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Appendix

Proof of Theorem 1. Recall that rn is the time of the last request and l∗n = argmax
l
j
n | 1≤j≤k(n)

d(o, ljn).
We show that in each of the Cases (1), (2a) and (2b), PAH-G is (1+ (2ρ− 1)/γ)-competitive.

In Case (1) PAH-G is at the origin at time rn. It starts traversing a ρ-approximate set of tours
that serve all the unserved requests. Since the online server has speed γ, the time needed by PAH-G
is at most rn + ρZr=0(n,Q)/γ ≤ (1+ ρ/γ)Z∗(n,Q).

Considering Case (2a), we have that d(o, l∗n) > d(o, p). Then PAH-G goes back to the origin, where
it will arrive before time rn + d(o,l∗n)

γ
. After this, PAH-G computes and follows a ρ-approximate

set of tours through all the unserved requests. Therefore, the online cost is at most rn + d(o,l∗n)

γ
+

ρZr=0(n,Q)/γ. Noticing that rn + d(o, l∗n)≤Z∗(n,Q) and 2d(o, l∗n)≤Zr=0(n,Q), we have that the
online cost is at most

rn +
d(o, l∗n)

γ
+ ρ

Zr=0(n,Q)
γ

≤ Z∗(n,Q)+ (
1
γ
− 1)d(o, l∗n)+

ρ

γ
Z∗(n,Q)

≤
(

1+
(

2ρ− γ +1
2γ

))
Z∗(n,Q)

Finally, we consider Case (2b), where d(o, l∗n)≤ d(o, p). Suppose PAH-G is following a route R
that had been computed the last time step (1) of PAH-G had been invoked. R will also denote
the actual distance of the route; we have that R≤ ρZr=0(n,Q)≤ ρZ∗(n,Q). Let S be the set of
requests that have been temporarily ignored (from step (2b) of algorithm PAH-G) since the last
time PAH-G invoked step (1). Let lf be the first location of the first request in S visited by the
offline algorithm, and let rf be the time at which request f was released. Let P∗S be the fastest route
that starts at lf , visits all cities in S and ends at the origin, respecting precedence and capacity
constraints. Clearly, Z∗(n,Q)≥ rf +P∗S and Z∗(n,Q)≥ d(o, lf )+P∗S .
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At time rf , the time that PAH-G still has left to complete route R is at most (R− d(o, lf ))/γ,
since d(o, p(rf ))≥ d(o, l∗f )≥ d(o, lf) implies that PAH-G has traveled on the route R a distance not
less than d(o, lf). Therefore, the server will complete the route R before time rf +(R−d(o, lf ))/γ.
After that it will follow a ρ-approximate set of tours that covers the set S of yet unserved requests;
let TS denote the cost of the optimal set of tours. Hence, the total time to completion will be at
most rf +(R−d(o, lf))/γ +ρTS/γ. Since TS ≤ d(0, lf)+P∗S , we have that the online cost is at most

rf +
R− d(o, lf )

γ
+

ρ

γ
d(0, lf)+

ρ

γ
P∗S = (rf +P∗S)+

1
γ
R+

(
ρ− 1

γ

)
d(0, lf)+

(
ρ

γ
− 1

)
P∗S

≤ Z∗(n,Q)+
ρ

γ
Zr=0(n,Q)+

(
ρ− 1

γ

)
Z∗(n,Q)

≤
(

1+
2ρ− 1

γ

)
Z∗(n,Q).

Since ρ, γ ≥ 1, max
{
1+ ρ

γ
,1+ 2ρ−1

γ
,1+

(
2ρ−γ+1

2γ

)}
= 1+ 2ρ−1

γ
and the theorem is proved. ¤

Proof of Theorem 3. Let rn be the time of the last request, ln the position of this request and
p∗(t) the location of the farthest salesman at time t.

Case (1): All salesmen are at the origin at time rn. Then they start implementing a ρ-approximate
solution to Zr=0(n,m) that serves all the unserved requests. Applying Lemma 1, the time needed
by PAH-m is at most

rn +
ρ

γ
Zr=0(n,m)≤Z∗(n,1)+

ρ

γ

(
Zr=0(n,1)− (m− 1)β)

)≤
(

1+
ρ

γ
(1− (m− 1)φ)

)
Z∗(n,1).

