline how these coefficients can be obtained based on the pick-up and drop-off needs of the

stations.

Indeed, pick-up and drop-off needs are used to obtain the coefficients for the positive value

rebalancing actions PU+
i and DO+

i . In the case of neutral value rebalancing actions, we need to

consider the remaining resources for each station, i.e. resources that are both not used by customers

and not offering positive rebalancing value. Then, a process similar to Example 3 of Section 5.5.2

can be followed to obtain the line slopes and intercepts.

Since a station might be able to offer resources of both positive and neutral rebalancing value, in

order to avoid counting the travel time τtravel twice, for these stations we take τtravel into account

only in the line derivation for the positive actions and we skip it for the neutral ones, i.e. the slope

is equal to 1 for these stations in the latter case.

B.3. Overhead Time per Visit τstation

In both (DR) and (DRPI), we assume that each visit requires an overhead time τstation that

corresponds to parking, etc. This parameter appears in constraint (35) or equivalently constraint

(73), and this overhead time is being enforced on every truck visit. However, there are cases where

the truck starts its route being already at the station that constitutes its first visit. In this case, we

wish to avoid having to pay the τstation value, and a way to do that is using the following constraints

instead for the station i that is the initial truck location i0:

duri ≥ τstation · (1−xii−x0i) + τaction ·PUi + τaction ·DOi if i= i0 (82)

duri ≥ τstation · (1−xii−x0i) + durPU+
i + durPU o

i + durDO+
i + durDOo

i if i= i0 (83)
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Variables x0i are used for the dummy node that corresponds to the truck: x0i = 1, if the truck

travels from its initial location directly to i, and 0 otherwise. The use of x0i in the above constraints

results in not paying τstation in the cases where the truck is already at the location of its first visit.

Appendix C: Planning over Multiple Rebalancing Periods

C.1. Model Formulation

Both models (DR) from Section 5.3 and its extension with partial information (DRPI) consider

rebalancing actions over a single rebalancing period of length τperiod. The generalization for more

rebalancing periods, each of length τperiod, is provided below.

Each rebalancing period is indexed by r, which takes values between 1 and RP (the number of

rebalancing periods for which we are planning, with RP ≥ 2). For this multi-period version of the

formulation, we introduce the constraints of (DR) for each period, using the extra index r for all

variables in order to specify the corresponding rebalancing period. For instance, binary variable

xr
ij equals 1 if the truck travels directly from i to j during rebalancing period r. We also introduce

new binary variables yri to facilitate the transition between consecutive rebalancing periods. In

particular, yri equals 1 if the transition from period r to r+ 1 takes place at station i.

(MDR):

max
∑
i∈S,r

(PU+r
i +DO+r

i )− γ
∑
i∈S0
j∈S,r

distijx
r
ij − δ

∑
i∈S,r

(PU r
i +DOr

i ) (84)

s.t.
∑
j∈S0

xr
ij + yri = 1 ∀i∈ S, r (85)∑

j∈S0

xr
ji = 1 ∀i∈ S, r= 1 (86)∑

j∈S0

xr
ji + yr−1i = 1 ∀i∈ S, r > 1 (87)∑

i∈S0

xr
0i = 1,

∑
i∈S0

xr
i0 = 0 r= 1 (88)∑

i∈S0

xr
0i = 0,

∑
i∈S0

xr
i0 = 1 r=RP (89)

xr
00 = 1, xr

0i = 0, xr
i0 = 0 ∀i∈ S,1< r <RP (90)

trj ≥ tri + durri + distij ·xr
ij −M · (1−xr

ij) ∀i, j ∈ S, i 6= j, r (91)

tri ≥ dist0i ·xr
0i + τ0 ∀i∈ S, r= 1 (92)

tri ≤ r · τperiod ∀i∈ S, r (93)

durri ≥ τstation · (1−xr
ii) + τaction ·PU r

i + τaction ·DOr
i ∀i∈ S, r (94)

bTr
j ≥ bTr

i +PU r
i −DOr

i −M · (1−xr
ij) ∀i, j ∈ S, i 6= j, r (95)

bTr
j ≤ bTr

i +PU r
i −DOr

i +M · (1−xr
ij) ∀i, j ∈ S, i 6= j, r (96)
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bTr
i ≥ ζ0 ·xr

0i ∀i∈ S, r= 1 (97)

bTr
i ≤CT − (CT − ζ0) ·xr

0i ∀i∈ S, r= 1 (98)

bTr
i ≤CT ∀i∈ S, r (99)

bTr
i +PU r

i −DOr
i ≤CT ∀i∈ S, r (100)

bTr
i +PU r

i −DOr
i ≥ 0 ∀i∈ S, r (101)

