OPERATIONS RESEARCH LjormsH

poI 10.1287/opre.1070.0450ec © 2008 INFORMS

pp. ecl—ec6
e-companion

ONLY AVAILABLE IN ELECTRONIC FORM

Electronic Companion—*“Generalized Online Routing: New Competitive
Ratios, Resource Augmentation and Asymptotic Analyses” by Patrick Jaillet
and Michael R. Wagner, Operations Research, Dot 10.1287/opre.1070.0450.




Generalized Online Routing:
New Competitive Ratios, Resource Augmentation
and Asymptotic Analyses
Online Appendix

Patrick Jaillet
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139,
jaillet@mit.edu

Michael R. Wagner
Department of Management, California State University East Bay, Hayward, CA 94542, michael. wagner@csueastbay.edu

Subject classifications: Online Optimization, Transportation, Analysis of Algorithms.

Area of review: Transportation

History: Received May 2006; revision received November 2006; revision received February 2007; accepted
April 2007.

Appendix

Proof of Theorem 1. Recall that r, is the time of the last request and [}, = argmax;; |, ;.. d(o,12).
We show that in each of the Cases (1), (2a) and (2b), PAH-G is (14 (2p — 1)/v)-competitive.

In Case (1) PAH-G is at the origin at time r,. It starts traversing a p-approximate set of tours
that serve all the unserved requests. Since the online server has speed -y, the time needed by PAH-G
is at most 7, + pZ"°(n,Q) /v < (1+p/v)Z*(n,Q).

Considering Case (2a), we have that d(o,[*) > d(o,p). Then PAH-G goes back to the origin, where

d(o,l})

it will arrive before time 7, + . After this, PAH-G computes and follows a p-approximate

set of tours through all the unserved requests. Therefore, the online cost is at most r, + doln) 4

pZ"=%(n,Q)/~. Noticing that 7, + d(o,1) < Z*(n,Q) and 2d(o,l%) < Z"=%(n,Q), we have that the
online cost is at most
d ,l* ZT:0 ,
o) | 27m.Q)
Y Y

< 2°(n,Q) + (-~ Vd(o,1) + 2 2* (n, Q)

(5 )) 7

Finally, we consider Case (2b), where d(o,l’) < d(o,p). Suppose PAH-G is following a route R
that had been computed the last time step (1) of PAH-G had been invoked. R will also denote
the actual distance of the route; we have that R < pZ"=%(n,Q) < pZ*(n,Q). Let S be the set of
requests that have been temporarily ignored (from step (2b) of algorithm PAH-G) since the last
time PAH-G invoked step (1). Let I; be the first location of the first request in S visited by the
offline algorithm, and let r; be the time at which request f was released. Let P¢ be the fastest route
that starts at [y, visits all cities in & and ends at the origin, respecting precedence and capacity
constraints. Clearly, Z*(n,Q) > r; + P& and Z*(n,Q) > d(o,l;) + P5.
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At time ry, the time that PAH-G still has left to complete route R is at most (R —d(o,1s))/7,
since d(o0,p(ry)) > d(o,1}) > d(o,l;) implies that PAH-G has traveled on the route R a distance not
less than d(o,l;). Therefore, the server will complete the route R before time r;+ (R —d(o,1;))/7.
After that it will follow a p-approximate set of tours that covers the set S of yet unserved requests;
let 75 denote the cost of the optimal set of tours. Hence, the total time to completion will be at
most 7y + (R —d(o,1s))/v+ pZs/v. Since Ts < d(0,1;) 4+ P&, we have that the online cost is at most

p

R—d(o,ly)  p p 1 <p—1> ( )
+ = L RA0,1) + P = (rp+PY + R+ (=) d(0, 1)+ (E—1) P
~y ( f) ~y S (f 5) ~ ~y ( f) ~y S

Ty
v
< 2@+ L2700+ (1) 200)

<1+2”7_1) Z*(n, Q).

Since p,y>1, maxq1+ 5, 1+ 2"7_1,1 + 2”_23“ =1+ 2’%1 and the theorem is proved. [J

Proof of Theorem 3. Let r,, be the time of the last request, [,, the position of this request and
p*(t) the location of the farthest salesman at time ¢.

Case (1): All salesmen are at the origin at time r,,. Then they start implementing a p-approximate
solution to Z"=%(n,m) that serves all the unserved requests. Applying Lemma 1, the time needed
by PAH-m is at most

IN

Tn + gZT:O(nvm) < Z*(n7 1) + g (ZT:O(na 1) - (m - 1)6)) < (1 + 5 (1 - (m - 1)¢)> Z*(TL, 1)

Case (2a): We have that d(o,l,,) > d(o,p*(r,)). All salesmen return to the origin, where they
will all arrive before time r,, +d(o,1,)/v <7, +d(o,l,). After this, PAH-m computes and follows a
p-approximate solution to Z"=°(n,m) through all unserved requests. Therefore, the online cost is
at most r,, +d(o,l,) + gZT:O(n,m). Noticing that r, +d(o,l,,) < Z*(n,1) and applying Lemma 1,

we have that the online cost is at most (1+ £ (1—(m—1)¢)) Z*(n,1).