Case (2a): We have that d(o, ln) > d(o, p∗(rn)). All salesmen return to the origin, where they
will all arrive before time rn +d(o, ln)/γ ≤ rn +d(o, ln). After this, PAH-m computes and follows a
ρ-approximate solution to Zr=0(n,m) through all unserved requests. Therefore, the online cost is
at most rn + d(o, ln) + ρ

γ
Zr=0(n,m). Noticing that rn + d(o, ln)≤ Z∗(n,1) and applying Lemma 1,

we have that the online cost is at most
(
1+ ρ

γ
(1− (m− 1)φ)

)
Z∗(n,1).

Case (2b): We have that d(o, ln)≤ d(o, p∗(rn)) and all salesmen, except p∗, return to the origin,
if not yet already there. Suppose salesman p∗ is following a tour R that had been computed the
last time it was at the origin. Note that R≤ ρZr=0(n,m) and Zr=0(n,m)≤ Z∗(n,m)≤ Z∗(n,1).
Let Q be the set of requests temporarily ignored since the last time a Case (1) re-optimization was
performed; since ln ∈Q, Q is not empty. Let S ⊆ {1, . . . ,m} denote the set of salesmen that serve Q
in the optimal offline solution. For j ∈ S, let lj be the location of the first city in Q served by server
j in the optimal offline solution and let rj be the time at which this city was released. Let Pj

Q, j ∈ S,
be the set of paths, the j-th path starting from lj, that collectively visit all the cities in Q and end
at the origin, such that the maximum path length is minimized (ties broken arbitrarily). It is easy
to see that Z∗(n,m)≥maxj∈S{Pj

Q} since the min-max-path optimization has distinct advantages
over the offline solution: (1) having the servers start at cities lj, (2) needing to only serve the cities
in Q and (3) ignoring release dates. If the servers start from the origin, the earliest time that server
j can visit city lj is max{rj, d(0, lj)}; by extension we have that Z∗(n,m)≥maxj∈S{rj +Pj

Q} and
Z∗(n,m)≥maxj∈S{d(o, lj)+Pj

Q}.
At time rj, the distance that salesman p∗ still has to travel on the route R before arriving at the

origin is at most R− d(o, lj), since d(o, p∗(rj))≥ d(o, lj) implies that p∗ has traveled on the route
R a distance not less than d(o, lj). Therefore, it will arrive at the origin before time rj + R−d(o,lj)

γ
;

note that since this is valid for any j, we can say that the salesman will arrive at the origin
before time minj∈S{rj + R−d(o,lj)

γ
}. Note that all other salesmen have already arrived at the origin.

Next, a ρ-approximate Zr=0(n,m) will be implemented on Q; let TQ denote the optimal maximum
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tour length. Hence, the completion time of PAH-m will be at most minj∈S{rj + R−d(o,lj)

γ
}+ ρ

γ
TQ.

Now, note the following feasible solution for the final case (1) re-optimization: Use only the set
of salesmen S, force salesman j to first go to city lj and then traverse path Pj

Q. Therefore, TQ ≤
maxj∈S{d(0, lj)+Pj

Q} and we have that the online cost is at most

min
j∈S

{
rj +

R− d(o, lj)
γ

}
+ ρmax

j∈S

{
d(0, lj)+Pj

Q
γ

}
.

Letting k be the argmax of the second term, we have that the online cost is at most

rk +
R− d(o, lk)+ ρ

(
d(0, lk)+Pk

Q
)

γ
=

(
rk +Pk

Q
)
+

1
γ
R+

(
ρ− 1

γ

)
d(o, kk)+

(
ρ

γ
− 1

)
Pk
Q

≤ Z∗(n,m)+
ρ

γ
Zr=0(n,m)+

(
ρ− 1

γ

)(
d(o, lk)+Pk

Q
)

≤ ρ

γ

(
Zr=0(n,1)− (m− 1)β

)
+

(
ρ− 1+ γ

γ

)
Z∗(n,1)

≤
(

1+
ρ

γ
(1− (m− 1)φ)+

ρ− 1
γ

)
Z∗(n,1).¤

Proof of Theorem 7. Let p∗(t) be the position of the farthest server at time t. Let us consider
the state of the algorithm at time qn, the final disclosure date.