PU r
i ≤UNUSED BIKES(r, i) ∀i∈ S, r (102)

PU+r
i ≤DOCKS NEEDED(r, i) ∀i∈ S, r (103)

PU r
i = PU+r

i +PU or
i ∀i∈ S, r (104)

PU r
i ≤M · (1−xr

ii) ∀i∈ S, r (105)

DOr
i ≤UNUSED DOCKS(r, i) ∀i∈ S, r (106)

DO+r
i ≤ BIKES NEEDED(r, i) ∀i∈ S, r (107)

DOr
i =DO+r

i +DOor
i ∀i∈ S, r (108)

DOr
i ≤M · (1−xr

ii) ∀i∈ S, r (109)

tri + durri ≤ tr+1
i +M · (1− yri ) ∀i∈ S, r <RP (110)

tri + durri ≥ tr+1
i −M · (1− yri ) ∀i∈ S, r <RP (111)

bTr
i +PU r

i −DOr
i ≤ bTr+1

i +M · (1− yri ) ∀i∈ S, r <RP (112)

bTr
i +PU r

i −DOr
i ≥ bTr+1

i −M · (1− yri ) ∀i∈ S, r <RP (113)
r2∑

r′=r1

PU r′

i ≤ALL UNUSED BIKES(r1, r2, i) ∀i∈ S, r1 <RP,r2 > r1 (114)

r2∑
r′=r1

PU+r′

i ≤ALL DOCKS NEEDED(r1, r2, i) ∀i∈ S, r1 <RP,r2 > r1 (115)

r2∑
r′=r1

DOr′

i ≤ALL UNUSED DOCKS(r1, r2, i) ∀i∈ S, r1 <RP,r2 > r1 (116)

r2∑
r′=r1

DO+r′
i ≤ALL BIKES NEEDED(r1, r2, i) ∀i∈ S, r1 <RP,r2 > r1 (117)∑

i∈S0,j∈S

distijx
r
ij +

∑
i∈S

durri ≤ τperiod ∀r (118)∑
i∈S

τaction ·PU r
i +

∑
i∈S

τaction ·DOr
i ≤ τperiod ∀r (119)

xr
ij ∈ {0,1} ∀i, j ∈ S0, r (120)

yri ∈ {0,1} ∀i∈ S, r (121)

tri , dur
r
i , b

Tr
i , PU r

i , PU
+r
i , PU or

i ,DO
r
i ,DO

+r
i ,DOor

i ∈R+ ∀i∈ S, r (122)
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Constraints (85), (86) and (87) specify the truck routing between the stations: the truck can

travel from station to station or transition to the next rebalancing period while remaining at the

same station. We have one dummy node for the truck per period, which has an outgoing arc at

period 1 (88) that denotes the start of the route, an incoming arc at period RP (89) denoting

the end of the route, and corresponds to self-loops in all intermediate periods (90). Constraints

(91) to (109) and (118) to (119) are directly derived from (DR) (Section 5.3) by introducing one

such constraint per rebalancing period r. Constraints (110) to (113) ensure that the state of the

truck (load and arrival time) remains consistent between consecutive rebalancing periods. Finally,

constraints (114) to (117) impose limits on the resources: a bike could be available for pick-up/drop-

off during more than one rebalancing periods, but if this action takes place during one of the

periods, it shouldn’t take place again in any other period. We introduce such constraints for any

pair r1, r2 with 1≤ r1 < r2 ≤RP , but since RP is small in our application this does not lead to a

large number of constraints.

Overhead Time per Visit τstation. Similar to Appendix B.3, we can make sure we do not

consider the overhead time τstation multiple times for the same visit, by further specifying (94) to

take into account the truck transitioning to the next period, since it remains at the same location:

durri ≥ τstation · (1−xr
ii− yr−1i ) + τaction ·PU r

i + τaction ·DOr
i ∀i∈ S, r > 1 (123)

as well as the station i that consists the initial location i0 of the truck during the first rebalancing

period:

durri ≥ τstation · (1−xr
ii−xr

0i) + τaction ·PU r
i + τaction ·DOr

i if i= i0, r= 1 (124)

For r= 1 and i 6= i0, (94) remains as is.

(MDR) with Partial Information. The incorporation of partial information to (MDR) can

take place in a similar way as in Appendix B.1, and this generates the Multiperiod Dynamic

Rebalancing with Partial Information model (MDRPI).