Case (2b): We have that d(o,l,,) <d(o,p*(r,)) and all salesmen, except p*, return to the origin,
if not yet already there. Suppose salesman p* is following a tour R that had been computed the
last time it was at the origin. Note that R < pZ"=%(n,m) and Z"=°(n,m) < Z*(n,m) < Z*(n, 1).
Let Q be the set of requests temporarily ignored since the last time a Case (1) re-optimization was
performed; since [,, € Q, Q is not empty. Let S C {1,...,m} denote the set of salesmen that serve Q
in the optimal offline solution. For j € S, let I7 be the location of the first city in Q served by server
j in the optimal offline solution and let 77/ be the time at which this city was released. Let PY, j € S,
be the set of paths, the j-th path starting from /7, that collectively visit all the cities in Q and end
at the origin, such that the maximum path length is minimized (ties broken arbitrarily). It is easy
to see that Z*(n,m) > maneS{Pé} since the min-max-path optimization has distinct advantages
over the offline solution: (1) having the servers start at cities 7, (2) needing to only serve the cities
in Q and (3) ignoring release dates. If the servers start from the origin, the earliest time that server
j can visit city ¢/ is max{r7,d(0,1%)}; by extension we have that Z*(n,m) > max;es{r? +P%} and
Z*(n,m) > max;es{d(o,l’) + PL}.

At time 77, the distance that salesman p* still has to travel on the route R before arriving at the
origin is at most R — d(o,1?), since d(o,p*(r?)) > d(o,1?) implies that p* has traveled on the route
R a distance not less than d(o,1?). Therefore, it will arrive at the origin before time r/ 4 %0’”);
note that since this is valid for any j, we can say that the salesman will arrive at the origin
before time min es{r’ + %Ol])} Note that all other salesmen have already arrived at the origin.
Next, a p-approximate Z"=°(n, m) will be implemented on Q; let 7o denote the optimal maximum
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tour length. Hence, the completion time of PAH-m will be at most min;es{r’ + %"”)} + %TQ.
Now, note the following feasible solution for the final case (1) re-optimization: Use only the set
of salesmen S, force salesman j to first go to city I’ and then traverse path P’Q Therefore, Tg <
max;es{d(0,1’) + P4} and we have that the online cost is at most

. — j 7 J
mm{MW}HmM{W}_
Y

jJES jJES y

Letting k& be the argmax of the second term, we have that the online cost is at most

rk-|-R_d(oalk)+g(d(o’lk)+7)g) = (" +Pg)+’y7€+< ) (O,kk)—i-(—l)PQ
< Z*(n,m)—i—gZT:O( <P 1>( Olk +PQ)
gg(Z’:O(n,l) (m—1)8) + ( 2= i” Z*(n,1)
Py P=1N
§<1+,y<1 (m=1)9)+ =) 2°(0.1).0

Proof of Theorem 7. Let p*(t) be the position of the farthest server at time t. Let us consider
the state of the algorithm at time g, the final disclosure date.

Case (1): All servers are at the origin at time g,. Letting T denote the cost of the final Case (1)
re-optimization, we have that

ZPAH—m—dd(n’m) S Qn+T
=r,+T—a
< Z*(n,m)+ (T —a)
= Z*(n,m)+ (1— T

< Z*(n,m)+ (1— T)Z*(n,m)

Inserting the obvious bound T < a+ Z"=%(n,m) proves the theorem for this case.

Case (2a): We have that d(o,1,,) > d(0,p*(g,)) and the servers return to the origin, arriving before
time ¢, +d(o,1,,) =7, +d(0,1,) — a. Once at the origin, the servers re-optimize; let 7" denote the
cost of this re-optimization. Clearly, r,, + d(o,1,) < Z*(n,m). Thus, we have that

ZPN () <y d(0,1,) + (T — a) < 27 (nym) + (1 — =) 2% (n,m) = (2 — ——) 7" (n,m).
14+« 14+«

Case (2b): We have that d(o,l,,) <d(o,p*(r,)) and all servers, except p*, return to the origin, if
not yet already there. Suppose server p* is following a tour R that had been computed the last
time it was at the origin. Note that R < Z*(n,m). Let Q be the set of requests temporarily ignored
since the last time a Case (1) re-optimization was performed; since [,, € Q, Q is not empty. Let
S C{1,...,m} denote the set of servers that serve Q in the optimal offline solution. For j € S, let I/
be the location of the first city in Q served by server j in the optimal offline solution and let r7 be
the time at which this city was released. Let Pé, J €8, be the set of paths, the j-th path starting
from [/, that collectively visit all the cities in Q and end at the origin, such that the maximum
path length is minimized. As was argued in the proof of Theorem 3, Z*(n,m) > max;cs{r’ —i—Pé}
and Z*(n,m) > max;es{d(o,l’) + PL}.