Case (1): All servers are at the origin at time qn. Letting T denote the cost of the final Case (1)
re-optimization, we have that

ZPAH-m-dd(n,m) ≤ qn +T
= rn +T − a
≤ Z∗(n,m)+ (T − a)
= Z∗(n,m)+ (1− a

T
)T

≤ Z∗(n,m)+ (1− a

T
)Z∗(n,m).

Inserting the obvious bound T ≤ a+Zr=0(n,m) proves the theorem for this case.
Case (2a): We have that d(o, ln) > d(o, p∗(qn)) and the servers return to the origin, arriving before

time qn + d(o, ln) = rn + d(o, ln)− a. Once at the origin, the servers re-optimize; let T ′ denote the
cost of this re-optimization. Clearly, rn + d(o, ln)≤Z∗(n,m). Thus, we have that

ZPAH-dd(n,m)≤ rn + d(o, ln)+ (T ′− a)≤Z∗(n,m)+ (1− α

1+α
)Z∗(n,m) = (2− α

1+α
)Z∗(n,m).

Case (2b): We have that d(o, ln)≤ d(o, p∗(rn)) and all servers, except p∗, return to the origin, if
not yet already there. Suppose server p∗ is following a tour R that had been computed the last
time it was at the origin. Note that R≤Z∗(n,m). Let Q be the set of requests temporarily ignored
since the last time a Case (1) re-optimization was performed; since ln ∈ Q, Q is not empty. Let
S ⊆ {1, . . . ,m} denote the set of servers that serve Q in the optimal offline solution. For j ∈ S, let lj

be the location of the first city in Q served by server j in the optimal offline solution and let rj be
the time at which this city was released. Let Pj

Q, j ∈ S, be the set of paths, the j-th path starting
from lj, that collectively visit all the cities in Q and end at the origin, such that the maximum
path length is minimized. As was argued in the proof of Theorem 3, Z∗(n,m)≥maxj∈S{rj +Pj

Q}
and Z∗(n,m)≥maxj∈S{d(o, lj)+Pj

Q}.
At time qj, the distance that salesman p∗ still has to travel on the route R before arriving

at the origin is at most R− d(o, lj), since d(o, p∗(qj)) ≥ d(o, lj) implies that p∗ has traveled on
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the route R a distance not less than d(o, lj). Therefore, it will arrive at the origin before time
qj +R− d(o, lj); note that since this is valid for any j, we can say that the salesman will arrive at
the origin before time minj∈S{qj +R−d(o, lj)}. Note that all other salesmen have already arrived
at the origin. Next, a re-optimization will be implemented on Q; let TQ denote the maximum tour
length. Hence, the completion time of PAH-m-dd will be at most minj∈S{qj +R− d(o, lj)}+ TQ.
Again, TQ ≤maxj∈S{d(0, lj)+Pj

Q} and we have that the online cost is at most

min
j∈S

{qj +R− d(o, lj)}+max
j∈S

{d(0, lj)+Pj
Q}.

Letting k be the argmax of the second term, we have that the online cost is at most

qk +R− d(o, lk)+ d(0, lk)+Pk
Q =

(
rk +Pk

Q
)
+(R− a)≤

(
2− α

1+α

)
Z∗(n,m) ¤

Proof of Theorem 8. Define a metric space M as a graph with vertex set V = {1,2, . . . , n}∪{o}
with distance function d that satisfies the following: d(o, i) = 1 and d(i, j) = 2 for all i 6= j ∈ V \{o}.
For simplicity, assume m divides n evenly.