Appendix D: Computational Results

This section includes detailed statistics of the solutions in the Computational Experiments Section

6.2.2. Unless noted otherwise, they refer to the rebalancing actions that take place until noon in

each instance. The rebalancing gain is the extra number of customers that can be served compared

to the case where no rebalancing is performed and the stations start the day half full. The travel

distance is in kilometers, the travel and service times in minutes, and the running time in seconds.

All quantities are aggregated for all trucks and time periods.
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Table 6 Rebalancing results for method comparison: S [(DR) on the set of stations], G/L [(DR) on the

set of leaders], G/PI [(DRPI)].

Instance Method Served Rebalancing Bikes Travel Travel Service Run
users gain rebalanced distance time time time

1 S 3207.48 281.89 326.29 263.96 791.88 532.29 3550.88
G/L 3214.63 289.04 377.78 297.37 892.11 606.79 548.83
G/PI 3222.22 296.62 363.20 286.17 858.51 572.20 561.01

2 S 3527.41 326.09 426.67 275.68 827.05 648.67 4195.29
G/L 3534.31 333.00 485.98 309.07 927.21 764.98 752.01
G/PI 3572.71 371.40 479.71 320.06 960.18 741.72 722.60

3 S 3637.30 354.91 446.95 323.98 971.94 675.95 4223.83
G/L 3693.63 411.24 498.66 347.47 1042.41 778.66 543.12
G/PI 3699.15 416.76 487.59 356.84 1070.51 751.59 617.78

4 S 3467.68 339.37 475.45 276.75 830.26 711.45 3571.24
G/L 3504.70 376.39 546.24 289.54 868.63 828.24 534.52
G/PI 3508.42 380.11 533.85 297.38 892.13 799.86 588.18

5 S 3123.00 257.61 332.24 262.39 787.16 543.24 3589.69
G/L 3133.53 268.14 379.32 278.71 836.12 615.32 524.66
G/PI 3162.12 296.73 376.89 289.88 869.65 616.90 589.37

6 S 3328.63 361.15 437.51 277.07 831.21 659.51 3533.19
G/L 3338.14 370.65 510.62 304.90 914.69 786.62 560.72
G/PI 3358.92 391.43 515.45 298.99 896.98 778.46 609.03

7 S 3406.20 371.73 440.75 291.81 875.42 663.75 3903.83
G/L 3408.13 373.67 498.18 320.32 960.97 762.18 547.78
G/PI 3442.52 408.05 494.34 323.42 970.26 749.34 602.76

8 S 3114.34 281.96 384.51 241.41 724.23 603.51 3465.21
G/L 3127.75 295.37 444.36 256.81 770.44 712.36 482.50
G/PI 3143.35 310.96 423.33 264.32 792.96 659.34 535.93

9 S 3167.63 270.72 339.25 262.23 786.68 550.25 4111.02
G/L 3208.47 311.57 411.87 287.54 862.61 649.87 532.29
G/PI 3203.84 306.94 396.49 298.57 895.71 640.49 591.51

10 S 3565.88 352.60 466.47 326.99 980.96 717.47 3908.96
G/L 3598.69 385.41 501.53 340.61 1021.82 801.53 553.99
G/PI 3594.39 381.12 509.23 334.67 1004.01 776.23 669.61
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Table 7 Rebalancing results for single-period rebalancing (DRPI) (RP = 1) and multi-period rebalancing

(MDRPI) with RP = 2.

Instance Rebalancing Served Rebalancing Bikes Travel Travel Service Run
periods (RP) users gain rebalanced distance time time time

1 1 3222.22 296.62 363.20 286.17 858.51 572.20 561.01
2 3226.47 300.87 384.86 215.49 646.48 580.86 745.87

2 1 3572.71 371.40 479.71 320.06 960.18 741.72 722.60
2 3600.80 399.49 539.31 275.64 826.93 788.32 1362.67

3 1 3699.15 416.76 487.59 356.84 1070.51 751.59 617.78
2 3711.22 428.82 504.44 293.67 881.01 750.44 1124.86

4 1 3508.42 380.11 533.85 297.38 892.13 799.86 588.18
2 3534.33 406.02 567.77 254.68 764.04 811.77 1136.69

5 1 3162.12 296.73 376.89 289.88 869.65 616.90 589.37
2 3151.01 285.62 395.23 265.06 795.19 611.23 906.79

6 1 3358.92 391.43 515.45 298.99 896.98 778.46 609.03
2 3370.82 403.34 516.02 265.66 796.97 759.02 1245.97