At time ¢, the distance that salesman p* still has to travel on the route R before arriving
at the origin is at most R — d(o,1?), since d(o,p*(¢’)) > d(0,1?) implies that p* has traveled on
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the route R a distance not less than d(o,1”). Therefore, it will arrive at the origin before time
¢’ +R —d(o,l7); note that since this is valid for any j, we can say that the salesman will arrive at
the origin before time min;cs{¢’ + R —d(0,17)}. Note that all other salesmen have already arrived
at the origin. Next, a re-optimization will be implemented on Q; let 75 denote the maximum tour
length. Hence, the completion time of PAH-m-dd will be at most minjcs{q’ + R — d(0,1?)} + 7.
Again, To < max;es{d(0,17) +P5} and we have that the online cost is at most

in{¢’ +R —d(o,’ Jy 4 pi
rjnegl{q +R—d(o,l")} +I§1€%X{d(0,l )+ PL}.
Letting k be the argmax of the second term, we have that the online cost is at most

o
14+«

¢"+R—d(o,1*)+d(0,1*) +PE= (" +P§) +(R—a) < <2— > Z*(n,m) O

Proof of Theorem 8. Define a metric space M as a graph with vertex set V ={1,2,...,n}U{o}
with distance function d that satisfies the following: d(o,7) =1 and d(i,j) =2 for all i # j € V'\ {o}.
For simplicity, assume m divides n evenly.

At time 0, there is a request at each of the n cities in V'\ {o}. If an online server visits the request
at city ¢ at time £ <22 —1 —¢, for some small €, then at time ¢ + ¢, a new request is disclosed
at city ¢. In this way, at time 2= — 1 the online servers still have to serve requests at all n cities,
some of which are only disclosed and not released. If all cities were released, the online servers
could finish at time (2% —1)+ (22 —1)/y = (141/v)(22 —1); therefore this is a lower bound for
the online cost when cities have only been disclosed. Denoting Z“4(n,m) as the online cost of an
arbitrary online algorithm A, we have that Z4(n,m) > (1+ %)(2;—' —1). The optimal offline servers,
however, will be able to visit all cities by time 2> +a. Therefore, by letting k = * and noting that
Z"=%n,m) = 2k, we have that

Z4(n,m) S
Z*(n,m) — 2k+a  1+a 2k+a

(I+1/9)2k—1) 14+1/y 141/

)

taking k arbitrarily large proves the theorem. [J

Proof of Theorem 9. Define a metric space M as a graph with vertex set V ={1,2,...,n} U{o}
with distance function d that satisfies the following: d(o,i) =1 and d(i,j) =2 for all i # j € V' \ {o}.
For simplicity, assume m divides n evenly.

At time 0, there is a request at each of the n cities in V'\ {o}. If an online server visits the request
at city ¢ at time ¢ <2 —1 —¢, for some small €, then at time ¢ + ¢, a new request is disclosed
at city ¢. In this way, at time 2= — 1 the online servers still have to serve requests at all n cities,
some of which are only disclosed and not released. If all cities were released, the online servers
could finish at time (27 —1) + (22 —1)/y=(1+1/7)(22 —1); therefore this is a lower bound for
the online cost when cities have only been disclosed. Denoting Z“(n,m) as the online cost of an
arbitrary online algorithm A, we have that Z4(n,m) > (1+ %)(2% —1). The single optimal offline
server will be able to visit all cities by time 2n + a. Therefore, noting that Z"=%(n,m) =2n/m, we

have that
ZA(n,m) S (1+1/9))(2n/m—1)

Z*(n,1) — na

(n,1) 2n+ Zr=9(n, m) 1+1/y
= A/ m) e T aim ™ nta
= (1+1/y)(1/m) -

l1+a/m 2n+a’

taking n arbitrarily large proves the theorem. [
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Proof of Theorem 10. The proof is very similar to that of Theorem 1; we detail only the differ-
ences for the case analysis.

Case (1): The time needed by PAH-G is at most r, + pZ"=°(n, Q) /v < Z*(n,q) + pZ"="(n, Q) /.
By Lemma 3, this upper bound is asymptotically equal to Z*(n,q) + %Z’:O(n,q) < (14
L£4YZ*(n,q), almost surely.

Q
Case (2a): Applying Lemma 3, we have that the online cost is almost surely at most

2p—v+1

d ,l* Zr:O , _
Tn+ (0’7 n) +,0 Eyn Q) S Z*(n,q)+ 2,7 ero(n’Q)
* 2p—v+1 r=

< (i (1) (8)) ino

Case (2b): Since Z*(n,Q) < Z*(n,q), the online cost is almost surely at most

. P r=0 PN e “(n P ogr=0(p P=1N
2(n.Q)+ L2 <n,Q>+< - )Z( Q) < 2+ Lz <,Q>+< 7_)Z( @

— Z"(n,q) + %Zrzo(n,q) + (pv> Z*(n,q)

Pq ,01) \
<|({1l+—=4+4—|Z2%(n,q).
( QoY (. q)

Since p,y>1and Q >¢q >0, max{l+%,1+%+”%l,l+(2’)_273“> (%)}zljhﬂ—i—g and
the theorem is proved. [J