At time 0, there is a request at each of the n cities in V \{o}. If an online server visits the request
at city i at time t ≤ 2 n

m
− 1− ε, for some small ε, then at time t + ε, a new request is disclosed

at city i. In this way, at time 2 n
m
− 1 the online servers still have to serve requests at all n cities,

some of which are only disclosed and not released. If all cities were released, the online servers
could finish at time (2 n

m
− 1)+ (2 n

m
− 1)/γ = (1+1/γ)(2 n

m
− 1); therefore this is a lower bound for

the online cost when cities have only been disclosed. Denoting ZA(n,m) as the online cost of an
arbitrary online algorithm A, we have that ZA(n,m)≥ (1+ 1

γ
)(2 n

m
−1). The optimal offline servers,

however, will be able to visit all cities by time 2 n
m

+a. Therefore, by letting k = n
m

and noting that
Zr=0(n,m) = 2k, we have that

ZA(n,m)
Z∗(n,m)

≥ (1+1/γ))(2k− 1)
2k + a

=
1+1/γ

1+α
− 1+1/γ

2k + a
;

taking k arbitrarily large proves the theorem. ¤
Proof of Theorem 9. Define a metric space M as a graph with vertex set V = {1,2, . . . , n}∪{o}

with distance function d that satisfies the following: d(o, i) = 1 and d(i, j) = 2 for all i 6= j ∈ V \{o}.
For simplicity, assume m divides n evenly.

At time 0, there is a request at each of the n cities in V \{o}. If an online server visits the request
at city i at time t ≤ 2 n

m
− 1− ε, for some small ε, then at time t + ε, a new request is disclosed

at city i. In this way, at time 2 n
m
− 1 the online servers still have to serve requests at all n cities,

some of which are only disclosed and not released. If all cities were released, the online servers
could finish at time (2 n

m
− 1)+ (2 n

m
− 1)/γ = (1+1/γ)(2 n

m
− 1); therefore this is a lower bound for

the online cost when cities have only been disclosed. Denoting ZA(n,m) as the online cost of an
arbitrary online algorithm A, we have that ZA(n,m)≥ (1+ 1

γ
)(2 n

m
− 1). The single optimal offline

server will be able to visit all cities by time 2n+a. Therefore, noting that Zr=0(n,m) = 2n/m, we
have that

ZA(n,m)
Z∗(n,1)

≥ (1+1/γ))(2n/m− 1)
2n+ a

= (1+1/γ)(1/m)
Zr=0(n,m)

Zr=0(n,m)+ a/m
− 1+1/γ

2n+ a

= (1+1/γ)(1/m)
1

1+α/m
− 1+1/γ

2n+ a
;

taking n arbitrarily large proves the theorem. ¤
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Proof of Theorem 10. The proof is very similar to that of Theorem 1; we detail only the differ-
ences for the case analysis.

Case (1): The time needed by PAH-G is at most rn +ρZr=0(n,Q)/γ ≤Z∗(n, q)+ρZr=0(n,Q)/γ.
By Lemma 3, this upper bound is asymptotically equal to Z∗(n, q) + ρq

γQ
Zr=0(n, q) ≤ (1 +

ρq
γQ

)Z∗(n, q), almost surely.
Case (2a): Applying Lemma 3, we have that the online cost is almost surely at most

rn +
d(o, l∗n)

γ
+ ρ

Zr=0(n,Q)
γ

≤ Z∗(n, q)+
(

2ρ− γ +1
2γ

)
Zr=0(n,Q)

→ Z∗(n, q)+
(

2ρ− γ +1
2γ

)(
q

Q

)
Zr=0(n, q)

≤
(

1+
(

2ρ− γ +1
2γ

)(
q

Q

))
Z∗(n, q)

Case (2b): Since Z∗(n,Q)≤Z∗(n, q), the online cost is almost surely at most

Z∗(n,Q)+
ρ

γ
Zr=0(n,Q)+

(
ρ− 1

γ

)
Z∗(n,Q) ≤ Z∗(n, q)+

ρ

γ
Zr=0(n,Q)+

(
ρ− 1

γ

)
Z∗(n, q)

→ Z∗(n, q)+
ρq

γQ
Zr=0(n, q)+

(
ρ− 1

γ

)
Z∗(n, q)

≤
(

1+
ρq

γQ
+

ρ− 1
γ

)
Z∗(n, q).

Since ρ, γ ≥ 1 and Q≥ q ≥ 0, max
{
1+ ρq

γQ
,1+ ρq

γQ
+ ρ−1

γ
,1+

(
2ρ−γ+1

2γ

)(
q
Q

)}
= 1 + ρq

γQ
+ ρ−1

γ
and

the theorem is proved. ¤