7 1 3442.52 408.05 494.34 323.42 970.26 749.34 602.76
2 3429.93 395.46 527.92 265.59 796.76 762.92 918.46

8 1 3143.35 310.96 423.33 264.32 792.96 659.34 535.93
2 3142.24 309.86 469.28 225.94 677.83 692.29 746.82

9 1 3203.84 306.94 396.49 298.57 895.71 640.49 591.51
2 3214.38 317.48 411.88 230.51 691.54 617.88 918.41

10 1 3594.39 381.12 509.23 334.67 1004.01 776.23 669.61
2 3593.51 380.24 530.23 294.75 884.25 792.24 1045.79

Table 8 Rebalancing results comparing the benefit of neutral value rebalancing actions.

Instance Neutral value Served Rebalancing Bikes Travel Travel Service Run
actions allowed users gain rebalanced distance time time time

1 True 3222.22 296.62 363.20 286.17 858.51 572.20 561.01
False 3029.70 104.11 98.14 187.21 561.63 198.14 623.45

2 True 3572.71 371.40 479.71 320.06 960.18 741.72 722.60
False 3386.46 185.15 160.93 271.20 813.59 309.94 704.32

3 True 3699.15 416.76 487.59 356.84 1070.51 751.59 617.78
False 3484.33 201.94 148.10 268.87 806.61 285.10 644.80

4 True 3508.42 380.11 533.85 297.38 892.13 799.86 588.18
False 3301.77 173.46 168.96 212.69 638.08 301.96 601.16

5 True 3162.12 296.73 376.89 289.88 869.65 616.90 589.37
False 2983.64 118.25 90.76 171.82 515.46 173.77 752.86

6 True 3358.92 391.43 515.45 298.99 896.98 778.46 609.03
False 3159.55 192.06 166.19 244.33 732.98 304.20 597.84

7 True 3442.52 408.05 494.34 323.42 970.26 749.34 602.76
False 3254.62 220.16 178.90 234.12 702.36 305.91 592.47

8 True 3143.35 310.96 423.33 264.32 792.96 659.34 535.93
False 2955.20 122.81 111.28 156.89 470.67 216.28 600.55

9 True 3203.84 306.94 396.49 298.57 895.71 640.49 591.51
False 3007.05 110.14 89.08 180.56 541.68 180.08 682.53

10 True 3594.39 381.12 509.23 334.67 1004.01 776.23 669.61
False 3402.69 189.41 177.70 237.45 712.34 321.71 583.63



58 Mellou and Jaillet: Dynamic Resource Redistribution and Demand Estimation

Table 9 Results when dynamic rebalancing is combined with ideal static rebalancing.

Instance Served Rebalancing Bikes Travel Travel Service Run
users gain rebalanced distance time time time

1 10749.45 1375.52 455.87 445.89 1337.68 834.87 771.17
2 12858.70 1929.27 681.68 592.85 1778.54 1183.69 854.30
3 12532.99 1925.33 691.02 667.61 2002.83 1250.02 841.53
4 11453.28 1872.85 651.61 588.83 1766.48 1130.61 864.52
5 11115.80 1389.29 453.77 457.79 1373.36 841.77 834.03
6 11986.09 1892.76 600.09 623.04 1869.12 1137.09 846.21
7 13033.88 1995.86 727.58 569.19 1707.58 1224.58 854.15
8 7099.40 1158.66 297.04 308.61 925.82 578.04 749.17
9 12100.82 1602.95 646.40 566.54 1699.62 1145.40 848.98
10 13142.20 2072.26 760.87 566.25 1698.76 1269.87 877.45

These results refer to the duration of the whole day.

Table 10 Served users without dynamic rebalancing.

Half day Whole day
Instance Half-full Ideal Half-full Ideal

1 2925.59 3466.75 9373.94 10326.48
2 3201.31 4057.04 10929.42 12298.92
3 3282.39 4169.91 10607.66 11894.27
4 3128.31 3994.23 9580.42 10886.20
5 2865.38 3415.82 9726.51 10718.06
6 2967.49 3822.17 10093.33 11446.87
7 3034.47 3867.97 11038.02 12382.42
8 2832.38 3458.28 5940.74 6870.32
9 2896.90 3499.44 10497.87 11593.02
10 3213.28 4084.85 11069.94 12441.93

Number of served customers for half day (until noon) and the
whole day when stations’ initial state is half-full or at its ideal
level (obtained by (UT) and representing the results of an ideal
static redistribution in the system).


